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Abstract. High-order spectral difference gas-kinetic schemes (SDGKS) are developed

for inviscid and viscous flows on unstructured quadrilateral meshes. Rather than the tra-

ditional Riemann solver, the spectral difference method is coupled with the gas-kinetic

solver, which provides a time-accurate flux function at the cell interface. With the time

derivative of the flux function, a two-stage fourth-order time-stepping method is adopted

to achieve high-order accuracy with fewer middle stages. The stability analysis for the

linear advection equation shows that fourth-order spatial and temporal discretization

SDGKS is stable under CFL condition. Quantitatively, the fourth-order SDGKS is around

8% more efficient than the traditional one with the Riemann solver and the strong sta-

bility preserving five-stage fourth-order Runge-Kutta method. Both steady and unsteady

tests obtained by SDGKS compare well with analytic solutions and reference results.
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1. Introduction

The high-order gas-kinetic schemes (GKS) under the finite volume framework have

been developed in the last decade [10]. The GKS flux is based on a time evolution solution

of the Bhatnagar-Gross-Krook (BGK) model [3]. Compared with traditional Riemann solver,

the highlights of GKS include these:

i) The gas distribution function at interfaces contains the evolution from the upwind

flux vector splitting to the central difference Lax-Wendroff type discretization.

ii) The inviscid and viscous fluxes are evaluated simultaneously.

iii) The GKS flux has multi-dimensional properties [34], where both normal and tangen-

tial derivatives of flow variables are involved in the time evolution of gas distribution

function.

iv) The time-accurate gas evolution updates the solution at the cell interface which can

be used in the construction of high-order compact schemes [38].

v) The multi-stage multi-derivative (MSMD) methods can be applied in GKS, and higher-

order time accuracy with few middle stages can be achieved.

vi) The multi-scale unified GKS (UGKS) is also developed for the whole flow regime

[13,14].

The family of high-order GKS [8], based on the same WENO reconstruction, has favor-

able performance in efficiency, accuracy, and robustness, in comparison with the traditional

high-order schemes with Riemann solver and Runge-Kutta (RK) time-stepping techniques.

Owing to the multi-dimensional property in GKS flux, it captures flow structures, such as

shear instabilities, much better than the schemes using the Riemann solver. Among those

high-order GKS, the two-stage fourth-order method (S2O4) [21] seems to be the optimal

choice and is efficient, accurate, and as robust as the second-order one. Besides, it has been

applied to multicomponent flow [19], the direct simulation of compressible homogeneous

turbulent flow [20], and hypersonic multi-temperature flow [4]. The high-order GKS has

been successfully extended to the discontinuous Galerkin (DG) [16, 25, 26] and the cor-

rection procedure via reconstruction (CPR) [36] as well. And it has been applied within

the finite difference framework on uniform grids [35]. In this paper, the high-order GKS

will be developed on the unstructured quadrilateral meshes under the spectral difference

framework for the first time.

The spectral difference (SD) method was firstly proposed in [15, 32] for simplex el-

ements and has been studied in the past decades. It combines the advantages of finite-

volume and finite-difference methods, such as geometric flexibility and high computa-

tional efficiency. The three-dimensional SD method has also been developed on hexahedral

meshes by Sun et al. [29] and was used to simulate turbulent channel flow in [11,23,24].

However, the original form of the SD method is known to have instability on triangular el-

ements, losing its popularity on simplex elements. Later, Balan et al. [1] proposed a stable
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high-order spectral method by using Raviart-Thomas spaces (SDRT) for flux interpolation

on triangular elements. The SDRT scheme has been studied in [5, 9, 12] for inviscid and

viscous flows on triangular, quadrilateral, and mixed elements, and the accuracy and sta-

bility have been validated. Compared with DG and spectral volume (SV) methods, the

formulation is simple since no test function or surface integral are involved.

Instead of the traditional Riemann solver and multi-stage RK method, the GKS solver

with S2O4 time-stepping will be developed under the SD framework. Apart from the high-

order values of the conservative variables at flux points, the derivatives are also needed in

the gas-kinetic solver. They can be obtained by naturally extending the first approach of

Bassi and Rebay (BR1) [2]. In this way, SDGKS can be easily implemented from the original

SD method. With the help of the S2O4 method, 60% of iteration stages are saved in com-

parison with the strong-stability-preserving five-stage fourth-order Runge-Kutta method

(sspRK5O4). The efficiency is high for the viscous flow computation by SDGKS under the

same in-house FORTRAN code. The stability of SDGKS, together with the traditional one,

will be carefully studied for the linear advection equation. And various numerical tests will

be investigated to verify the accuracy and efficiency of the schemes.

The paper is organized as follows. Section 2 presents the SDGKS method and Section 3

shows the linear stability analysis for the numerical schemes. Section 4 is the numerical

tests and Section 5 is the conclusion and the future work.

