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Abstract. In this note, we investigate the properties of Gaussian BV functions and give
a heat semigroup characterization of BV functions in Gauss space. In particular, the lat-
ter is the nontrivial generalization of classical De Giorgi’s heat kernel characterization
of function of bounded variation on Euclidean space to the case of Gauss space.
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1 Introduction

There are various definitions of variational functions, and the related class of bound-
ed variational functions (or BV functions for short), is meaningful in different contexts
and equivalent in general. On the Euclidean space, the variation of f ∈ L1(Rn) with the
Lebesgue measure can be defined as

‖D f‖(Rn)=sup

{

∫

Rn
f divϕdx : ϕ∈C1

c (R
n, R

n) with ‖ϕ‖L∞ ≤1

}

,

where divϕ(x) := ∑
n
i=1

∂ϕi

∂xi
. In fact, the original definition of the variation of a function

was given by De Giorgi through a thermonuclear regularization process (see [3, 4]). He
also proved that

‖D f‖(Rn)= lim
t→0

∫

Rn
|∇Tt f |dx, (1.1)

where ∇ denotes the gradient of the function f , and

Tt f (x)=
∫

Rn
h(t,x−y) f (y)dy
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is the heat semigroup with the Gauss-Weierstrass kernel h(t,x)= (4πt)−n/2e−
|x|2
4t . Later,

Miranda, Pallara, Paronetto and Preunkert in [6] proved the equality (1.1) on the Rieman-
nian manifold M

|Du|(M)= lim
t→0

∫

M
|dPtu|dV

with two geometric assumptions: the Ricci curvature is bounded from below and the vol-
ume of geodesic balls of fixed radius has a positive lower bound which does not depend
on the center, where {Pt}t≥0 is the heat semigroup generated by the Laplace-Beltrami
operator on M. After that, Carbonaro and Mauceri proved the equality (1.1) based on
properties of heat semigroups with the only restriction that the Ricci curvature is bound-
ed from below in [1]. [2] implies that the equality (1.1) holds in a weaker sense and the
authors provide two different characterizations of sets with finite perimeter and func-
tions of bounded variation in Carnot groups.

In order to state our main result, we recall some basic facts for the n dimensional
Gauss space Gn. This space is equipped with the following measure

γ(x)=(2π)−
n
2 e−

|x|
2

2

, ∀x∈R
n,

the Gaussian volume element dVγ = γdx and the γ-divergence divγ ϕ=divϕ−x·ϕ, ϕ∈
C1

c (R
n,Rn). Next we also recall the Gaussian BV functions and its properties. For any

open subset Ω⊆Rn, the γ-total variation of f ∈L1(Ω) is defined by

‖D f‖(Ω;Gn)=sup

{

∫

Ω
f divγ ϕdVγ : ϕ∈C1

c (Ω,Rn) with ‖ϕ‖L∞ ≤1

}

,

where ‖ϕ‖L∞=esssup
x∈Ω

(|ϕ1|2+ . . .+|ϕn|2)1/2. Particularly, if Ω=Rn, we denote ‖D f ‖(Ω;

Gn) by ‖D f ‖(Gn). The function f ∈ L1(Ω) is of the Gaussian bounded variation on Ω

and denoted by f ∈BV(Ω;Gn) if

‖D f‖(Ω)<∞.

When Ω =Rn, we denote BV(Ω;Gn) by BV(Gn). The space BVloc(G
n) is said to be of

locally Gaussian bounded variation in Rn, if

‖D f ‖(N;Gn)<∞,

for every open set N⊆Rn and N is compact. For a set E⊆Rn, Pγ(E) :=‖DχE‖(Gn) be the
Gaussian perimeter of E. Refer to [5] for some properties of Pγ(E). In particular, from [5]
we know that the Gauss-Green formula is valid:

∫

E
divγvdVγ =

∫

∂∗E
v·vEdPγ, ∀v∈C1

c (R
n,Rn),
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where vE is the outer unit normal to ∂E of a set E with the Gaussian perimeter Pγ(E)<∞,
and ∂∗E stands for the reduced boundary of set E, and the Gaussian perimeter element
dPγ =γdP accompanied by the (n−1) dimensional area element dP with the weight γ .

