
Journal of Computational Mathematics

Vol.xx, No.x, 2023, 1–21.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2301-m2022-0099

SEMI-PROXIMAL POINT METHOD FOR NONSMOOTH
CONVEX-CONCAVE MINIMAX OPTIMIZATION*

Yuhong Dai

LSEC, ICMSEC, AMSS, Chinese Academy of Sciences, Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Email: dyh@lsec.cc.ac.cn

Jiani Wang1)

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Email: wjiani@lsec.cc.ac.cn

Liwei Zhang

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Email: lwzhang@dlut.edu.cn

Abstract

Minimax optimization problems are an important class of optimization problems arising

from modern machine learning and traditional research areas. While there have been many

numerical algorithms for solving smooth convex-concave minimax problems, numerical

algorithms for nonsmooth convex-concave minimax problems are rare. This paper aims

to develop an efficient numerical algorithm for a structured nonsmooth convex-concave

minimax problem. A semi-proximal point method (SPP) is proposed, in which a quadratic

convex-concave function is adopted for approximating the smooth part of the objective

function and semi-proximal terms are added in each subproblem. This construction enables

the subproblems at each iteration are solvable and even easily solved when the semiproximal

terms are cleverly chosen. We prove the global convergence of our algorithm under mild

assumptions, without requiring strong convexity-concavity condition. Under the locally

metrical subregularity of the solution mapping, we prove that our algorithm has the linear

rate of convergence. Preliminary numerical results are reported to verify the efficiency of

our algorithm.

Mathematics subject classification: 90C30.

Key words: Minimax optimization, Convexity-concavity, Global convergence, Rate of con-
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1. Problem Setting

In this paper, we consider the following nonsmooth minimax optimization problem:

min
x∈X

max
y∈Y

L(x, y) := f(x) +K(x, y)− g(y), (1.1)

where K : X × Y → ℜ is a continuously differentiable convex-concave function, and f : X →
ℜ, g : Y → ℜ are proper lower semi-continuous convex functions. X and Y be two finite-

dimensional real Hilbert spaces equipped with a scalar product 〈·, ·〉 and its induced norm ‖ · ‖.
The mathematical model (1.1) covers a lot of interesting convex-concave minimax problems

appeared in the literature. We only list two examples here.
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Example 1.1. Let X ⊂ X and Y ⊂ Y be two closed convex sets. The following constrained

minimax optimization problem are frequently studied in the literature:

min
x∈X

max
y∈Y

K(x, y). (1.2)

Obviously, the constrained minimax optimization problem (1.2) can be written as the form of

problem (1.1) if we set f(x) = δX(x) and g(y) = δY (y).

Example 1.2. In Example 1.1, let X ⊂ X and Y ⊂ Y be two closed convex sets specified as

X = {x ∈ X : G(x) ∈ C}, Y = {y ∈ Y : H(y) ∈ D},

where C and D are closed convex sets in some finite dimensional spaces and the set-valued

mappings

x : → G(x)− C, y : → H(y)−D

are graph-convex (under this assumption X and Y are convex sets). Then the constrained

minimax optimization problem (1.2) can be written as the form of problem (1.1) if we set

f(x) = δC(G(x)) and g(y) = δD(H(y)).

The study of algorithms for solving convex-concave minimax problems of the form (1.1)

is active. For the case when K is a bilinear function, there are many publications about

constructing and analyzing numerical algorithms for the minimax problem. The first work was

due to Arrow et al. [1], where they proposed an alternating coordinate method, leaving the

convergence unsolved. Nemirovski [14] considered the following minimax problem:

min
x

max
y∈Y

g(x) + xTAy + hT y,

where Y is a compact convex set and g is a C1,1 convex function. He proposed a mirror-prox

algorithm which returns an approximate saddle point within the complexity ofO(1/ε). Nesterov

[15] developed a dual extrapolation algorithm for solving variational inequalities which owns

the complexity bound O(1/ε) for Lipschitz continuous operators and applied the algorithm to

bilinear matrix games. Chen et al. [7] presented a novel accelerated primal-dual (APD) method

for solving this class of minimax problems, and showed that the APD method achieves the

same optimal rate of convergence as Nesterov’s smoothing technique. Chambolle and Pock [4]

proposed a first-order primal-dual algorithm and established the convergence of the algorithm.

Later, Chambolle and Pock provided the ergodic convergence rate [5] and explored the rate of

convergence for accelerated primal-dual algorithms [6].

For smooth convex-concave minimax problems when K is not bilinear, many numerical

algorithms are proposed such as the projection method [19], extragradient method [10], Tseng’s

accelerated proximal gradient algorithm [21], catalyst algorithm framework [24]. Recently,

Mokhtari et al. [12] proposed algorithms admitting a unified analysis as approximations of the

classical proximal point method for solving saddle point problems. Mokhtari et al. [13] proved

that the optimistic gradient and extra-gradient methods achieve a convergence rate of O(1/k)

for smooth convex-concave saddle point problems. Yoon and Ryu [25] combined extra-gradient

steps with anchoring to reduce the squared gradient magnitude for smooth minimax problems

which allows algorithms to obtain accelerated O(1/k2) last-iterate rates.

Recently, Lin et al. [11] announced that they solved a longstanding open question pertaining

to the design of near-optimal first-order algorithms for smooth and strongly-convex-strongly-
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concave minimax problems by presenting an algorithm with Õ(
√
κxκy) gradient complexity,

matching the lower bound up to logarithmic factors [20]. In 2020, Wang and Li [23] proposed

the proximal best response method, which improved over the best known upper bound by [11],

and achieved linear convergence rate and tighter dependency on condition numbers.

For the nonsmooth convex-concave minimax problem (1.1), Valkonen [22] gave a modified

primal-dual hybrid gradient method which is an extension of the primal-dual method in [4].

Furthermore, following the line of [4], Clason et al. [8] proposed a generalized primal-dual

proximal splitting (GPDPS) method for solving the problem (1.1). However, the convergence of

GPDPS depends on both Lipschitz gradients and bounded gradient of K. Recently, Hamedani

[9] proposed a primal-dual algorithm for problem (1.1) and achieved an ergodic convergence rate

of function value with O(1/k). To deal with the nonsmooth term in coupling function K(x, y),

Boţ et al. [3] designed an optimistic gradient ascent-proximal point algorithm and obtained

a convergence rate of order O(1/K) for convex-concave saddle point problem. Distinct from

the above research, in this paper, we build a semi-proximal alternating coordinate method and

the convergence of iteration (xk, yk) only depends on Lipschitz gradients of K. Moreover, we

establish the linear convergence rate of (xk, yk) provided with local metric subregularity, which,

as far as we know, is not provided in other work for the general problem (1.1).

Averaging the weights of neural nets is a prohibitive approach in particular because the

zero-sum game that is defined by training one deep net against another is not a convex-concave

zero-sum game. Thus it seems essential to identify training algorithms that make the last

iterate of the training be very close to the equilibrium, rather than only the average. However,

the averaging technique is a popular tool for achieving good complexity, most of the mentioned

papers (including [4, 5, 7, 13–15]) adopted that averaging technique. In this paper, we will not

adopt the averaging technique in our algorithm.

Contribution. We propose a semi-proximal point method to solve nonsmooth convex-

concave minimax problems with a more general coupling term K that is not bilinear. As K

may have a complex structure, we use a convex-concave quadratic function to approximate

function K. Then using the proximal point method to solve the sum of approximate quadratic

function and nonsmooth convex function (with respect to x) and concave function (with respect

to y), we design a numerical method for alternating iteration of x and y. Provided with some

Lipschitz properties of the gradient of K, which are common in nonlinear optimization, (xk, yk)

converges monotonically to a saddle point of general form of the problem (1.1).