2. Spectral Difference Gas-Kinetic Schemes

2.1. SD spatial discretization

Consider the 2D conservation laws,

∂W

∂ t
+
∂ F

∂ x
+
∂G

∂ y
= 0, (2.1)

where W is the conservative variables, F and G are the fluxes. The physical domain is

discretized with quadrilateral elements. And the quadrilateral elements are transformed

into the standard square reference elements. The transformation between the physical

element and the square element (−1≤ ξ,η ≤ 1) for the n-th element is

X=

K∑

i=1

Si(ξ,η)Xi,n,

where K is the number of points used to define the physical element, Xi,n are the Cartesian

coordinates of those points, and Si(ξ,η) are shape functions. For elements with the K = 4

straight edges in Fig. 1, the mapping function is

X=
(1− ξ)(1−η)

4
X1,n +

(1+ ξ)(1−η)
4

X2,n

+
(1+ ξ)(1+η)

4
X3,n +

(1− ξ)(1+η)
4

X4,n.
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Figure 1: The Mapping from the physical domain (x , y) to the computational domain (ξ,η).

For elements on the curved boundaries, 8 points (four mid-edge and four corner points) can

be used to define a quadratic representation and 12 points for a third-order cubic represen-

tation. The governing equation (2.1) is then transformed into the computational domain

as

∂ eW
∂ t
+
∂ eF
∂ ξ
+
∂ eG
∂ η
= 0,

where eW= |J |W and �eF
eG

�
= |J |J−1

�
F

G

�
.

The Jacobian matrix for the transformation is defined as

J =

�
xξ xη
yξ yη

�
.

The metrics and the Jacobian matrix are computed for each element.

Two kinds of points are placed on the element: solution points and flux points. Gauss-

Legendre-quadrature-point locations and two end points−1,1 are used for the flux points in

order to avoid the weak instability caused by using Chebyshev-Gauss-Lobatto points when

computing nonlinear inviscid fluxes [31]. The stability analysis of SD in previous studies

shows the choice of flux point locations is good enough to maintain the stability and the

position of solution points has no impact on stability [9]. An example of the positions of

flux and solution points for the third-order SD is shown in Fig. 2.
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Figure 2: Distribution of flux and solution points for the third order SD scheme.

The conservative variables on the flux points are calculated from the solution points as

eW(ξ) =
N∑

i=1

gWi j Li(ξ) for ξ direction,

eW(η) =
N∑

j=1

gWi j L j(η) for η direction,

(2.2)

where Li(ξ), L j(η), i, j = 1,2,3, . . . , N are the Lagrange basis functions based on the solu-

tion points’ locations. N is the order of the SD scheme. And at the interface, the equilibrium

state W0 will be obtained in GKS in the next section. Then, the derivatives of conservative

variables on solution points are calculated as follows:

�
∂ eW
∂ ξ

�

i, j

=

N∑

r=0

eWr+1/2, j ·M ′r+1/2
(ξi) ,

�
∂ eW
∂ η

�

i, j

=

N∑

r=0

eWi,r+1/2 ·M ′r+1/2

�
η j

�
,

(2.3)

where eWr+1/2, j , eWi,r+1/2 are conservative variables on flux points for r 6= 0, N and equi-

librium states at interfaces for r = 0, N . M ′
r+1/2

is the derivative of the Lagrange basis

functions Mr+1/2(ξ), Mr+1/2(η) based on the flux points’ locations. Similar to Eq. (2.2),

the derivatives of conservative variables on flux points can be obtained. With the conser-

vative variables and their derivatives on flux points, the GKS flux on flux points can be

obtained, which will be presented later.



6 Q. Xie et al.

2.2. An example about the SD reconstruction

The third-order SD reconstruction of element i in one-dimension is given as an example.

The element i is transformed to the standard interval [−1,1] and the solution points and

flux points in this interval are placed at

s1 = −
p

3

2
, s2 = 0, s3 =

p
3

2
,

f1 = −1, f2 = −
p

3

3
, f3 =

p
3

3
, f4 = 1,

as shown in the Fig. 3.

Figure 3: The third-order SD reconstruction in one-dimension for standard element [−1, 1].

Then the Lagrangian basis functions for solution and flux points are,

L1(ξ) =
(ξ− s2)(ξ− s3)

(s1 − s2)(s1 − s3)
, M1(ξ) =

(ξ− f2)(ξ− f3)(ξ− f4)

( f1 − f2)( f1 − f3)( f1 − f4)
,

L2(ξ) =
(ξ− s1)(ξ− s3)

(s2 − s1)(s2 − s3)
, M2(ξ) =

(ξ− f1)(ξ− f3)(ξ− f4)

( f2 − f1)( f2 − f3)( f2 − f4)
,

L3(ξ) =
(ξ− s2)(ξ− s1)

(s3 − s2)(s3 − s1)
, M3(ξ) =

(ξ− f2)(ξ− f1)(ξ− f4)

( f3 − f2)( f3 − f1)( f3 − f4)
,

M4(ξ) =
(ξ− f2)(ξ− f3)(ξ− f1)

( f4 − f2)( f4 − f3)( f4 − f1)
.

