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Abstract

Two-variable Jacobi polynomials, as a two-dimensional basis, are applied to solve a class

of temporal fractional partial differential equations. The fractional derivative operators are

in the Caputo sense. The operational matrices of the integration of integer and fractional

orders are presented. Using these matrices together with the Tau Jacobi method converts

the main problem into the corresponding system of algebraic equations. An error bound is

obtained in a two-dimensional Jacobi-weighted Sobolev space. Finally, the efficiency of the

proposed method is demonstrated by implementing the algorithm to several illustrative

examples. Results will be compared with those obtained from some existing methods.
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1. Introduction

Fractional partial differential equations (FPDEs) are used as modeling tools of various phe-

nomena in different branches of science. For example, diffusive processes associated with sub-

diffusion (fractional in time), super-diffusion (fractional in space), or both, advection-diffusion,

and convection-diffusion processes can be modeled by FPDEs [1–5]. The advantage of these

equations in compared to integer-order partial differential equations is the ability of natural

simulation of physical processes and dynamical systems more accurately [6]. For instance, some

phenomena in fluid and continuum mechanics [7], viscoplastic and viscoelastic flows [8], biology,

and acoustics [9], describing chemical and pollute transport in heterogeneous aquifers [10–12],

pricing mechanisms and heavy stochastic processes in finance [13], and describing convection

process of liquid in medium [14]. Therefore, it helps mathematicians and engineers in the better

understanding of the nature and behavior of physical phenomena. For this reason, FPDEs are

increasingly studied, but their analytic solving is difficult. Hence, mathematicians have been

attracted to solve this class of equations numerically. For example, in [14], the normalized and

rational Bernstein polynomials are applied to solve a kind of time-space fractional diffusive equa-

tion. The finite difference method is used to solve the fractional reaction-subdiffusion equation

in [15]. Authors in [16] propose a wavelet method to solve a class of fractional convection-

diffusion equation with variable coefficients. Chen and et al. use generalized fractional-order

Legendre functions to obtain numerical solutions of FPDEs with variable coefficients [17]. Ding
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introduces a general Pade approximation method for time-space fractional diffusive equations

in [18]. Also, Heydari and et al. apply the Legendre wavelet method for solving the time

fractional diffusion-wave equation [19]. In [20], a two-dimensional wavelets collocation method

uses to solve electromagnetic waves in dielectric media.

In this paper, an operational Tau method, based on two-variable Jacobi polynomials (TVJP-

s), is proposed to deal with a class of FPDEs which involves equations such as diffusion and

advection-diffusion equations. The derivative operators appeared in these equations are in the

Caputo sense. First, the TVJPs, on the domain Ω = [0, 1]× [0, 1], are obtained as a generaliza-

tion of the classic one-variable Jacobi polynomials (OVJPs) on the interval Ω0 = [0, 1]. A given

continuous function u(x, t), defined on Ω, can be approximated in terms of the two-variable

presented basis. In order to approximate the terms including the derivative operators in the

equation under study, the operational matrices of the integration of fractional and integer or-

ders are derived for the one-variable Jacobi basis, then the resultant matrices are applied to

construct the two-dimensional integral operational matrices for both two independent variables

x and t. Applying these matrices together with the Tau method leads to reduce the given

equation to the corresponding system of the algebraic equations which is a Sylvester equation.

Solving the resulting system leads to determine the vector of unknown coefficients, therefore,

an approximate solution is obtained. Also, the convergence of the proposed approach is investi-

gated in a two-dimensional Jacobi-weighted Sobolev space and an error bound is computed for

an approximate solution. Finally, the suggested algorithm is implemented to several illustrative

examples.

The outline of the paper is as follows: Section 2 gives some elementary definitions and

concepts of the fractional calculus. In Section 3, the TVJPs are constructed with help of the

OVJPs. The integral operational matrices of fractional and integer orders are derived in Section

4, which are used to construct the operational matrices corresponding to the fractional partial

derivative operators. In Section 5, an error bound is given in a two-dimensional Sobolev space.

The applicability and efficiency of the proposed approach are demonstrated by implementing

the method on several illustrative examples in Section 6. Finally, a conclusion is presented in

Section 7.

2. Elementary Definitions of Fractional Calculus

The two most used fractional operators are the Caputo derivative and the Riemann-Liouville

integral operators.

Definition 2.1. If γ ∈ R and n = ⌈γ⌉, the Caputo derivative operator is defined as,

Dγu(t) =
1

Γ(n− γ)

∫ t

0

(t− s)n−γ−1 u(s) ds, t ∈ Ω0,

D0u(t) = u(t).

(2.1)

Definition 2.2. If ν ∈ R, the Riemann-Liouville integral operator is defined as,

Jνu(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s) ds, t ∈ Ω0,

J0u(t) = u(t).

(2.2)


