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Abstract

Randomize-then-optimize (RTO) is widely used for sampling from posterior distribu-

tions in Bayesian inverse problems. However, RTO can be computationally intensive for

complexity problems due to repetitive evaluations of the expensive forward model and its

gradient. In this work, we present a novel goal-oriented deep neural networks (DNN) sur-

rogate approach to substantially reduce the computation burden of RTO. In particular,

we propose to drawn the training points for the DNN-surrogate from a local approximated

posterior distribution – yielding a flexible and efficient sampling algorithm that converges

to the direct RTO approach. We present a Bayesian inverse problem governed by elliptic

PDEs to demonstrate the computational accuracy and efficiency of our DNN-RTO ap-

proach, which shows that DNN-RTO can significantly outperform the traditional RTO.

Mathematics subject classification: 35R30, 62F15, 65C60, 68T05.
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1. Introduction

The Bayesian approach provides a systematic framework for quantifying the uncertainty in

parameter estimations of inverse problems [14, 26]. In the Bayesian approach, one combine a

prior knowledge of the unknown parameters and the forward model to yield a posterior prob-

ability distribution, form which the statistic information of the unknown parameters can be

characterized. The main task of the Bayesian approach is to draw samples from the posterior

distributions, and then evaluate the associate statistic information, e.g., expectation, variance,

etc. Since analytical formulas of the posterior are in general not available, many numerical

sampling approaches such as Markov chain Monte Carlo (MCMC) methods [7] have been de-

veloped.

Nevertheless, the MCMC sampling scheme can be computationally challenging. Firstly,

each evaluation of the system output involves a forward model evaluation, and this is infeasible

if the model is expensive to evaluate. Secondly, the geometry of the posterior distribution may

admits complex features in the parametric space (such as local concentration). One polular
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way for reducing the computational complexity is to use the so-called surrogate approach: one

constructs a surrogate to the true model and samples from the posterior distribution induced

by the surrogate. In case the surrogate is computationally less expensive, one can dramatically

speed up the MCMC algorithms. Different surrogate approaches have been investigated in re-

cent years, for instance, projection-type reduced order models [1,9,18], polynomial chaos (PC)

based surrogates [20–22, 31, 32], and Gaussian process regression [15, 25, 27], to name a few.

Although the surrogate approach can be very effective when exploring low-dimensional distri-

butions, it can still be inefficient for high-dimensional distributions with local concentration [7].

In these cases, the effective sample size (ESS) tends to be very low. To address this challenge,

several strategies that combine the geometry information of the posterior (such as the gradient

and Hessian information) have been exploited to accelerate the convergence of MCMC, see,

e.g. [4, 11, 13, 17, 19]. We also mention recent progresses on adaptive multi-fidelity surrogate

approaches [33–35].

In this work, we propose a new approach that combines a deep neural networks (DNN) sur-

rogate and an optimization-based sampling approach for large-scale PDE constrained Bayesian

inverse problems. In particular, we focus on the randomize-then-optimize (RTO) approach

[2, 3, 30] which uses repeated solutions of a randomly perturbed optimization problem to pro-

duce samples from a non-Gaussian distribution (used as a Metropolis independence proposal).

Compared to the classical Metroplis-Hastings (MH) random walk algorithm, RTO admits higher

acceptance probability and lower sample auto-correlation even for high-dimensional problem-

s [2]. The main drawback of the original RTO lines in the repetitive evaluation of the forward

model and its gradient. To this end, we construct a DNN-based surrogate which makes the

optimization problems rather efficient to solve. Moreover, to obtain an accurate and efficient

DNN-surrogate, we propose to generate the training points from a local approximated posterior

distribution, and this makes the training procedure very efficient.

We next summarize the main features of our DNN-RTO approach:

• A new approach that combines RTO and a DNN-surrogate. The new approach is expected

to be promising for high dimensional problems.

• With the DNN-surrogate, the gradient information can be obtained efficiently by the

backward propagation, so that the associated optimization procedure can be efficiently

solved.

• We choose the training points from a local approximated posterior distribution, and this

makes the training procedure (for the DNN-surrogate) very efficient.