The conservative variables on solution points, denoted as eWs
i
, i = 1,2,3, are known.

Then the conservative variables on flux points, denoted as eW f

i
, i = 1,2,3,4, can be approx-

imated as Eq. (2.2) by

eW f

1
= L1( f1) eWs

1 + L2( f1) eWs
2 + L3( f1) eWs

3 =

p
3+ 2

3
eWs

1 −
1

3
eWs

2 +
2−
p

3

3
eWs

3,

eW f

2
= L1( f2) eWs

1 + L2( f2) eWs
2 + L3( f2) eWs

3 =
5

9
eWs

1 +
5

9
eWs

2 −
1

9
eWs

3,
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eW f

3
= L1( f3) eWs

1 + L2( f3) eWs
2 + L3( f3) eWs

3 = −
1

9
eWs

1 +
5

9
eWs

2 +
5

9
eWs

3,

eW f

4
= L1( f4) eWs

1
+ L2( f4) eWs

2
+ L3( f4) eWs

3
=

2−
p

3

3
eWs

1
− 1

3
eWs

2
+

p
3+ 2

3
eWs

3
.

At the boundary i + 1/2, eW f

4(i) from the i-th element reconstruction is considered as

the left value, and eW f

1
(i + 1) from the (i + 1)-th element reconstruction is the right one.

Then
eW f (i + 1/2) = λ

�
eW f

4 (i),
eW f

1
(i + 1)
�

,

and similarly,

eW f (i − 1/2) = λ
�
eW f

4 (i − 1), eW f

1
(i)
�

,

where λ is the collision of left and right equilibrium states regarding GKS solver in the

next section. Here for the simplicity, eW f (i + 1/2), eW f (i − 1/2) are still denoted as eW f

4 , eW f

1

respectively for the i-th element. The derivatives at solution points, denoted as ( eWξ)
s
i
, can

be approximated as Eq. (2.3),

� eWξ

�s
1
= M ′1(s1) eW f

1
+M ′2(s1) eW f

2
+M ′3(s1) eW f

3
+M ′4(s1) eW f

4

= −23+ 12
p

3

16
eW f

1
+

27
p

3

16
eW f

2
− 3
p

3

16
eW f

3
+

23− 12
p

3

16
eW f

4 ,

� eWξ

�s
2
= M ′1(s2) eW f

1
+M ′2(s2) eW f

2
+M ′3(s2) eW f

3
+M ′4(s2) eW f

4

=
1

4
eW f

1
− 3
p

3

4
eW f

2
+

3
p

3

4
eW f

3
− 1

4
eW f

4 ,

� eWξ

�s
3
= M ′1(s3) eW f

1
+M ′2(s3) eW f

2
+M ′3(s3) eW f

3
+M ′4(s3) eW f

4

= −23− 12
p

3

16
eW f

1
+

3
p

3

16
eW f

2
− 27
p

3

16
eW f

3
+

23+ 12
p

3

16
eW f

4 .

2.3. Gas-kinetic solver

The two-dimensional BGK equation [3] is given as

ft + ufx + v f y =
g − f

τ
, (2.4)

where u = (u, v) is the particle velocity, f is the distribution function, g is the Maxwellian

distribution and τ is the collision time. The collision term satisfies the compatibility condi-

tion ∫
g − f

τ
ψdΞ = 0, (2.5)

where

ψ = (ψ1, . . . ,ψ4)
T =

�
1,u, v,

1

2

�
u2 + v2 + ζ2
��T

and ζ is the internal variables related to the internal degree of freedom.
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In the smooth region, the gas distribution function can be expanded as

f = g −τDu g +τDu (τDu) g −τDu [τDu (τDu) g] + · · · ,

where Du = ∂ /∂ t + u · ∇. With the zeroth-order truncation f = g, the Euler equations can

be obtained. For the first-order truncation

f = g −τ(ugx + v g y),

the Navier-Stokes equations can be obtained.

To update the flow variables, the flux is based on the integral solution of Eq. (2.4) [33]

f (xi , t,u,ζ) =
1

τ

∫ t

0

g
�
x′, t′,u,ζ
�

e−(t−t ′)/τd t′ + e−t/τ f0(−ut,u,ζ),

where xi = 0 is the location of the node point. Based on it, a second-order time-dependent

gas distribution function f (xi , t,u,ζ) can be obtained [33], viz.

f (xi , t,u,ζ) =
�
1− e−t/τn
�

g0 +
�
(t +τ)e−t/τn −τ

�
(a1u+ a2v)g0 +

�
t −τ+τe−t/τn
�

Ag0

+ e−t/τn gr

�
1− (τ+ t)(a1r u+ a2r v)−τAr

��
1−H(u)
�

+ e−t/τn gl

�
1− (τ+ t)(a1lu+ a2l v)−τAl

�
H(u). (2.6)