Moreover, if f ∈Lip(Rn), then by the Rademacher theorem, we have

‖D f‖(Gn)=
∫

Rn
|∇ f |dVγ <∞.

Finally, the Gaussian co-area formula given in [5] is also valid, that is, if f ∈BV(Gn),
then

‖D f ‖(Gn)=
∫ ∞

−∞
Pγ({x∈R

n : f (x)> t})dt.

Now we consider a situation after scaling transformation and generalize the above facts
to this situation. At this time, the Gauss space is equipped with the following measure

γB
n (x)dx=

(detB)1/2

πn/2
e−Bx·xdx, ∀x∈R

n,

where the diagonal matrix is

B=











d1 0 ··· 0
0 d2 ··· 0
...

...
. . .

...
0 0 ··· dn,











, di >0, 1≤ i≤n.

Following [9], we know that the Gaussian volume element is denoted by dVB =γB
n (x)dx

and the B-divergence is denoted by

divB ϕ=divϕ−2Bx·ϕ, ϕ∈C1
c (R

n,Rn).

If di =
1
2 , i=1,.. .n, in diagonal matrix B, this is the same situation as γ. Similarly, we also

introduce the Gaussian BV functions and its properties. For any open subset Ω⊆Rn, the
B-total variation of f ∈L1(Ω) is defined by

‖D f‖B (Ω;Gn)=sup

{

∫

Ω
f divB ϕdVB : ϕ∈C1

c (Ω,Rn) with ‖ϕ‖L∞ ≤1

}

,

where ‖ϕ‖L∞=esssup
x∈Ω

(|ϕ1|2+ . . .+|ϕn|2)1/2. In the same way, if Ω = Rn, we denote

‖D f‖B(Ω;Gn) by ‖D f ‖B (G
n). The function f ∈L1(Ω) is of the Gaussian bounded varia-

tion on Ω and denoted by f ∈BVB(Ω;Gn) if

‖D f ‖B (Ω)<∞.
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When Ω=Rn, we denote BVB(Ω;Gn) by BVB(G
n). The space BVB,loc(G

n) is said to be of
locally Gaussian bounded variation in Rn, if

‖D f ‖B (N;Gn)<∞,

where set N⊆Rn and N is compact.

In Section 2 of this paper, we investigate the Gaussian BV functions and Gaussian
perimeter and study their properties. In Section 3, as the continuation of the classical
De Giorgi’s heat kernel characterization of function of bounded variation on Euclidean
space, we investigate the heat semigroup of Gaussian BV functions. Our proof mainly
applies the basic properties of heat semigroups in [5], precisely,

‖D f ‖B (G
n)= lim

t→0
‖∇Pt f ‖L1 , ∀ f ∈L1(Gn),

where Pt is defined in (3.1) and it is also called Ornstein-Uhlenbeck semigroup (cf. [5]
or [9]).

2 Gaussian BV functions and Gaussian perimeters

For a set E⊆Rn, the Gaussian perimeter of E is

PB(E) :=‖DχE‖B (G
n),

where χE is the characteristic function of set E. And the Gaussian perimeter element
dPB=γB

n dP accompanied by the (n−1) dimensional area element dP with the weight γB
n .

The following Lemmas can be obtained by the method in [5]. We omit the details of
the proofs.

Lemma 2.1. If f ,g∈L1(Gn), then

‖Dmax{ f ,g}‖B(G
n)+‖Dmin{ f ,g}‖B (G

n)≤‖D f‖B(G
n)+‖Dg‖B(G

n).

In particular, for sets U,V∈Rn, if f =χU, g=χV , we have that

PB(U∪V)+PB(U∩V)≤PB(U)+PB(V).

Lemma 2.2. For a set E⊆Rn, we have

∫

E
divB ϕdVB=

∫

∂∗E
ϕ·vEdPB, ∀ϕ∈C1

c (R
n,Rn),

where vE is the outer unit normal to ∂E of the set E with the Gaussian perimeter PB(E)<∞, and
∂∗E stands for the reduced boundary of set E.
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Lemma 2.3. If f ∈Lip(Rn), we have

‖D f‖B (G
n)=

∫

Rn
|∇ f |dVB <∞.

The following two theorem can be proved by following the proof of [10, 5.2.1] and [10,
5.2.2] respectively.

