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Abstract. A three-level linearized difference scheme for solving the Fisher equation

is firstly proposed in this work. It has the good property of discrete conservative
energy. By the discrete energy analysis and mathematical induction method, it is

proved to be uniquely solvable and unconditionally convergent with the second-
order accuracy in both time and space. Then another three-level linearized com-

pact difference scheme is derived along with its discrete energy conservation law,

unique solvability and unconditional convergence of order two in time and four in
space. The resultant schemes preserve the maximum bound principle. The analysis

techniques for convergence used in this paper also work for the Euler scheme, the

Crank-Nicolson scheme and others. Numerical experiments are carried out to verify
the computational efficiency, conservative law and the maximum bound principle of

the proposed difference schemes.
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1. Introduction

The Fisher equation belongs to the class of reaction-diffusion equation: in fact, it

is one of the simplest semilinear reaction-diffusion equations, the one which has the

inhomogeneous term

f(u, x, t) = λu(1− u),

which can exhibit traveling wave solutions that switch between equilibrium states given

by f(u) = 0. Such equation describes a balance between linear diffusion and nonlinear
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reaction, and it occurs, e.g., in ecology, biology, physiology, combustion, crystallization,

plasma physics, and in general phase transition problems. Fisher proposed this equa-

tion in 1937 to describe the spatial spread of an advantageous allele and explored its

travelling wave solutions [6]. In the same year as Fisher, Kolmogorov et al. introduced

a more general reaction-diffusion equation [9].

The wider use of this equation in many applications of engineering has been found

by researchers. There have been many numerical and approximate methods in the

literature to solve this equation, such as the finite difference method, the collocation

method, the finite element technique, the wavelet Galerkin method, the pseudospec-

tral method, the various differentiation quadrature method and so on. Here we mainly

recall some relevant discretizations based on finite differences. In 1985, Aggarwal [1]

compared various difference numerical methods for solving the Fisher equation, in-

cluding the standard implicit, the quasi linear implicit, the time-linearization implicit,

the Crank-Nicolson implicit, the predictor-corrector explicit and two forms of operator-

splitting schemes, by the technique of plotting an optimized error-norm versus CPU

time. The conclusion that the two-step operator splitting procedure is the most ef-

fective method has been drawn. A highly accurate finite difference approach for the

second-order spatial derivative in conjunction with a TVD-RK3 method in time was pre-

sented to solve the Fisher equation in [2], but there was no any theoretical analysis on

the derived scheme. Hasnain et al. [8] discussed three difference schemes for solving

the Fisher equation: the forward Euler central space scheme, the Lax Wendroff central

space scheme and the nonlinear Crank-Nicolson scheme, then the Richardson extrapo-

lation technique was used to improve the numerical accuracy. The Neumann stability

analysis was made for the linear form of the resultant difference equation. Chandraker

et al. [3] proposed two implicit difference schemes to solve the Fisher equation: one

is the modified Crank-Nicolson scheme and the other one is the modified Keller box

scheme, where the nonlinearity is handled by the method of lagging. The accuracy and

stability of the proposed schemes are both discussed based on the numerical experi-

ments.

The considered equation (1.1) is a semilinear parabolic equation and satisfies the

maximum principle, or say the maximum bound principle (MBP), i.e., the solution has

the range in the set [0, 1] at any time if the initial and boundary values have the same

property. Such a problem has been discussed under a systematical framework in [5]

along with some provable MBP-preserving numerical schemes. It is always expected

that discrete numerical formats have this property. The authors in [10] pointed out

that there are few works to study the capability of the numerical methods for solving

the Fisher equation to preserve the structure of solutions although abundant numeri-

cal schemes can be found in the literature. They proposed a finite difference scheme

in a logarithmic form based on the logarithmic form of the continuous model and

showed that the scheme can preserve the positivity, the boundedness and the mono-

tonicity of the numerical approximations. The accuracy is of order 1 in time and order

2 in space. Sun et al. [14] constructed several difference schemes to solve the Fisher

equation and analyzed some conditions to preserve the boundedness and monotone
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property of these schemes. In [4], the authors mentioned that although mathematical

properties of Fisher’s equation and plenty of discussion are available in the literature,

majority of them do not address the important properties such as stability analysis, or-

der of convergence and consistence of the underlying numerical method. They derived

a compact difference scheme to solve the Fisher equation, which has the fourth-order

accuracy in space. The stability was shown by the von-Neumann’s method and the

Richardson extrapolation to the sixth-order accuracy in space has been made. Gao and

Yang [7] established two finite difference schemes, where one is explicit-implicit (E-I)

and the other is implicit-explicit (I-E), and provided the convergence analysis, whereas,

a coarse assumption on the nonlinear term has been made for the analysis.

In [19], the authors constructed high-order energy dissipative and conservative lo-

cal discontinuous Galerkin methods for the Fornberg-Whitham type equations. Then

they gave the proof for the dissipation or conservation of related conservative quan-

tities. The capability of their schemes for different types of solutions was shown via

several numerical experiments. Ranocha et al. [11] developed a general framework

for designing conservative numerical methods based on summation by parts opera-

tors and split forms in space, combined with relaxation Runge-Kutta methods in time.

They applied this framework to create new classes of fully-discrete conservative meth-

ods for several nonlinear dispersive wave equations. Wu et al. [17] considered the

Crank-Nicolson Fourier collocation method for the nonlinear fractional Schrödinger

equation, which has the second-order accuracy in time and the spectral accuracy in

space. They proved that at each discrete time the method preserves the discrete mass

and energy conservation laws. Zhang and Sun [18] studied a linearized CCD method

with weighted approximation in time for nonlinear time fractional Klein-Gordon equa-

tions. The method can achieve at least sixth-order spatial accuracy and second-order

temporal accuracy. As we know, linearization is a common technique for solving non-

linear problems numerically, which can simplify the calculation of nonlinear problems,

so that, it is meaningful to consider a linearized conservative numerical method for

nonlinear problems.

In this paper, we consider the following initial-boundary value problem of one-

dimensional Fisher equation:

ut − uxx = λu(1− u), 0 < x < L, 0 < t ≤ T, (1.1)

u(x, 0) = ϕ(x), 0 ≤ x ≤ L, (1.2)

u(0, t) = α(t), u(L, t) = β(t), 0 < t ≤ T, (1.3)

where λ is a positive constant, functions ϕ(x), α(t), β(t) are all given and ϕ(0) = α(0),
ϕ(L) = β(0). Suppose that the problem (1.1)-(1.3) has a smooth solution. To the

authors’ knowledge, no conservative finite difference scheme has been discussed in the

literature for the numerical solution of (1.1)-(1.3). This work will make some efforts in

this respect and two conservative three-level linearized finite difference schemes will

be derived, analyzed and numerically verified. The major contribution of this work

lies in the construction of two conservative and linearized finite difference schemes
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together with the rigorous analysis on the conservative property, the unique solvability

and unconditional convergence in the maximum norm.

The rest of this work is organized as follows. Section 2 gives a priori estimate on

the continuous problem and prepares some notations and useful lemmas. A three-level

linearized difference scheme is derived in Section 3 along with its conservative prop-

erty, unique solvability and unconditional convergence. Section 4 devotes to another

three-level linearized compact difference scheme. Three numerical experiments are

implemented to test the numerical accuracy, discrete conservative law and the MBP of

the proposed two difference schemes in Section 5. A brief conclusion ends this work

finally.

2. Some preparations

Before introducing the difference scheme, a priori estimate on the solution of the

problem (1.1)-(1.3) is given.

Theorem 2.1. Let u(x, t) be the solution of the problem (1.1)-(1.3) with α(t)≡0, β(t)≡0.

Denote

E(t) =

∫ L

0
u2(x, t)dx+ 2

∫ t

0

[
∫ L

0
u2x(x, s)dx+ λ

∫ L

0

[

u3(x, s)− u2(x, s)
]

dx

]

ds,

F (t) =

∫ L

0
u2x(x, t)dx+ λ

∫ L

0

[

2

3
u3(x, t)− u2(x, t)

]

dx+ 2

∫ t

0

[
∫ L

0
u2s(x, s)dx

]

ds.

Then

E(t) = E(0), F (t) = F (0), 0 < t ≤ T. (2.1)

Proof. (I) Multiplying (1.1) by u gives

u(x, t)ut(x, t)− u(x, t)uxx(x, t) + λ
[

u3(x, t)− u2(x, t)
]

= 0,

that is

1

2

d

dt

[

u2(x, t)
]

−
(

u(x, t)ux(x, t)
)

x
+ u2x(x, t) + λ

[

u3(x, t)− u2(x, t)
]

= 0.