In order to characterize the convergence rate, we define the local metric subregularity of

the problem (1.1), which is an important definition in nonsmooth optimization and nonconvex

optimization (see [2, 18]). If the local metric subregularity holds at all saddle points, (xk, yk)

converges linearly to a saddle point.

This paper is organized as follows. In Section 2, we provide some technical results about

minimizing the sum of a convex function and a quadratic proximal term, which will play an

important role in the convergence analysis of SPP. In Section 3, we propose mild assumptions

and prove the global convergence of SPP for solving problem (1.1). In Section 4, the linear

rate of convergence of SPP is demonstrated under the assumption that the solution mapping

is locally metrically subregular. In Section 5, we report some preliminary numerical results for

linear regression problems with the saddle point formulation and for solving separate linearly

constrained nonsmooth convex-concave minimax problems. Some discussions are made in the

last section.
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2. Preliminary

In this section, we give several results about properties of minimizing the sum of a convex

function and a quadratic proximal term. The results will be used in the next section.

Lemma 2.1. Let f : Z → ℜ be twice differentiable and Z be a finite-dimensional real Hilbert

space with a scalar product 〈·, ·〉 and its induced norm ‖·‖. Assume that there exists a self-adjoint

operator Σf : Z → Z such that D2f(z) � Σf for any z ∈ Z (which means that D2f(z)− Σf is

a positive-definite self-adjoint operator). Define

q(z′, z) = f(z)−
[
f(z′) + Df(z′)(z − z′) +

1

2
‖z − z′‖2Σf

]
. (2.1)

Then for any z′ ∈ Z, q(z′, z) is a convex function of z.

Proof. Note that

D2
zq(z

′, z) = D2f(z)− Σf � 0,

hence the conclusion is obtained from the definition of convex function in [16]. �

For a smooth convex optimization problem, the proximal point method often involves min-

imizing the sum of a smooth convex function, a nonsmooth convex function and a quadratic

proximal term. An important inequality will be established in the following lemma.

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied and T : Z → Z be a positively

semidefinite self-adjoint operator such that

T +Σf ≻ 0.

Then for any proper lower semi-continuous convex function ψ : Z → ℜ and any zc ∈ Z, the

problem

minψ(z) + f(z) +
1

2
‖z − zc‖2T (2.2)

has a unique solution, denoted by z+. Moreover, for any z ∈ Z,

ψ(z) + f(z) +
1

2
‖z − zc‖2T − 1

2
‖z − z+‖2T+Σf

≥ ψ(z+) + f(z+) +
1

2
‖z+ − zc‖2T . (2.3)

Proof. Define

φc(z) = ψ(z) + f(z) +
1

2
‖z − zc‖2T .

Then

φc(z) =

[
f(z+) + Df(z+)(z − z+) +

1

2
‖z − z+‖2Σf

]
+

1

2
‖z − zc‖2T + q(z+, z) + ψ(z).

Let

q0(z) = ψ(z) + q(z+, z) + Df(z+)(z − z+) +
1

2
‖z − zc‖2T − 1

2
‖z − z+‖2T .

Then q0 is convex and

φc(z) = f(z+) +
1

2
‖z − z+‖2T +

1

2
‖z − z+‖2Σf

+ q0(z).
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Since 0 ∈ ∂φc(z
+), we have 0 ∈ ∂q0(z

+) and q0 arrives its minimum value at z+. Then for

every z ∈ Z,

q0(z) ≥ q0(z
+) = ψ(z+) +

1

2
‖z+ − zc‖2T ,

which is equivalent to

ψ(z) + f(z) +
1

2
‖z − zc‖2T − 1

2
‖z − z+‖2T+Σf

≥ ψ(z+) + f(z+) +
1

2
‖z+ − zc‖2T .

The proof is complete. �

In the next section, we will find that the inequality (2.3) plays an important role in estab-

lishing the convergence of the proposed algorithm.

3. The Algorithm and Global Convergence

To begin with, we introduce some notation. Let Z = X × Y and denote z = (x, y),

z′ = (x′, y′), zk = (xk, yk) and zk+1/2 = (xk+1/2, yk+1/2). Let K be a smooth convex-concave

function on an open set O ⊃ dom f × dom g; i.e., for each (x, y) ∈ O,K(·, y) and −K(x, ·)
are smooth convex functions. Let Σ̂f and Σ̂g be self-adjoint and positive semidefinite linear

operators. For any (x, y), (x′, y′) ∈ O, we define

K̂(x, y;x′, y′) = K(x′, y′) + 〈DxK(x′, y′), x− x′〉+ 〈DyK(x′, y′), y − y′〉

+
1

2
‖x− x′‖2

Σ̂f
− 1

2
‖y − y′‖2

Σ̂g
,

L̂(x, y;x′, y′) = f(x) + K̂(x, y;x′, y′)− g(y).

We propose a semi-proximal point algorithm (SPP) for solving problem (1.1) as below.

Algorithm 3.1: Semi-proximal Point Algorithm (SPP)

Step 0. Input z0 = (x0, y0) ∈ dom f × dom g. Set k := 0.

Step 1. Compute zk+1/2 = (xk+1/2, yk+1/2) and zk+1 = (xk+1, yk+1) by





xk+
1

2 = argmin
x∈X

σ
[
f(x) + K̂(x, yk; zk)

]
+

1

2
‖x− xk‖2S ,

yk+
1

2 = argmin
y∈Y

σ
[
− K̂(xk, y; zk) + g(y)

]
+

1

2
‖y − yk‖2T ,

xk+1 = argmin
x∈X

σ
[
f(x) + K̂(x, yk+

1

2 ; zk+
1

2 )
]
+

1

2
‖x− xk‖2S ,

yk+1 = argmin
y∈Y

σ
[
− K̂(xk+

1

2 , y; zk+
1

2 ) + g(y)
]
+

1

2
‖y − yk‖2T .

Step 2. If a termination criterion is not met, set k := k + 1 and go to Step 1.

The motivation for proposing the above algorithm comes from the following observations:

(i) The reason for using K̂(·, ·; z) instead of K(·, ·) is that this makes the subproblems for

determining zk+1/2 and zk+1 to be easily solvable, especially when K is a complicated

smooth convex-concave function. Furthermore, the subproblems for determining zk+1/2

and zk+1 may have explicit solutions when f and g are simple convex functions.
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(ii) The use of the semi-proximal terms (i.e., S and T are only required to be positively

semidefinite) leaves the user a freedom to choose S and T so that the subproblems for

determining zk+1/2 and zk+1 are well-conditioned or are easily solved.

To analyze the global convergence of Algorithm 3.1, we need the following mild assumptions

about functions in problem (1.1).

Assumption 3.1. Let K be a smooth convex-concave function on an open set O ⊃ dom f ×
dom g; i.e., for each (x, y) ∈ O, K(·, y) and −K(x, ·) are smooth convex functions. Suppose

there exist self-adjoint and positive semidefinite linear operators Σ̂f and Σ̂g such that for any

(x, y), (x′, y′) ∈ O,

K(x, y) ≥ K(x′, y) + 〈DxK(x′, y), x− x′〉+ 1

2
‖x− x′‖2

Σ̂f
, (3.1)

−K(x, y) ≥ −K(x, y′)− 〈DyK(x, y′), y − y′〉+ 1

2
‖y − y′‖2

Σ̂g
. (3.2)

For convenience, we introduce a linear operator Σ̂ : Z → Z by

Σ̂(x, y) =
(
Σ̂fx, Σ̂gy

)
. (3.3)

Assumption 3.2. Suppose that K is continuously differentiable on an open set O ⊃ dom f ×
dom g and the derivative mapping DK is Lipschitz continuous with constant η0 > 0, i.e.,

‖DK(x, y)−DK(x′, y′)‖ ≤ η0‖(x, y)− (x′, y′)‖, ∀(x′, y), (x, y) ∈ O.