Theorem 2.1. For any open subset Ω⊆Rn, suppose fk ∈ BVB(Ω),(k= 1,2,.. .) and fk → f in
L1

loc(Ω), then
‖D f‖B(Ω)≤ lim

k→∞
inf‖D fk‖B(Ω).

Theorem 2.2. For any open subset Ω ⊆ Rn, if f ∈ BVB(Ω), there exist functions { fk}∞
k=1 ⊂

BVB(Ω)∩C∞(Ω) such that

(i) fk → f in L1(Ω).

(ii) ‖D fk‖B(Ω)→‖D f‖B(Ω) as k→∞.

Lemma 2.4. For any f ∈BVB(G
n), ϕ∈C1

c (R
n,Rn), we have

∫

Rn
f divB ϕdVB=−

∫

Rn
∇ f ·ϕdVB.

Proof. Via the definition of the gradient and dVB =γB
n (x)dx= (detB)1/2

πn/2 e−Bx·xdx, we have

∫

Rn
f divB ϕdVB=

∫

Rn
f (divϕ−2Bx·ϕ)dVB

=
∫

Rn
f (

∂ϕ1

∂x1
+···+ ∂ϕn

∂xn
−2d1x1 ϕ1−···−2dnxn ϕn)dVB

=
∫

Rn
f (

∂ϕ1

∂x1
+···+ ∂ϕn

∂xn
−2d1x1 ϕ1−···−2dnxn ϕn)

(detB)1/2

πn/2
e−Bx·xdx

=
∫

Rn
−∇( f γB

n )·ϕ− f γB
n (2d1x1 ϕ1+···+2dnxn ϕn)dx

=
∫

Rn
−γB

n∇ f ·ϕ− f∇γB
n ·ϕ− f γB

n (2d1x1ϕ1+···+2dnxn ϕn)dx.

Next, we check the fact:

− f∇γB
n ·ϕ− f γB

n (2d1x1ϕ1+···+2dnxn ϕn)=0.

In fact,

− f∇γB
n ·ϕ− f γB

n (2d1x1ϕ1+···+2dnxn ϕn)

=− f ·ϕ1γB
n (−2d1x1)−···− f ·ϕnγB

n (−2dnxn)− f γB
n (2d1x1 ϕ1+···+2dnxn ϕn)

=0.
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Then we get
∫

Rn
f ·divB ϕdVB=−

∫

Rn
γB

n∇ f ·ϕdx=−
∫

Rn
∇ f ·ϕdVB.

So we proved the theorem.

Lemma 2.5. If f ∈BVB(G
n), then

‖D f‖B(G
n)=

∫ ∞

−∞
PB({x∈R

n : f (x)> t})dt.

Proof. Assume that f ∈BVB(G
n)∩C∞(Gn). For t∈R, define

Et={x∈R
n : f (x)> t}.

It is not hard to verify that

∫

Rn
f divB ϕdVB =

∫ +∞

−∞

(

∫

Et

divB ϕdVB

)

dt,

where ϕ∈C1
c (R

n,Rn) and ‖ϕ‖∞≤1. Hence, the inequality

‖D f‖B(G
n)≤

∫ ∞

−∞
PB({x∈R

n : f (x)> t})dt,

holds true. And then we prove the opposite inequality. Let

m(t)=
∫

Rn\Et

|∇ f |dVB =
∫

{ f≤t}
|∇ f |dVB.

Then the function of m is nondecreasing, and m′ exists L1 a.e., with

∫ +∞

−∞
m′(t)dx≤

∫

Rn
|∇ f |dVB.

Next, for any −∞< t<∞, r>0, define function

η(s)=







0 s≤ t
s−t

r t≤ s≤ t+r
1 s≥ t+r

,

then

η′(s)=
{

1
r t< s< t+r
0 else

.

Hence, for all ϕ∈C1
c (R

n,Rn),

−
∫

Rn
η( f (x))divB ϕdVB=

∫

Rn
η′( f (x))∇ f ·ϕdVB=

1

r

∫

Et\Et+r

∇ f ·ϕdVB.
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Moreover,

m(t+r)−m(t)

r

=
1

r

[

∫

Rn\Et+r

|∇ f |dVB−
∫

Rn\Et

|∇ f |dVB

]

=
1

r

∫

Et\Et+r

|∇ f |dVB≥
1

r

∫

Et\Et+r

∇ f ·ϕdVB

=−
∫

Rn
η( f (x))divB ϕdVB.

