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Abstract

The mixed-integer quadratically constrained quadratic fractional programming (MIQC-

QFP) problem often appears in various fields such as engineering practice, management

science and network communication. However, most of the solutions to such problems

are often designed for their unique circumstances. This paper puts forward a new global

optimization algorithm for solving the problem MIQCQFP. We first convert the MIQC-

QFP into an equivalent generalized bilinear fractional programming (EIGBFP) problem

with integer variables. Secondly, we linearly underestimate and linearly overestimate the

quadratic functions in the numerator and the denominator respectively, and then give

a linear fractional relaxation technique for EIGBFP on the basis of non-negative numera-

tor. After that, combining rectangular adjustment-segmentation technique and midpoint-

sampling strategy with the branch-and-bound procedure, an efficient algorithm for solving

MIQCQFP globally is proposed. Finally, a series of test problems are given to illustrate

the effectiveness, feasibility and other performance of this algorithm.

Mathematics subject classification: 90C57, 90C26.

Key words: Global optimization, Branch and bound, Quadratic fractional programming,

Mixed integer programming.

1. Introduction

Consider the following class of mixed integer quadratically constrained quadratic fractional

programming (MIQCQFP) problems:
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(MIQCQFP)


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min f(x) =
f0(x)

g(x)
,

s.t. fi(x) ≤ 0, i = 1, 2, . . . , N,

x ∈ X = {x ∈ R
n|Ax ≤ b},

xj ∈ Z, j ∈ NI ⊆ {1, 2, . . . , n},

where fi(x) = xTQix+ cTi x+ di, i = 0, 1, 2, . . . , N with

Qi ∈ R
n×n, i = 0, 1, 2, . . . , N,

ci ∈ R
n, i = 0, 1, 2, . . . , N,

di ∈ R, i = 0, 1, 2, . . . , N,

g(x) = xTHx+hTx+ q with H ∈ R
n×n, h ∈ R

n, q ∈ R and X is a nonempty bounded set with

A ∈ R
m×n, b ∈ R

m; T denotes the transpose of a vector (or matrix) (for example, cTi is the

transpose of a vector ci); there is no convex (or concave) assumption for all functions; note that

all forms of inequality constraints can contain all forms of constraints, because any equality

constraints can be replaced by two inequality constraints; Z denotes a set of all integers; NI is

an integer index set. There will always be g(x) > 0 or g(x) < 0 for the denominator g(x) in

the objective function according to its continuity and nonzero property. If g(x) < 0 for some

x ∈ X , we can make
f0(x)

g(x)
=

−f0(x)

−g(x)
.

Then the original problem keeps unaltered, and the denominator becomes positive. In addition,

if there is an x ∈ X such that the numerator f0(x) < 0, we can construct f0(x) +Mg(x) ≥ 0

with a sufficiently large positive number M , then

f0(x)

g(x)
=

f0(x) +Mg(x)

g(x)
−M,

obviously, these two problems

min
x∈X

f0(x)

g(x)
and min

x∈X

f0(x) +Mg(x)

g(x)

share the same solution. Therefore, throughout this paper, without loss of generality, we assume

f0(x) ≥ 0 for any x ∈ X .

Problem MIQCQFP and its special cases are ubiquitous in the real world. From a com-

putational point of view, the MIQCQFP may be difficult to solve because it has three kinds

of non-convexity, one is the possible integer variable, one is the non-convex quadratic term in

the objective function and/or constraint function, and the other is the fractional form of the

objective function. Numerous variants of this problem are also divided into several categories

according to the form of their objective functions or constraints. For example, when the con-

straints of MIQCQFP are only linear, Bomze and Amaral [3] pointed out that such problems

arise from many application problems, such as optimizing communication or social networks,

or studying game theory problems caused by genetics; they include several APX-hard sub-

classes: the maximum cut problem, k-densest subgraph problem and several variants thereof,

or ternary fractional quadratic optimization problem (TFQP); also, they add rich evidence of
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common positive optimization methods and reveal possible new approximation strategies com-

bining continuous optimization and discrete optimization techniques in the field of (fractional)

polynomial optimization. Generally speaking, the MIQCQFP can be transformed into a typical

quadratically constrained quadratic programming (QCQP) problem in the case of g(x) = 1 and

without requiring partial variables to be integers, which often occurs in many applications, such

as the Celis-Dennis-Tapia problem [5], box constrained quadratic programming problem [10],

generalized trust-region problem [17], standard quadratic programming problem [4], are sub-

classes of MIQCQFP problems. The problem QCQP is NP-Hard in general, it usually has mul-

tiple local optimal solutions, and finding its local optimal solutions is also NP-Hard [29], and

only a few special subclass problems with QCQP can be determined as polynomial solvable [21].