Integrating this equation with respect to x on the interval [0, L] and noticing (1.3) with

α(t) = β(t) = 0, we have

1

2

d

dt

∫ L

0
u2(x, t)dx+

∫ L

0
u2x(x, t)dx+ λ

∫ L

0

[

u3(x, t)− u2(x, t)
]

dx = 0,

which can be rewritten as

d

dt

{
∫ L

0
u2(x, t)dx+ 2

∫ t

0

[
∫ L

0
u2x(x, s)dx+ λ

∫ L

0

(

u3(x, s)− u2(x, s)
)

dx

]

ds

}

= 0.

Then E(t) = E(0) is obtained.
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(II) Multiplying (1.1) by ut gives

u2t (x, t)− ut(x, t)uxx(x, t)− λ
[

u(x, t) − u2(x, t)
]

ut(x, t) = 0,

that is

u2t (x, t)−
(

ut(x, t)ux(x, t)
)

x
+

(

1

2
u2x(x, t)

)

t

+ λ

[

1

3
u3(x, t) − 1

2
u2(x, t)

]

t

= 0.

Integrating this equation with respect to x on the interval [0, L] and noticing (1.3) with

α(t) = β(t) = 0, we have

1

2

d

dt

∫ L

0
u2x(x, t)dx+ λ

d

dt

∫ L

0

[

1

3
u3(x, t)− 1

2
u2(x, t)

]

dx+

∫ L

0
u2t (x, t)dx = 0,

which can be rewritten as

d

dt

[
∫ L

0
u2x(x, t)dx+ λ

∫ L

0

(

2

3
u3(x, t)− u2(x, t)

)

dx+ 2

∫ t

0

(
∫ L

0
u2s(x, s)dx

)

ds

]

= 0,

that is
dF (t)

dt
= 0, 0 < t ≤ T.

Thus, F (t) = F (0) is followed.

It is noted that these two invariants have their physical meanings: when u repre-

sents concentration, E(t) reflects total mass or total number of particles, and when u
represents potential, F (t) can be understood as the potential energy.

Remark 2.1. Equipped with the time-independent Dirichlet, the homogeneous Neu-

mann, or the periodic boundary condition, (1.1) can also be viewed as the L2 gradient

flow with respect to the energy functional

E(u) =

∫ L

0

[

1

2
(ux)

2 + λ

(

1

3
u3 − 1

2
u2
)]

dx, (2.2)

and thus satisfies the energy dissipation law in the sense that

dE(u)

dt
=

(

δE

δu
, ut

)

= −
∥

∥

∥

∥

δE

δu

∥

∥

∥

∥

2

≤ 0,

where δE/δu is the variational derivative of the energy functional E(u). Indeed, the

energy dissipation law can also be obtained from the proof for F (t) = F (0).

In order to derive the difference scheme, we firstly divide the domain [0, L]× [0, T ].
Take two positive integers m,n. Divide [0, L] into m equal subintervals, and [0, T ] into

n subintervals. Denote h = L/m, τ = T/n;xi = ih, 0 ≤ i ≤ m; tk = kτ, 0 ≤ k ≤ n;
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Ωh = {xi | 0 ≤ i ≤ m},Ωτ = {tk | 0 ≤ k ≤ n}; Ωhτ = Ωh × Ωτ . In addition, denote

r = τ/h2.

Define the mesh function spaces

Uh = {u |u = (u0, u1, · · · , um) is the grid function defined on Ωh},
◦

Uh = {u |u ∈ Uh, u0 = um = 0}.

For any grid function u ∈ Uh, introduce the following notation:

δxui+ 1

2

=
1

h
(ui+1 − ui),

δ2xui =
1

h

(

δxui+ 1

2

− δxui− 1

2

)

,

(Au)i =







1

12
(ui−1 + 10ui + ui+1), 1 ≤ i ≤ m− 1,

ui, i = 0,m.

For any u, v ∈
◦

Uh, introduce the inner products and norms (or semi-norms) as

(u, v) = h

m−1
∑

i=1

uivi, ‖u‖ =

(

h

m−1
∑

i=1

u2i

)
1

2

,

‖u‖∞ = max
0≤i≤m

|ui|, |u|1 =

(

h

m
∑

i=1

(

δxui− 1

2

)2

)
1

2

,

(u, v)1,A = −(A−1δ2xu, v), |u|1,A =
(

(u, u)1,A
)

1

2 .

Denote

Sτ = {w |w = (w0, w1, · · · , wn) is the grid function defined on Ωτ}.

For any w ∈ Sτ , introduce the following notation:

wk+ 1

2 =
1

2
(wk +wk+1), wk̄ =

1

2
(wk+1 + wk−1),

δtw
k+ 1

2 =
1

τ
(wk+1 − wk), ∆tw

k =
1

2τ
(wk+1 − wk−1).

It is easy to see that

∆tw
k =

1

2

(

δtw
k− 1

2 + δtw
k+ 1

2

)

.

Lemma 2.1 ([12,15,16]). (a) Suppose u, v ∈ Uh, then

−h
m−1
∑

i=1

(

δ2xui
)

vi = h
m
∑

i=1

(

δxui− 1

2

)(

δxvi− 1

2

)

+
(

δxu 1

2

)

v0 −
(

δxum− 1

2

)

vm.
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(b) Suppose u ∈
◦

Uh, then

−h

m−1
∑

i=1

(δ2xui)ui = |u|21, ‖u‖∞ ≤
√
L

2
|u|1, ‖u‖ ≤ L√

6
|u|1,

‖Au‖ ≤ ‖u‖, |u|1 ≤ |u|1,A ≤
√
6

2
|u|1.

(c) Suppose u ∈
◦

Uh, then

|u|21 ≤
4

h2
‖u‖2.

Next we will give several commonly used numerical differential formulas.

Lemma 2.2 ([15]). Let c, h be given constants and h > 0.

(a) If g ∈ C2[c− h, c+ h], then

g(c) =
1

2
[g(c − h) + g(c+ h)]− h2

2
g′′(ξ1), c− h < ξ1 < c+ h.

(b) If g ∈ C3[c− h, c+ h], then

g′(c) =
1

2h
[g(c + h)− g(c− h)]− h2

6
g′′′(ξ2), c− h < ξ2 < c+ h.

(c) If g ∈ C4[c− h, c+ h], then

g′′(c) =
1

h2
[g(c + h)− 2g(c) + g(c− h)]− h2

12
g(4)(ξ3), c− h < ξ3 < c+ h.

(d) If g ∈ C6[c− h, c+ h], then

1

12
[g′′(c− h) + 10g′′(c) + g′′(c+ h)]

=
1

h2
[g(c + h)− 2g(c) + g(c− h)] +

h4

240
g(6)(ξ4), c− h < ξ4 < c+ h.

Now we introduce an important Gronwall inequality.

Lemma 2.3 ([15]). Suppose {F k}∞k=0 is a nonnegative sequence, c and g are two non-

negative constants satisfying

F k+1 ≤ (1 + cτ)F k + τg, k = 0, 1, 2, . . . ,

then

F k ≤ eckτ
(

F 0 +
g

c

)

, k = 0, 1, 2, . . . .
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3. A three-level linearized difference scheme

This part will focus on an unconditionally convergent and conservative difference

scheme for solving (1.1)-(1.3) with the convergence order O(τ2 + h2).

3.1. Derivation of the difference scheme

Define the grid function U = {Uk
i | 0 ≤ i ≤ m, 0 ≤ k ≤ n} on Ωhτ , where

Uk
i = u(xi, tk), 0 ≤ i ≤ m, 0 ≤ k ≤ n.

Denote

c0 = max
0≤x≤L

0≤t≤T

|u(x, t)|.

Considering Eq. (1.1) at point (xi, t1/2), we have

ut
(

xi, t 1

2

)

− uxx
(

xi, t 1

2

)

= λ
[

u
(

xi, t 1

2

)

− u2
(

xi, t 1

2

)

]

, 1 ≤ i ≤ m− 1.

By the Taylor expansion, we have

u(xi, t0) = u
(

xi, t 1

2

)

− τ

2
ut
(

xi, t 1

2

)

+O(τ2),

u(xi, t1) = u
(

xi, t 1

2

)

+
τ

2
ut
(

xi, t 1

2

)

+O(τ2),

or

u
(

xi, t 1

2

)

= u(xi, t0) +
τ

2
ut
(

xi, t 1

2

)

+O(τ2),

u
(

xi, t 1

2

)

= u(xi, t1)−
τ

2
ut
(

xi, t 1

2

)

+O(τ2).

Consequently,

u2
(

xi, t 1

2

)

=
[

U0
i +

τ

2
ut
(

xi, t 1

2

)

+O(τ2)
] [

U1
i − τ

2
ut
(

xi, t 1

2

)

+O(τ2)
]

= U0
i U

1
i +O(τ2).