Assumption 3.3. The set of saddle points of L over dom f × dom g is nonempty, i.e., Ω 6= ∅,
where Ω is defined by

Ω =
{
(x, y) ∈ Z : L(x, y′) ≤ L(x, y) ≤ L(x′, y), ∀(x′, y′) ∈ dom f × dom g

}
.

Define for z = (x, y), z′ = (x′, y′),

ΦK(z′, z) = K(x′, y)−K(x, y′), ΦL(z
′, z) = L(x′, y)− L(x, y′).

Then we have for z′, z ∈ dom f × dom g that

ΦK(z, z) = 0, ΦL(z, z) = 0, ΦK(z′, z) + ΦK(z, z′) = 0, ΦL(z
′, z) + ΦL(z, z

′) = 0.

Furthermore, define for z = (x, y), z′ = (x′, y′) and z′′ = (x′′, y′′),

Φ̂K(z′, z′′; z) = K̂(x′, y′′; z)− K̂(x′′, y′; z), Φ̂L(z
′, z′′; z) = L̂(x′, y′′; z)− L̂(x′′, y′; z).

Then we have for z′, z′′, z ∈ dom f × dom g that

Φ̂K(z′, z′; z) = 0, Φ̂L(z
′, z′; z) = 0,

Φ̂K(z′, z′′; z) + Φ̂K(z′′, z′; z) = 0, Φ̂L(z
′, z′′; z) + Φ̂L(z

′′, z′; z) = 0.

Proposition 3.1. Let Assumption 3.2 be satisfied. Then for z ∈ dom f × dom g and h′, h ∈
X × Y such that z + h+ h′, z + h ∈ dom f × dom g, one has that

∣∣∣
[
Φ̂K(z + h+ h′, z; z)− Φ̂K(z + h, z; z)

]

−
[
Φ̂K(z + h+ h′, z + h; z + h)− Φ̂K(z + h, z + h; z + h)

]∣∣∣ ≤ η̂0‖h‖ ‖h′‖, (3.4)

where

η̂0 = ‖Σ̂‖+ η0.
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Proof. Let h = (hx, hy) ∈ Z. Define an operation D̃ by

D̃K(z)h =
(
DxK(z)hx,−DyK(z)hy

)
.

Since Φ̂K(z+h, z+h; z+h) = 0, we only need to consider the other three terms. For h = (hx, hy)

and h′ = (h′x, h
′
y),

Φ̂K(z + h+ h′, z; z) = K̂(x+ hx + h′x, y; z)− K̂(x, y + hy + h′y; z)

= DxK(z)(hx + h′x)−DyK(z)(hy + h′y)

+
1

2
‖hx + h′x‖2Σ̂f

+
1

2
‖hy + h′y‖2Σ̂g

= D̃K(z)(h+ h′) +
1

2
‖h+ h′‖2

Σ̂
. (3.5)

Similarly, we can get that

Φ̂K(z + h, z; z) = D̃K(z)(h) +
1

2
‖h‖2

Σ̂
, (3.6)

Φ̂K(z + h+ h′, z + h; z + h) = D̃K(z + h)(h′) +
1

2
‖h′‖2

Σ̂
. (3.7)

Combing (3.5)-(3.7), we obtain
∣∣∣
[
Φ̂K(z + h+ h′, z; z)− Φ̂K(z + h, z; z)

]

−
[
Φ̂K(z + h+ h′, z + h; z + h)− Φ̂K(z + h, z + h; z + h)

]∣∣∣

=
∣∣∣
[
Φ̂K(z + h+ h′, z; z)− Φ̂K(z + h, z; z)

]
− Φ̂K(z + h+ h′, z + h; z + h)

∣∣∣

=

∣∣∣∣
[
D̃K(z)− D̃K(z + h)

]
(h′) +

1

2
‖h+ h′‖2

Σ̂
− 1

2
‖h‖2

Σ̂
− 1

2
‖h′‖2

Σ̂

∣∣∣∣

=
∣∣[D̃K(z)− D̃K(z + h)

]
(h′) + 〈Σ̂h, h′〉

∣∣

≤
∥∥[D̃K(z)− D̃K(z + h)

]∥∥ ‖h′‖+ ‖Σ̂‖ ‖h‖ ‖h′‖
≤

(
η0 + ‖Σ̂‖

)
‖h‖ ‖h′‖ = η̂0‖h‖ ‖h′‖.

The proof is complete. �

Remark 3.1. From the definition of Φ̂K and Φ̂L, we have
∣∣∣
[
Φ̂L(z + h+ h′, z; z)− Φ̂L(z + h, z; z)

]

−
[
Φ̂L(z + h+ h′, z + h; z + h)− Φ̂L(z + h, z + h; z + h)

]∣∣∣

=
∣∣∣
[
Φ̂K(z + h+ h′, z; z)− Φ̂K(z + h, z; z)

]

−
[
Φ̂K(z + h+ h′, z + h; z + h)− Φ̂K(z + h, z + h; z + h)

]∣∣∣,

which yields from (3.4) that
∣∣∣
[
Φ̂L(z + h+h′, z; z)− Φ̂L(z + h, z; z)

]

−
[
Φ̂L(z + h+h′, z + h; z + h)− Φ̂L(z + h, z + h; z + h)

]∣∣∣ ≤ η̂0‖h‖ ‖h′‖.
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Let σ > 0 be a given parameter. Let S and T be given self-adjoint linear operators satisfying

S � 0, T � 0, σΣ̂f + S ≻ 0, σΣ̂g + T ≻ 0. (3.8)

Define a linear operator Θ : Z → Z by

Θ(x, y) = (Sx, T y). (3.9)

Then the formulas for (xk+1/2, yk+1/2) and (xk+1, yk+1) in Step 1 of Algorithm 3.1 can be

written as

zk+
1

2 = argmin
z∈Z

{
1

2
‖z − zk‖2Θ + σΦ̂L(z, z

k; zk)

}
,

zk+1 = argmin
z∈Z

{
1

2
‖z − zk‖2Θ + σΦ̂L

(
z, zk+

1

2 ; zk+
1

2

)}
.

(3.10)

Noting that Φ̂L(z, z
k+1/2; zk+1/2) and Φ̂L(z, z

k; zk) are convex and problems in (3.10) have

the same structure as problem (2.2), we may use Lemma 2.2 to estimate ‖z − zk+1‖σΣ̂+Θ and

‖z − zk+1/2‖σΣ̂+Θ. Specifically, by Lemma 2.2, we know from the definition of zk+1 that for

any z ∈ dom f × dom g,

1

2
‖z − zk‖2Θ + σΦ̂L

(
z, zk+

1

2 ; zk+
1

2

)
− 1

2
‖z − zk+1‖2

σΣ̂+Θ

≥ 1

2
‖zk+1 − zk‖2Θ + σΦ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)
. (3.11)

Similarly, we have from the definition of zk+1/2 that for any z ∈ dom f × dom g,

1

2
‖z − zk‖2Θ + σΦ̂L(z, z

k; zk)− 1

2

∥∥z − zk+
1

2

∥∥2

σΣ̂+Θ

≥ 1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
+ σΦ̂L

(
zk+

1

2 , zk; zk
)
. (3.12)

We first establish the relation between ‖zk+1 − zk+1/2‖Θ+σΣ̂ and ‖zk+1/2 − zk‖Θ+σΣ̂ in the

following proposition.