Through the spatial reconstruction of macroscopic flow variables in the SD method, the

conservative variables Wl and Wr on the left- and right-hand sides of a cell interface flux

point, and the corresponding equilibrium states gl and gr can be determined. And thus by

the compatibility condition (2.5), the conservative variables W0 and the equilibrium state

g0 at the cell interface can be obtained as follows:

∫
ψg0dΞ=W0 =

∫

u>0

ψgldΞ+

∫

u<0

ψgrdΞ. (2.7)

The spatial derivatives of the left and right states in both normal and tangential directions,

such as ail , air (i = 1,2), are determined by the normal and tangential derivatives of the

initial macroscopic flow variables [21]. The time derivatives Al , Ar can be obtained from

the requirement on the first-order Chapman-Enskog expansion such as

∫
gl(a1lu+ a2l v + Al)ψdΞ = 0,

∫
gr(a1ru+ a2r v + Ar)ψdΞ = 0.

With the determination of gas distribution function in Eq. (2.6), the fluxes in x - and y-

direction of macroscopic variables can be evaluated as

F =

∫
ufψdΞ, G =

∫
v fψdΞ. (2.8)
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Similarly, the spatial and temporal derivatives in the equilibrium state are obtained by

∫
a1ψg0dΞ=

∂W

∂ x
,

∫
a2ψg0dΞ =

∂W

∂ y
,

∫
(a1u+ a2v + A)ψg0dΞ= 0. (2.9)

In a well-resolved region with continuous flow distributions, i.e., at the flux points inside

a cell, the time-dependent gas distribution function in Eq. (2.6) is reduced to

f (x i, t,u, v,ζ) = g
�
1−τ(ā1u+ ā2v + Ā) + Āt

�
. (2.10)

For the Euler solution τ = 0, it is simplified as

f (x i, t,u, v,ξ) = g(1+ Āt). (2.11)

2.4. Two-stage fourth-order discretization

The high-order time stepping method is adopted for the above time evolution solution.

The two-stage fourth-order scheme [21] is used in SDGKS. For time-dependent equation,

d eWi j

dt
= −
�
∂ eF
∂ ξ

�

i, j

−
�
∂ eG
∂ η

�

i, j

:=L
� eWi j

�
,

where L is an operator for spatial discretization. It is computed at the solution point (i, j)

by using the derivatives of Lagrange operators M ′
r+1/2

in Eq. (2.3),

�
∂ eF
∂ ξ

�

i, j

=

N∑

r=0

eFr+1/2, j ·M ′r+1/2
(ξi),

�
∂ eG
∂ η

�

i, j

=

N∑

r=0

eGi,r+1/2 ·M ′r+1/2
(η j).

Then, a fourth-order temporal accurate solution for eW(t) at t = tn +∆t can be obtained

by

eW∗ = eWn +
1

2
∆tL
� eWn
�
+

1

8
∆t2 ∂

∂ t
L
� eWn
�

, (2.12)

eWn+1 = eWn +∆tL
� eWn
�
+

1

6
∆t2

�
∂

∂ t
L
� eWn
�
+ 2

∂

∂ t
L
� eW∗
��

, (2.13)

where L and (∂ /∂ t)L are related to the fluxes and the time derivatives of the fluxes

evaluated from the time-dependent gas distribution function f (t) at the flux points. The

details can be found in [21].
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2.5. Procedure of SDGKS

In this section, the procedure of SDGKS is summarized. The subscript f refers to the

flux points, subscript s refers to the solution points, and subscript c stands for cell index.

The superscripts l, r, 0 stand for the left, right, and center equilibrium states.

• Reconstruct Wf ,c from the conservative variables Ws,c using Eq. (2.2).

• Obtain the equilibrium state W 0
f ,c

on the element interfaces as Eq. (2.7). Meanwhile,

boundary conditions shall be applied.

• Evaluate ∇Ws,c from W 0
f ,c

on the element interfaces and Wf ,c inside the element by

Eq. (2.3), where

∇W =

�
Wx

Wy

�
and Wx =

∂W

∂ ξ
ξx +

∂W

∂ η
ηx ,

etc.

• Reconstruct∇Wf ,c from Eq. (2.2), get the derivatives of equilibrium states by Eq. (2.7)

and Eq. (2.9) on the element interfaces.

• Use W
l ,r,0

f ,c
and ∇W

l ,r,0

f ,c
to compute the gas distribution function in Eq. (2.6) and get

the fluxes in Eq. (2.8) on the element interfaces. Use Wf ,c and ∇Wf ,c inside the

element to compute the smooth flux by taking moments of Eq. (2.10) or Eq. (2.11).

• Update the conservative variables by two-stage fourth-order time stepping, i.e.

Eq. (2.12) and Eq. (2.13).

