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Abstract. We consider constraint preserving multidimensional evolution equations.
A prototypical example is provided by the magnetic induction equation of plasma
physics. The constraint of interest is the divergence of the magnetic field. We de-
sign finite volume schemes which approximate these equations in a stable manner and
preserve a discrete version of the constraint. The schemes are based on reformulat-
ing standard edge centered finite volume fluxes in terms of vertex centered potentials.
The potential-based approach provides a general framework for faithful discretizations
of constraint transport and we apply it to both divergence preserving as well as curl
preserving equations. We present benchmark numerical tests which confirm that our
potential-based schemes achieve high resolution, while being constraint preserving.
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1 Introduction

We are concerned with evolution equations of the form

ut+L
(

∂x,f(x,t,u)
)

=0, ∀(x,t)∈R
n×R+, (1.1)

where u(x,t) : R
n×R+ 7→R

m is the unknown, f : X 7→X is a nonlinear flux function and
L : X 7→Y is a differential operator acting on the Sobolev space X. We assume there exists
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another differential operator M :Y 7→Z, such that ML
(

f(·,·,v)
)

≡0 for all v∈X. Applying
the operator M to both sides of (1.1), we obtain

(Mu)t≡0. (1.2)

Hence, solutions of (1.1) satisfy an additional constraint which enforces them to lie on a
sub-manifold of the space X.

The above framework is generic to a large class of evolution equations involving in-
trinsic constraints. We mention three prototype examples. As a first example, consider the
curl advection

ut+curl
(

f(x,t,u)
)

=0, (x,t)∈R
n×R+. (1.3)

This equation is an example for (1.1) and (1.2), with the differential operators L=curl and
M=div. Hence, solutions of (1.3) satisfy the additional divergence constraint

div(u)t =0. (1.4)

A specific example for (1.3) is the magnetic induction equation of plasma physics. Under
the assumptions of zero resistivity, the magnetic field u, evolving under the influence of
a given velocity v, satisfies the following form of the Maxwell’s equations [23]

ut+curl(u×v)=0, (x,t)∈R
n×R+. (1.5)

The fact that magnetic monopoles have not been observed in nature implies that

div
(

u(x,0)
)

≡0. (1.6)

As a consequence of the divergence constraint (1.4), the solutions of (1.5) remain diver-
gence free. The magnetic induction equation (1.5) is a sub-model for the equations of
ideal Magnetohydrodynamics (MHD) [11].

Adding magnetic resistivity to the model leads to the viscous magnetic induction
equations

ut+curl(u×v)=−σ
(

curl(curlu)
)

, (x,t)∈R
n×R+. (1.7)

The parameter σ is the resistivity co-efficient of the medium. Solutions of (1.7) also satisfy
the divergence constraint (1.4).

A second example for (1.1) and (1.2) is the grad advection

wt+grad
(

f(x,t,w)
)

=0, (x,t)∈R
n×R+. (1.8)

The differential operators of interest are L = grad and M = curl and solutions of (1.8)
satisfy the additional constraint

curl(w)t =0.