• We present numerical examples to demonstrate that the DNN-RTO outperforms the tra-

ditional RTO.

The rest of the paper is organized as follows. In the next section, we give a brief introduction

to the Bayesian inverse problems. In Section 3, we introduce the RTO algorithm. Details of our

new approach are presented in Section 4. In Section 5, we use two nonlinear inverse problems to

demonstrate the accuracy and efficiency of the new approach. Finally, we give some concluding

remarks in Section 6.
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2. Bayesian Inverse Problems

We are interested in estimating an unknown parameter u ∈ Rn from indirect observations

d ∈ Rm via the following forward model

d = F (u) + e, (2.1)

where F : Rn → Rm is a parameter-to-observation map that maps the unknown parameter u

to the measurements d, and e ∼ N (0,Γobs) is the mean-zero Gaussian noise with a symmetric

positive definite covariance Γobs ∈ Rm×m.

In the Bayesian setting, the prior belief about the parameter u is encoded in the prior prob-

ability distribution π(u). Moreover, we assume that u is independent of the noise e. Then one

aims at inferring the distribution of u conditioned on the data d, i.e., the posterior distribution

π(u|d). By the Bayes’ rule, we have

π(u|d) ∝ exp(−η(u; d))π(u). (2.2)

Here exp(−η(u; d)) is called likelihood, where

η(u; d) =
1

2
‖d− F (u)‖2Γobs

=
1

2
(y − F (u))TΓ−1

obs(y − F (u)) (2.3)

is the so-called potential, and ∝ denotes proportionality up to a scaling constant that depends

on d (but not on u).

The main task of Bayesian inverse problems (BIPs) is to characterize the posterior distri-

bution (2.2), e.g., computing certain posterior statistic moments. Notice that if the forward

model F is nonlinear, then in general the potential yields a posterior distribution which cannot

be written in a closed form. Consequently, sampling methods such as the Metropolis-Hastings

(MH) sampler, have been extensively studied to sampling with the posterior distribution. In

this work, we will focus on the recently introduced randomize-then-optimize (RTO)-MH ap-

proach [3]. To this end, we shall present a brief introduction to RTO-MH in the next section.

3. RTO-Metropolis-Hastings Algorithm

In this section, we shall give a brief introduction to RTO. For more detailed information,

one can refer to [2].

Assume that the prior of the parameter u is Gaussian, i.e., u ∼ N (upr,Γpr). Here upr is the

prior mean, and Γpr is the prior covariance matrix. Combining with Eq. (2.3), the posterior

can be thus written as

π(u|d) ∝ exp
(
− 1

2

(
‖d− F (u)‖2Γobs

+ ‖u− upr‖2Γpr

))
. (3.1)

Using matrix factorizations of the covariances of prior and observation noise

SprS
T
pr := Γpr, SobsS

T
obs := Γobs,

we define a new variable v := S−1
pr (u− upr) which satisfies

0 = f(v) + ε, ε ∼ N (0, Im), v ∼ N (0, In). (3.2)
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Here f(v) = S−1
obs[F (Sprv+upr)−d], In and Im are identity matrices of size n and m, respectively.

Then, the resulting posterior density is given by

π(v|d) = πtar(v) ∝ exp(−1

2
‖H(v)‖2), (3.3)

where H : Rn → R(n+m) is defined as

H(v) =

[
v

f(v)

]
. (3.4)

Notice that if we have a sample v from the target density πtar(v), we can easily obtain the

corresponding posterior sample of u by applying the transformation u = Sprv + upr. Now we

outline how to use the RTO-MH to sample from a posterior of the form (3.3):

• We first choose a linearization point vref from the following optimization problem

vref = arg min
v

1

2
‖H(v)‖2. (3.5)

Then we can compute a matrix Q ∈ R(n+m)×n with orthonormal columns from a thin

QR factorization of ∇H(vref).