Proposition 3.2. Let Assumptions 3.1 and 3.2 be satisfied, S and T satisfy (3.8) or equiva-

lently Θ � 0 and Θ+ σΣ̂ ≻ 0. Let {zk = (xk, yk)}, {zk+1/2 = (xk+1/2, yk+1/2)} be generated by

Algorithm 3.1. Then

∥∥zk+1 − zk+
1

2

∥∥
Θ+σΣ̂

≤ ϑ(σ)
∥∥zk+ 1

2 − zk
∥∥
Θ+σΣ̂

, (3.13)

where

ϑ(σ) =
ση̂0

λmin(Θ + σΣ̂)
.

Proof. Setting z = zk+1/2 in (3.11), we obtain

1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
+ σΦ̂L

(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)
− 1

2

∥∥zk+ 1

2 − zk+1
∥∥2

σΣ̂+Θ

≥ 1

2
‖zk+1 − zk‖2Θ + σΦ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)
. (3.14)
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Setting z = zk+1 in (3.12), we obtain

1

2
‖zk+1 − zk‖2Θ + σΦ̂L(z

k+1, zk; zk)− 1

2

∥∥zk+1 − zk+
1

2

∥∥2
σΣ̂+Θ

≥ 1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
+ σΦ̂L

(
zk+

1

2 , zk; zk
)
. (3.15)

Summing (3.14) and (3.15), we get from Proposition 3.1 (with z = zk, h = zk+1/2 − zk,

h′ = zk+1 − zk+1/2) that

∥∥zk+1 − zk+
1

2

∥∥2
σΣ̂+Θ

≤ σ
{
Φ̂L

(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)
− Φ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)

−
[
Φ̂L

(
zk+

1

2 , zk; zk
)
− Φ̂L(z

k+1, zk; zk)
]}

= σ
{
Φ̂K

(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)
− Φ̂K

(
zk+1, zk+

1

2 ; zk+
1

2

)

−
[
Φ̂K

(
zk+

1

2 , zk; zk
)
− Φ̂K(zk+1, zk; zk)

]}

≤ ση̂0
∥∥zk+1 − zk+

1

2

∥∥ ∥∥zk+ 1

2 − zk
∥∥. (3.16)

Therefore, in view of
√
λmin(σΣ̂ + Θ)‖z‖ ≤ ‖z‖σΣ̂+Θ, ∀z ∈ Z

we obtain the desired result from the last expression of (3.16). The proof is complete. �

Now we provide the main result about the global convergence of Algorithm 3.1.

Theorem 3.1. Let Assumptions 3.1-3.3 be satisfied and S and T satisfy (3.8) or equivalently

Θ � 0 and Θ+σΣ̂ ≻ 0. Consider the sequences {zk = (xk, yk)} and {zk+1/2 = (xk+1/2, yk+1/2)}
generated by Algorithm 3.1. Suppose that σ,S and T satisfy

Θ ≻ η̂0σI. (3.17)

Then {zk = (xk, yk)} converges monotonically with respect to some norm to an element of Ω.

Proof. Choose an element z∗ ∈ Ω. Setting z = z∗ in (3.11), we obtain

1

2
‖z∗ − zk‖2Θ + σΦ̂L

(
z∗, zk+

1

2 ; zk+
1

2

)
− 1

2
‖z∗ − zk+1‖2

σΣ̂+Θ

≥ 1

2
‖zk+1 − zk‖2Θ + σΦ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)
. (3.18)

Setting z = zk+1 in (3.12), we obtain

1

2
‖zk+1 − zk‖2Θ + σΦ̂L(z

k+1, zk; zk)− 1

2

∥∥zk+1 − zk+
1

2

∥∥2
σΣ̂+Θ

≥ 1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
+ σΦ̂L

(
zk+

1

2 , zk; zk
)
. (3.19)
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Summing (3.18) and (3.19), we have

‖zk − z∗‖2Θ ≥ ‖zk+1 − z∗‖2
σΣ̂+Θ

+
∥∥zk+1 − zk+

1

2

∥∥2
σΣ̂+Θ

+
∥∥zk+ 1

2 − zk
∥∥2

Θ

+ 2σ
[
Φ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)
− Φ̂L

(
z∗, zk+

1

2 ; zk+
1

2

)

+ Φ̂L
(
zk+

1

2 , zk; zk
)
− Φ̂L(z

k+1, zk; zk)
]

= ‖zk+1 − z∗‖2
σΣ̂+Θ

+
∥∥zk+1 − zk+

1

2

∥∥2
σΣ̂+Θ

+
∥∥zk+ 1

2 − zk
∥∥2

Θ

+ 2σ
[
Φ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)
− Φ̂L

(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)

+ Φ̂L
(
zk+

1

2 , zk; zk
)
− Φ̂L(z

k+1, zk; zk)
]

+ 2σ
[
Φ̂L

(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)
− Φ̂L

(
z∗, zk+

1

2 ; zk+
1

2

)]
. (3.20)

Noting that

Φ̂L
(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)
= 0,

we need to estimate the term −Φ̂L(z
∗, zk+1/2; zk+1/2). In fact, we have from Assumption 3.1

that

− Φ̂L
(
z∗, zk+

1

2 ; zk+
1

2

)
= L̂

(
xk+

1

2 , y∗; zk+
1

2

)
− L̂

(
x∗, yk+

1

2 ; zk+
1

2

)

= f
(
xk+

1

2

)
+ K̂

(
xk+

1

2 , y∗; zk+
1

2

)
− g(y∗)−

[
f(x∗) + K̂

(
x∗, yk+

1

2 ; zk+
1

2

)
− g

(
yk+

1

2

)]

= f
(
xk+

1

2

)
− g(y∗) +K

(
zk+

1

2

)
+
〈
DyK

(
zk+

1

2

)
, y∗ − yk+

1

2

〉
− 1

2

∥∥y∗ − yk+
1

2

∥∥2
Σ̂g

−
[
f(x∗)− g

(
yk+

1

2

)
+K

(
zk+

1

2

)
+
〈
DxK

(
zk+

1

2

)
, x∗ − xk+

1

2

〉]
− 1

2

∥∥x∗ − xk+
1

2

∥∥2

Σ̂f

= f
(
xk+

1

2

)
− g(y∗)− f(x∗) + g

(
yk+

1

2

)

−
[
−K

(
zk+

1

2

)
−
〈
DyK

(
zk+

1

2

)
, y∗ − yk+

1

2

〉
+

1

2

∥∥y∗ − yk+
1

2

∥∥2
Σ̂g

]

−
[
K
(
zk+

1

2

)
+
〈
DxK

(
zk+

1

2

)
, x∗ − xk+

1

2 − x∗
〉
+

1

2

∥∥x∗ − xk+
1

2

∥∥2
Σ̂f

]

≥ f
(
xk+

1

2

)
− g(y∗)− f(x∗) + g

(
yk+

1

2

)
+K

(
xk+

1

2 , y∗
)
−K

(
x∗, yk+

1

2

)

=
[
f
(
xk+

1

2

)
+K

(
xk+

1

2 , y∗
)
− g(y∗)− L(x∗, y∗)

]

+
[
L(x∗, y∗)−

(
f(x∗) +K

(
x∗, yk+

1

2

)
− g

(
yk+

1

2

))]
≥ 0, (3.21)

where the last inequality comes from (x∗, y∗) ∈ Ω.