Additionally, both the sum-of-linear fractions programming (SLFP) problem [19,22,23,35] and

the min-max (max-min) linear fractional programming(MLFP) problem [18,30,47] can be con-

verted into variations of QCQP respectively. Of course, we should also point out that a class of

generalized linear multiplicative programming (LMP) problems can also be rewritten as QCQP

problems (for details, see [34, 36]). Furthermore, if some (or all) of the variables of the QCQP

are required to be integers, the mixed integer quadratically constrained quadratic programming

(MIQCQP) problem can be formed, which also belongs to a subclass of MIQCQFP. Also, the

QCQP is a subclass of MIQCQP. For solving the problem MIQCQP, Zhao and Liu [46] and Gao

and Wei [11] proposed a series of branch-and-bound algorithms, all of which adopted equivalent

transformation to construct the relaxation programming subproblem to obtain the optimal so-

lution. Pai and Alberto [7] developed an approximate algorithm, which can find ǫ-approximate

solutions to the MIQCQP problem with concave quadratic objective function, and the running

time of this algorithm is polynomial in the size of the problem and in 1/ǫ, as long as the number

of integer variables and negative eigenvalues of the objective function are fixed. More detailed

understanding of problem MIQCQP (or QCQP) and their solutions, we encourage readers to

refer to [14, 42]. When the elements of all the matrices in the problem MIQCQFP are zero

and the integer constraints are thrown away, MIQCQFP will be reduced to a simple linear

fractional programming (LFP) problem. Charnes and Cooper [6], Swarup [39] and Ozkok [27]

respectively gave different methods for solving LFP. In the case that some variables in LFP

must be integers, we call it the mixed integer linear fractional programming (MILFP) problem.

The global solution of problem MILFP may be computationally intractable due to the exis-

tence of discrete variables and pseudo-convex (non-convex) objective functions. Yue et al. [44]

combined the Glover linearization scheme [13] with the Charnes-Cooper transformation, and

thus proposed a new and effective reconstruction computation-linearization method. Seeren-

gasamy and Jeyaraman [33] proposed a simple optimization method to solve the MILFP by

using θ-matrix. If all integer constraints in MIQCQFP are removed, the problem is called

quadratically constrained quadratic fractional programming (QCQFP) problem. The main dif-

ficulty in solving the problem QCQFP is its non-convexity [45]. At present, QCQFP has been

investigated and solved by many scholars mainly because of its widespread application, in-

cluding signal processing, communication, financial analysis, position theory, portfolio selection

and random decision [24, 26, 41]. Such problems are usually difficult to deal with, but several

methods based on semi-definite programming relaxation (SDPR) [1, 9, 25] have been success-

fully used to address some special variants of QCQFP. Moreover, to solve the QCQFP problem

with linear constraints, Sivri et al. [37] proposed a method based on Taylor series, which can

transform the quadratic fractional programming problem, involving factorization or non-factor

in the objective function, into a linear programming problem. For a quadratic fractional pro-
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gramming problem with a single homogeneous quadratic constraint, Beck and Teboulle [1],

under a certain mild assumption on the problem’s data, determined an accurate SDPR for this

problem and designed a simple iterative process, which was proved to be able to obtain the

global solution of the problem with superlinear convergence. Besides, Fallahi and Salahi [9]

considered the quadratic fractional programming problem with two quadratic constraints, and

utilized the generalized Charnes-Cooper transformation to convert the problem into a homoge-

neous quadratic problem, and then, under certain assumptions, it is proved that this problem

can be solved globally by a SDPR method. Nguyen et al. [25] proposed a SDPR method

for a quadratic fractional programming problem with two-sided quadratic constraints. For

quadratic fractional programming problems with several homogeneous quadratic constraints,

Khurana and Arora [20] constructed the transformation matrix T through these homogeneous

constraints and transformed the given problem into another quadratic fractional programming

with fewer constraints, thus establishing the relationship between the original problem and the

transformed problem. Beck and Teboulle [2] also investigated the quadratic fractional program-

ming problem with a finite number of non-convex quadratic inequality constraints based on the

homogenization technique, and established a sufficient condition to guarantee the realization of

the optimal solution. Ibaraki et al. [15] presented two algorithms for solving the quadratic frac-

tional programming problem, one is the parameter programming technique based on quadratic

programming, the other is Dinkelbach-based method [8]. Suleimann and Nawkhass [38] im-

proved the simplex method by using the idea of Wolfe methods, which were utilized to solve

the problem QCQFP. Tantawy [40] studied the feasible direction method, which also solved

the QCQFP. Yamamoto and Konno [43] combined the integer programming method for solv-

ing non-convex quadratic programming problems in classical Dinkelbach-method with standard

nonlinear programming algorithms, and then proposed a new method that can solve a variant

problem (i.e., convex-convex quadratic fractional programming problem) of the QCQFP. To

solve a class of non-convex fractional minimization problems whose feasible region is the inter-

section of the unit sphere and a linear inequality constraint, Salahi and Fallahi [32] combined

Dinkelbach’s idea with diagonalization of matrix, which provided an effective parameterization

method for solving the original problem with generalized Newton iterative algorithm. In short,

under some technical conditions, the Dinkelbach iterative method can always be used to solve

QCQFP, which has led to the development of quadratic fractional programming problems for

nearly half a century. In many practical situations, people are only interested in integer so-

lutions of QCQFP, and sometimes they need an optimal integer solution that satisfies integer

requirements in addition to the master constraint, which requires that all variables in MIQC-

QFP are integers, thus forming the so-called integer quadratic fractional programming problem.