For those t such that m′(t) exists, we let r→0:

m′(t)≥−
∫

Et

divB ϕdVB.

Taking the supremum over all ϕ as above implies

PB({x∈R
n : f (x)> t})≤m′(t),

and
∫ +∞

−∞
PB({x∈R

n : f (x)> t})dt≤
∫

Rn
|∇ f |dVB =‖D f‖B(G

n).

In fact, the equation holds for any function f∈BVB(G
n). Fixing f∈BVB(G

n) and choosing
{ fk}∞

k=1 as in Theorem 2.5, then we have fk → f in L1(Gn) as k→∞ . Define

Ek
t ={x∈R

n, fk(x)> t}.

Now
∫ +∞

−∞

∣

∣

∣χEk
t
(x)−χEt(x)

∣

∣

∣dt=
∫ max{ f , fk}

min{ f , fk}
dt= | fk− f |.

Thus
∫

Rn
| fk− f |dVB =

∫ +∞

−∞
(
∫

Rn

∣

∣

∣χEk
t
(x)−χEt(x)

∣

∣

∣dVB)dt.

Since fk → f in L1(Gn), there exists a subsequence which upon reindexing by k if needs
be, satisfies

χEk
t
→χEt in L1(Gn) as k→∞.

Then by the lower Semicontinuity Theorem and Fatou’s Lemma we have
∫ +∞

−∞
PB({x∈R

n : f (x)> t})dt

≤ lim
k→∞

inf
∫ +∞

−∞
PB({x∈R

n : fk(x)> t})dt

= lim
k→∞

‖D fk‖B(G
n)=‖D f‖B(G

n),

which completes the proof.
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3 Heat semigroups characterization of BVB(Gn)

At first, we consider the operator LB on Gn which is defined as following: for any f ∈
C2

c (R
n),

LB f (x) :=
1

2
∆ f (x)−Bx·∇ f (x)=

1

2
divB(∇ f ),

and the operator LB is selfadjoint on L2(Gn) based on the result of [9]. Let t>0, for any
f ∈L2(Rn), then the semigroup associate with the operator LB is defined as

Pt f (x)=
∫

Rn
kB(t,x,y) f (y)dy, (3.1)

where

kB(t,x,y)=
n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp

(

− (e−ditxi−yi)
2
di

1−e−2dit

)

, t>0, x∈R
n.

Moreover,

∫

Rn
(Pt f )gdVB =

∫

Rn

∫

Rn
kB(t,x,y) f (y)dyg(x)dVB

=
∫

Rn

∫

Rn
kB(t,x,y) f (y)g(x)

(detB)1/2

πn/2
e−Bx·xdxdy

=
∫

Rn

∫

Rn

[

n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp

(

− (e−ditxi−yi)
2
di

1−e−2dit

)

]

f (y)g(x) · (detB)1/2

πn/2
e−Bx·xdxdy

=
∫

Rn

∫

Rn

[

n

∏
i=1

di

π(1−e−2dit)
1/2

exp

(

− (xi
2+yi

2−2e−ditxiyi)di

1−e−2dit

)

]

f (y)g(x)dxdy

=
∫

Rn
(Ptg) f dVB.

Hence, the semigroup {Pt}t≥0 is symmetric in L2(Gn).

Lemma 3.1. For every f ∈L1(Gn),

lim
t→0

Pt f = f in L1.

Proof. By calculation, it is obvious that

∫

Rn

n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp

(

− yi
2di

1−e−2dit

)

dy=1.
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Following the definition of Pt f and the above equality, we get

Pt f (x)− f (x)

=
∫

Rn

[

n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp

(

− (e−ditxi−yi)
2
di

1−e−2dit

)

]

f (y)dy

− f (x)
∫

Rn

n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp(− yi
2di

1−e−2dit
)dy

=
∫

Rn

[

n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp(− yi
2di

1−e−2dit
)

]

[ f (e−Btx−y)− f (x)]dy

=
∫

Rn

[

n

∏
i=1

√
di√

π(1−e−2dit)
1/2

exp(−yi
2di)

]

[ f (e−Btx−
√

1−e−2Bty)− f (x)]dy.