• Next, we draw independent samples ξ(i) from an n-dimensional standard Gaussian, and for

each sample ξ(i) we generate proposal points v
(i)
prop by solving the following optimization

problem

v(i)
prop = arg min

v

1

2
‖Q̄TH(v)− ξ(i)‖2, (3.6)

The above equation (3.6) is called randomize-then-optimize (RTO), and under certain

conditions (such as those in [3]), the points v
(i)
prop are distributed according to the following

proposal density,

πRTO(v) = (2π)−
π
2 |det(QT∇H(v))| exp

(
− 1

2
‖QTH(v)‖2

)
. (3.7)

• Finally, we use (3.6) and (3.7) as an independence proposal within the MH algorithm for

sampling from πtar(v). Given a previous sample v(i−1) and a proposed RTO sample v
(i)
prop,

the acceptance ratio for the MH method is given by [3]

πtar(v
(i)
prop)πRTO(v(i−1))

πtar(v(i−1))πRTO(viprop)
=

w(v
(i)
prop)

w(v(i−1))
, (3.8)

where

w(v) = |det(QT∇H(v))|−1 exp
(
− 1

2
‖H(v)‖2 +

1

2
‖QTH(v)‖2

)
. (3.9)

When the dimension of the parameter vector v is very high, solving the optimization problem

(3.6) and computing the RTO probability density (3.7) can be computationally costly. In order

to overcome this challenge, Bardsley et.al. [2] introduce a new subspace acceleration strategy to

make the computational complexity of RTO scale linearly with the parametric dimension. The

main idea is to use the singular value decomposition (SVD) of the linearized forward model

∇f(vref) instead of computing the QR of the matrix ∇H(vref). Similar to the original RTO,

the scalable implementation of RTO also includes three steps:
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Step 1. Compute the reduced SVD of the ∇f(vref), which has rank r, as

∇f(vref) = ΨΛΦT . (3.10)

Step 2. Define

vr = ΦT v, and v = Φvr + v⊥, (3.11)

where v⊥ is an element in the orthogonal complement of range(Φ). For each realization of an

n-dimensional standard Gaussian random vector ξ, one can compute

v⊥ = (In − ΦΦT )ξ (3.12)

and solve the following r-dimensional optimization problem with ξ and v⊥

vr = arg min
z
‖(Λ2 + Ir)

− 1
2

(
z + ΛΨT f(v⊥ + Φz)− ΦT ξ

)
‖2. (3.13)

Notice that the original n-dimensional optimization problem in (3.6) are replaced by Eqs. (3.12)

and (3.13).

Step 3. Compute the weighting function w(v) in (3.9) as

w(v) = |det(Q̃T∇H(v))|−1 exp
(
− 1

2

(
‖f(v)‖2 + ‖ΦT v‖2−‖(Λ2 + Ir)

− 1
2 (ΦT v+ ΛΨT f(v))‖2

))
,

(3.14)

where the determinant takes the following simplified form

|det(Q̃T∇H(v))| = |det(Λ2 + Ir)
− 1

2 ||det(Ir + ΛΨT∇f(v)Φ)|. (3.15)

The resulting MCMC method, which is called scalable implementation of RTO-MH, is sum-

marized in Algorithm 3.1.

Notice that the main bottleneck for using the RTO-MH approach is the repetitive evalua-

tions of forward model and its gradient in the optimization procedure (3.13) and the weighting

function (3.14) that involves the observation that may involve a complicated model. Thus it

is desirable to construct effective approximation of these quantities to provides a good bal-

ance between accuracy and computation cost. The motivates our DNN-based surrogate model

approach which will be introduced in Section 4.

Algorithm 3.1. Scalable implementation of RTO-MH [2]

1. Find vref using (3.5) .

2. Determine the Jacobian matrix of the forward model, ∇f(vref).

3. Compute the SVD of ∇f(vref)

4. for j = 1, · · · , nsamps do in parallel

5. Samples ξ(i) from a standard n-dimensional Gaussian distribution.

6. Solve for a proposal sample v
(i)
prop = v⊥ + Φvr using (3.12) and (3.13).

7. Compute w(v
(i)
prop) from (3.14) using the determinant from (3.15).

8. end for

9. Set v0 = vref

10. for j = 1, · · · , nsamps do in series

11. Sample t from a uniform distribution on [0, 1].

12. Accept/reject v
(i)
prop according t < w(v

(i)
prop)/w(v(i−1))

13. end for
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4. DNN Surrogate for RTO-MH

In this section, we shall present a DNN-based surrogate modeling to accelerate the RTO-MH

approach.

