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Abstract. A new boundary condition, aimed at inhibiting near-wall condensation ef-
fects in lattice Boltzmann simulations of capillary flows in micro-corrugated channels,
is introduced. The new boundary condition is validated against analytical solutions
for smooth channels and demonstrated for the case of three-dimensional microflows
over randomly corrugated walls.
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1 Introduction

The Lattice Boltzmann method was devised as a computational alternative to the solu-
tion of the Navier-Stokes equations for the numerical simulation of macroscopic flows [1].
For the last few years, however, an intense activity has been directed by many groups to-
wards the application of LB techniques to microscopic and nanoscopic flows [2–7]. The
somewhat unanticipated success of LB beyond the macroscopic context is probably due
to the existence of a large body of microfluidic problems, in fact larger than textbook in-
dications, for which continuum hydrodynamics is violated, but somehow mildly, i.e., in a
way which can be mended without necessarily resorting to atomistic simulations (molec-
ular dynamics). This statement can be made a little more precise as follows. The break-
down of hydrodynamics in microfluidic problems is often signalled by the appearance
of infinities/singularities in the corresponding solutions. Moving contact lines, droplet
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break-up and coalescence, are just but a few examples in point [8–10]. It is generally
understood that such infinities are regulated by an atomistic cutoff. Nevertheless, going
all the way down to atomistic simulation proves unpractical for want of compute power.
This no-fly zone offers in principle a rich hunting ground for mesoscopic/kinetic meth-
ods. However, achieving quantitative accuracy is by no means a given, and depends on
a careful application of these methods in the appropriate parameter regime. In this paper
we shall discuss a few aspects related to the specific case of capillary front-propagation
in rough geometries.

2 The method

We use the LB method with the standard Shan-Chen (SC) [11] pseudo-potential forcing.
The corresponding lattice Boltzmann equation takes the following form:

fi(~r+~ci∆t,t+∆t)− fi(~r,t)=
∆t

τ

(
f

eq
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)
, (2.1)

where fi(~r,t) represents the probability of finding a particle at time t on the lattice site~r,
moving with velocity~ci. The left-hand-side represents the particle free-streaming, while
the right hand side encodes particle collisions in the form of a relaxation on a time scale
τ to the local equilibrium f

eq
i . The latter is given by a Maxwell-Boltzmann distribution

truncated to second order in the local Mach number, and reads as follows:
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where wi are the standard weights for the 19-speed 3d lattice considered in this work, and
~~Q =~ci~ci−c2

s I is the quadrupole projector upon the i-the direction, c2
s = ∑i wic

2
ix, being the

lattice sound speed. In the above, ρ=∑i fi is the local fluid density and ~u′=(∑i fi~ci+~Fτ)/ρ
is the local fluid speed, including the contribution of the interparticle-interaction force

~F=−GΨ(~r;t)∑
i

wiΨ(~r+~ci∆t)~ci. (2.3)

In the above, G is the coupling strength, and Ψ is the usual density-dependent pseudo-
potential Ψ(ρ)= (1−e−ρ). As is well known, the SC method provides the two basic fea-
tures of non-ideal fluid behavior, namely a non-ideal equation of state p=ρc2

s +Gc2
s Ψ2/2,

and a non-zero surface tension

γ ∝−
G

2
c4

s

∫
(∇Ψ)2dy,

where y runs across the interface. It is readily shown that for G<−4, the above equation
of state generates coexisting liquid and vapor phases.