Until now, only Jain et al. [16] had studied quadratic fractional programming problems with

linear constraints, and have given a sorting and scanning method that introduces various cut

sets in the intermediate steps; however, all integer solutions derived from the base-feasible solu-

tions in this way may not be optimal. It can be seen that most of the above literature can only

solve the subclass problems of MIQCQFP, or only give the related algorithm theories of some

subclass problems. As far as we know, although some significant progress has been achieved

in the theoretical development of solving continuous quadratic fractional programming in ad-

dition to the above introduction, there is little work on directly solving the broader problem

MIQCQFP globally.

In this paper, we develop a new branch-and-bound algorithm to solve the problem MIQC-

QFP globally. Firstly, we reconstruct MIQCQFP as the EIGBFP problem. Secondly, in order
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to obtain the lower bound of EIGBFP, a unique linear fractional relaxation method is proposed,

and a linear fractional relaxation programming subproblem is established for EIGBFP. Thirdly,

we add the boundary adjustment strategy and feasibility-based detection method to the tra-

ditional branch-and-bound algorithm to better adapt to the implementation of the algorithm.

Fourthly, to demonstrate the effectiveness of our algorithm, we did not only solve a total of 18

examples in the existing literature for the four variants (SLFP, MLFP, LMP and MIQCQP) of

MIQCQFP, but also constructed and solved 14 additional test problems for MIQCQFP. Fifthly,

when solving a series of random LMP problems, the proposed new linear fractional relaxation

technique for computing lower bounds is more tighter than the linear relaxation technique of [36]

at some cases. Numerical results in Table 4.8 demonstrate that our algorithm may be more

efficient than that of [36] when solving LMP problems with p (the number of linear products)

greater than or close to n (the number of variables). Besides, the proposed algorithm performs

better than software packages SCIP [12] and BARON [31] in solving LMP problems with certain

specific cases (see the last three sets of numerical results in Table 4.8). Finally, we have carried

out some small and medium-sized numerical experiments on a class of integer-quadratic frac-

tional programming problem 16 with several linear constraints and two quadratic constraints.

Experimental results in Table 4.9 illustrate that our algorithm can effectively address this prob-

lem within 700 dimensions in less than 1 hour, and has a higher computational efficiency than

SCIP and BARON when solving some specific medium-scale problems.

This paper is arranged as follows. In Section 2, the problem MIQCQFP is firstly reformu-

lated into its equivalent generalized bilinear fractional programming (EIGBFP) problem with

integer variables, and then a linear fractional relaxation technique for constructing a new re-

laxation subproblem is proposed. Furthermore, the linear fractional relaxation subproblem is

converted into a linear program, which results in the fact that the global optimal solution of

MIQCQP can be approximated by addressing a series of linear programming subproblems. In

Section 3, the boundary adjustment-segmentation rule of rectangles and the feasibility-based

detection method of solutions are given, and then the concrete steps of the branch-and-bound

algorithm are described in detail and its convergence is proved. Section 4 consists of a series

of numerical experiments and their corresponding numerical results analysis, which are used to

explain the performance of the proposed algorithm. Section 5 is the conclusion.

2. Reconstructed Problem and Its Linear Fractional Relaxation

Technique

In this section, we will reconstruct the MIQCQFP problem and give its linear fractional

relaxation technique.

2.1. Reconstructed problem

First, the vector Hj ∈ R
1×n, j = 1, 2, . . . , n, is denoted as the j-th row of the matrix H and

for each i = 0, 1, 2, . . . , N , let the j-th, j = 1, 2, . . . , n, row of the matrix Qi be Qij ∈ R
1×n.

Then, we have

xTHx = (x1, x2, · · · , xn)(H1x,H2x, · · · , Hnx)
T =

n
∑

j=1

xjHjx,
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xTQix = (x1, x2, · · · , xn)(Qi1x,Qi2x, · · · , Qinx)
T =

n
∑

j=1

xjQijx.

Thus,

fi(x) = xTQix+ cTi x+ di =

n
∑

j=1

xjQijx+ cTi x+ di,

g(x) = xTHx+ hTx+ q =

n
∑

j=1

xjHjx+ hTx+ q.

Then, MIQCQFP is further expressed as the following optimization problem:

(EIGBFP)



























min f(x) =

∑n

j=1 xjQ0jx+ cT0 x+ d0
∑n

j=1 xjHjx+ hTx+ q
,

s.t. fi(x) =
∑n

j=1 xjQijx+ cTi x+ di ≤ 0, i = 1, 2, . . . , N,

x ∈ X = {x ∈ R
n|Ax ≤ b}, xj ∈ Z, j ∈ NI ⊆ {1, 2, . . . , n}.

Obviously, problems EIGBFP and MIQCQFP are equivalent and have the same global

optimal solution and optimal value. Thus, in order to obtain the global optimal solution of

MIQCQFP, we will focus on the EIGBFP problem.

2.2. Linear fractional relaxation problem

To draw up a branch-and-bound algorithm that can solve the EIGBFP problem globally,

a linear fractional relaxation problem needs to be established, which provides an effective lower

bound for the optimal value of EIGBFP. For this reason, a two-stage relaxation technique will

be utilized here. The first stage is called continuous relaxation, that is, all integer constraints

in the EIGBFP problem are directly removed, while the specific operation of the second stage

is as follows.