4.1. Feedforward DNN-based surrogate modeling

The basic idea of deep neural networks (DNN) for surrogate modeling is that one can

approximate an input-output map f : Rn → Rm through a hierarchical abstract layers of latent

variables [12]. A typical example is the feedforward neural network, which is also called multi-

layer perception (MLP). It consists of a collection of layers that include an input layer, an

output layer, and a number of hidden layers. Specifically, in the kth hidden layer, dk number

of neurons are included. Each hidden layer of the network receives an output z(k−1) ∈ Rdk−1

from the previous layer where an affine transformation of the form

Fk(z(k−1)) = W(k)z(k−1) + b(k), (4.1)

is performed. Here W(k) ∈ Rdk×dk−1 , b(k) ∈ Rdk are the weights and biases of the kth layer.

The nonlinear activation function σ is applied to each component of the transformed vector

before sending it as an input to the next layer. The activation function is an identity function

after an output layer. Thus, the final neural network representation is given by the composition

NN (v) = (FL ◦ σ ◦ FL−1 ◦ · · · ◦ σ ◦ F1)(v), (4.2)

where the operator ◦ is the composition operator, v = z(0) is the input. A typical neural

network architecture can be founded in Fig. 4.1.

Fig. 4.1. The structure of a two-hidden-layer neural network.

Some popular choices for the activation function include sigmoid, hyperbolic tangent, recti-

fied linear unit (ReLU), to name a few [12,24]. In the current work, we shall use Swish as the
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activation function [24,29]:

σ(z) =
z

1 + exp(−z)
.

Once the network architecture is defined, one can resort to optimization tools to find the un-

known parameters θ = {W(k),b(k)} based on the training data. Precisely, let D := {(vi, yi)}Ni=1

be a set of training data, we can define the following minimization problem:

arg min
θ

1

N

N∑
i=1

‖yi −NN (vi; θ)‖2, (4.3)

where J (θ;D) = 1
N

∑N
i=1 ‖yi−NN (vi; θ)‖2 is the so called loss function. Solving this problem

is generally achieved by the stochastic gradient descent (SGD) algorithm [6]. SGD simply

minimizes the function by taking a negative step along an estimate of the gradient ∇θJ (θ;D)

at iteration k. The gradients are usually computed through backpropagation. At each iteration,

SGD updates the solution by

θk+1 = θk − λ∇θJ (θ;D),

where λ is the learning rate. Recent algorithms that offer adaptive learning rates are available,

such as Ada-Grad [36], RMSProp [28] and Adam [16], ect. The present work adopts Adam

optimization algorithm, and we shall construct a DNN as a surrogate model for the true forward

model in the BIPs.

4.2. Choosing effective training points

Notice that the accuracy of the neural network NN (v; θ) approximation are clearly influ-

enced by the choice of the training points. A naive way to choose the training data is to generate

enough data over the whole prior distribution, however, this may loss the gain computational

efficiency [33, 35]. Notice that our concern in BIPs is only the posterior distribution which

may be located in a small region. Consequently, we only need to make sure that NN (v; θ) is

accurate enough in the posterior density region where no need to ensure its accuracy elsewhere.

Nevertheless, the high-probability density region of the posterior hard to be identified until data

are available. In the following, we propose a goal-oriented technique based on the observation

data and the gradient information to choose the local training points.

Consider the first-order Taylor approximation of the forward model f(v) at vref, we have

f(v) ≈ f(vref) +∇f(vref)(v − vref) := Av − b, (4.4)

where A := ∇f(vref) and b = Avref − f(vref). Using this linearization approximation, we can

define the approximation posterior of πtar(v) as

πtar(v) ≈ π̃tar(v) ∝ exp(−1

2
H̃(v)), (4.5)

where H̃ : Rn → R(n+m) is defined as

H̃(v) =

[
v

Av − b

]
. (4.6)