3. Linear Stability Analysis

Linear stability for the full discretization (space and time) is performed in the present

study. The second-order to fourth-order SDGKS using one stage second order (S1O2) and

two stages fourth order (S2O4) are studied. And the traditional spectral difference method

using Riemann solver, such as Rusanov solver, with the simple Euler forward and the fourth-

order strong stability preserving Runge-Kutta time stepping scheme is also presented as the

comparison.

Following the approach described in Van den Abeele et al. [31], we consider the 1D

advection equation
∂ u

∂ t
+ a
∂ u

∂ x
= 0, (3.1)

a > 0 in 1D uniform mesh. The generating pattern is trivial since it consists of one cell,

defined by its size ∆x . Discretizing (3.1) in space with the SD method on the mesh and in

time with the explicit one-step time marching strategy yields an expression of the following

form:

ui
n+1 = un

i +
a∆t

∆x
Ai



High-Order Spectral Difference Gas-Kinetic Schemes for Euler and Navier-Stokes Equations 11

for Riemann flux, and

ui
n+1 = un

i +
a∆t

∆x
Ai +

a2
∆t2

2∆x2
Bi

for GKS flux, where

Ai = −D
�
M−1ui−1 +M0ui +M+1ui+1

�
,

Bi = −D
�
M−1Ai−1 +M0Ai +M+1Ai+1

�
.

The Matrices M−1, M0 and M1 represent the extrapolation of the solution to the flux points,

and the matrix D is for the computation of the flux derivatives at the solution points. The

detailed computations of those matrices have been elaborated in [1,12,17]. ui is a column

vector containing the solution at all the solution points in the cell with index i.

3.1. Riemann flux with fourth-order SSP Runge-Kutta scheme

The Rusanov solver [27] is used at the cell interface

F =
1

2

��
F(UL) + F(UR)
�
·n−λmax(UR − UL)

�
,

where λmax is the absolute value of maximum characteristic speed. The flux is simplified

to the upwind flux in the linear advection equation,

F(t) = F(UL , t) = aUL.

With explicit RK time stepping methods, solution un+1 is obtained from un as

w(0) = un,

w(k) =

k−1∑

l=0

αklw
(l)+ νβklAw(l), k = 1,2, . . . , p,

un+1 =w(p),

where ν = (a∆t)/∆x is the Courant-Friedrichs-Lewy (CFL) number. For the SSP method
used in [9], p = 5 is the stage number, α and β are given by

α =




1

0.444370494067 0.555629505932

0.620101851385 0 0.379898148615

0.178079954108 0 0 0.821920045892

0.006833258840 0 0.517231672090 0.127598311333 0.348336757737


 ,

β =




0.391752227004

0 0.368410592630

0 0 0.251891774247

0 0 0 0.544974750212

0 0 0 0.084604163382 0.226007483194


 .
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And the amplification matrix can be obtained by

G(0) = I,

G(k) =

k−1∑

l=0

(αklI+ vβklA)G
(l), k = 1,2, . . . , p.

(3.2)

For the sspRK5O4, G(5) is the amplification matrix and its spectral radius should always be

smaller than one, i.e. |λ(v,θ)| ≤ 1. It is hard to get the analytic solution for high-order

schemes. Instead, we numerically compute the solution set

|λi,k| = |λ(vi,θk)|, 0< vi < 4, 0< θk < 2π.

And the contour line with |λi,k| = 1 is plotted. The minimum v on it is the CFL condition.

The stability regions of the Rusanov solver combined with simple Euler forward (RK1)

and the five-stage fourth-order SSP Runge-Kutta (sspRK5O4) are shown in Fig. 4. It is

obvious that, for the same order of spatial discretization, the CFL number is much larger

for sspRK5O4 than that for the RK1 scheme, indicating the time marching method plays an

important role in the stability.
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(a) Rusanov flux with RK1
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(b) Rusanov flux with sspRK5O4

Figure 4: The stability contours of different SD schemes with Rusanov flux for solving the scalar linear
advection equation.

3.2. GKS flux with S1O2, S2O4 and sspRK5O4

The equilibrium state U0 in the GKS solver is determined by

U0 = 〈UL〉u>0 + 〈UR〉u<0

=
�
1/2erfc(−
p
λc)
�
UL +
�
1/2erfc(
p
λc)
�
UR

≈ 0.84UL + 0.16UR,

where λ = 1/2, c = 1 for the scalar linear advection equation. And the smooth flux of

second-order time accuracy turns out to be

F(t) = F(U0, t) = aU0 − a2U0x t.
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The flux of first-order time accuracy is simplified as

F(t) = F(U0, t) = aU0.

As a result, the matrices M−1, M0 and M1 when using GKS flux are slightly different from

them when Riemann flux is used in (3.1).

The amplification matrix G(5) for first-order GKS flux and sspRK5O4 can be obtained

by the same formula in Eq. (3.2). The amplification matrix G(1) for S1O2 can be obtained,

G(1) = I+ νA+
1

2
ν2B.