Thus we can get from (3.20) and (3.21) that

‖zk − z∗‖2Θ ≥ ‖zk+1 − z∗‖2
σΣ̂+Θ

+
∥∥zk+1 − zk+

1

2

∥∥2
σΣ̂+Θ

+
∥∥zk+ 1

2 − zk
∥∥2

Θ

+ 2σ
[
Φ̂L

(
zk+1, zk+

1

2 ; zk+
1

2

)
− Φ̂L

(
zk+

1

2 , zk+
1

2 ; zk+
1

2

)

+ Φ̂L
(
zk+

1

2 , zk; zk
)
− Φ̂L(z

k+1, zk; zk)
]
. (3.22)
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In view of Remark 3.1, we obtain from (3.22) that

‖zk − z∗‖2Θ ≥ ‖zk+1 − z∗‖2
σΣ̂+Θ

+
∥∥zk+1 − zk+

1

2

∥∥2
σΣ̂+Θ

+
∥∥zk+ 1

2 − zk
∥∥2
Θ

− 2ση̂0
∥∥zk+1 − zk+

1

2

∥∥ ∥∥zk+ 1

2 − zk
∥∥

≥ ‖zk+1 − z∗‖2
σΣ̂+Θ

+
∥∥zk+1 − zk+

1

2

∥∥2
σΣ̂+Θ

+
∥∥zk+ 1

2 − zk
∥∥2
Θ

− ση̂0

[∥∥zk+1 − zk+
1

2

∥∥2 +
∥∥zk+ 1

2 − zk
∥∥2

]

= ‖zk+1 − z∗‖2
σΣ̂+Θ

+
∥∥zk+1 − zk+

1

2

∥∥2
σΣ̂+Θ−ση̂0I

+
∥∥zk+ 1

2 − zk
∥∥2
Θ−ση̂0I

. (3.23)

Define

G(σ) = σΣ̂ + Θ, N(σ) = σΣ̂ + Θ− η̂0σI, H(σ) = Θ− η̂0σI.

The relation (3.23) implies that

‖zk − z∗‖2G(σ) ≥ ‖zk+1 − z∗‖2G(σ) +
∥∥zk+1 − zk+

1

2

∥∥2
N(σ)

+
∥∥zk+ 1

2 − zk
∥∥2
H(σ)

. (3.24)

From (3.17), we know that H(σ) and N(σ) are positively definite. Hence by (3.24), we get that

‖zk − z∗‖2G(σ) ≥ ‖zk+1 − z∗‖2G(σ) +
∥∥zk+1 − zk+

1

2

∥∥2
N(σ)

+
∥∥zk+ 1

2 − zk
∥∥2
H(σ)

. (3.25)

Summing the inequality (3.25) over k from 0 to N , we obtain

‖z0 − z∗‖2G(σ) ≥
∥∥zN+1 − z∗

∥∥2
G(σ)

+

N∑

k=1

∥∥zk+1 − zk+
1

2

∥∥2
N(σ)

+

N∑

k=1

∥∥zk+ 1

2 − zk
∥∥2
H(σ)

. (3.26)

Thus we obtain from (3.26) that

‖z0 − z∗‖2G(σ) ≥
∥∥zN+1 − z∗

∥∥2
G(σ)

,

∞∑

k=1

∥∥zk+1 − zk+
1

2

∥∥2
N(σ)

<∞,

∞∑

k=1

∥∥zk+ 1

2 − zk
∥∥2
H(σ)

≤ ∞,

implying that

‖zk+1 − zk‖ → 0. (3.27)

Since the sequence {zk} is bounded, there exist an element z̄ and {ki} ⊂ N such that zki → z̄.

It follows from (3.12) that, for z ∈ domf × domg,

1

2
‖z − zk‖2Θ + σΦ̂L(z, z

k; zk)− 1

2

∥∥z − zk+
1

2

∥∥2
σΣ̂+Θ

≥ σΦ̂L
(
zk+

1

2 , zk; zk
)
+

1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
,

which is equivalent to

1

2
‖z − zk‖2

σΣ̂+Θ
− 1

2

∥∥z − zk+
1

2

∥∥2
σΣ̂+Θ

+ σ

[
f(x) +K(zk) + 〈DxK(zk), x− xk〉+ 1

2
‖x− xk‖2

Σ̂f
− g(yk)

]

− σ

[
f(xk) +K(zk) + 〈DyK(zk), y − yk〉 − 1

2
‖y − yk‖2

Σ̂g
− g(y)

]

≥ σΦ̂L
(
zk+

1

2 , zk; zk
)
+

1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
.



12 Y.H. DAI, J.N. WANG AND L.W. ZHANG

The above relation indicates that

1

2
‖z − zk‖2

σΣ̂+Θ
− 1

2

∥∥z − zk+
1

2

∥∥2
σΣ̂+Θ

+ σ
[
f(x) + 〈DxK(zk), x− xk〉 − g(yk)

]

− σ
[
f(xk) + 〈DyK(zk), y − yk〉 − g(y)

]

≥ 1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
+ σ

[
f
(
xk+

1

2

)
+
〈
DxK(zk), xk+

1

2 − xk
〉
+

1

2

∥∥xk+ 1

2 − xk
∥∥2
Σ̂f

− g(yk)

]

− σ

[
f(xk) +

〈
DyK(zk), yk+

1

2 − yk
〉
− 1

2

∥∥yk+ 1

2 − yk
∥∥2
Σ̂g

− g
(
yk+

1

2

)]
.

Thus we can get that

1

2
‖z − zk‖2

σΣ̂+Θ
− 1

2

∥∥z − zk+
1

2

∥∥2
σΣ̂+Θ

+ σ
[
f(x) + 〈DxK(zk), x− xk〉

]

− σ
[
〈DyK(zk), y − yk〉 − g(y)

]

≥ 1

2

∥∥zk+ 1

2 − zk
∥∥2
Θ
+ σ

[〈
DxK(zk), xk+

1

2 − xk
〉
+

1

2

∥∥xk+ 1

2 − xk
∥∥2
Σ̂f

]

− σ

[〈
DyK(zk), yk+

1

2 − yk
〉
− 1

2

∥∥yk+ 1

2 − yk
∥∥2
Σ̂g

]
+ σf

(
xk+

1

2

)
+ σg

(
yk+

1

2

)
. (3.28)

Since f and g are lower semi-continuous and ‖zki+1/2 − zki‖ → 0 as i→ ∞, letting k = ki and

taking the lower limit along {ki} on both sides of (3.28), we obtain

[
f(x) + 〈DxK(z̄), x− x̄〉 − g(ȳ)

]
−
[
f(x̄) + 〈DyK(z̄), y − ȳ〉 − g(y)

]
≥ 0. (3.29)

In view of the convexity-concavity of K, we have that

〈DxK(z̄), x− x̄〉 ≤ K(x, ȳ)−K(x̄, ȳ),

〈DyK(z̄), y − ȳ〉 ≥ K(x̄, y)−K(x̄, ȳ).

Combining these with (3.29), we obtain

[
f(x) +K(x, ȳ)− g(ȳ)

]
−
[
f(x̄) +K(x̄, y)− g(y)

]
≥ 0.

This implies that z̄ ∈ Ω.

Thus, any limit point of the sequence {zk} is a solution of the problem. For any limit point

z∗ of {zk}, the relation (3.25) indicates that the quantity ‖zk−z∗‖2G(σ) decreases monotonically.