It is easy to verify that π̃tar ∼ N (µ̃pos, Γ̃pos) with

Γ̃pos = (ATA+ I)−1, and µ̃pos = Γ̃posA
T b. (4.7)
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This means that the first-order Taylor approximation provides us with a local Gaussian measure

approximating πvar. This Gaussian measure allows for direct sampling if the reference point

vref and the gradient of the forward model are given. Notice that the covariance is the inverse

matrix of the ATA + I, however, with a simple algebraic manipulation by the reduced SVD

A = ∇f(vref) = ΨΛΦT , we can write it as

Γ̃pos = Φ(Λ2 + Ir)
−1ΦT + (In − ΦΦT ). (4.8)

The above discussion motivates us to choose the training points from the local Gaussian approx-

imation of the posterior with covariance Γ̃pos defined in (4.8). In Section 5, we will perform the

comparison between this strategy and the prior-based strategy (choose the data in the whole

prior domain) by numerical examples.

4.3. Summary of the DNN-based RTO-MH

As mentioned in the previous sections, we can alleviate the complexity issue with a DNN

surrogate for the forward model f(v). It is clear that after obtaining the parameters θ, we have

an explicit functional NN (v; θ) and can compute its gradient ∇vNN (v; θ) easily via the back

propagation [5]. These approximations can be then substituted into the computation procedure

of the RTO-MH framework, and obtain the DNN-based RTO-MH algorithm. When the original

forward model is computationally costly, simulating the surrogate NN (v; θ) provides a more

efficient mechanism for the RTO-MH sampler. The detail of the scheme is summarized in Algo-

rithm 4.1. Our proposed method provides a natural framework to incorporate DNN surrogate

in RTO-MH. Moreover, it can be easily extended to other optimization-based sampling, e.g.,

the random-map implicit sampling [23].

Algorithm 4.1. The offline and online stages for the NN-RTO method

1. Offline stage:

2 .Choose N training points {vi}Ni=1 randomly from the approximate posterior π̃var(v)

3. Compute the corresponding full-order snapshots {f(vi)}Ni=1 ;

4. Prepare the training set D =
{
vi, f(vi)

}
;

5. Train the DNN model NN (v; θ) by using the training set D.

6. Online stage:

7. for j = 1, · · · , nsamps do in parallel

8. Samples ξ(i) from a standard n-dimensional Gaussian distribution.

9. Compute a proposal sample v
(i)
prop, and w(v

(i)
prop) using RTO algorithm with the

trained neural network NN (v; θ).

10. end for

11. Set v0 = vref

12. for j = 1, · · · , nsamps do in series

13. Sample t from a uniform distribution on [0, 1].

14. Accept/reject v
(i)
prop according t < w(v

(i)
prop)/w(v(i−1))

15. end for
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5. Numerical Examples

In this section, we present a benchmark elliptic PDE inverse problem to illustrate the ac-

curacy and efficiency of the DNN-RTO-MH approach. To better present the results, we shall

perform the following three-types of approaches:

• The conventional “RTO” (or the direct RTO) which is based on the true forward model

evaluations.

• The “NN-RTO-pr” that use a DNN surrogate with training data that are generated with

respect to the prior distribution.

• The “NN-RTO” that use a DNN surrogate with training data that are generated with

respect to an approximation posterior distribution in Section 4.2, i.e., the suggested al-

gorithm in this work.

In our all numerical tests, the computations were performed using MATLAB 2018a on

an Intel-i7 desktop computer. For solving the optimization problem (3.13) we use the built-

in nonlinear least squares solver lsqnonlin of MATLAB, which implements the trust region

reflective Newton method. The Adam optimizer is used to train the DNN as mentioned before.

The learning rate is set to be λ = 5×10−4, and the hyper-parameter values of Adam are chosen

based on default recommendations as suggested in [16]. In order to compare our proposed

method to standard RTO-MH in terms of sampling efficiency, we consider the effective sample

size (ESS) adjusted by CPU time. Given nsamps posterior samples, the ESS for each parameters

is defined as

ESS =
nsamps

1 + 2
K∑
k=1

ρ(k)

(5.1)

where
∑K
k=1 ρ(k) is the sum of K monotone sample autocorrelations [10]. We use the minimum

ESS over all parameters normalized by the CPU time, s(in seconds), as the overall measure of

efficiency: min(ESS)/s. In this work, we will use nsamps = 5000 and K = nsamps − 1 to obtain

the results.