By Lemma 2.2 and the above equality, we get

δtU
1

2

i − δ2xU
1

2

i = λ
(

U
1

2

i − U0
i U

1
i

)

+ (R1)
0
i , 1 ≤ i ≤ m− 1, (3.1)

where there is a constant c1 such that

∣

∣(R1)
0
i

∣

∣ ≤ c1(τ
2 + h2), 1 ≤ i ≤ m− 1. (3.2)

Considering Eq. (1.1) at point (xi, tk), we have

ut(xi, tk)− uxx(xi, tk) = λ
[

u(xi, tk)− u2(xi, tk)
]

, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1.
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By Lemma 2.2, we have

∆tU
k
i − δ2xU

k̄
i = λ

[

U k̄
i − 1

3

(

Uk−1
i + Uk

i + Uk+1
i

)

Uk
i

]

+ (R1)
k
i , 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1, (3.3)

where there is a constant c2 such that
∣

∣(R1)
k
i

∣

∣ ≤ c2(τ
2 + h2), 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1. (3.4)

Noticing the initial-boundary value conditions (1.2)-(1.3), we have

U0
i = ϕ(xi), 0 ≤ i ≤ m, (3.5)

Uk
0 = α(tk), Uk

m = β(tk), 1 ≤ k ≤ n. (3.6)

Neglecting the small term (R1)
k
i in (3.1) and (3.3), and replacing the exact solution Uk

i

by its numerical one uki , the following difference scheme can be derived:

δtu
1

2

i −δ2xu
1

2

i = λ
(

u
1

2

i − u0iu
1
i

)

, 1 ≤ i ≤ m−1, (3.7)

∆tu
k
i −δ2xu

k̄
i =λ

[

uk̄i −
1

3
uki
(

uk−1
i +uki + uk+1

i

)

]

, 1 ≤ i ≤ m−1, 1 ≤ k ≤ n−1, (3.8)

u0i = ϕ(xi), 0 ≤ i ≤ m, (3.9)

uk0 = α(tk), ukm = β(tk), 1 ≤ k ≤ n. (3.10)

3.2. Conservative law of the difference scheme

The next result illustrates the conservative property of this difference scheme.

Theorem 3.1. Suppose {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} is the solution of the difference

scheme (3.7)-(3.10) and α(t) ≡ 0, β(t) ≡ 0. Denote

Ek =
1

2

(

‖uk+1‖2 + ‖uk‖2
)

+ 2τ

(

1

2
|u 1

2 |21 +
k
∑

l=1

|ul̄|21

)

+ 2λτ

{

1

2

[

(u0u1, u
1

2 )− ‖u 1

2 ‖2
]

+

k
∑

l=1

[(

1

3
(ul−1 + ul + ul+1)ul, ul̄

)

− ‖ul̄‖2
]

}

, 0 ≤ k ≤ n− 1,

F k =
1

2

(

|uk+1|21 + |uk|21
)

+λ

{

1

3

[(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)]

− 1

2
(‖uk+1‖2 + ‖uk‖2)

}

+ 2τ

(

1

2
‖δtu

1

2 ‖2 +
k
∑

l=1

‖∆tu
l‖2
)

, 0 ≤ k ≤ n− 1.
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Then, we have

Ek = ‖u0‖2, 0 ≤ k ≤ n− 1, (3.11)

F k = F̂ 0, 0 ≤ k ≤ n− 1, (3.12)

where

F̂ 0 = |u0|21 + λ

[

4

3

(

(u0)2, u1
)

− 2

3

(

u0, (u1)2
)

− ‖u0‖2
]

.

Proof. (I) Taking the inner product of (3.7) with u1/2 gives

(

δtu
1

2 , u
1

2

)

−
(

δ2xu
1

2 , u
1

2

)

= λ
[

‖u 1

2‖2 − (u0u1, u
1

2 )
]

.

Noticing
(

δtu
1

2 , u
1

2

)

=
1

2τ

(

‖u1‖2 − ‖u0‖2
)

, −
(

δ2xu
1

2 , u
1

2

)

= |u 1

2 |21,

we have
1

2τ

(

‖u1‖2 − ‖u0‖2
)

+ |u 1

2 |21 + λ
[

(u0u1, u
1

2 )− ‖u 1

2‖2
]

= 0,

which can be rewritten as

1

2

(

‖u1‖2 + ‖u0‖2
)

+ τ |u 1

2 |21 + λτ
[

(u0u1, u
1

2 )− ‖u 1

2‖2
]

= ‖u0‖2,

that is

E0 = ‖u0‖2. (3.13)

Taking the inner product of (3.8) with uk̄ yields

(

∆tu
k, uk̄

)

−
(

δ2xu
k̄, uk̄

)

= λ

[

‖uk̄‖2 −
(

1

3
(uk−1 + uk + uk+1)uk, uk̄

)]

, 1 ≤ k ≤ n− 1.

Noticing

(

∆tu
k, uk̄

)

=
1

4τ

(

‖uk+1‖2 − ‖uk−1‖2
)

, −
(

δ2xu
k̄, uk̄

)

= |uk̄|21,

we have

1

2τ

(

1

2

(

‖uk+1‖2 + ‖uk‖2
)

− 1

2

(

‖uk‖2 + ‖uk−1‖2
)

)

+ |uk̄|21

+ λ

[(

1

3
(uk−1 + uk + uk+1)uk, uk̄

)

− ‖uk̄‖2
]

= 0, 1 ≤ k ≤ n− 1.
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Replacing k by l in the equality above and summing over l from 1 to k will arrive at

1

2

(

‖uk+1‖2 + ‖uk‖2
)

+ 2τ

k
∑

l=1

|ul̄|21

+ 2λτ
k
∑

l=1

[(

1

3
(ul−1 + ul + ul+1)ul, ul̄

)

− ‖ul̄‖2
]

=
1

2

(

‖u1‖2 + ‖u0‖2
)

, 1 ≤ k ≤ n− 1.

Adding τ |u1/2|21+λτ [(u0u1, u1/2)−‖u1/2‖2] to both hand sides of the equality above

yields

Ek = E0, 1 ≤ k ≤ n− 1. (3.14)

Then (3.11) is followed from (3.13) and (3.14).

(II) Taking the inner product of (3.7) with δtu
1/2 gives

∥

∥δtu
1

2

∥

∥

2 −
(

δ2xu
1

2 , δtu
1

2

)

= λ
[(

u
1

2 , δtu
1

2

)

−
(

u0u1, δtu
1

2

)]

.

Noticing

−
(

δ2xu
1

2 , δtu
1

2

)

=
1

2τ

(

|u1|21 − |u0|21
)

,

(

u
1

2 , δtu
1

2

)

=
1

2τ

(

‖u1‖2 − ‖u0‖2
)

,

(

u0u1, δtu
1

2

)

=
1

τ

[(

u0, (u1)2
)

−
(

(u0)2, u1
)]

,

we have

∥

∥δtu
1

2

∥

∥

2
+

1

2τ

(

|u1|21 − |u0|21
)

+ λ

{

1

τ

[(

u0, (u1)2
)

−
(

(u0)2, u1
)]

− 1

2τ

(

‖u1‖2 − ‖u0‖2
)

}

= 0,

which can be rewritten as

F 0 = |u0|21 + λ

[

4

3

(

(u0)2, u1
)

− 2

3

(

u0, (u1)2
)

− ‖u0‖2
]

≡ F̂ 0. (3.15)

Taking the inner product of (3.8) with ∆tu
k yields

∥

∥∆tu
k
∥

∥

2 −
(

δ2xu
k̄,∆tu

k
)

= λ

[

(

uk̄,∆tu
k
)

− 1

3

(

(uk−1 + uk + uk+1)uk,∆tu
k
)

]

, 1 ≤ k ≤ n− 1.

Noticing

−
(

δ2xu
k̄,∆tu

k
)

=
1

4τ

(

|uk+1|21 − |uk−1|21
)

,
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(

uk̄,∆tu
k
)

=
1

4τ

(

‖uk+1‖2 − ‖uk−1‖2
)

,

and

1

3

(

(uk−1 + uk + uk+1)uk,∆tu
k
)

=
1

6τ

[(

(uk+1 + uk−1)uk, uk+1 − uk−1
)

+
(

(uk)2, uk+1 − uk−1
)]

=
1

6τ

[(

uk, (uk+1)2 − (uk−1)2
)

+
(

(uk)2, uk+1 − uk−1
)]

=
1

6τ

[(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)

−
(

uk−1, (uk)2
)

−
(

(uk−1)2, uk
)]

,

we have

1

2τ

{

[ |uk+1|21 + |uk|21
2

+ λ

(

(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)

3
− ‖uk+1‖2 + ‖uk‖2

2

)]

−
[ |uk|21 + |uk−1|21

2
+ λ

(

(

uk−1, (uk)2
)

+
(

(uk−1)2, uk
)

3
− ‖uk‖2 + ‖uk−1‖2

2

)]

}

+ ‖∆tu
k‖2 = 0, 1 ≤ k ≤ n− 1.

