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Dedicated to the memory of our dear friend, David Gottlieb

Abstract. In many problems, one wishes to solve the Helmholtz equation with vari-
able coefficients within the Laplacian-like term and use a high order accurate method
(e.g., fourth order accurate) to alleviate the points-per-wavelength constraint by re-
ducing the dispersion errors. The variation of coefficients in the equation may be due
to an inhomogeneous medium and/or non-Cartesian coordinates. This renders exist-
ing fourth order finite difference methods inapplicable. We develop a new compact
scheme that is provably fourth order accurate even for these problems. We present
numerical results that corroborate the fourth order convergence rate for several model
problems.

AMS subject classifications: 65N06, 78A48, 78M20

Key words: Helmholtz equation, variable coefficients, high order accuracy, compact finite differ-
ences.

1 Introduction

In many problems in computational electrodynamics one considers media with variable
properties. Our goal is to obtain high order schemes for the corresponding wave prop-
agation problems. Consider the two dimensional (TEz) Maxwell equations in frequency

∗Corresponding author. Email addresses: dsbritt@ncsu.edu (S. Britt), tsynkov@math.ncsu.edu (S. Tsynkov),
turkel@post.tau.ac.il (E. Turkel)

http://www.global-sci.com/ 520 c©2011 Global-Science Press



S. Britt, S. Tsynkov and E. Turkel / Commun. Comput. Phys., 9 (2011), pp. 520-541 521

space:
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Combining those into a single second order equation, we have:
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More generally, we consider the following 2D variable coefficient Helmholtz equation:
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+k2(x,y)u(x,y)=0. (1.1)

We emphasize that in many cases it is both easier and cheaper to solve a single second
order equation, such as Eq. (1.1), rather than the underlying system of first order equa-
tions, see, e.g., [16, 17, 20]. We also stress that the coefficients of Eq. (1.1) vary inside the
derivatives. Hence, a straightforward Padé approximation will not work. Because of the
pollution effect [3, 6], second order accurate schemes are very inefficient, especially for
high frequencies. Our aim is to construct a fourth order accurate finite difference scheme,
which would have a compact 9 point stencil in two dimensions (and 27 points in three di-
mensions). Note that having a small stencil or, in other words, having the same (second)
order of the difference equation as that of the differential equation, yet with high order
accurate approximation, is convenient, as it considerably simplifies setting the boundary
conditions [5, 7] and also leads to a narrower bandwidth of the resulting matrix.

Nehrbass, Jevtic, and Lee studied ways of reducing the phase error [19]. They used a
5 point stencil and replaced the weight of the center node using a Bessel function. Harari
and Turkel [15] constructed a fourth order approximation for the Helmholtz equation
subject to Dirichlet boundary conditions. The method was based on Padé expansions.
It was extended by Singer and Turkel [22] to Neumann boundary conditions. They also
introduced an approach referred to as equation based. In this approach, one finds the
truncation error of a classical second order method and then uses the Helmholtz equation
and its derivatives to eliminate this truncation error to the next order. In both cases, the
coefficients a and b in (1.1) were required to be constant, though k could be a smooth func-
tion of x and y. A different approach was used by Caruthers, Steinhoff, and Engels [8],
who based a difference approximation on Bessel functions. This approach requires that
all the coefficients be constant. Under this assumption one can even construct sixth order
accurate approximations, see, e.g., [18, 23, 26].

Besides the variation of physical properties of the medium leading to Eq. (1.1), the
coefficients of a differential equation may vary because the equation is expressed in non-
Cartesian coordinates. In the recent paper [7], we have constructed a fourth order accu-
rate compact finite difference scheme for the Helmholtz equation in polar coordinates. In