5.1. Problem setup

We consider the problem of inferring subsurface permeability from a finite number of noisy

pressure head measurements [8, 35]. The forward model is given by the solution of an elliptic

PDE in two spatial dimensions

−∇ · (κ(x)∇p(x)) = f(x), (5.2)

where x = (x1, x2) ∈ [0, 1]2 is the spatial coordinate. The boundary conditions are

p(x)|x1=0 = 1, p(x)|x1=1 = 0,

∂p(x)

∂x2
|x2=0 = x1,

∂p(x)

∂x2
|x2=1 = 1− x1.

The data d is given by a finite set of p, perturbed by noise, and the problem is to recover

the permeability κ(x) from these measurements. In what follows, we choose the source f(x) =

100 sin(πx1) sin(πx2), and solve Eq. (5.2) using a standard Galerkin finite element method with

bilinear basis function on a uniform 40-by-40 grid.
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5.2. Example 1: a nine-dimensional inverse problem
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Fig. 5.1. Example 1: Setup of the test case for Example 1. Left: the true permeability used for

generating the synthetic data sets. Right: the model outputs of the true permeability. The red circles

indicate the measurement sensors.

In the first example, the permeability field κ(x) is defined by

κ(x) =
9∑
i=1

κi exp

(
−‖x− x0,i‖2

2× 0.12

)
,

where {x0,i}9i=1 are the centers of the radial basis function, and the weights {κi}9i=1 are param-

eters in the Bayesian inverse problem.

This example is a typical benchmark problem considered in Refs. [8, 33]. We first choose

a realization of κi from a uniform distribution as the true solution. The true permeability

field used to generate the test data and the corresponding pressure head are shown in Fig.5.1.

The prior distributions on each of the weights κi, i = 1, · · · , 9 are independent and log-normal;

that is, log(κi) := vi ∼ N(0, 1). Partial observations of the pressure field are collected 71

measurement sensors as shown by the red circles in Fig. 5.1. This yields observed data d ∈ R71

as

dj = p(xj) + max
j
{|p(xj)|}δξj ,

where δ dictates the relative noise level and ξj is a Gaussian random variable with zero mean

and unit standard deviation. In the following, we set δ = 0.05.

5.2.1. Computational efficiency

We first investigate the sampling accuracy of the DNN-RTO algorithm. To this end, we shall

construct the DNN surrogate using N = {50, 100} training points with 3 hidden layers and 40

neurons per layer. Notice that the training points are chosen with the algorithm in Section 4.2.

In Fig. 5.2, we present the marginal distributions of each component of the parameters, and

the contours of the marginal distributions of each pair of components. The black lines represent

the results generated by the direct RTO approach based on the true forward model evaluations

(the reference solution), the red and blue lines represent results of the DNN-RTO with N = 50

and 100, respectively. It is clearly seen in Fig. 5.2 that the DNN-RTO algorithm results in

a good approximation to the reference solution. The posterior mean and posterior standard

deviation obtained by the DNN-RTO approach and the direct RTO approach are presented in

Fig. 5.3. Good agreements between the two algorithms are observed.



858 L. YAN AND T. ZHOU

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

RTO

NN-RTO, N=50

NN-RTO, N=100

v
1

v
9

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Fig. 5.2. One- and two-dimensional posterior marginals of the two parameters for Example 1 using

NN-RTO approach.
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Fig. 5.3. Posterior mean (top) and posterior standard deviation (bottom) of p(x) arising from direct

RTO, NN-RTO approach (N = 50, 100), respectively.

Next, we compare the accuracy of our proposed algorithm to that of DNN-RTO-pr (with

training points generated according to the prior distribution). Again, we use N = {50, 100}
training points that are generated by the prior information (rather than the algorithm in Section

4.2) to train the DNN. The corresponding results are reported in Figs. 5.4 and 5.5. It is shown

in the figures that the results using the prior-based DNN approach admits a larger error. By

comparing Figs. 5.2 and 5.3, we can conclude that the approximation results using DNN-RTO

are much more accurate than that of the prior-based ”DNN-RTO-pr” approach.
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Fig. 5.4. One- and two-dimensional posterior marginals of the two parameters for Example 1 using

NN-RTO-pr approach.
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Fig. 5.5. Posterior mean (top) and posterior standard deviation (bottom) of p(x) arising from direct

RTO, NN-RTO-pr approach (N = 50, 100) , respectively.