The amplification matrix G(2) for S2O4 is

G(1) = I+
1

2
νA+

1

8
ν2B,

G(2) = I+ νA+
1

6
ν2B+

1

3
ν2BG(1).

The stability regions of different time stepping schemes when using GKS solver are illus-

trated in Fig. 5. It shows the SDGKS is linearly stable. The approximate CFL numbers
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Figure 5: The stability contours of SDGKS for solving the scalar linear advection equation.
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Table 1: The theoretical maximum CFL numbers of different schemes for linear advection equation.

Order Rusanov+sspRK5O4 GKS+sspRK5O4 GKS+S2O4

Second-order SD 0.92 0.96 0.82

Third-order SD 0.51 0.51 0.43

Fourth-order SD 0.32 0.31 0.26

of different schemes are shown in Table 1. Although the CFL number for GKS+S2O4 is

a bit smaller than the traditional one, it is more efficient with fewer stages. In addition, all

the numerical schemes become more stable when the time stepping accuracy is matched

with the spatial accuracy, and the CFL number is larger when more stages are used for

time-discretization.

4. Numerical Tests

In this section, the numerical tests will be presented to validate the high-order SDGKS.

The collision time in the inviscid GKS flux is defined as [33],

τn = C1∆t + C2

����
pl − pr

pl + pr

����∆t

with C1 = 0.05 and C2 = 1. For viscous flows, the collision time is related to the viscosity

coefficient,

τn =
µ

p
+ C2

����
pl − pr

pl + pr

����∆t,

where pl and pr denote the pressures on the left and right sides of the cell interface, µ is

the dynamic viscosity coefficient. In the smooth region, τ = µ/p. In the following tests, the

smooth flux equation (2.10) will be adopted on the flux points inside the cell and the full

flux equation (2.6) will be used at the cell boundaries unless it is specified. The S2O4 time

stepping method is used in high-order SDGKS simulations, and the S1O2 time stepping

method [8] is used for the second-order SDGKS. The specific heat ratio takes γ= 1.4. The

CFL number is set as 0.1∼ 0.6 for the present cases.

4.1. Accuracy test

The order of accuracy of SDGKS is tested by the 2D density perturbation. The initial

condition and analytic solutions are given as follows:

ρ(x , y) = 1+0.2 sin
�
π(x+y)
�
, U(x , y) = 1, V (x , y) = 1, p(x , y) = 1, x , y ∈ [0,2].

And the smooth flux is used at the element boundaries. The errors and convergence orders

are shown in Table 2. The designed order of accuracy is achieved. The results of traditional

SDRus schemes are presented in Table 3 as reference. From the tables, it is clear that SDGKS

usually has smaller errors compared with SDRus in the simulations.
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Table 2: Error and convergence order for 2D sin-wave propagation for SDGKS with S2O4.

Mesh L1 error Order L2 error Order L∞ error Order

Second-order SD

102 2.34e-2 - 2.59e-2 - 3.87e-2 -

202 6.68e-3 1.84 7.50e-3 1.82 1.24e-2 1.81

402 1.71e-3 1.94 1.91e-3 1.95 2.91e-3 1.95

802 4.33e-4 1.98 4.83e-4 1.98 7.52e-4 1.95

1602 1.09e-4 1.99 1.21e-4 1.99 1.88e-4 2.00

Third-order SD

102 3.92e-4 - 4.73e-4 - 1.28e-3 -

202 4.54e-5 2.99 5.92e-5 2.99 1.77e-4 2.86

402 5.70e-6 2.99 7.57e-6 2.97 2.28e-5 2.95

802 7.18e-7 2.99 9.65e-7 2.97 2.93e-6 2.96

1602 9.06e-8 2.98 1.22e-7 2.98 3.71e-7 2.98

Fourth-order SD

102 1.97e-5 - 2.66e-5 - 8.63e-5 -

202 1.30e-6 3.92 1.74e-6 3.93 5.79e-6 3.90

402 8.32e-8 3.97 1.12e-7 3.96 3.73e-7 3.96

802 5.26e-9 3.98 7.14e-9 3.98 2.38e-8 3.97

1602 3.30e-10 3.99 4.49e-10 3.99 1.51e-9 3.98

Table 3: Error and convergence order for 2D sin-wave propagation for SDRus with sspRK5O4.