Combing these two facts, we know that the sequence {zk} can only have one limit point, that is,

zk converges monotonically with respect to G(σ)-norm to one of the solutions of the problem,

i.e., zk → z∗. This proves the statement. �

4. The Rate of Convergence

Under Assumption 3.1, L is a convex-concave function and (x̄, ȳ) ∈ Ω if and only if (x̄, ȳ)

satisfies
0 ∈ ∂f(x) + DxK(x, y),

0 ∈ ∂g(y)−DyK(x, y).
(4.1)
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This is a generalization for the optimality. We can also express the optimality as an equation

R(z) = R(x, y) = 0,

where

R(z) =

[
x−Pf

(
x−DxK(x, y)

)

y −Pg
(
y +DyK(x, y)

)
]
, (4.2)

and Pψ is the proximal mapping. Here, for a convex function ψ,Pψ is defined by

Pψ(w) = argmin
w′

{
ψ(w′) +

1

2
‖w′ − w‖2

}
.

Then we can express the set of saddle points of L as

Ω = R−1(0).

To develop the rate of convergence of Algorithm 3.1, we need the following metric subregularity

of R at (z∗, 0) which is also defined in [2, Definition 2.80].

Assumption 4.1. Suppose that R is locally metrically subregular at (z∗, 0), i.e., there exist

ε0 > 0 and κ0 > 0 such that

dist (z,R−1(0) = Ω) ≤ κ0‖R(z)‖, ∀z ∈ B(z∗, ε0). (4.3)

The metric subregularity of R at (z∗, 0) is instrumental for estimating the distance to the

optimal solution set of the minimax optimization problem. From [2, Theorem 2.81], the metric

subregularity of R at (z∗, 0) is equivalent to 0 ∈ int (rangeR). Hence, if the optimal solution

z∗ = (x∗, y∗) of the minimax problem (1.1) satisfies (x∗, y∗) ∈ intL, then the local metric

subregularity of R at (z∗, 0) holds.

Proposition 4.1. Let Assumption 3.2 be satisfied. Let {zk = (xk, yk)} and {zk+1/2 = (xk+1/2,

yk+1/2)} be generated by Algorithm 3.1. Then for k ≥ 0,

∥∥R(zk+1)
∥∥2 ≤

∥∥zk+1 − zk+
1

2

∥∥2
6η2

0
I+3(Σ̂+σ−1Θ)∗(Σ̂+σ−1Θ)

+
∥∥zk+ 1

2 − zk
∥∥2
3σ−2Θ∗Θ

. (4.4)

Proof. From the definition of zk+1 in (3.10) and the optimality condition, we obtain

0 ∈ σ−1S(xk+1 − xk) + DxK̂
(
xk+1, yk+

1

2 ; zk+
1

2

)
+ ∂f(xk+1),

0 ∈ σ−1T (yk+1 − yk)−DyK̂
(
xk+

1

2 , yk+1; zk+
1

2

)
+ ∂g(yk+1).

Then by the definition of K̂(z; zk+1/2), we know that

0 ∈ σ−1S(xk+1 − xk) + DxK
(
zk+

1

2

)
+ Σ̂f

(
xk+1 − xk+

1

2

)
+ ∂f(xk+1),

0 ∈ σ−1T (yk+1 − yk)−DyK
(
zk+

1

2

)
+ Σ̂g

(
yk+1 − yk+

1

2

)
+ ∂g(yk+1),

(4.5)

and

xk+1 = Pf

(
xk+1 −DxK

(
zk+

1

2

)
− Σ̂f

(
xk+1 − xk+

1

2

)
− σ−1S(xk+1 − xk)

)
,

yk+1 = Pg

(
yk+1 +DyK

(
zk+

1

2

)
− Σ̂g

(
yk+1 − yk+

1

2

)
− σ−1T (yk+1 − yk)

)
.
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From the nonexpansiveness of proximal mapping, we have

‖Pf (x) −Pf (x
′)‖ ≤ ‖x− x′‖, ‖Pg(y)−Pg(y

′)‖ ≤ ‖y − y′‖.

Therefore we obtain

‖R(zk+1)‖2

≤
∥∥DxK(xk+1, yk+1)−DxK

(
zk+

1

2

)
− Σ̂f

(
xk+1 − xk+

1

2

)
− σ−1S(xk+1 − xk)

∥∥2

+
∥∥−DyK(xk+1, yk+1) + DyK

(
zk+

1

2

)
− Σ̂g

(
yk+1 − yk+

1

2

)
− σ−1T (yk+1 − yk)

∥∥2

=
∥∥[DxK(zk+1)−DxK

(
zk+

1

2

)]
− (σ−1S + Σ̂f )

(
xk+1 − xk+

1

2

)
− σ−1S

(
xk+

1

2 − xk
)∥∥2

+
∥∥[DyK

(
zk+

1

2

)
−DyK(zk+1)

]
− (σ−1T + Σ̂g)

(
yk+1 − yk+

1

2

)
− σ−1T

(
yk+

1

2 − yk
)∥∥2

≤ 3η20
∥∥zk+1 − zk+

1

2

∥∥2 + 3
∥∥xk+1 − xk+

1

2

∥∥2
(σ−1S+Σ̂f )∗(σ−1S+Σ̂f )

+ 3
∥∥xk+ 1

2 − xk
∥∥2

σ−2S∗S

+ 3η20
∥∥zk+1−zk+ 1

2

∥∥2 + 3
∥∥yk+1−yk+ 1

2

∥∥2

(σ−1T +Σ̂g)∗(σ−1T +Σ̂g)
+ 3

∥∥yk+ 1

2 − yk
∥∥2
σ−2T ∗T

=
∥∥zk+1 − zk+

1

2

∥∥2
6η2

0
I+3(Σ̂+σ−1Θ)∗(Σ̂+σ−1Θ)

+
∥∥zk+ 1

2 − zk
∥∥2
3σ−2Θ∗Θ

,

which implies the truth of the statement. �

Now we define

distσΣ̂+Θ (z,Ω) = inf
z′∈Ω

{
‖z′ − z‖σΣ̂+Θ

}
.

With the help of Proposition 4.1, we can prove the linear rate of convergence under the locally

metrical subregularity of R at (z∗, 0).

Theorem 4.1. Let Assumptions 3.1-4.1 be satisfied at every point z∗ ∈ Ω. Let {zk = (xk, yk)}
and {zk+1/2 = (xk+1/2, yk+1/2)} be generated by Algorithm 3.1. Suppose that S and T satisfy

(3.8) or equivalently Θ � 0 and Θ+ σΣ̂ ≻ 0. Suppose also that σ,S and T satisfy

Θ ≻ η̂0σI. (4.6)

Then {zk = (xk, yk)} converges linearly with respect to some norm to an element of Ω.

Proof. From Theorem 3.1, {zk} converges to an element of Ω, say z. This indicates that

zk ∈ B(z, ε0) ⊂ B(Ω, ε0)

for any k > N , where N is a large integer.

Recall from the proof of Theorem 3.1 that G(σ), N(σ) and H(σ) are positively definite,

where

G(σ) = σΣ̂ + Θ, N(σ) = σΣ̂ + Θ− η̂0σI, H(σ) = Θ− η̂0σI.