In Table 5.1, we summarize the acceptance probability, the CPU time, the ESS (min., med.,

max.), the time-normalized minESS and the speedup factor, for comparing the direct RTO

and the DNN-RTO approach. It can be seen that RTO makes 5000 draws in 9806 seconds

and obtains an acceptance probability around 0.93. While for DNN-RTO with N = 50, only

156 seconds are requied to get an acceptance probability around 0.82. DNN- RTO yields 15.4

effective samples per second while RTO is only 0.41 effective draws per second. It is noticed

that even when with N = 50 training points, the DNN-RTO approach can speed up the number
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Table 5.1: Comparison of the computational efficiency in Example 1. AP is the acceptance probability,

s is the CPU times (second), ESS (min., med., max.), minESS/s is the time-normalized ESS and spdup

is the speed up of sampling efficiency measured by minESS/s with RTO as the baseline. MCMC chain

length is 5000 steps.

Method AP s ESS minESS/s spdup

RTO 0.93 9806 (4030, 4342, 4460) 0.41 1

DNN-RTO, N = 50 0.82 156 (2409, 2719, 3428) 15.4 37.6

DNN-RTO, N = 100 0.80 170 (2612, 2895, 3606) 15.4 37.6

DNN-RTO-pr, N = 50 0.08 85 (3, 5, 77) 0.04 0.1

DNN-RTO-pr, N = 100 0.54 169 (529, 958, 1245) 3.1 7.6

of effectively independent samples generated per second by a factor of 37. One can also learn

that NN-RTO is much more efficient than DNN-RTO-pr.

5.2.2. Sensitivity to the neural network architecture

We now investigate the sensitivity of our algorithm with respect to the architecture of the neural

networks. We consider the error in estimating mean REM and covariance REC of parameters

as

REM =
‖κ̄− κ†‖∞
‖κ†‖∞

, REC =
‖cov(κ)− cov(κ†)‖F

‖cov(κ†)‖F
,

where κ† and cov(κ†) are the “true” posterior mean and covariance arising from direct RTO,

and ‖ · ‖F denotes the Frobenius norm.

To verify the sensitivity of the proposed method with respect to the structures of the NN ,

we test several constant values choosing with different depth L ∈ {1, 2, 3, 4} and width dk ∈
{20, 40, 60, 80}. With these settings, we run Algorithm 4.1 using the N = 100 training points.

The corresponding numerical results are presented in Table 5.2, in which the corresponding

CPU times are also presented. As shown in this table, the computational results for DNN-RTO

with different depth L and width dk are almost the same. Table 5.3 shows the estimate errors

REM , REC and the CPU times s with respect to the number of training points obtained with

various values of dk and L = 3 hidden layers. Overall, we observe that the numerical results

remain robust for all neural network architectures considered.

Table 5.2: Example 1: The estimate errors REM , REC and the CPU times s obtained using NN-RTO

approach with various values of L, dk and N = 100 training points.

L

dk
20 40 60 80

1 (0.019,0.102,94) (0.017,0.046,121) (0.022,0.052,128) (0.017,0.033,137)

2 (0.026,0.510,150) (0.022,0.095,166) (0.010,0.057,195) (0.019,0.038,202)

3 (0.029,0.949,139) (0.029,0.068,210) (0.018,0.062,246) (0.016,0.077,270)

4 (0.402,0.918,175) (0.029,0.074,241) (0.055,0.100,286) (0.049,0.066,293)
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Table 5.3: The estimate errors REM ,REC and the CPU times s obtained using NN-RTO approach

with various values of N, dk and L = 3 hidden layers.