Mesh L1 error Order L2 error Order L∞ error Order

Second-order SD

102 2.62e-2 - 2.99e-2 - 4.17e-2 -

202 6.65e-3 1.97 7.36e-3 2.02 1.06e-2 1.96

402 1.61e-3 2.03 1.79e-3 2.03 2.59e-3 2.03

802 3.74e-4 2.11 4.15e-4 2.11 5.96e-4 2.12

1602 6.38e-5 2.55 7.08e-5 2.55 1.02e-4 2.54

Third-order SD

102 5.14e-4 - 6.83e-4 - 1.68e-3 -

202 8.14e-5 2.66 1.08e-4 2.65 2.79e-4 2.59

402 1.11e-5 2.87 1.49e-5 2.86 3.88e-5 2.84

802 1.42e-6 2.95 1.92e-6 2.95 5.02e-6 2.94

1602 1.80e-7 2.98 2.43e-7 2.98 6.35e-7 2.98

Fourth-order SD

102 2.90e-5 - 3.33e-5 - 7.85e-5 -

202 1.72e-6 4.07 1.96e-6 4.08 4.79e-6 4.03

402 1.06e-7 4.02 1.21e-7 4.02 2.96e-7 4.01

802 6.52e-9 4.02 7.48e-9 4.02 1.88e-8 3.97

1602 4.56e-10 3.83 5.58e-10 3.74 1.55e-9 3.60
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4.2. Double shear flow

The double shear flow is a canonical test problem for a scheme’s accuracy and resolution

in incompressible flows. A comparison has been done by Minion et al. [18] for the solution

under different resolution. The initial flow is set as

U(x , y) =

¨
tanh
�
k(y − 0.25)
�
, y ≤ 0.5,

tanh
�
k(0.75− y)
�
, y > 0.5,

V (x , y) = δ sin(2πx),

ρ(x , y) = p(x , y) = 1,

where k = 100 and δ = 0.05. The kinetic viscosity is ν= 5.0 ·10−5. The periodic boundary

condition is adopted in both x and y directions. The vorticity contours of high-order SDGKS

and Rusanov are shown in Fig. 6. The resolution of high-order SDGKS is slightly better than

that from high-order Rusanov flux with sspRK5O4.

Figure 6: Double shear flow vorticity contours using SD4 at t = 1.2. Left: Rusanov flux + RK5; Right:
GKS + S2O4.

4.3. Laminar boundary layer

A low-speed laminar boundary layer with incoming Mach number Ma = 0.15 is simu-

lated over a flat plate with Reynolds number Re = U∞L/µ = 105, where L = 100 is the

characteristic length. The computational domain is shown in Fig. 7, where the flat plate

is placed at x > 0 and y = 0. Total 120 ∗ 35 mesh points are used in the domain with a

refined cell size h= 0.05 close to the boundary. There are 40 mesh points in the front of the

plate. The adiabatic non-slip boundary condition is imposed on the plate and the symmetric

slip boundary condition is set at the bottom boundary in the front of the plate. The non-

reflecting boundary condition based on the Riemann invariants is adopted for the other
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Figure 7: Non-uniform mesh in the computational domain for laminar boundary layer [−30, 100]∗[0, 80].

Figure 8: Laminar boundary layer: the non-dimensional velocities by SD3GKS compared with the Blasius
reference. Re = 105, Ma = 0.15.

boundaries, where the free stream is set as ρ∞ = 1, p∞ = 1/γ . The non-dimensional

velocity U and V are given in Fig. 8 at three selected locations x/L = 0.1, 0.2,0.3. The

numerical results match well with the analytical solutions.

4.4. Inviscid flow around NACA0012 airfoil

The exact formula defining the geometry of NACA0012 airfoil is

y = ±0.6×
�
0.29690x0.5− 0.12600x − 0.35160x2+ 0.28430x3− 0.10150x4

�
. (4.1)

The unstructured quadrilateral mesh is shown in Fig. 9(a) and there are in total 2856

elements in a circular computational domain with a radius of 20. The Mach number is 0.63

and the angle of attack θa = 2◦. The SD2GKS and SD4GKS are used in this case. Third-order
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(a) Mesh near the airfoil
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Figure 9: Inviscid flow past the NACA0012, Ma = 0.63, θa = 2◦, SD4GKS.

elements were used on the surface of the airfoil. The pressure coefficients on the surface

of the airfoil are plotted in Fig. 9(b). There are some oscillations in the numerical result

from second-order SD2GKS due to the low order reconstruction, while the solution from

high-order SD4GKS agrees well with the reference [9]. The results indicate the necessary

to use high-order method on such a coarse mesh. The pressure and Mach number contours

are shown in Figs. 9(c)-9(d). The results show that the current method works well for this

case on the unstructured mesh.

4.5. Viscous flow around a cylinder

The viscous flow past a cylinder at Reynolds numbers of 40 and 100 have been studied.

The curvilinear mesh of 12480 cells in the circular domain with the radius of 100, is used in

this case, and the near wall size h ≈ 1/40. The nonreflecting boundary condition is applied

and the third-order elements were used on the surface of the cylinder.
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4.5.1. Reynolds number 40

The contours of velocities and pressure are shown in Fig. 10. The streamlines of velocity

around a cylinder are presented in Fig. 11. And the drag coefficient along with the com-

putational time for SD3GKS is shown in Fig. 12. In Table 4, the drag coefficient Cd, wake

length Lw, vortex height Hv, vortex width Wv, and separation angle θs obtained by SDGKS

are compared with those by experiments and other methods. The results agree well with

the reference data.