Also recall from (3.25) that we have the following relation:

‖zk − z∗‖2G(σ) ≥ ‖zk+1 − z∗‖2G(σ) +
∥∥zk+1 − zk+

1

2

∥∥2
N(σ)

+
∥∥zk+ 1

2 − zk
∥∥2
H(σ)

. (4.7)

Since both N(σ) and H(σ) are positively definite, there must exist a positive number µ > 0

such that

6η20I + 3
(
Σ̂ + σ−1Θ

)∗(
Σ̂ + σ−1Θ

)
≺ µN(σ), 3σ−2Θ∗Θ ≺ µH(σ).
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Then for k > N , from Assumption 4.1, we have from Proposition 4.1 for any z∗ ∈ Ω that

distG(σ)(z
k+1,Ω)2

≤ λmax

(
G(σ)

)
dist(zk+1,Ω)2 ≤ κ20λmax

(
G(σ)

)
‖R(zk+1)‖2

≤ κ20λmax

(
G(σ)

)[∥∥zk+1 − zk+
1

2

∥∥2
6η2

0
I+3(Σ̂+σ−1Θ)∗(Σ̂+σ−1Θ)

+
∥∥zk+ 1

2 − zk
∥∥2

3σ−2Θ∗Θ

]

≤ κ20µλmax

(
G(σ)

)[∥∥zk+1 − zk+
1

2

∥∥2
N(σ)

+
∥∥zk+ 1

2 − zk
∥∥2
H(σ)

]

≤ κ20µλmax

(
G(σ)

)[
‖zk − z∗‖2G(σ) − ‖zk+1 − z∗‖2G(σ)

]
, (4.8)

where the last inequality comes from (4.7). Taking z∗ in (4.8) as

z∗ = argmin
{
‖z − zk‖G(σ) : z ∈ Ω

}
,

and noting that

distG(σ)(z
k+1,Ω)2 ≤ ‖zk+1 − z∗‖2G(σ),

we get from (4.8) that

distG(σ) (z
k+1,Ω)2 + κ20µλmax

(
G(σ)

)
‖zk+1 − z∗‖2G(σ) ≤ κ20µλmax

(
G(σ)

)
distG(σ)(z

k,Ω)2.

The above relation indicates that

distG(σ)(z
k+1,Ω) ≤ 1√

1 +
[
κ20µλmax

(
G(σ)

)]−1
distG(σ)(z

k,Ω).

This means that zk converges to an element of Ω with linear rate of convergence with respect

to G(σ)-norm. The proof is complete. �

5. Numerical Experiments

In this section, we present some preliminary numerical experiments to illustrate the perfor-

mance of Algorithm 3.1. All numerical experiments are implemented by MATLAB R2019a on

a laptop with Intel(R) Core(TM) i5-6200U 2.30 GHz and 8 GB memory. We discuss the appli-

cation of the majorized semi-proximal alternating coordinate method in four different forms of

minimax optimization problems. The advantages of SPP are shown for two cases when f and

g are smooth or nonsmooth.

5.1. Smooth saddle point problems

When f and g are smooth, the minimax optimization problem can be abbreviated as the

following form:

min
x∈ℜn

max
y∈ℜm

K(x, y). (5.1)

Many methods can solve saddle point problems, such as the proximal point (PP) method

(see [17]), the optimistic gradient descent ascent (OGDA) method and the extra-gradient (EG)

method (see [12]). We compare the proposed method, SPP, with these methods for the linear

regression problem. For solving problem (5.1), the updating formula of SPP can be simplified as

zk+
1

2 = −σ(σΣ̂ + Θ)−1D̃K(zk) + zk,

zk+1 = (σΣ̂ + Θ)−1
[
− D̃K

(
zk+

1

2

)
+ σΣ̂

(
zk+

1

2

)
+Θ(zk)

]
,

(5.2)
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where zk = (xk, yk) and Σ̂ and Θ are two linear operators defined in (3.3) and (3.9), respectively.

The operator D̃K(·) is expressed as

D̃K(z) =

(
DxK(x, y)

−DyK(x, y)

)

for any z = (x, y) ∈ ℜn ×ℜm.

The saddle point reformulation of the linear regression is of the form

min
x∈ℜn

max
y∈ℜm

1

m

[
−1

2
‖y‖2 − bT y + yTAx

]
+
λ

2
‖x‖2. (5.3)

We set n = m and the rows of the matrix A are generated by a Gaussian distribution N (0, In).

Let b = 0 and λ = 1/m. In PP, EG and OGDA, parameters and step sizes are selected for

best performance. In SPP, we set σ = 1. The linear operators are chosen as S = ‖A‖2In,
T = ‖A‖2Im, Σ̂f = 0.5mλIn and Σ̂g = 0.5mλIm.

In Fig. 5.1, we compare the performances of the four methods with respect to the number

of iterations when the dimension varies from n = 10, 100, 1000. The same initial point x0 is

chosen. Generally speaking, all the four methods converge linearly to the optimal solution,

and the proximal point (PP) method has the best performance. Our method, SPP, is the

second best, which converges faster than EG and OGDA. It can be observed that for the low-

dimensional strongly convex-strongly concave saddle point problem (5.3), the convergence rate

of EG is very close to SPP. When the dimension n increases, the performance of SPP becomes

much better then EG and OGDA.

It is reasonable to explain the best performance of PP because the proximal point method

is asymptotically superlinear and it has an explicit solution for every subproblem when solving

this simple problem.

(a) n=10 (b) n=100 (c) n=1000

Fig. 5.1. Compare SPP, PP, EG and OGDA in terms of number of iterations under different dimensions

for the linear regression. Step sizes of EG and OGDA are tuned for best performance.

5.2. Convex-concave minimax optimization problems with ∞-norm

In this part, we focus on the minimax optimization problem of the form

min
x∈X

max
y∈Y

µx‖x‖∞ +
λ

2
‖x‖2 + 1

m

[
−1

2
‖y‖2 − bT y + yTAx

]
− µy‖y‖∞, (5.4)

where X ∈ ℜn and Y ∈ ℜm are two convex sets and ‖ · ‖∞ represents the infinite norm of

a finite-dimensional vector space.

We can not use EG and OGDA to solve problem (5.4) as there is a nonsmooth term ∞-norm

in the minimax optimization problem (5.4). Hence, we compare our algorithm and GPDPS in [8]
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for the problem (5.4). GPDPS was proposed for solving the nonsmooth convex minimax prob-

lem, which combined the proximal point method with linearization techniques. Different from

GPDPS, our algorithm introduces a semi-proximal term during the computational iterations

and the convergence advantages of the semi-proximal term will be shown in the next numerical

experiments. As SPP and GPDPS can not provide the explicit solutions of the subproblems,

we use Matlab code fminunc to solve the subproblems.

Unconstrained convex minimax optimization problem. We set n = m, b = 0, λ = 1/m and

µx = µy = 1. In this case, the linear operator S = T = ‖A‖2In and Σ̂f = Σ̂g = 0.5mλIn. The

convergence of SPP is shown in Table 5.1, with respect to the number of iterations and CPU

time under different dimensions, different condition numbers of matrix A, and different values

of the parameter σ. It is easy to see that the convergence rate becomes significantly slower as

the dimension n increases. However, the condition number of matrix A has very little effect

on the convergence of SPP. On the other hand, within the same CPU time, the convergence of

SPP becomes faster as σ increases.

The comparison between our algorithm and GPDPS for unconstrained minimax problem

(5.4) is presented in Fig. 5.2. Same initial point (x0, y0) is chosen for them. Generally, GPDPS

performs slower than SPP within the same iterations under different dimensions, which further

illustrates that the semi-proximal terms used in SPP accelerates the convergence of iterations.

(a) n=50 (b) n=100 (b) n=100

Fig. 5.2. Compare SPP and GPDPS in terms of number of iterations under different dimensions

for (5.4).

Convex minimax optimization problem with convex constraints. We tested three cases as

follows:

Case 1. Linear equality constraints:

X = {x ∈ ℜn : Bxx = bex}, Y = {y ∈ ℜm : Byy = bey}.

Case 2. Linear inequality constraints:

X = {x ∈ ℜn :Mxx ≤ bix}, Y = {y ∈ ℜm :Myy ≤ biy}.

Case 3. Quadratic constraints:

X = {x ∈ ℜn : xTQxx+ cTx x+ bqx ≤ 0}, Y = {y ∈ ℜm : yTQyy + cTy y + bqy ≤ 0},

where Qx and Qy are positive semi-definite matrices.