Letting t→0, via the dominated convergence theorem we conclude that

lim
t→0

‖Pt f − f‖L1 =0.

Lemma 3.2. The semigroup {Pt}t∈[0,+∞) satisfies the following properties:

(i) t 7→Pt f is continuous from [0,∞) to L2(Gn).

(ii) |∇Pt f (x)|≤max{e−dit}|Pt(∇ f )(x)|, i=1,.. .n.

(iii) ‖Pt f‖∞≤‖ f‖∞ ,∀ f∈C0
b(R

n), where C0
b(R

n) consists of the bounded and continuous func-
tions on Rn.

Proof. The property (i) is obviously available. Next we prove (ii), via the definition of
Pt f (x) and the property of the gradient we have

∇Pt f (x)=∇
∫

Rn
kB(t,x,y) f (y)dy=

∫

Rn
∇kB(t,x,y) f (y)dy

=
∫

Rn

(

kB
−2(e−d1tx1−y1)d1

1−e−2d1t
e−d1t,··· ,kB

−2(e−dntxn−yn)dn

1−e−2dnt
e−dnt

)

f (y)dy.

Then integration by part implies

Pt(∇ f )(x)=
∫

Rn
kB(t,x,y)∇ f (y)dy=−

∫

Rn
∇ykB f (y)dy

=−
∫

Rn

(

kB
2(e−d1tx1−y1)d1

1−e−2d1t
,··· ,kB

2(e−dntxn−yn)dn

1−e−2dnt

)

f (y)dy.

Finally, we can obtain the result by taking the absolute value of ∇Pt f (x) and Pt(∇ f )(x),

|∇Pt f (x)|≤max{e−dit}|Pt(∇ f )(x)|, i=1,.. .n.
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For (iii), it is easy to see that

|Pt f (x)|= |
∫

Rn
kB(t,x,y) f (y)dy|≤

∫

Rn
kB(t,x,y)dy‖ f‖∞,

and then we take the infinite norm on both sides

‖Pt f (x)‖∞≤
∥

∥

∥

∥

∫

Rn
kB(t,x,y)dy

∥

∥

∥

∥

∞

‖ f‖∞ ≤‖ f‖∞.

Theorem 3.1. Denote by C1
bd(R

n,Rn) the space of vector-valued functions with continuous par-
tial derivatives of first order and bounded B-divergence. Then for every f in L1(Gn), it holds

‖D f‖B(G
n)=sup

{

∫

Rn
f divB ϕdVB : ϕ∈C1

bd(R
n,Rn) with ‖ϕ‖∞ ≤1

}

.

Proof. Clearly,

‖D f‖B(G
n)≤sup

{

∫

Rn
f divB ϕdVB : ϕ∈C1

bd(R
n,Rn) with ‖ϕ‖∞ ≤1

}

.

In order to prove the opposite inequality, we choose a sequence of functions in such
that

(a) 0≤φk ≤1 for all x∈Rn and k∈N.

(b) for every compact set K⊂Rn there exists nK such that φk=1 on Rn if k≥nK.

(c) ‖∇φk‖∞→0 as k→∞.

If ϕ∈C1
bd(R

n;Rn), we have ‖φn ϕ‖∞ ≤‖ϕ‖∞ and

divB(ϕφk)=div(ϕφk)−2Bx·ϕφk=φkdivϕ−2Bx·ϕφk+ϕ·∇φk

=φkdivB ϕ+ϕ·∇φk.

Therefore, if ϕ ∈ C1
bd(R

n,Rn) and ‖ϕ‖∞ ≤ 1, then using the dominated convergence
theorem we obtain

∫

Rn
f divB ϕdVB= lim

k→∞

∫

Rn
f divB(φk ϕ)dVB≤‖D f‖B(G

n).

This completes the proof of Theorem 3.1.

Theorem 3.2. For every f ∈L1(Gn), we have

‖D f‖B(G
n)= lim

t→0
‖∇Pt f‖L1 .
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Proof. At first, for any functions f ∈BVB(G
n) and ϕ∈C1

c (R
n,Rn), via Lemma 2.4 we have

∫

Rn
∇ f ·ϕdVB =−

∫

Rn
f divB ϕdVB.