First, we must solve the following linear programming problems:

x0
j = min

x∈X
xj , x0

j = max
x∈X

xj , j = 1, 2, . . . , n.

Then, the initial hyper-rectangle

D0 =
{

x ∈ R
n | x0

j ≤ xj ≤ x0
j , j = 1, 2, . . . , n

}

,

which contains the feasible domain of problem EIGBFP (MIQCQFP), is naturally established.

Suppose D = [x, x] denotes the initial rectangle D0 or a sub-rectangle of D0 improved by

the algorithm. For each i = 0, 1, 2, . . . , N, j = 1, 2, . . . , n, let zj = Hjx, yij = Qijx, then we

further do the following over D. Let

y
ij
=

n
∑

k=1

min{Qijkxk, Qijkxk}, yij =

n
∑

k=1

max{Qijkxk, Qijkxk}. (2.1)

Similarly, for each j = 1, 2, . . . , n, we also have

zj =
n
∑

k=1

min{Hjkxk, Hjkxk}, zj =
n
∑

k=1

max{Hjkxk, Hjkxk}. (2.2)
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Then, by using formulas (2.1) and (2.2), the following two hyper-rectangles:

Hy = [y, y] =
{

y ∈ R
n(N+1)

∣

∣ y
ij
≤ yij ≤ yij , i = 0, 1, 2, . . . , N, j = 1, 2, . . . , n

}

,

and

Hz = [z, z] =
{

z ∈ R
n | zj ≤ zj ≤ zj , j = 1, 2, . . . , n

}

are constructed respectively. Through the above definition of Hy and Hz, let

Ω = {(x, z) : x ≤ x ≤ x, z ≤ z ≤ z} = Ω1 × Ω2 × · · · × Ωn,

of which

Ωj =
{

(xj , zj) : xj ≤ xj ≤ xj, zj ≤ zj ≤ zj
}

, j = 1, 2, . . . , n.

Similarly, let

Θ = {(x, y) : x ≤ x ≤ x, y ≤ y ≤ y} =

n
∏

j=1

Θ0j ×
n
∏

j=1

Θ1j ×
n
∏

j=1

Θ2j × · · · ×
n
∏

j=1

ΘNj,

where

Θij =
{

(xj , yij) : xj ≤ xj ≤ xj , yij ≤ yij ≤ yij
}

, i = 0, 1, 2, . . . , N, j = 1, 2, . . . , n.

For any (xj , zj) ∈ Ωj with j = 1, 2, . . . , n, we have xj − xj ≥ 0, zj − zj ≤ 0. Let

wj = xj − xj , vj = zj − zj .

As a result of

wj − (xj − xj) ≤ 0, vj − (zj − zj) ≥ 0,

there are the following inequalities:

[

wj − (xj − xj)
][

vj − (zj − zj)
]

≤ 0, j = 1, 2, . . . , n.

Thus, we have

wjvj ≤ (zj − zj)wj + (xj − xj)vj − (zj − zj)(xj − xj) , ϑ̄1
j(wj , vj). (2.3)

Upon wj ≥ 0 and vj ≤ 0, it follows that

wjvj ≤ 0 , ϑ̄2
j(wj , vj). (2.4)

Substituting equations wj = xj − xj , vj = zj − zj into the left end of inequalities (2.3)-(2.4)

respectively, we have

xjzj ≤ ϑ̄1
j (wj , vj) + xjzj + zjxj − xjzj = xjzj + zjxj − zjxj , (2.5)

xjzj ≤ ϑ̄2
j (wj , vj) + xjzj + zjxj − xjzj = xjzj + zjxj − xjzj . (2.6)

To continue, we substitute zj = Hjx into both ends of (2.5)-(2.6) respectively, and obtain

xjHjx ≤ zjxj + xjHjx− zjxj , ϑ1
j(x), ∀ x ∈ D, (2.7)

xjHjx ≤ zjxj + xjHjx− xjzj , ϑ2
j(x), ∀ x ∈ D. (2.8)
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Based on inequalities (2.7) and (2.8), it easily deduced that

g(x) =

n
∑

j=1

xjHjx+ hTx+ q

≤
n
∑

j=1

min
{

ϑ1
j (x), ϑ

2
j (x)

}

+ hTx+ q

≤ min

{

n
∑

j=1

ϑ1
j(x),

n
∑

j=1

ϑ2
j(x)

}

+ hTx+ q

= min
{

(α1 + h)Tx+ δ1 + q, (α2 + h)Tx+ δ2 + q
}

, g(x), ∀x ∈ D, (2.9)

where

α1 =

n
∑

j=1

(

zjej + xjH
T
j

)

, δ1 = −
n
∑

j=1

zjxj ,

α2 =

n
∑

j=1

(

zjej + xjH
T
j

)

, δ2 = −
n
∑

j=1

zjxj .

(2.10)

In the above two formulas, the ej , j = 1, 2, . . . , n, represents a n-dimensional vector with the

j-th element 1 and the other elements 0 (the same below).

