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Abstract. This paper is concerned with the numerical investigation of a macroscopic
model for complex fluids in “1+2” dimension case. We consider the planar pressure
driven flow where the direction of the molecules is constrained in the shear plane. The
modified Crank-Nicolson finite difference scheme satisfying a discrete energy law will
be developed. By using this scheme, it is observed numerically that the direction of
the molecules will tumble from the boundary layer and later on the inner layer with a
much longer time period. This is consistent with the theoretical prediction. Moreover,
we find some complex phenomena, where the tumbling rises from boundary layer and
is then embedded into the interior area more clearly when the viscosity coefficient µ of
the macro flow has a larger value. The norm of the molecular director d will endure
greater change as well. This implies that the viscosity of flow plays the role of an
accelerator in the whole complex fluids. Comparing these results with the theoretical
analysis, we can find that the gradient of the velocity has direct impact on the tumbling
phenomena. These results show that the proposed scheme is capable of exploring
some physical phenomena embedded in the macro-micro model.
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1 Introduction

The special hydrodynamical properties of complex fluids have attracted many researchers
to build up mathematical models and to provide appropriate explanations, see, e.g.,
[1, 2, 5, 7, 8, 20] and references therein. Doi [2] introduced the Fokker-Plack equation [9]
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coupled with the Navier-Stokes equations, which is a well-known multi-scale model.
This model assumed that the fluid is homogeneous in space and excluded volume effect
by adopting either Onsager potential [23] or Maier-Saupe potential [2,6,21]. Later, Doi et
al. [3] extended the theory to model flows of nonhomogeneous liquid crystal polymers
by introducing a long-range intermolecular potential through a mean field calculation.
Marrucci and Greco [22] further improved the extended Doi theory and obtained an ap-
proximate potential depending on gradients of the second moments of the possibility
density function (PDF). Moreover, Wang et al. [24, 25] extended the Doi kinetic model
from the rodlike molecule at large aspect ratio to the discotic one at small aspect ratios.
Although these models are found useful, the computational cost is large since there are
seven variables in the kinetic model (or Fokker-Plack equation of PDF) and the Navier-
Stokes-like equations. Therefore, there have been attempts from the macroscopic point
of view.

For the macroscopic continuum description of the hydrodynamics of complex fluids,
such as the nematic liquid crystals, Ericksen and Leslie derived the following nonlinear
coupled system [5, 6, 14] for those materials with isotropic elastic energies:

ut+(u·∇)u+∇p=µ△u−λ∇·τ, in Ω, (1.1)

∇·u=0, in Ω, (1.2)

dt+(u·∇)d−ακ ·d−(α−1)κT ·d=γ(∆d−f(d)), in Ω, (1.3)

τ =∇d⊙∇d+α(d⊗∆d−d⊗f)+(α−1)(∆d⊗d−f⊗d), (1.4)

where u represents the velocity of the liquid crystal flow, p the pressure, κ = (∇u)T,
and d the orientation of the liquid crystal molecules. The domain Ω⊂R

n is a bounded
domain. The induced tensor τ shows the impact of the microstructure on the macro
fluid while the coupled term of velocity and director in (1.3) shows impact of the fluid
on the microstructure. In Eq. (1.4), the term ∇d⊙∇d denotes a 3×3 matrix whose (i, j)-
th entry is given by dxi

·dxj
, for 1 ≤ i, j ≤ 3, while the term d⊗∆d also denotes a 3×3

matrix whose (i, j)-th entry is given by di∆dj. Here, µ is the viscosity coefficient of the
macro fluid and γ is the diffusive parameter for the molecular direction d. Moreover, λ
is the competition ratio of the kinetic energy and the elastic energy, α ∈ [0,1] is a shape
parameter of the molecule, and f(d) may be seen as a penalty function to approximate
the constraint |d|=1. In this paper, we choose

f(d)=∇F(d), (1.5a)

where

F(d)=
1

ǫ2
(|d|2−1)2, (1.5b)

where the parameter ǫ is the penalty parameter. The transport of the director, dt+
(u·∇)d−ακ ·d−(α−1)κT ·d reflects the microscopic picture of those ellipsoid shaped
molecules moving in Stokes fluids with no slip boundary conditions on the particle sur-
face [10, 11]. It presents an effective stretching effect on the director d, the reader may
refer to [17] for the detail.