Via the definition of ‖D f ‖B(G
n), Lemma 3.1 and Lemma 3.2, we get

∫

Rn
f divB ϕdVB= lim

t→0

∫

Rn
Pt f divB ϕdVB=−lim

t→0

∫

Rn
∇(Pt f )·ϕdVB ≤ lim

t→0
‖∇Pt f ‖L1 .

Then taking the supremum over ϕ implies that

‖D f ‖B(G
n)≤ lim

t→0
‖∇Pt f ‖L1 . (3.2)

Next, we prove the opposite inequality

‖D f ‖B(G
n)≥ lim

t→0
‖∇Pt f ‖L1 . (3.3)

Let ϕ be a form in C1
c (R

n,Rn) such that ‖ϕ‖∞ ≤ 1. We claim that Pt ϕ is first-order
continuous differentiable according to the definition of Pt and ‖Pt ϕ‖∞≤1 which is based
on (iii) of Lemma 3.2. Since(ii) of Lemma 3.2 implies

|divPt ϕ(x)|≤max{e−dit}|Pt(divϕ)(x)|, i=1,.. .n,

then we have

‖divB(Pt ϕ)‖∞ =‖div(Pt ϕ)−2Bx·(Pt ϕ)‖∞

≤‖div(Pt ϕ)‖∞+‖2Bx·(Pt ϕ)‖∞

≤‖Ptdivϕ‖∞+‖2Bx·ϕ‖
≤‖divϕ‖∞+‖2Bx·ϕ‖<∞.

Therefore,
Pt ϕ∈C1

bd(R
n;Rn).

In (ii) of Lemma 3.2, we assume that e−dit can be maximized when i = i0, and by
Theorem 3.1, we have

∣

∣

∣

∣

∫

Rn
∇Pt f ·ϕdVB

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Rn
max{e−dit}Pt(∇ f )·ϕdVB

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n

∑
i=1

e−di0
t
∫

Rn
Pt

(

∂ f

∂xi

)

ϕidVB

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n

∑
i=1

e−di0
t
∫

Rn

∂ f

∂xi
Pt(ϕi)dVB

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

e−di0
t
∫

Rn
(∇ f )·Pt ϕdVB

∣

∣

∣

∣

=

∣

∣

∣

∣

e−di0
t
∫

Rn
f divB(Pt ϕ)dVB

∣

∣

∣

∣

≤ e−di0
t‖D f ‖B(G

n),
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where we have used the property that semigroup Pt is symmetric in L2(Gn). Thus, taking
the supremum with respect to all ϕ∈C1

c (R
n,Rn) and ‖ϕ‖∞≤1, we have

‖∇Pt f‖L1 ≤ e−di0
t‖D f ‖B(G

n).

Hence, we can obtain (3.3) by passing the limit as tends to 0. Finally, we conclude the
proof by combining (3.2) with (3.3).

Acknowledgments

Y. Liu is supported by the National Natural Science Foundation of China (Grant No
11671031), the Fundamental Research Funds for the Central Universities (Grant No FRF-
BR-17-004B) and Beijing Municipal Science and Technology Project (Grant No Z17111000
220000).

References

[1] Andrea C, Giancarlo M. A note on bounded variation and heat semigroup on Riemannian
manifolds. Bull Austral Math Soc, 2007, 76: 155-160.

[2] Bramanti M, Miranda Jr M, Pallara D. Two characterization of BV functions on Carnot
groups via the heat semigroup. Int Math Res Not, 2012, 17: 3845-3876.

[3] De Giorgi E. Su una teoria generale della misura (r−1)-dimensionale in uno spazio ad r
dimensioni. Ann Mate Pura Appl, 1954, 36: 191-213.

[4] De Giorgi E. Nuovi teoremi relativi alle misure (r−1)-dimensionali in uno spazio ad r di-
mensioni. Ricerche di Mat, 1955, 4: 95-113.

[5] Liu L, Xiao J, Yang D, et al. Gaussian Capacity Analysis. LNM 2225 Springer, 2018.
[6] Michele Jr M, Pallara D, Fabio P, et al. Heat semigroup and functions of bounded variation

on Riemannian manifolds. J Reine Angew Math, 2007, 613: 99-119.
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