In addition, for any (xi, yij) ∈ Θij , we know xj−xj ≤ 0, yij−yij ≤ 0. Let sj = xj−xj , tij =

yij − yij . Upon inequalities sj − (xj − xj) ≥ 0 and tij − (y
ij
− yij) ≥ 0, it follows that

[

sj − (xj − xj)
][

tij − (y
ij
− yij)

]

≥ 0, i = 0, 1, 2, . . . , N, j = 1, 2, . . . , n.

Therefore, there will certainly be

sjtij ≥ (y
ij
− yij)sj + (xj − xj)tij − (xj − xj)(yij − yij) , θ̄1ij(sj , tij). (2.11)

Besides, we can derive

sjtij ≥ 0 , θ̄2ij(sj , tij) (2.12)

from inequalities sj ≤ 0, tij ≤ 0. Now, substituting sj = xj − xj , tij = yij − yij into the left

end of inequalities (2.11)-(2.12) respectively, we have

xjyij ≥ θ̄1ij(sj , tij) + yijxj + xjyij − xjyij = y
ij
xj + xjyij − xjyij , (2.13)

xjyij ≥ θ̄2ij(sj , tij) + yijxj + xjyij − xjyij = yijxj + xjyij − xjyij . (2.14)

Similarly, the equation yij = Qijx is substituted into the two ends of inequalities (2.13)-(2.14),

respectively, it easily follows that

xjQijx ≥ y
ij
xj + xjQijx− xjyij , θ1ij(x), ∀ x ∈ D, (2.15)

xjQijx ≥ yijxj + xjQijx− xjyij , θ2ij(x), ∀ x ∈ D. (2.16)

According to formulas (2.15)-(2.16), xjQijx ≥ max{θ1ij(x), θ
2
ij(x)}, ∀x ∈ D. Thus, for each

i = 0, 1, 2, . . . , N , for any x ∈ D, it is not too difficult to deduce that

n
∑

j=1

xjQijx ≥
n
∑

j=1

max
{

θ1ij(x), θ
2
ij(x)

}

≥ max

{

n
∑

j=1

θ1ij(x),

n
∑

j=1

θ2ij(x)

}

= max
{

(βi
1)

Tx+ ̺i1, (β
i
2)

Tx+ ̺i2
}

,



A New Global Optimization Algorithm for MIQCQFP Problem 9

where

βi
1 =

n
∑

j=1

y
ij
eTj + xjQ

T
ij , ̺i1 = −

n
∑

j=1

xjyij ,

βi
2 =

n
∑

j=1

yije
T
j + xjQ

T
ij , ̺i2 = −

n
∑

j=1

xjyij .

Then,

fi(x) =

n
∑

j=1

xjQijx+ cTi x+ di

≥ max
{

(βi
1)

Tx+ ̺i1, (β
i
2)

Tx+ ̺i2
}

+ cTi x+ di

= max
{

(βi
1 + ci)

Tx+ ̺i1 + di, (β
i
2 + ci)

Tx+ ̺i2 + di
}

, f
i
(x), ∀x ∈ D. (2.17)

Notice that, when i = 0, there may also be x ∈ X ∩D such that f
0
(x) < 0, so we employ the

hypothesis f0(x) ≥ 0, there will be

f0(x) ≥ max
{

f
0
(x), 0

}

, f l
0(x), ∀x ∈ D. (2.18)

Then, the above inequality (2.18) ensures that the underestimation of the numerator function is

not less than zero, which reduces some unnecessary search operations in the execution process

of the algorithm, and thus improves the computational efficiency. Therefore, it follows from

inequalities (2.9) and (2.18) that

f(x) =
f0(x)

g(x)
≥

f0(x)

g(x)
≥

f l
0(x)

g(x)
, f(x), ∀x ∈ X ∩D. (2.19)

Next, by inequalities (2.17) and (2.19), we will obtain a linear fractional relaxation programming

subproblem for EIGBFP(MIQCQFP) over D

(LFRPD)



































































min
s

v
,

s.t. (β0
1 + c0)

Tx+ ̺01 + d0 ≤ s,

(β0
2 + c0)

Tx+ ̺02 + d0 ≤ s,

(α1 + h)Tx+ δ1 + q ≥ v,

(α2 + h)Tx+ δ2 + q ≥ v,

(βi
1 + ci)

Tx+ ̺i1 + di ≤ 0, i = 1, 2, . . . , N,

(βi
2 + ci)

Tx+ ̺i2 + di ≤ 0, i = 1, 2, . . . , N,

s ≥ 0, v > 0, x ∈ X ∩D.

Theorem 2.1. The functions g(x), g(x), fi(x), i = 0, 1, 2, . . . , N , f
i
(x), i = 0, 1, 2, . . . , N , f(x)

and f(x) defined over a rectangle D ⊆ D0 satisfy the following conditions:

(i) for any x ∈ X ∩D, g(x) ≤ g(x), when ‖D‖ → 0, there will be |g(x)− g(x)| → 0;

(ii) for any x ∈ X ∩D, fi(x) ≥ f
i
(x), when ‖D‖ → 0, there will be |fi(x) − f

i
(x)| → 0;

(iii) for any x ∈ X ∩D, f(x) ≥ f(x), when ‖D‖ → 0, there will be |f(x)− f(x)| → 0.
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Proof.