Replacing k by l in the equality above and summing over l from 1 to k, we arrive at

1

2

(

|uk+1|21 + |uk|21
)

+ λ

{

1

3

[(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)]

− 1

2
(‖uk+1‖2 + ‖uk‖2)

}

+ 2τ

k
∑

l=1

‖∆tu
l‖2

=
1

2

(

|u1|21 + |u0|21
)

+ λ

{

1

3

[(

u0, (u1)2
)

+
(

(u0)2, u1
)]

− 1

2
(‖u1‖2 + ‖u0‖2)

}

, 1 ≤ k ≤ n− 1.

Adding τ‖δtu1/2‖2 to both hand sides of the equality above gives

F k = F 0, 1 ≤ k ≤ n− 1. (3.16)

Combining (3.15) and (3.16), we arrive at (3.12).

Remark 3.1. Let

Ẽ(uk+1, uk) =
1

2

[

|uk+1|21 + |uk|21
2

+ λ

(

(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)

3

− ‖uk+1‖2 + ‖uk‖2
2

)]

, 0 ≤ k ≤ n− 1.
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Then it is a discrete counterpart of the free energy (2.2). Then (3.12) implies

Ẽ(uk+1, uk) ≤ Ẽ(uk, uk−1) ≤ 1

2
F̂ 0, 1 ≤ k ≤ n− 1,

i.e. the scheme (3.7)-(3.10) preserves the energy dissipation law with respect to the

discrete energy above.

3.3. Solvability and convergence of the difference solution

Theorem 3.2. Let {Uk
i | 0 ≤ i ≤ m, 0 ≤ k ≤ n} and {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} be

solutions of the problem (1.1)-(1.3) and the difference scheme (3.7)-(3.10), respectively.

Denote

eki = Uk
i − uki , 0 ≤ i ≤ m, 0 ≤ k ≤ n,

c3 =

(

2TLc21 +
3

(c0 + 1)2λ2L
c22

)
1

2

e(c0+1)2λ2L2T .

Then when

(

1

2
+ c0

)

λτ ≤ 1,

[

1 +
2

3
(c0 + 1)2

]

λ2L2τ ≤ 1, c3

√
L

2
(τ2 + h2) ≤ 1

it holds that:

(I) The difference scheme (3.7)-(3.10) is uniquely solvable.

(II)

|ek|1 ≤ c3(τ
2 + h2), 0 ≤ k ≤ n. (3.17)

Proof. Subtracting (3.7)-(3.10) from (3.1), (3.3), (3.5)-(3.6), respectively, the error

system reads

δte
1

2

i − δ2xe
1

2

i = λ
[

e
1

2

i −
(

U0
i U

1
i − u0iu

1
i

)

]

+ (R1)
0
i , 1 ≤ i ≤ m− 1, (3.18)

∆te
k
i − δ2xe

k̄
i = λ

[

ek̄i −
1

3

(

Uk−1
i +Uk

i + Uk+1
i

)

Uk
i +

1

3

(

uk−1
i +uki + uk+1

i

)

uki

]

+ (R1)
k
i , 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1, (3.19)

e0i = 0, 0 ≤ i ≤ m, (3.20)

ek0 = 0, ekm = 0, 1 ≤ k ≤ n. (3.21)

The value of u0 is uniquely determined by (3.9) and the truth of (3.17) for k = 0 is

obvious in view of (3.20).
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(A1) Proof for the unique solvability of u1.
From (3.7) and (3.10), the system in u1 can be obtained. Consider its homogeneous

one

1

τ
u1i −

1

2
δ2xu

1 = λ

(

1

2
u1i − u0iu

1
i

)

, 1 ≤ i ≤ m− 1, (3.22)

u10 = 0, u1m = 0. (3.23)

Taking the inner product of (3.22) with u1 gives

1

τ
‖u1‖2 − 1

2

(

δ2xu
1, u1

)

=
1

2
λ‖u1‖2 − λ(u0u1, u1).

Noticing −(δ2xu
1, u1) = |u1|21 and ‖u0‖∞ ≤ c0, we have

1

τ
‖u1‖2 + 1

2
|u1|21 ≤

(

1

2
+ ‖u0‖∞

)

λ‖u1‖2 ≤
(

1

2
+ c0

)

λ‖u1‖2.

When (1/2+ c0)λτ ≤ 1, it follows |u1|1 = 0. Thus, (3.7) and (3.10) uniquely determine

the value of u1.

(B1) Proof for (3.17) with k = 1.

Taking the inner product of (3.18) with δte
1/2 gives

∥

∥δte
1

2

∥

∥

2 −
(

δ2xe
1

2 , δte
1

2

)

= λ
(

e
1

2 , δte
1

2

)

− λ
(

u0e1 + e0U1, δte
1

2

)

+
(

(R1)
0, δte

1

2

)

≤ λ‖e 1

2 ‖ · ‖δte
1

2‖+ λ‖u0‖∞ · ‖e1‖ · ‖δte
1

2‖+ ‖(R1)
0‖ · ‖δte

1

2 ‖.

Noticing

∥

∥δte
1

2

∥

∥

2 −
(

δ2xe
1

2 , δte
1

2

)

=
∥

∥δte
1

2

∥

∥

2
+

1

2τ
|e1|21 ≥ 2

1√
2τ

∥

∥δte
1

2

∥

∥ · |e1|1,

we have

2√
2τ

|e1|1 ≤ λ‖e 1

2‖+ λ‖u0‖∞ · ‖e1‖+ ‖(R1)
0‖

≤
(

1

2
+ c0

)

λ‖e1‖+ ‖(R1)
0‖

≤
(

1

2
+ c0

)

L√
6
λ|e1|1 + c1

√
L(τ2 + h2).

When (1/2 + c0)(L/
√
6)
√
2τλ ≤ 1, i.e., (1/2 + c0)

2λ2L2τ/3 ≤ 1, it follows:

|e1|1 ≤
√
2τc1

√
L(τ2 + h2) ≤

√
2TLc1(τ

2 + h2), (3.24)

which implies that (3.17) holds for k = 1.
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Now assume that the values of u0, u1, · · · , ul (l ≥ 1) have been determined and

(3.17) is true for 0 ≤ k ≤ l, that is

|ek|1 ≤ c3(τ
2 + h2), 0 ≤ k ≤ l.

Then by Lemma 2.1, we have

‖ek‖∞ ≤
√
L

2
|ek|1 ≤

√
L

2
c3(τ

2 + h2) ≤ 1, 0 ≤ k ≤ l, (3.25)

‖uk‖∞ ≤ ‖Uk‖∞ + ‖ek‖∞ ≤ c0 + 1, 0 ≤ k ≤ l. (3.26)

(A2) Proof for the unique solvability of ul+1.

From (3.8) (k = l) and (3.10) (k = l+1), the linear system in ul+1 can be obtained.

Consider its homogeneous one

1

2τ
ul+1
i − 1

2
δ2xu

l+1
i = λ

(

1

2
ul+1
i − 1

3
uliu

l+1
i

)

, 1 ≤ i ≤ m− 1, (3.27)

ul+1
0 = 0, ul+1

m = 0. (3.28)

Taking the inner product of (3.27) with ul+1 gives

1

2τ
‖ul+1‖2 + 1

2
|ul+1|21 ≤

1

2
λ‖ul+1‖2 + λ

3
‖ul‖∞‖ul+1‖2

≤ λ

[

1

2
+

1

3
(c0 + 1)

]

‖ul+1‖2.

Noticing

1

2τ
‖ul+1‖2 + 1

2
|ul+1|21 ≥

1√
τ
‖ul+1‖ · |ul+1|1,

we have

|ul+1|1 ≤ λ

[

1

2
+

1

3
(c0 + 1)

]√
τ‖ul+1‖

≤ λ

[

1

2
+

1

3
(c0 + 1)

]√
τ
L√
6
|ul+1|1.

When

1

6

[

1

2
+

1

3
(c0 + 1)

]2

λ2L2τ < 1,

it follows |ul+1|1 = 0. Hence, (3.8) and (3.10) determine ul+1 uniquely.
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(B2) Proof for (3.17) with k = l + 1.

