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Abstract. We show the methodology and advantages of asymptotic analysis when ap-
plied to lattice Boltzmann outflow treatments. On the one hand, one can analyze out-
flow algorithms formulated directly in terms of the lattice Boltzmann variables, like the
extrapolation method, to find the induced outflow conditions in terms of the Navier-
Stokes variables. On the other hand, one can check the consistency and accuracy of
lattice Boltzmann outflow treatments to given hydrodynamic outflow conditions like
the Neumann or average pressure condition. As example how the gained insight can
be used, we propose an improvement of the well known extrapolation method.
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1 Introduction

In contrast to conventional CFD methods where the fluid velocity and pressure are pri-
mary variables, the lattice Boltzmann method recovers them as averages of the meso-
scopic particle distributions in a postprocessing step (see, for example, [1, 8, 9, 12, 15, 21–
23]). The advantage of very simple evolution equations for the particle distributions,
however, come at the price of non-transparent relations between the desired hydrody-
namic boundary conditions and the required lattice Boltzmann boundary treatments. In
this article, we show that asymptotic analysis can help to clarify this relationship.

The standard lattice Boltzmann method is comprised of two phases, a collision phase
and a transport phase

f c(n, j)= f (n, j)−A( f− f eq)(n, j), (1.1a)

fi(n+1, j+ci)= f c
i (n, j). (1.1b)
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Here, f (n, j) is the vector of particle distribution functions fi(n, j) = f (n, j,ci) at the nth
time level tn and the lattice node xj (j∈Z

d) with the discrete velocity ci ∈{−1,0,1}d(i =
1,2,··· ,N). The particles collide locally, which is modeled with a linear operator A includ-
ing BGK [23] and MRT [9, 20] approaches. The equilibrium functions f

eq
i recommended

in [12] are adopted here,

f
eq
i = Fi(ρ̂,û), Fi(ρ̂,û)= f ∗i

(

ρ̂+3û·ci+
9

2
(û·ci)

2−
3

2
|û|2

)

, (1.2)

in which

ρ̂=
N

∑
i=1

fi, û=
N

∑
i=1

ci fi (1.3)

are the mass density and the average momentum of the particles based on the assumption
that the fluid density slightly fluctuates around a constant ρ̄ (here, ρ̄ = 1 without loss of
generality). The constants f ∗i depend on the chosen velocity model.

The Chapman-Enskog expansion [2, 10, 11, 13] and asymptotic analysis [17, 18, 27]
show that for incompressible flows governed by the Navier-Stokes equations,

∇·u=0, ∂tu+(u·∇)u+∇p=ν∇2u, u|t=0 =ψ, (1.4)

the fluid velocity u and pressure p can be extracted from the lattice Boltzmann moments
ρ̂ and û with second order accuracy, supposing that the eigenvalues of the collision ma-
trix A are properly related to the fluid shear viscosity ν and that initial and boundary
conditions are approximated sufficiently accurate.

As far as boundary conditions are concerned, we can distinguish two basic types.
(1) The Navier-Stokes problem (1.4) includes certain hydrodynamical boundary condi-
tions (like no-slip velocity conditions, or normal stress conditions). Then, the task is to
find consistent lattice Boltzmann boundary algorithms, which comes with the general
difficulty that the required lattice Boltzmann boundary conditions outnumber the given
hydrodynamical ones. The additional conditions have to be chosen very carefully in or-
der to avoid conflicts on the hydrodynamical level which entail poor approximations.
(2) The solution domain of (1.4) is very large or unbounded (like pipe flows or exterior
flows). Then, for numerical reasons, artificial boundaries have to be introduced where
no obvious physical boundary conditions are available. Again, one way to proceed is to
adopt outflow conditions formulated in terms of the hydrodynamical variables and con-
struct associated lattice Boltzmann algorithms (like the Neumann condition for the fluid
velocity u [19], the do-nothing condition [19], the average pressure condition [25], or the
convective condition on u [26]). Another way is to formulate reasonable outflow condi-
tions directly for the lattice Boltzmann variables (like the extrapolation method [28], the
approximation by using Grad’s moments [3] and the convective condition on fi [16, 28]).
If this approach is successful, the implied conditions on the hydrodynamical level may
be a valuable alternative to existing outflow treatments.