(i) For any x ∈ X ∩ D, according to formulas (2.9) and (2.10), we can easily know that

g(x) ≤ g(x) and

∣

∣g(x)− g(x)
∣

∣ =

∣

∣

∣

∣

∣

n
∑

j=1

xjHjx−min
{

αT
1 x+ δ1, α

T
2 x+ δ2

}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

max

{

n
∑

j=1

xjHjx−
[

αT
1 x+ δ1

]

,

n
∑

j=1

xjHjx−
[

αT
2 x+ δ2

]

}
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

max

{

n
∑

j=1

xjzj −
[

αT
1 x+ δ1

]

,

n
∑

j=1

xjzj −
[

αT
2 x+ δ2

]

}
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

max

{

n
∑

j=1

(xj − xj)(zj − zj),

n
∑

j=1

(xj − xj)(zj − zj)

}∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

max

{

n
∑

j=1

|xj − xj ||zj − zj |,
n
∑

j=1

|xj − xj ||zj − zj |

}∣

∣

∣

∣

∣

=

n
∑

j=1

|xj − xj ||zj − zj |. (2.20)

Besides, by (2.2), we have

|zj − zj | =

∣

∣

∣

∣

∣

n
∑

k=1

max{Hjkxk, Hjkxk} −
n
∑

k=1

min{Hjkxk, Hjkxk}

∣

∣

∣

∣

∣

≤
n
∑

k=1

∣

∣max{Hjkxk, Hjkxk} −min{Hjkxk, Hjkxk}
∣

∣

=

n
∑

k=1

∣

∣

∣
max

{

Hjkxk −min{Hjkxk, Hjkxk}, Hjkxk −min{Hjkxk, Hjkxk}
}

∣

∣

∣

=

n
∑

k=1

∣

∣

∣
max

{

max{Hjkxk −Hjkxk, Hjkxk −Hjkxk},

max{Hjkxk −Hjkxk, Hjkxk −Hjkxk}
}

∣

∣

∣

=

n
∑

k=1

∣

∣

∣
max

{

max{0, Hjkxk −Hjkxk},max{Hjkxk −Hjkxk, 0}
}

∣

∣

∣

=
n
∑

k=1

∣

∣max{Hjk(xk − xk), Hjk(xk − xk), 0}
∣

∣

≤
n
∑

k=1

|Hjk||xk − xk|. (2.21)

Upon inequalities (2.20) and (2.21), it easily follows that

∣

∣g(x)− g(x)
∣

∣ ≤
n
∑

j=1

|xj − xj ||zj − zj | ≤
n
∑

j=1

|xj − xj |
n
∑

k=1

|Hjk||xk − xk|. (2.22)

Thus, |g(x)− g(x)| → 0 as ‖D‖ = ‖x− x‖ → 0.
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(ii) For any x ∈ X ∩D, for each i = 0, 1, 2, . . . , N , it follows from the formula (2.17) that

∣

∣fi(x) − f
i
(x)

∣

∣ =

∣

∣

∣

∣

∣

n
∑

j=1

xjQijx−max
{

(βi
1)

Tx+ ̺i1, (β
i
2)

Tx+ ̺i2

}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

min

{

n
∑

j=1

xjQijx−
[

(βi
1)

Tx+ ̺i1

]

,

n
∑

j=1

xjQijx−
[

(βi
2)

Tx+ ̺i2

]

}
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

min

{

n
∑

j=1

xjyij −
[

(βi
1)

Tx+ ̺i1

]

,

n
∑

j=1

xjyij −
[

(βi
2)

Tx+ ̺i2

]

}∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

min

{

n
∑

j=1

(xj − xj)(yij − y
ij
),

n
∑

j=1

(xj − xj)(yij − yij)

}∣

∣

∣

∣

∣

≤
n
∑

j=1

|xj − xj ||yij − y
ij
|. (2.23)

Further, we can also obtain

∣

∣yij − y
ij

∣

∣ =

∣

∣

∣

∣

∣

n
∑

k=1

max
{

Qijkxk, Qijkxk

}

−
n
∑

k=1

min
{

Qijkxk, Qijkxk

}

∣

∣

∣

∣

∣

≤
n
∑

k=1

|Qijk||xk − xk| (2.24)

by a derivation similar to formula (2.21). In view of (2.23)-(2.24), it follows that

∣

∣fi(x) − f
i
(x)

∣

∣ ≤
n
∑

j=1

|xj − xj ||yij − y
ij
| ≤

n
∑

j=1

|xj − xj |
n
∑

k=1

|Qijk||xk − xk|. (2.25)

Hence, when ‖D‖ → 0, |fi(x) − f
i
(x)| → 0.

(iii) First of all, according to the hypothetical condition g(x) > 0 for any x ∈ X , and then

0 < g(x) ≤ g(x), ∀x ∈ X ∩D.

From the formula (2.19), we have

f(x) ≥ f(x), ∀x ∈ X ∩D.