Taking the inner product of (3.19) with ∆te
k yields

‖∆te
k‖2 + 1

4τ

(

|ek+1|21 − |ek−1|21
)

= λ(ek̄,∆te
k)− 1

3
λh

m−1
∑

i=1

[

uki (e
k−1
i + eki + ek+1

i ) + eki
(

Uk−1
i + Uk

i + Uk+1
i

)

]

∆te
k
i

+
(

(R1)
k,∆te

k
)

≤ λ‖ek̄‖ · ‖∆te
k‖+ 1

3
λ‖uk‖∞ · ‖ek−1 + ek + ek+1‖ · ‖∆te

k‖

+
1

3
λ‖ek‖ · ‖Uk−1 + Uk + Uk+1‖∞ · ‖∆te

k‖+ ‖(R1)
k‖ · ‖∆te

k‖

≤ λ‖ek̄‖ · ‖∆te
k‖+ 1

3
λ(1 + c0)‖ek−1 + ek + ek+1‖ · ‖∆te

k‖

+
1

3
λ(3c0)‖ek‖ · ‖∆te

k‖+ ‖(R1)
k‖ · ‖∆te

k‖

≤
(

1

4
‖∆te

k‖2 + λ2‖ek̄‖2
)

+

(

1

4
‖∆te

k‖2 + 1

9
λ2(c0 + 1)2‖ek−1 + ek + ek+1‖2

)

+

(

1

4
‖∆te

k‖2 + λ2c20‖ek‖2
)

+
1

4
‖∆te

k‖2 + ‖(R1)
k‖2, 1 ≤ k ≤ l.

Hence, we have

1

4τ

(

|ek+1|21 − |ek−1|21
)

≤ λ2

2

(

‖ek+1‖2 + ‖ek−1‖2
)

+
λ2

3
(c0 + 1)2

(

‖ek−1‖2 + ‖ek‖2 + ‖ek+1‖2
)

+ λ2c20‖ek‖2 + c22L(τ
2 + h2)2

=

[

λ2

2
+

λ2

3
(c0 + 1)2

]

‖ek+1‖2 +
[

λ2

2
+

λ2

3
(c0 + 1)2

]

‖ek−1‖2

+

[

λ2

3
(c0 + 1)2 + λ2c20

]

‖ek‖2 + c22L(τ
2 + h2)2

≤
[

1

2
+

1

3
(c0 + 1)2

]

λ2L
2

6
|ek+1|21 +

[

1

2
+

1

3
(c0 + 1)2

]

λ2L
2

6
|ek−1|21

+

[

1

3
(c0 + 1)2 + c20

]

λ2L
2

6
|ek|21 + c22L(τ

2 + h2)2, 1 ≤ k ≤ l,

that is
{

1−
[

1 +
2

3
(c0 + 1)2

]

λ2L
2

3
τ

}

|ek+1|21

≤
{

1 +

[

1 +
2

3
(c0 + 1)2

]

λ2L
2

3
τ

}

|ek−1|21 +
[

2

3
(c0 + 1)2 + 2c20

]

λ2L
2

3
τ |ek|21

+ 4c22Lτ(τ
2 + h2)2, 1 ≤ k ≤ l.
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When
[

1 +
2

3
(c0 + 1)2

]

λ2L
2

3
τ ≤ 1

3
,

it follows:

|ek+1|21 ≤
{

1 +

[

1 +
2

3
(c0 + 1)2

]

λ2L2τ

}

|ek−1|21

+

[

1

3
(c0 + 1)2 + c20

]

λ2L2τ |ek|21 + 6c22Lτ(τ
2 + h2)2

≤
[

1 + 2(c0 + 1)2λ2L2τ
]

max
{

|ek|21, |ek−1|21
}

+ 6c22Lτ(τ
2 + h2)2, 1 ≤ k ≤ l,

so that

max
{

|ek+1|21, |ek|21
}

≤
[

1 + 2(c0 + 1)2λ2L2τ
]

max
{

|ek|21, |ek−1|21
}

+ 6c22Lτ(τ
2 + h2)2, 1 ≤ k ≤ l.

Applying the Gronwall inequality in Lemma 2.3 and noticing (3.24), we get

max
{

|el+1|21, |el|21
}

≤ e2(c0+1)2λ2L2lτ

[

max
{

|e1|21, |e0|21
}

+
3c22(τ

2 + h2)2

(c0 + 1)2λ2L

]

≤ e2(c0+1)2λ2L2T

[

2TLc21 +
3c22

(c0 + 1)2λ2L

]

(τ2 + h2)2.

Then

|el+1|1 ≤ e(c0+1)2λ2L2T

(

2TLc21 +
3

(c0 + 1)2λ2L
c22

)
1

2

(τ2 + h2) = c3(τ
2 + h2),

which implies that (3.17) is also true for k = l + 1. By induction, the theorem is

proved.

In view of Lemma 2.1(b), the difference scheme (3.7)-(3.10) is unconditionally

convergent in the maximum norm and the convergence order is also O(τ2 + h2).

Remark 3.2. The Fisher equation (1.1) satisfies the maximum bound principle (MBP)

[5], i.e., the solution has the range in the set [0, 1] at any time if the initial and bound-

ary values have the same property, so the numerical methods are always expected to

preserve the MBP. For the proposed difference scheme (3.7)-(3.10), the unconditional

convergence in the maximum norm has been proved rigorously, which means that if

the mesh step sizes h and τ are sufficiently small, so is the difference between the

numerical solution uki and the exact one Uk
i . For any small positive ε, it follows:

max
0≤i≤m

0≤k≤n

∣

∣Uk
i (h, τ) − uki (h, τ)

∣

∣ ≤ c(τ2 + h2) = ε,
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then uki (h, τ) ∈ [−ε, 1 + ε] if Uk
i (h, τ) ∈ [0, 1], so that

lim
h→0

τ→0

uki (h, τ) ∈ [0, 1].

That is, the difference scheme (3.7)-(3.10) satisfies the MBP when the mesh step sizes

are sufficiently small.

4. A three-level linearized compact difference scheme

This part will concern on an unconditionally convergent and conservative compact

difference scheme for solving (1.1)-(1.3) with the convergence order O(τ2 + h4).

4.1. Derivation of the compact difference scheme

Considering Eq. (1.1) at point (xi, t1/2), we have

ut(xi, t 1

2

)− uxx(xi, t 1

2

) = λ
[

u(xi, t 1

2

)− u2(xi, t 1

2

)
]

, 0 ≤ i ≤ m.

By Lemma 2.2, we have

δtU
1

2

i − 1

2
[uxx(xi, t1) + uxx(xi, t0)] = λ

(

U
1

2

i − U0
i U

1
i

)

+O(τ2), 0 ≤ i ≤ m.

Performing the operator A on both hand sides and noticing Lemma 2.2(d), we obtain

AδtU
1

2

i − δ2xU
1

2

i = λA
(

U
1

2

i − U0
i U

1
i

)

+ (R2)
0
i , 1 ≤ i ≤ m− 1, (4.1)

where there is a constant c4 such that
∣

∣(R2)
0
i

∣

∣ ≤ c4(τ
2 + h4), 1 ≤ i ≤ m− 1. (4.2)

Considering Eq. (1.1) at point (xi, tk), we have

ut(xi, tk)− uxx(xi, tk) = λ
[

u(xi, tk)− u2(xi, tk)
]

, 0 ≤ i ≤ m, 1 ≤ k ≤ n− 1.

By Lemma 2.2, we have

∆tU
k
i − 1

2
[uxx(xi, tk+1) + uxx(xi, tk−1)]

= λ

[

U k̄
i − 1

3

(

Uk−1
i + Uk

i + Uk+1
i

)

Uk
i

]

+O(τ2), 0 ≤ i ≤ m, 1 ≤ k ≤ n− 1.

Performing the operator A on both hand sides and noticing Lemma 2.2(d), we obtain

A∆tU
k
i − δ2xU

k̄
i = λA

[

U k̄
i − 1

3

(

Uk−1
i + Uk

i + Uk+1
i

)

Uk
i

]

+ (R2)
k
i , 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1, (4.3)
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where there is a constant c5 such that
∣

∣(R2)
k
i

∣

∣ ≤ c5(τ
2 + h4), 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1. (4.4)

Noticing the initial-boundary value conditions (1.2)-(1.3), we have

U0
i = ϕ(xi), 0 ≤ i ≤ m, (4.5)

Uk
0 = α(tk), Uk

m = β(tk), 1 ≤ k ≤ n. (4.6)

Neglecting the small term (R2)
k
i in (4.1) and (4.3), and replacing the exact solution Uk

i

by its numerical one uki , the following compact difference scheme can be produced:

Aδtu
1

2

i − δ2xu
1

2

i = λA
(

u
1

2

i − u0iu
1
i

)

, 1 ≤ i ≤ m− 1, (4.7)

A∆tu
k
i − δ2xu

k̄
i = λA

[

uk̄i −
1

3
uki
(

uk−1
i + uki + uk+1

i

)

]

, (4.8)

1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1,

u0i = ϕ(xi), 0 ≤ i ≤ m, (4.9)

uk0 = α(tk), ukm = β(tk), 1 ≤ k ≤ n. (4.10)

4.2. Conservative law of the compact difference scheme

Theorem 4.1. Suppose {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} is the solution of the difference

scheme (4.7)-(4.10) with α(t) ≡ 0, β(t) ≡ 0. Denote

P k =
1

2

(

‖uk+1‖2 + ‖uk‖2
)

+ 2τ

(

1

2
|u 1

2 |21,A +

k
∑

l=1

|ul̄|21,A
)

+ 2λτ

{

1

2

[

(u0u1, u
1

2 )− ‖u 1

2‖2
]

+

k
∑

l=1

[(

1

3
(ul−1 + ul + ul+1)ul, ul̄

)

− ‖ul̄‖2
]

}

, 0 ≤ k ≤ n− 1,

Qk =
1

2

(

|uk+1|21,A + |uk|21,A
)

+ λ

{

1

3

[(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)]

− 1

2

(

‖uk+1‖2 + ‖uk‖2
)

}

+ 2τ

(

1

2

∥

∥δtu
1

2

∥

∥

2
+

k
∑

l=1

∥

∥∆tu
l
∥

∥

2
)

, 0 ≤ k ≤ n− 1.