N

dk
20 40 60 80

50 (0.069,1.150,155) (0.058,0.097,191) (0.019,0.072,228) (0.022,0.033,261)

100 (0.029,0.949,139) (0.029,0.068,210) (0.018,0.062,246) (0.016,0.077,270)

150 (0.018,0.136,193) (0.016,0.034,209) (0.015,0.054,227) (0.019,0.038,255)

200 (0.018,0.134,117) (0.015,0.032,210) (0.019,0.063,225) (0.018,0.050,256)

Table 5.4: Comparison of the computational efficiency in Example 2. AP is the acceptance probability,

s is the CPU times (second), ESS(min., med., max.), minESS/s is the time-normalized ESS and spdup

is the speed up of sampling efficiency measured by minESS/s with RTO as the baseline. MCMC chain

is 5000 steps.

Method AP s ESS minESS/s spdup

RTO 0.54 2271 (1005, 1249, 1668) 0.44 1

DNN-RTO, N = 1000 0.35 96 (1050, 1983, 2259) 10.9 25

DNN-RTO, N = 1500 0.35 88 (1036, 1264, 1470) 11.8 27

5.3. Example 2: a high dimensional inverse problem

In the second example, we consider a log-diffusivity field log κ(x) that is endowed with a

Gaussian process prior, with zero mean and an isotropic kernel:

C(x1, x2) = σ2 exp
(
− ‖x1 − x2‖2

2l2

)
.

Here we set variance σ2 = 1 and l = 0.1. This prior allows the field to be easily parameterized

with a Karhunen-Loeve expansion:

p(x; v) ≈
n∑
i=1

vi
√
λiφi(x), (5.3)

where λi and φi(x) are the eigenvalues and eigenfunctions, respectively, of the integral operator

on [0, 1]2 defined by the kernel C, and the parameter v = (v1, · · · , vn) are endowed with

independent standard normal priors, vi ∼ N(0, 1). These parameters then become the targets

of inference. In particular, we truncate the Karhunen-Loeve expansion with n = 120 modes.

The true solution κ(x) used to generate the test data are shown in Fig. 5.6. The measurement

sensors of p are evenly distributed over [0.1, 0.9]2 with grid spacing 0.1, i.e., d ∈ R81. The

observational errors are taken to be additive and Gaussian:

dj = p(xj ; v) + ξj , j = 1, · · · , 81,

with ξj ∼ N(0, 0.052). In this example, four hidden layers and 80 neurons per layer are used in

NN .

We ran DNN-RTO with N = {1000, 1500} training points and generated an MCMC chain

of length 5000. As shown in Fig. 5.7, the posterior mean and posterior standard deviation

estimated by DNN-RTO are closer to the reference solution (that is obtained by direct R-

TO approach). We compare the sampling efficiency of different algorithms, and the result is

summarized in Table 5.4. Again, we observe a similar result in the raw ESS when comparing
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Fig. 5.6. The true permeability κ(x)(left) and the model outputs (right) for elliptic PDE inverse

problems in example 2.
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Fig. 5.7. Posterior mean (top) and posterior standard deviation (bottom) arising from direct RTO,

NN-RTO approach (N = 1000) and prior-based NN-RTO (N = 1500), respectively.

DNN-RTO algorithms with the direct RTO, but an increase in efficiency due to the computa-

tional time cut by DNN surrogate. The computation used 96 seconds to produce a minESS

of about 103 for DNN-RTO with N = 1000. Notice that more than an order of magnitude of

improvement is observed for DNN-RTO compared to RTO. All the above discussion confirm

that DNN-RTO is advantageous in sampling efficiency.

6. Summary

In this paper, we present a new strategy, namely the DNN-RTO algorithm, to accelerate

the original RTO-MH algorithm. One of the key components of our DNN-RTO algorithm is a

goal-oriented strategy for choosing the training points from a local Gaussian measurement. Our

DNN-surrogate requires very few training points to achieve the same level of accuracy compared

with a prior-based DNN-surrogate. To demonstrate the accuracy and efficiency of the proposed

algorithm, a benchmark example to infer the permeability field for elliptic PDEs with synthetic
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data is tested. The numerical results show that the DNN-RTO is able to accelerate RTO

sampling by up to several orders of magnitude. We believe the approach in this work will be

promising in dealing with high dimensional BIPs and/or BIPs with limited regularity.
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