Next, let

△1 =

∣

∣

∣

∣

∣

f0(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

, △2 =

∣

∣

∣

∣

∣

f l(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

.

Then

∣

∣f(x)− f(x)
∣

∣ =

∣

∣

∣

∣

∣

f0(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f0(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f l(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

= △1 +△2. (2.26)
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On the basis of the continuity of functions g(x), g(x) and f
0
(x) over a bounded closed set X ,

we can see that the function |1/g(x)| is bounded, so there must be positive real numbers L1

and L2 such that
∣

∣

∣

∣

1

g(x)

∣

∣

∣

∣

≤ L1,

∣

∣

∣

∣

∣

f
0
(x)

g(x)g(x)

∣

∣

∣

∣

∣

≤ L2

for any x ∈ X , then

△1 =

∣

∣

∣

∣

∣

f0(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

g(x)

∣

∣

∣

∣

∣

∣f0(x)− f l(x)
∣

∣

≤ L1

∣

∣

∣
f0(x) −max

{

f
0
(x), 0

}

∣

∣

∣
= L1

∣

∣

∣
min

{

f0(x) − f
0
(x), f0(x)

}

∣

∣

∣

= L1 min
{

∣

∣f0(x)− f
0
(x)

∣

∣,
∣

∣f0(x)
∣

∣

}

. (2.27)

The last equation of formula (2.27) is established mainly because f0(x) ≥ f
0
(x), f0(x) ≥ 0 such

that

f0(x)− f
0
(x) =

∣

∣f0(x) − f
0
(x)

∣

∣ ≥ 0, f0(x) =
∣

∣f0(x)
∣

∣ ≥ 0.

Besides, we also have

△2 =

∣

∣

∣

∣

∣

f l(x)

g(x)
−

f l(x)

g(x)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

max{f
0
(x), 0}

g(x)g(x)

∣

∣

∣

∣

∣

∣

∣g(x)− g(x)
∣

∣

≤

∣

∣

∣

∣

max

{

f
0
(x)

g(x)g(x)
, 0

}∣

∣

∣

∣

∣

∣g(x)− g(x)
∣

∣ ≤ L2

∣

∣g(x) − g(x)
∣

∣. (2.28)

Then, it follows from formulas (2.22) and (2.25) that △1 → 0 and △2 → 0 as ‖D‖ → 0.

Therefore, by means of formulas (2.26)-(2.28), it can be concluded that |f(x) − f(x)| → 0 as

‖D‖ → 0. The proof is complete. �

From Theorem 2.1, we know that the optimal value of LFRPD is the lower bound of the

global optimal value of EIGBFP over D.

The problem LFRPD is still a nonlinear programming problem, but it is a quasi-convex

problem, so any KKT point is its global optimal solution. Moreover, the problem LFRPD is

also a LFP problem, which can be solved by the methods in [6,27,28,39]. However, we present

a method similar to that in [35] for solving problem LFRPD. Now, we let t = 1/v > 0, w = tx,

µ = ts, then the problem LFRPD can be reformulated into a linear program

(LPD)















































min µ,

s.t. (β0
1 + c0)

Tw + (̺01 + d0)t ≤ µ, (β0
2 + c0)

Tw + (̺02 + d0)t ≤ µ,

(α1 + h)Tw + (δ1 + q)t ≥ 1, (α2 + h)Tw + (δ2 + q)t ≥ 1,

(βi
1 + ci)

Tw + (̺i1 + di)t ≤ 0, i = 1, 2, . . . , N,

(βi
2 + ci)

Tw + (̺i2 + di)t ≤ 0, i = 1, 2, . . . , N,

t > 0, µ ≥ 0, Aw − bt ≤ 0, xt ≤ w ≤ xt.

The equivalence between problems LFRPD and LPD is explained by Theorem 2.2.

Theorem 2.2. If (x∗, s∗, v∗) is the global optimal solution of LFRPD if and only if (w∗, µ∗, t∗)

is the global optimal solution of LPD and

x∗ =
w∗

t∗
, v∗ =

1

t∗
, s∗ =

µ∗

t∗
.
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Proof. The argumentation method is similar to the [35, Theorem 1], which is not repeated

here. �

Based on Theorem 2.2, if the optimal solution (w∗, µ∗, t∗) of LPD is obtained, the optimal

solution

(x∗, s∗, v∗) =

(

w∗

t∗
,
µ∗

t∗
,
1

t∗

)

of LFRPD can also be obtained indirectly. Therefore, Theorem 2.2 indicates that we can address

the linear fractional program LFRPD by solving a linear program LPD instead.

Remark 2.1. Note that any convex combination of functions ϑ̄1
j(wj , vj) and ϑ̄2

j (wj , vj) on the

right of inequalities (2.3), (2.4) can still be used as the upper bound of wjvj, that is

wjvj ≤ λj ϑ̄
1
j(wj , vj) + (1− λj)ϑ̄

2
j (wj , vj), ∀λj ∈ [0, 1],

wjvj ≤ λj ϑ̄
2
j(wj , vj) + (1− λj)ϑ̄

1
j (wj , vj), ∀λj ∈ [0, 1].