Then, we have

P k = ‖u0‖2, 0 ≤ k ≤ n− 1, (4.11)

Qk = Q̂0, 0 ≤ k ≤ n− 1, (4.12)
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where

Q̂0 = |u0|21,A + λ

[

4

3

(

(u0)2, u1
)

− 2

3

(

u0, (u1)2
)

− ‖u0‖2
]

.

Proof. Applying the operator A−1 to both hand sides of (4.7) and (4.8), one can

obtain

δtu
1

2

i −A−1δ2xu
1

2

i = λ
(

u
1

2

i − u0i u
1
i

)

, 1 ≤ i ≤ m− 1,

∆tu
k
i −A−1δ2xu

k̄
i = λ

[

uk̄i −
1

3
uki
(

uk−1
i + uki + uk+1

i

)

]

, 1 ≤ i ≤ m− 1, 1 ≤k ≤ n− 1.

Noticing

−
(

A−1δ2xu
1

2 , u
1

2

)

= |u 1

2 |21,A,

−
(

A−1δ2xu
1

2 , δtu
1

2

)

=
1

2τ

(

|u1|21,A − |u0|21,A
)

,

−
(

A−1δ2xu
k̄, uk̄

)

= |uk̄|21,A,

−
(

A−1δ2xu
k̄,∆tu

k
)

=
1

4τ

(

|uk+1|21,A − |uk−1|21,A
)

,

similar to the proof of Theorem 3.1, one can easily get this theorem. The details are

omitted for brevity.

It is worth noting that the norm | · |1,A is equivalent to the usual H1 norm | · |1 in

view of Lemma 2.1(b).

Remark 4.1. Let

Ê(uk+1, uk) =
1

2

[

|uk+1|21,A + |uk|21,A
2

+ λ

(

(

uk, (uk+1)2
)

+
(

(uk)2, uk+1
)

3

− ‖uk+1‖2 + ‖uk‖2
2

)]

, 0 ≤ k ≤ n− 1

be another discrete counterpart of the free energy (2.2). Then (4.12) implies

Ê(uk+1, uk) ≤ Ê(uk, uk−1) ≤ 1

2
Q̂0, 1 ≤ k ≤ n− 1,

i.e. the scheme (4.7)-(4.10) also preserves the energy dissipation law with respect to

this discrete energy.

4.3. Solvability and convergence of the compact difference solution

Theorem 4.2. Let {Uk
i | 0 ≤ i ≤ m, 0 ≤ k ≤ n} and {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n}

be solutions of the problem (1.1)-(1.3) and the compact difference scheme (4.7)-(4.10),
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respectively. Denote

eki = Uk
i − uki , 0 ≤ i ≤ m, 0 ≤ k ≤ n,

c6 =

(

3TLc24 +
3c25

(c0 + 1)2λ2L

)
1

2

e
3

2
(c0+1)2λ2L2T .

Then when

3

4
(1 + 2c0)λτ ≤ 1,

[

3 + 2(c0 + 1)2
]

λ2L2τ ≤ 2,

√
L

2
c6(τ

2 + h4) ≤ 1

it holds that:

(I) The difference scheme (4.7)-(4.10) is uniquely solvable.

(II)

|ek|1 ≤ c6(τ
2 + h4), 0 ≤ k ≤ n. (4.13)

Proof. Subtracting (4.7)-(4.10) from (4.1), (4.3), (4.5)-(4.6), respectively, the error

system reads

Aδte
1

2

i − δ2xe
1

2

i = λA
[

e
1

2

i −
(

U0
i U

1
i − u0iu

1
i

)

]

+ (R2)
0
i , 1 ≤ i ≤ m− 1, (4.14)

A∆te
k
i − δ2xe

k̄
i = λA

[

ek̄i −
1

3

(

Uk−1
i +Uk

i +Uk+1
i

)

Uk
i +

1

3
(uk−1

i +uki +uk+1
i )uki

]

+ (R2)
k
i , 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1, (4.15)

e0i = 0, 0 ≤ i ≤ m, (4.16)

ek0 = 0, ekm = 0, 1 ≤ k ≤ n. (4.17)

The value of u0 is uniquely determined by (4.9). And (4.13) holds obviously for k = 0
in view of (4.16).

(A1) Proof for the unique solvability of u1.
From (4.7) and (4.10), the system in u1 is obtained. Consider its homogeneous one

1

τ
Au1i −

1

2
δ2xu

1 = λA
(

1

2
u1i − u0iu

1
i

)

, 1 ≤ i ≤ m− 1, (4.18)

u10 = 0, u1m = 0. (4.19)

Taking the inner product of (4.18) with u1 gives

1

τ
(Au1, u1)− 1

2

(

δ2xu
1, u1

)

=
1

2
λ(Au1, u1)− λ

(

A(u0u1), u1
)

.

By Lemma 2.1(b) and the Cauchy-Schwarz inequality, it follows:

(Au1, u1) =

((

I +
h2

12
δ2x

)

u1, u1
)

= ‖u1‖2 − h2

12
|u1|21 ≥

2

3
‖u1‖2,

(Au1, u1) ≤ ‖Au1‖ · ‖u1‖ ≤ ‖u1‖2,
(

A(u0u1), u1
)

≤ ‖A(u0u1)‖ · ‖u1‖ ≤ ‖u0u1‖ · ‖u1‖ ≤ c0‖u1‖2,
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then
2

3τ
‖u1‖2 + 1

2
|u1|21 ≤

(

1

2
+ c0

)

λ‖u1‖2.

When 3(1 + 2c0)λτ/4 ≤ 1, it follows |u1|1 = 0. Thus, (4.7) and (4.10) uniquely

determine u1.

(B1) Proof for (4.13) with k = 1.

Taking the inner product of (4.14) with δte
1/2 gives

(

Aδte
1

2 , δte
1

2

)

−
(

δ2xe
1

2 , δte
1

2

)

= λ
[

(

Ae
1

2 , δte
1

2

)

−
(

A(u0e1 + e0U1), δte
1

2

)

]

+
(

(R2)
0, δte

1

2

)

.

Noticing

(

Aδte
1

2 , δte
1

2

)

−
(

δ2xe
1

2 , δte
1

2

)

≥ 2

3
‖δte

1

2‖2 + 1

2τ
|e1|21 ≥ 2

1√
3τ

‖δte
1

2 ‖ · |e1|1,
(

Ae
1

2 , δte
1

2

)

≤ 1

2
‖Ae1‖ · ‖δte

1

2‖ ≤ 1

2
‖e1‖ · ‖δte

1

2‖,
(

A(u0e1 + e0U1), δte
1

2

)

≤ ‖A(u0e1)‖ · ‖δte
1

2 ‖ ≤ ‖u0e1‖ · ‖δte
1

2‖ ≤ c0‖e1‖ · ‖δte
1

2 ‖,
(

(R2)
0, δte

1

2

)

≤ ‖(R2)
0‖ · ‖δte

1

2‖,

we have

2√
3τ

|e1|1 ≤
(

1

2
+ c0

)

λ‖e1‖+ ‖(R2)
0‖

≤
(

1

2
+ c0

)

L√
6
λ|e1|1 + c4

√
L(τ2 + h4).

When
(

1

2
+ c0

)

L√
6

√
3τλ ≤ 1, i.e.,

1

2

(

1

2
+ c0

)2

λ2L2τ ≤ 1,

it follows:

|e1|1 ≤
√
3τc4

√
L(τ2 + h4) ≤

√
3TLc4(τ

2 + h4), (4.20)

which implies that (4.13) holds for k = 1.

Now assume that the values of u0, u1, · · · , ul (l ≥ 1) have been determined and

(4.13) is true for 0 ≤ k ≤ l, that is

|ek|1 ≤ c6(τ
2 + h4), 0 ≤ k ≤ l.

Then by Lemma 2.1(b), we have

‖ek‖∞ ≤
√
L

2
|ek|1 ≤

√
L

2
c6(τ

2 + h4) ≤ 1, 0 ≤ k ≤ l, (4.21)

‖uk‖∞ ≤ ‖Uk‖∞ + ‖ek‖∞ ≤ c0 + 1, 0 ≤ k ≤ l. (4.22)
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(A2) Proof for the unique solvability of ul+1.