We rewrite problem (5.4) as

min
x∈ℜn

max
y∈ℜm

δX(x) + µx‖x‖∞ +
λ

2
‖x‖2 + 1

m

[
−1

2
‖y‖2 − bT y + yTAx

]
− µy‖y‖∞ + δY (y). (5.5)
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Table 5.1: Numerical results of SPP for the minimax problem (5.4). n = m = dimx; κ – condition

number of A; σ – the parameter of SPP; ǫ – the relative error (i.e., ‖(xk; yk)‖2/‖(x
0; y0)‖2); T – number

of iterations; t – CPU time.

n κ σ
ǫ = 10−1 ǫ = 10−3 ǫ = 10−5 ǫ = 10−7 ǫ = 10−9

T t(s) T t(s) T t(s) T t(s) T t(sec)

10

10
1 4 1.43 7 2.01 7 2.01 8 2.15 8 2.15

0.1 30 3.19 60 6.13 62 6.53 62 6.53 63 6.85

50
1 4 2.44 7 3.47 8 3.80 8 3.80 9 4.11

0.1 32 5.84 63 12.56 65 13.11 65 13.11 66 13.41

2 ∗ 102
1 4 1.30 6 1.87 7 2.20 7 2.20 8 2.52

0.1 31 4.58 53 8.73 55 9.01 55 9.01 56 9.17

50

102
1 2 1.90 7 8.23 11 17.21 17 24.02 22 26.44

0.1 19 6.47 38 37.23 49 49.10 54 52.22 59 54.62

103
1 2 2.87 7 10.00 11 13.60 17 18.20 23 21.04

0.1 8 6.33 37 54.97 47 74.96 52 83.85 56 87.36

5 ∗ 103
1 2 3.88 7 11.28 12 21.17 18 26.79 25 33.18

0.1 8 5.82 37 48.94 47 70.12 52 79.52 57 83.12

102

102
1 4 2.40 58 133.88 99 304.28 107 331.25 114 346.78

0.1 55 17.98 648 921.93 871 1858.38 889 1933.12 895 1944.91

103
1 4 2.43 57 119.91 92 251.12 100 275.27 107 286.13

0.1 54 14.28 635 741.39 867 1514.54 886 1559.01 893 1570.01

104
1 4 3.80 58 120.22 97 250.40 110 282.20 115 290.32

0.1 56 15.28 651 744.71 870 1446.34 894 1499.63 900 1508.61

200

102
1 2 11.73 8 82.27 18 192.83 29 287.45 40 340.61

0.1 10 46.55 43 390.50 90 923.73 106 1050.30 113 1079.66

103
1 3 21.17 8 76.97 17 173.58 28 285.79 35 325.52

0.1 10 53.34 43 394.46 87 889.48 102 1026.98 109 1061.02

105
1 3 25.85 8 82.84 18 190.43 34 335.50 42 370.18

0.1 11 59.58 48 452.18 98 1015.31 113 1154.47 120 1181.84

For simplicity, let b = 0, λ = 1/m and µx = µy = 1. We consider the situation when n 6= m in

problem (5.5). The linear operators are selected as S = ‖A‖2In, T = ‖A‖2Im, Σ̂f = 0.5mλIn
and Σ̂g = 0.5mλIm and the parameter σ = 1.

The performance of SPP under three different constraints is shown in Table 5.2. We can

see from Table 5.2 that, under each of the three different constraints, SPP converges to the

optimal solution of the problem (5.5) within a few number of iterations. Furthermore, it can

be observed that as the dimensions n and m increase, the CPU time for implementing SPP

increases rapidly.

We next compare our algorithm and GPDPS under three different constraints. We choose

same initial point (x0, y0) for them in minimax problem (5.5). In Fig. 5.3, SPP decreases more

rapidly than GPDPS in general for all cases, which shows advantages of the semi-proximal

terms in SPP.
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Table 5.2: Numerical results of SPP for the minimax problem (5.5). n = dimx, m = dim y; ǫ – the

relative error (i.e., ‖(xk; yk)‖2/‖(x
0; y0)‖2); T – number of iterations; t – CPU time.

n, m Case
ǫ = 10−1 ǫ = 10−3 ǫ = 10−5 ǫ = 10−7 ǫ = 10−9

T t(sec) T t(sec) T t(sec) T t(sec) T t(sec)

n = 10

m = 10

Case 1. 3 2.01 8 4.85 9 5.34 9 5.34 10 5.65

Case 2. 3 2.44 11 5.92 14 6.81 16 7.18 17 7.30

Case 3. 3 2.55 11 6.34 13 7.07 15 7.57 17 7.80

n = 20

m = 50

Case 1. 2 4.63 4 8.16 5 9.27 6 11.86 7 12.55

Case 2. 3 3.63 7 7.43 13 14.44 17 18.80 21 22.49

Case 3. 3 4.50 8 10.97 11 15.65 14 20.07 20 22.84

n = 50

m = 20

Case 1. 3 3.59 5 4.78 5 4.78 7 7.10 8 8.25

Case 2. 3 5.15 8 11.47 12 19.30 18 26.97 23 32.37

Case 3. 3 5.40 9 11.36 13 19.83 21 30.18 25 34.00

n = 100

m = 100

Case 1. 3 10.79 8 28.80 15 52.63 23 74.78 30 84.57

Case 2. 3 9.59 8 28.35 14 53.23 23 75.96 31 86.40

Case 3. 3 13.98 8 32.73 14 59.54 23 81.24 29 91.86

n = 100

m = 300

Case 1. 2 19.09 7 100.39 15 252.69 26 385.63 32 424.86

Case 2. 2 18.41 8 124.50 17 281.16 28 439.69 34 493.03

Case 3. 2 16.31 8 113.01 13 200.53 23 333.90 30 383.02

n = 200

m = 200

Case 1. 3 26.75 8 101.04 18 240.70 31 387.49 38 428.70

Case 2. 3 24.78 8 90.06 20 245.65 33 398.40 41 439.93

Case 3. 3 21.69 8 83.61 17 190.40 28 305.33 34 339.87

n = 300

m = 100

Case 1. 2 21.59 8 124.71 16 260.36 24 370.11 29 399.34

Case 2. 2 18.24 7 101.87 14 227.72 24 384.40 31 431.59

Case 3. 2 18.68 8 115.78 15 239.84 32 492.24 40 551.52

(a) Linear equality constraints (b) Linear inequality constraints (c) Quadratic constraints

Fig. 5.3. Compare SPP and GPDPS in terms of number of iterations under different constraints for

(5.5).

6. Some Concluding Remarks

Nonsmooth convex-concave minimax optimization problems are an important class of op-

timization problems with many applications. However, there are few numerical algorithms for

solving this type of problems when the smooth parts in the objective function are not bilinear.

We developed a semi-proximal point method (SPP) for solving a nonsmooth convex-concave

minimax problem of the form (1.1). We demonstrated the global convergence of the algorithm
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SPP under mild assumptions without requiring strong convexity-concavity condition and the

linear rate of convergence under the locally metrical subregularity of the solution mapping.

Preliminary numerical results have been reported, which shows the efficiency of the proposed

SPP method.

There are many interesting problems worth consideration. In this paper, we only tested

SPP for two types of examples. How is the performance of SPP for other types of minimax

optimization problems? Presently we only considered convex-concave minimax problems of the

form (1.1); i.e., K(·, ·) is required to be smooth convex-concave. How to construct efficient

numerical algorithms for solving the nonsmooth minimax problem (1.1) when K(·, ·) is not

a smooth convex-concave function?
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