Table 4: The result comparison for steady flow passing through a circular cylinder.

Cd Lw Hv Wv θs

Experiment [30] 1.46-1.56 - - - -

Experiment [6] - 2.12 0.297 0.751 53.5◦

DDG [37] 1.529 2.31 - - -

p-multigrid CGKS [7] 1.525 2.22 0.296 0.714 53.5◦

Current SD3GKS 1.524 2.26 0.296 0.717 53.6◦

(a) Density (b) U

(c) V (d) Pressure

Figure 10: Viscous flow past the cylinder, Re = 40, Ma = 0.15, by SD3GKS.
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Figure 11: Velocity streamlines around a cylinder at Re = 40 by SD3GKS.

Figure 12: Drag coefficient against time at Re = 40 by SD3GKS.

4.5.2. Reynolds number 100

The flow past a cylinder with Reynolds number 100 is also investigated by SD2GKS and

SD3GKS. Figs. 13 and 14 show the vorticity behind the cylinder. The high-order scheme

presents higher resolution solution than that from second-order scheme on the same coarse

mesh. And the lift coefficient against computational time is presented in Fig. 15. Root-

mean-square (RMS) values are used to present the fluctuating lift coefficient, ClRMS =Ç∑N
i=1(Cli − Clmean)

2/N , where Cli is the value at an instant and Clmean is the mean

value from N points. All those numbers are in a single vortex shedding cycle. The RMS

lift coefficient, the pressure, and viscous lift coefficient ClRMS , ClRMS(p), ClRMS(v), and the

Strouhal number obtained by the current study and reference results are shown in Table 5.

The results of the current study match with those of other references in which finer meshes

are used in the simulation. For example, there are in total 14441 cells in the study of

Sharman et al [28]. It shows that the current method is quite accurate and efficient.
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Figure 13: Vorticity contour around a cylinder at Re = 100 by SD2GKS.

Figure 14: Vorticity contour around a cylinder at Re = 100 by SD3GKS.

Figure 15: The lift coefficient against time at Re = 100 by SD3GKS.
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Table 5: The RMS lift coefficient in comparison with the benchmark solutions for flow over a cylinder
at Re = 100.

Park et al. [22] Sharman et al. [28] Li et al. [9] Current work

Strouhal number 0.165 0.164 0.166 0.166

ClRMS 0.23 0.23 0.23 0.23

ClRMS(v) 0.03 0.03 0.03 0.03

ClRMS(p) 0.21 0.20 0.20 0.20

4.6. CPU time comparison

SDGKS can use almost the same CFL number as the spectral difference scheme of Ru-

sanov flux and sspRK5O4 (SDRus) time stepping method. They have the similar values for

time step ∆t in simulation. In order to find out the efficiency from the current scheme,

two comparisons regarding the CPU time have been investigated. The initial and boundary

conditions are set as the accuracy tests of fourth-order SD in Section 4.1 for both inviscid

and viscous tests. And the smooth flux is used at the element boundaries for GKS solver.

For the viscous one, the same code is used by setting the coefficient ν = 0.

In the first comparison, the CPU time (s) is recorded for every 1000 steps by using two

schemes on the 2D mesh with 102 cells. The results are shown in Table 6. It shows that the

SDRus costs just half time for inviscid cases compared with SDGKS, since it is a flux solver

of first-order time accuracy and the reconstruction of derivatives is omitted. However, for

viscous cases, SDGKS-S2O4 saves 8% of CPU time every 1000 steps.

Secondly, the overall efficiency in the sin-wave propagation is tested. The fourth-

order schemes in both space and time are used for SDGKS and SDRus. The CPU time (s)

and the errors of the numerical solutions compared with the analytical solution on mesh

102, 202, 402, 802 are recorded as well. The results are shown in Fig. 16. It is clear that

SDGKS is more efficient than SDRus in viscous flows.
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Figure 16: The L1 errors against the CPU time (s) for two schemes.
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Table 6: The comparison of two schemes about the CPU time (s) of every 1000 steps.

SDRus SDGKS

inviscid 1.5508 3.4375

viscous 3.7305 3.4375

5. Conclusion and Future Work

In this paper, the high-order spectral difference gas-kinetic schemes (SDGKS) are suc-

cessfully developed on the unstructured quadrilateral meshes. Instead of the traditional

Riemann solver with Runge-Kutta time stepping, the two-stage fourth-order time stepping

method is adopted in SDGKS. The efficiency test shows that the SDGKS is more efficient

than the traditional SD method. The stability of SDGKS was analyzed for the linear advec-

tion equation. Besides, the performance of SDGKS was also evaluated with both inviscid

and viscous flows. The numerical solutions match well with the analytic reference solu-

tions. The future work will focus on extending the current method to triangular and mixed

elements.
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