From (4.8) (k = l) and (4.10) (k = l + 1), the linear system in ul+1 is determined.

Consider its homogeneous one

1

2τ
Aul+1

i − 1

2
δ2xu

l+1
i = λA

(

1

2
ul+1
i − 1

3
uliu

l+1
i

)

, 1 ≤ i ≤ m− 1, (4.23)

ul+1
0 = 0, ul+1

m = 0. (4.24)

Taking the inner product of (4.23) with ul+1 produces

1

2τ
(Aul+1, ul+1) +

1

2
|ul+1|21 =

λ

2
(Aul+1, ul+1)− λ

3

(

A(ulul+1), ul+1
)

.

Then
1

3τ
‖ul+1‖2 + 1

2
|ul+1|21 ≤ λ

[

1

2
+

1

3
(c0 + 1)

]

‖ul+1‖2.

Noticing
1

3τ
‖ul+1‖2 + 1

2
|ul+1|21 ≥

2√
6τ

‖ul+1‖ · |ul+1|1,

we have

|ul+1|1 ≤
√
6τ

2

[

1

2
+

1

3
(c0 + 1)

]

λ‖ul+1‖

≤
√
τ

2

[

1

2
+

1

3
(c0 + 1)

]

λL|ul+1|1.

When
1

4

[

1

2
+

1

3
(c0 + 1)

]2

λ2L2τ < 1,

it follows |ul+1|1 = 0. Hence, (4.8) and (4.10) determine ul+1 uniquely.

(B2) Proof for (4.13) with k = l + 1.

Taking the inner product of (4.15) with ∆te
k yields

(

A∆te
k,∆te

k
)

+
1

4τ

(

|ek+1|21 − |ek−1|21
)

= λ(Aek̄,∆te
k)− 1

3
λ
(

A
(

uk(ek−1 + ek + ek+1) + ek(Uk−1 + Uk + Uk+1)
)

,∆te
k
)

+
(

(R2)
k,∆te

k
)

≤ λ‖Aek̄‖ · ‖∆te
k‖+ 1

3
λ
[

∥

∥A
(

uk(ek−1 + ek + ek+1)
)∥

∥

+
∥

∥A
(

ek(Uk−1 + Uk + Uk+1)
)∥

∥

]

‖∆te
k‖+ ‖(R2)

k‖ · ‖∆te
k‖

≤ λ‖ek̄‖ · ‖∆te
k‖+ 1

3
λ
[

‖uk(ek−1 + ek + ek+1)‖+ ‖ek(Uk−1 + Uk + Uk+1)‖
]

‖∆te
k‖

+ ‖(R2)
k‖ · ‖∆te

k‖
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≤ λ‖ek̄‖ · ‖∆te
k‖+ 1

3
λ(c0 + 1)‖ek−1 + ek + ek+1‖ · ‖∆te

k‖

+
1

3
λ(3c0)‖ek‖ · ‖∆te

k‖+ ‖(R2)
k‖ · ‖∆te

k‖

≤
(

1

6
‖∆te

k‖2 + 3

2
λ2‖ek̄‖2

)

+

(

1

6
‖∆te

k‖2 + 1

6
λ2(c0 + 1)2‖ek−1 + ek + ek+1‖2

)

+

(

1

6
‖∆te

k‖2 + 3

2
λ2c20‖ek‖2

)

+
1

6
‖∆te

k‖2 + 3

2
‖(R2)

k‖2, 1 ≤ k ≤ l.

Noticing
(

A∆te
k,∆te

k
)

≥ 2

3
‖∆te

k‖2

and (4.4), it follows:

1

4τ

(

|ek+1|21 − |ek−1|21
)

≤ 3

4
λ2
(

‖ek+1‖2 + ‖ek−1‖2
)

+
λ2

2
(c0 + 1)2

(

‖ek−1‖2 + ‖ek‖2 + ‖ek+1‖2
)

+
3

2
λ2c20‖ek‖2 +

3

2
c25L(τ

2 + h4)2

=

[

3

4
λ2 +

λ2

2
(c0 + 1)2

]

‖ek+1‖2 +
[

3

4
λ2 +

λ2

2
(c0 + 1)2

]

‖ek−1‖2

+

[

λ2

2
(c0 + 1)2 +

3

2
λ2c20

]

‖ek‖2 + 3

2
c25L(τ

2 + h4)2

≤
[

3

4
λ2 +

λ2

2
(c0 + 1)2

]

L2

6
|ek+1|21 +

[

3

4
λ2 +

λ2

2
(c0 + 1)2

]

L2

6
|ek−1|21

+

[

λ2

2
(c0 + 1)2 +

3

2
λ2c20

]

L2

6
|ek|21 +

3

2
c25L(τ

2 + h4)2, 1 ≤ k ≤ l,

that is
{

1− 1

6

[

3 + 2(c0 + 1)2
]

λ2L2τ

}

|ek+1|21

≤
{

1 +
1

6

[

3 + 2(c0 + 1)2
]

λ2L2τ

}

|ek−1|21 +
1

3

[

(c0 + 1)2 + 3c20
]

λ2L2τ |ek|21

+ 6c25Lτ(τ
2 + h4)2, 1 ≤ k ≤ l.

When [3 + 2(c0 + 1)2]λ2L2τ ≤ 2, it follows:

|ek+1|21 ≤
{

1 +
1

2

[

3 + 2(c0 + 1)2
]

λ2L2τ

}

|ek−1|21

+
1

2

[

(c0 + 1)2 + 3c20
]

λ2L2τ |ek|21 + 9c25Lτ(τ
2 + h4)2

≤
[

1 + 3(c0 + 1)2λ2L2τ

]

max
{

|ek|21, |ek−1|21
}
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+ 9c25Lτ(τ
2 + h4)2, 1 ≤ k ≤ l,

so that

max
{

|ek+1|21, |ek|21
}

≤
[

1 + 3(c0 + 1)2λ2L2τ

]

max
{

|ek|21, |ek−1|21
}

+ 9c25Lτ(τ
2 + h4)2, 1 ≤ k ≤ l.

Applying the Gronwall inequality in Lemma 2.3 and noticing (4.20), we get

max
{

|el+1|21, |el|21
}

≤ e3(c0+1)2λ2L2lτ

[

max
{

|e1|21, |e0|21
}

+
3c25(τ

2 + h4)2

(c0 + 1)2λ2L

]

≤ e3(c0+1)2λ2L2T

[

3TLc24 +
3c25

(c0 + 1)2λ2L

]

(τ2 + h4)2.

Then

|el+1|1 ≤ e
3

2
(c0+1)2λ2L2T

(

3TLc24 +
3c25

(c0 + 1)2λ2L

)
1

2

(τ2 + h4)

= c6(τ
2 + h4),

which implies that (4.13) is true for k = l+1. By induction, the theorem is proved.

In view of Lemma 2.1(b), the difference scheme (4.7)-(4.10) is unconditionally

convergent in the maximum norm with the convergence order O(τ2 + h4).

Remark 4.2. Similar to the discussion in Remark 3.2, the difference scheme (4.7)-

(4.10) also satisfies the MBP when the mesh step sizes are sufficiently small based on

the convergence Theorem 4.2.

5. Numerical experiments

In this part, we are concerned with the numerical test for the above two difference

schemes. Three numerical examples are used to test the numerical accuracy, conser-

vative property and the MBP of the difference scheme (3.7)-(3.10) and the compact

difference scheme (4.7)-(4.10). Denote

E∞(h, τ) = max
0≤i≤m

0≤k≤n

∣

∣Uk
i (h, τ) − uki (h, τ)

∣

∣, Oh =log2
E∞(2h, τ)

E∞(h, τ)
, Oτ =log2

E∞(h, 2τ)

E∞(h, τ)
,

F∞(τ) = max
0≤i≤m

0≤k≤n

∣

∣

∣

∣

uki (h, τ) − u2ki

(

h,
τ

2

)
∣

∣

∣

∣

, Ordτ = log2
F∞(2τ)

F∞(τ)
,

G∞(h) = max
0≤i≤m

0≤k≤n

∣

∣

∣

∣

uki (h, τ)− uk2i

(

h

2
, τ

)
∣

∣

∣

∣

, Ordh = log2
G∞(2h)

G∞(h)
.
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Example 5.1 ([13]). In the problem (1.1)-(1.3), take L = 1, T = 1, λ = 6,

ϕ(x) =
1

(1 + ex)2
, α(t) =

1

(1 + e−5t)2
, β(t) =

1

(1 + e1−5t)2
.

The exact solution is given by

u(x, t) =
1

(1 + ex−5t)2
.

