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Abstract. We design stable and high-order accurate finite volume schemes for the
ideal MHD equations in multi-dimensions. We obtain excellent numerical stability
due to some new elements in the algorithm. The schemes are based on three- and
five-wave approximate Riemann solvers of the HLL-type, with the novelty that we
allow a varying normal magnetic field. This is achieved by considering the semi-
conservative Godunov-Powell form of the MHD equations. We show that it is im-
portant to discretize the Godunov-Powell source term in the right way, and that the
HLL-type solvers naturally provide a stable upwind discretization. Second-order ver-
sions of the ENO- and WENO-type reconstructions are proposed, together with precise
modifications necessary to preserve positive pressure and density. Extending the dis-
crete source term to second order while maintaining stability requires non-standard
techniques, which we present. The first- and second-order schemes are tested on a
suite of numerical experiments demonstrating impressive numerical resolution as well
as stability, even on very fine meshes.
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1 Introduction

Many interesting problems in astrophysics, solar physics and engineering involve macro-
scopic plasma models and are usually described by the equations of ideal magneto-
hydrodynamics (MHD).

1.1 Derivation of the equations

In macroscopic plasma models, the variables of interest are the mass density of the plasma
ρ, the velocity field u = (u1,u2,u3)T, the magnetic field B = (B1,B2,B3)T, the pressure p
and the total energy E. The unknowns obey the following conservation (balance) laws
(see [36] for details),

1. Conservation of mass: mass of a plasma is conserved, resulting in

ρt+div(ρu)=0.

2. Faraday’s law: the magnetic flux across a surface S bounded by a curve δS is given
by Faraday’s law

− d

dt

∫

S
B·dS=

∫

δS
E·dl.

By using Stokes Theorem and the fact that the electric field in a co-moving frame is zero
and assuming zero resistivity, Faraday’s law leads to

Bt+curl(B×u)=−u(divB). (1.1)

The above equation is termed the magnetic induction equation and can also be written
in the divergence form

Bt+div(u⊗B−B⊗u)=−u(divB).

3. Conservation of momentum: in differential form, the conservation of momentum
is

(ρu)t+div(ρu⊗u+pI)= J×B,

where J denotes the current density and I the 3×3 identity matrix. The Lorentz force
exerted by the magnetic field is given by J×B. Under the assumptions of ideal MHD,
Ampere’s law expresses the current density as

J=curl(B).

Using standard vector identities results in the following semi-conservative form,

(ρu)t+div
(

ρu⊗u+
(

p+
1

2
B2

)
I−B⊗B

)
=−B(divB).


