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Abstract

This paper gives the detailed numerical analysis of mixed finite element method for

fractional Navier-Stokes equations. The proposed method is based on the mixed finite

element method in space and a finite difference scheme in time. The stability analyses of

semi-discretization scheme and fully discrete scheme are discussed in detail. Furthermore,

We give the convergence analysis for both semidiscrete and fully discrete schemes and then

prove that the numerical solution converges the exact one with order O(h2 + k), where h

and k respectively denote the space step size and the time step size. Finally, numerical

examples are presented to demonstrate the effectiveness of our numerical methods.
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1. Introduction

The purpose of the present paper is to study the error estimates of the mixed finite element

method for the incompressible fractional Navier-Stokes equations



























ut + BαL u+ u · ∇u+∇p = f, in Ω× [0, T ],

∇ · u = 0, in Ω× [0, T ],

u(x, 0) = u0, in Ω,

u = 0, on ∂Ω× [0, T ],

(1.1)

where Ω ⊂ R2 is a bounded and connected polygonal domain, u represents the velocity field,

p is the associated pressure, u0 is the initial velocity and f is an external force, L u = −ν△u

(ν > 0 is the viscosity coefficient), Bα :=R D1−α
t is the Riemann-Liouville fractional derivative

in time defined by: for 0 < α < 1,

B
αϕ(t) :=

∂

∂t
I

αϕ(t) :=
∂

∂t

∫ t

0

ωα(t− s)ϕ(s)ds with ωα(t) :=
tα−1

Γ(α)
(1.2)
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with I α being the temporal Riemann-Liouville fractional integral operator of order α.

The above-mentioned problem has many physical applications in many areas such as hetero-

geneous flows and materials, turbulence, viscoelasticity and electromagnetic theory. Particu-

larly when α = 1, the problem (1.1) reduces to the classical Navier-Stokes equations, numerical

approximations of which have been studied by many authors [1–4,8–19,25,32,34,37–44,46,47].

However, for the fractional Navier-Stokes equations (FNSE) which are nonlinear in character,

most of them do not have exact analytical solutions. It is shown that very few cases in which

the exact solution of fractional Navier-Stokes equations can be obtained, where it have to make

certain assumptions about the state of the fluid and a simple configuration for the flow pattern

is to be considered. Hence it is necessary to analyze and study the approximation and numerical

techniques of FNSE. However, to our best knowledge, numerical analysis of such problem for

fractional Navier-Stokes equations is missing except [27, 56] in the literature. Therefore, this

article aims to fill the gap, study and obtain the strong convergence approximations of FNSE

like (1.1).

In recent years, there have been numerous studies on fractional diffusion equation. Lin and

Xu [31] have proposed the finite difference scheme in time and Legendre spectral methods in

space for the time-fractional diffusion equation. Deng [6] has established the stability and error

estimates for the time fractional Fokker-Planck equation and then proved that the convergent

order is O(k2α+hµ), where k is the time step size and h is the space step size. Liu et al. [35] have

developed a two-grid algorithm based on the mixed finite element method for a nonlinear fourth-

order reaction-diffusion equation with the time-fractional derivative of Caputo-type. Jin et al.

[21], by using piecewise linear functions, have studied two semidiscrete approximation schemes,

i.e., Galerkin finite element method and lumped mass Galerkin finite element method, for the

homogeneous time-fractional diffusion equation. Zeng et al. [51] have studied the second-order

accurate schemes for the time-fractional diffusion equation with unconditional stability based

on finite element method in space and the fractional linear multistep methods in time. Besides,

some other interesting works in this aspect can be found in [5,7,20,22–24,30,33,36,45,52–55,57].

In this article, our goal is to give some detailed numerical analysis of the mixed finite element

method for the problem (1.1). On one hand, the discretization in space is done by the mixed

finite element method. First of all, the velocity is split into two parts by introducing a linearized

discrete problem with solution vh. In particular, Motivated by the Ritz-Volterra projection,

we then introduce the fractional Stokes-Volterra projection Shu, the role of which is similar

to that of a Ritz projection in treating the heat equation. Subsequently, with virtue of the

property of the operator Eh as well as the standard duality arguments, the L2-error estimate

for the velocity is shown. On the other hand, firstly following the idea of Zhuang et al. [53]

that has discretized the Riemann-Liouville fractional derivative Bα in time, then we adopt the

finite difference method and obtain the stability and convergence properties related to the time

discretization. The stability analyses of semi-discretization scheme and fully discrete scheme

are discussed in detail. Furthermore, We give the convergence analysis for both semidiscrete

and fully discrete schemes and prove that the numerical solution converges the exact one with

order O(h2 + k), where h and k respectively the space step size and the time step size.

The structure of this paper is as follows: In section 2, we introduce some preliminaries

and notations, give the definition of the Mittag-Leffler function. In Section 3, we introduce

the notations for finite element spatial semidiscretization, describe the semidiscrete Galerkin

approximations about space and establish the error estimate for the velocity. In Section 4,

we present several lemmas which play a crucial role in the proof of the error estimate of the