We fix a sufficiently small h and vary τ to observe the temporal convergence, and fix

a sufficiently small τ and vary h to observe the spatial convergence. The maximum

absolute error E∞(h, τ) and related convergence orders are presented in Tables 1 and

2 respectively. From these two tables, it is clear that we obtain approximate second-

order accuracy in both the temporal and the spatial directions for the difference scheme

(3.7)-(3.10), while for the compact difference scheme (4.7)-(4.10), the second-order

and fourth-order accuracy in the temporal and the spatial directions, respectively, can

be read off, which is consistent with our theoretical results in Sections 3.3 and 4.3.

Table 1: Example 5.1. Maximum errors and convergence orders in time.

Scheme (3.7)-(3.10) (m = 400) Scheme (4.7)-(4.10) (m = 400)

τ E∞(h, τ) Oτ E∞(h, τ) Oτ

1/20 2.388066e-03 – 2.388080e-03 –

1/40 5.624444e-04 2.09 5.624561e-04 2.09

1/80 1.380640e-04 2.03 1.380756e-04 2.03

1/160 3.423045e-05 2.01 3.424205e-05 2.01

1/320 8.517390e-06 2.01 8.528982e-06 2.01

Table 2: Example 5.1. Maximum errors and convergence orders in space.

Scheme (3.7)-(3.10) (n = 10000) Scheme (4.7)-(4.10) (n = 500000)

h E∞(h, τ) Oh E∞(h, τ) Oh

1/10 2.158202e-05 – 4.087641e-08 –

1/20 5.405155e-06 2.00 2.548302e-09 4.00

1/40 1.348020e-06 2.00 1.564399e-10 4.03

1/80 3.309353e-07 2.03 6.959544e-12 4.49

Example 5.2. In the problem (1.1)-(1.3), take L = 1, T = 1, λ = π2, ϕ(x) = sin(πx),
α(t) = β(t) = 0.

The exact solution is unknown. Take a sufficiently small h and different temporal

step sizes τ = 1/80, 1/160, 1/320, 1/640, 1/1280, 1/2560, respectively. Table 3 presents

the numerical errors F∞(τ) and temporal convergence orders Ordτ in the maximum
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Table 3: Example 5.2. Maximum errors and convergence orders in time.

Scheme (3.7)-(3.10) (m = 1000) Scheme (4.7)-(4.10) (m = 1000)

τ F∞(τ) Ordτ F∞(τ) Ordτ
1/80 3.002033e-03 – 3.002049e-03 –

1/160 8.445769e-04 1.83 8.445860e-04 1.83

1/320 1.987258e-04 2.09 1.987297e-04 2.09

1/640 4.493577e-05 2.14 4.493665e-05 2.14

1/1280 1.039646e-05 2.11 1.039656e-05 2.11

1/2560 – – – –

Table 4: Example 5.2. Maximum errors and convergence orders in space.

Scheme (3.7)-(3.10) (n = 1000) Scheme (4.7)-(4.10) (n = 10000)

h G∞(h) Ordh G∞(h) Ordh
1/20 8.985675e-04 – 1.628731e-06 –

1/40 2.241644e-04 2.00 1.012496e-07 4.01

1/80 5.601100e-05 2.00 6.319529e-09 4.00

1/160 1.400086e-05 2.00 4.113894e-10 3.94

1/320 3.500102e-06 2.00 2.706591e-11 3.93

1/640 – – – –

norm, demonstrating that both the difference scheme (3.7)-(3.10) and the compact

difference scheme (4.7)-(4.10) generate the temporal convergence of order two.

Fix a sufficiently small τ and take different spatial step sizes h = 1/20, 1/40, 1/80,

1/160, 1/320, 1/640, respectively. Table 4 records the numerical errors G∞(h) and

spatial convergence orders Ordh in the maximum norm, verifying that the difference

scheme (3.7)-(3.10) generates the spatial convergence of order two, while the differ-

ence scheme (4.7)-(4.10) generates the fourth-order spatial convergence.

In order to verify the conservation of the difference scheme (3.7)-(3.10) and the

compact difference scheme (4.7)-(4.10), we compute the discrete energy Ek and F k

in Theorem 3.1, and P k and Qk in Theorem 4.1 (0 ≤ k ≤ n − 1). Fig. 1 collects the

energy error curves of Ek and P k under different step sizes, where the exact energy

E(t) = E(0) = ‖u(·, 0)‖2 =

∫ 1

0
sin2(πx)dx =

1

2
.

Note that the discrete energy Ek and P k is almost equal to the exact energy E(0) in

this example. Indeed, the conservative law equalities (3.11) and (4.11) imply that

Ek = P k = ‖u0‖2 = h
m−1
∑

i=1

(u0i )
2 = h

m−1
∑

i=1

ϕ2(xi),
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Figure 1: The energy errors of Ek and P k.

which is precisely the result of composite trapzoidal formula applied to the integral

∫ 1

0
ϕ2(x) dx = E(0).

Due to the special choice of ϕ(x) in this example, it is easy to find that

h

m−1
∑

i=1

ϕ2(xi) =

∫ 1

0
ϕ2(x) dx.

The error curves of F k and Qk are plugged into Fig. 2, where the exact energy

F (t) = F (0) =

∫ 1

0
π2 cos2(πx)dx+ π2

∫ 1

0

[

2

3
sin3(πx)− sin2(πx)

]

dx =
8

9
π.

The conservation property of the discrete energy of these two difference schemes is

numerically verified.

Figure 2: The energy errors of F k and Qk.
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Next, the performance of the numerical solution at some moments, including the

evolution of its maximum and minimum value, is displayed in Figs. 3 and 4 with

h = 0.01 and varying τ. Numerically we verified the proposed two numerical schemes

both satisfy the MBP unconditionally.

(a) τ = 0.01 (b) τ = 0.01

(c) τ = 0.005 (d) τ = 0.005

(e) τ = 0.001 (f) τ = 0.001

Figure 3: The numerical solution u at different moments. (Left: scheme (3.7)-(3.10); Right: scheme
(4.7)-(4.10)).
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(a) τ = 0.01 (b) τ = 0.01

(c) τ = 0.005 (d) τ = 0.005

(e) τ = 0.001 (f) τ = 0.001

Figure 4: Max and min of u at different moments. (Left: scheme (3.7)-(3.10); Right: scheme (4.7)-(4.10)).

Example 5.3. In the problem (1.1)-(1.3), take L = 1, T = 1, λ = 1, ϕ(x) = 108x2(1 −
2x)2(1− x)2, α(t) = β(t) = 0.

The exact solution is also unknown. We numerically calculate this example using

the difference scheme (3.7)-(3.10) and the compact difference scheme (4.7)-(4.10),

respectively. The discrete invariants are shown in Figs. 5 and 6. In addition, taking

h = 0.001 and varying τ , the calculated numerical solution and its maximum/minimum

values at different moments are plotted in Figs. 7 and 8, respectively, which shows that

the proposed schemes satisfy the MBP unconditionally in this example.
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Figure 5: The energy errors of Ek and P k.

Figure 6: The energy errors of F k and Qk.

6. Conclusion

Two conservative difference schemes are proposed to solve the Fisher equation,

which are both three-level linearized and implicit. The coefficient matrices of these

two implicit difference schemes are both tri-diagonal, which can be solved using the

Thomas algorithm. The unique solvability and unconditional convergence of the two

difference schemes are rigorously proved by the energy analysis and mathematical in-

duction method. Numerical experiments are used to support the theoretical results.

The current work has its highlights:

(I) The numerical accuracy of the proposed algorithms can reach second-order in

time and second- or fourth-order in space, which is quite ideal and superior to the

existing results.

(II) The constructed numerical schemes are able to maintain two conservation in-

variants, energy stable for the free energy of the Fisher equation as a gradient flow and

satisfy the MBP unconditionally.

(III) The schemes we construct are linearized and computationally simple.
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(a) τ = 0.0005 (b) τ = 0.0005

(c) τ = 0.0001 (d) τ = 0.0001

Figure 7: The numerical solution u at different moments. (Left: scheme (3.7)-(3.10); Right: scheme
(4.7)-(4.10)).

(IV) We make clever use of the energy analysis and mathematical induction method

to rigorously prove the unique solvability and convergence of the schemes. There is

little convergence analysis in the existing literature. In particular, for the analysis on

the conservation invariants of compact difference scheme, a new equivalent norm has

been defined to get the corresponding results. There is one fly in the ointment that

we can not prove that the current numerical algorithms satisfy the MBP directly rather

than relying on the convergence result, which will be one of our future research.

It is worth mentioning that the analysis techniques developed in this work also work

for the forward Euler scheme, the backward Euler scheme, and the Crank-Nicolson

scheme to solve the Fisher equation.
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(a) τ = 0.0005 (b) τ = 0.0005

(c) τ = 0.0001 (d) τ = 0.0001

Figure 8: Max and min of u at different moments (Left: scheme (3.7)-(3.10); Right: scheme (4.7)-(4.10)).
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