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Abstract. A novel Eulerian Gaussian beam method was developed in [8] to compute
the Schrödinger equation efficiently in the semiclassical regime. In this paper, we in-
troduce an efficient semi-Eulerian implementation of this method. The new algorithm
inherits the essence of the Eulerian Gaussian beam method where the Hessian is com-
puted through the derivatives of the complexified level set functions instead of solving
the dynamic ray tracing equation. The difference lies in that, we solve the ray tracing
equations to determine the centers of the beams and then compute quantities of inter-
ests only around these centers. This yields effectively a local level set implementation,
and the beam summation can be carried out on the initial physical space instead of the
phase plane. As a consequence, it reduces the computational cost and also avoids the
delicate issue of beam summation around the caustics in the Eulerian Gaussian beam
method. Moreover, the semi-Eulerian Gaussian beam method can be easily general-
ized to higher order Gaussian beam methods, which is the topic of the second part
of this paper. Several numerical examples are provided to verify the accuracy and
efficiency of both the first order and higher order semi-Eulerian methods.
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1 Introduction

The Schrödinger equation is the fundamental equation in quantum mechanics. The
rescaled linear Schrödinger equation can be written as

iε
∂Ψε

∂t
+

ε2

2
∆Ψε−V(x)Ψε =0, x∈R

n, (1.1)

where Ψε(x,t) is the wave function, V(x) is the potential, ε is the re-scaled Plank con-
stant that describes the ratio between quantum time/space scale and the macroscopic
time/space scale. This scaling corresponds to the so-called semiclassical regime. In this
paper, we consider (1.1) with the WKB-initial condition

Ψε(0,x)= A0(x)exp
[ iS0(x)

ε

]

. (1.2)

The direct numerical simulation of (1.1)-(1.2) has the difficulty that when ε is small the
wave function Ψε(x,t) becomes oscillatory of wave length O(ε). The best direct nu-
merical solver so far is the time splitting spectral method which requires a mesh size
of O(ε) [1]. Gaussian beam methods are asymptotic methods for such high frequency
waves which allow numerical meshes to be O(

√
ε), and they outperform the classical

geometric optics method in that the Gaussian beam approximations are accurate even
around caustics. While the classical Gaussian beam methods are in the Lagrangian frame-
work [2–6, 16, 17], there have been very recent efforts in developing Eulerian Gaussian
beam methods [8, 11, 12]. The error analysis on these Eulerian methods and their higher
order extension were performed in [13, 14].

For more recent works in Gaussian beam methods the readers are also referred to [15,
19, 20].

We first summarize the Eulerian Gaussian beam method proposed in [8]. Consider
the ansatz

ϕε
eu(t,x,y,p)= A(t,y,p)exp

[ iT(t,x,y,p)

ε

]

, (1.3)

where

T(t,x,y,p)=S(t,y,p)+p·(x−y)+
1

2
(x−y)⊤M(t,y,p)(x−y).

Here (y,p) is defined by the following Hamiltonian system

dy

dt
= p, (1.4a)

dp

dt
=−∇yV. (1.4b)