Of course, any convex combination of functions θ̄1ij(sj , tij) and θ̄2ij(sj , tij) on the right of in-

equalities (2.11), (2.12) can still be utilized as the lower bound of sjtij, that is

sjtij ≥ ηij θ̄
1
ij(sj , tij) + (1− ηij)θ̄

2
ij(sj , tij), ∀ ηij ∈ [0, 1],

sjtij ≥ ηij θ̄
2
ij(sj , tij) + (1− ηij)θ̄

1
ij(sj , tij), ∀ ηij ∈ [0, 1].

As a result, it may be necessary to find a better convex combination to approximate wjvj and

sjtij, which can produce a fairly good approximation of the original problem to determine the

lower bound.

3. Branch and Bound Algorithm and Its Convergence

In this section, to better construct an algorithm to effectively solve the MIQCQFP problem,

it is necessary to give some basic operations that can be incorporated into the branch-and-bound

framework in advance, i.e., the boundary adjustment-segmentation rule of rectangles, feasibility-

based detection method of solutions and the bounding operation. Next, we will describe in the

specific details of these operations.

3.1. Branching operation and boundary adjustment

Selecting an effective branching strategy will bring great convenience to solve the problem

EIGBFP (MIQCQFP) in a large way. In this paper, we will combine the standard bisection

rule with an integer interval adjusting technique to divide each region of interest. The main

reason that this method can guarantee the global convergence of the algorithm is that it only

removes the part without the optimal solution and improves the efficiency of the algorithm to

the maximum extent.

Taking into account any subproblems defined on the rectangle

D =
n
∏

j=1

[

xj , xj

]

= [x, x] ⊆ D0,

the detailed process of dividing D into two sub-rectangles by the adjustment-segmentation

method of rectangles is as follows:
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(i) For each j = 1, 2, . . . , n, set

xj =

{

⌈xj⌉, j ∈ NI ,

xj , j /∈ NI ,
xj =

{

⌊xj⌋, j ∈ NI ,

xj , j /∈ NI .

Then, let

l = argmax
{

xj − xj | j = 1, 2, . . . , n
}

, x̃l =
xl + xl

2
.

(ii) If l ∈ NI , set

D′ =

l−1
∏

j=1

[

xj , xj

]

×
[

xl, ⌊x̃l⌋
]

×
n
∏

j=l+1

[

xj , xj

]

,

D′′ =
l−1
∏

j=1

[

xj , xj

]

×
[

⌈x̃l⌉, xl

]

×
n
∏

j=l+1

[xj , xj ].

Otherwise, set

D′ =

l−1
∏

j=1

[

xj, xj

]

×
[

xl, x̃l

]

×
n
∏

j=l+1

[

xj , xj

]

,

D′′ =

l−1
∏

j=1

[

xj , xj

]

×
[

x̃l, xl

]

×
n
∏

j=l+1

[

xj, xj

]

.

Thus, by taking advantage of the adjustment-segmentation rule of rectangles described above,

each rectangle D can be divided into two sub-rectangles D′ and D′′ respectively.

3.2. Feasibility detecting and bounding operation

For each sub-rectangle D generated after the above branching operation, the bounding

operation is mainly focused on the lower bound LB(D) and upper bound UB(D) of the optimal

value of EIGBFP problem. Assuming that the UB is the best upper bound known to date, the

bounding process can be run on the following ways. By solving the linear fractional relaxation

programming subproblem LFRPDki , i ∈ {1, 2}, over the region of all the sub-rectangles we are

still interested in the k-th iteration, then the minimum of these optimal values will provide the

lower bound for the optimal value of EIGBFP.

As for the upper bound determination method, a so-called feasibility-based detection method

is used here. Specifically, if the integer index set NI = ∅, then the optimal solution of the

linear fractional relaxation programming subproblem LFRPDki over any sub-rectangle-region

is xki, i ∈ {1, 2}; if there is an i ∈ {1, 2} such that xki is feasible for problem EIGBFP, then the

minimum of all the objective function values corresponding to all such feasible solutions xki,

i ∈ {1, 2}, for the problem EIGBFP can be denoted as UBk, then min{UB,UBk} will provide

a new upper bound for EIGBFP. Otherwise, if NI 6= ∅, for the optimal solution xki, i ∈ {1, 2},

over each sub-rectangle that we are still interested in, set xki
j = [xki

j ], j ∈ NI , i∈{1, 2}. Suppose

there is an i∈{1, 2} such that xki a feasible solution to the problem EIGBFP, then set

UBk = min
{

f(xki) | i ∈ {1, 2}
}

.

Moreover, for each i ∈ {1, 2}, set
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xki
mid =

[

xki + xki

2

]

,

if the existence of i ∈ {1, 2} makes xki
mid a feasible solution to EIGBFP, let

UBk = min
{

f(xki
mid)

∣

∣ i ∈ {1, 2}
}

,

otherwise set UBk = +∞. Then, min{UB,UBk, UBk} will provide a new upper bound for

EIGBFP.

3.3. Algorithm narrative

Based on the previous discussion, we summarize the steps of the branch-and-bound algo-

rithm as follows.

Algorithm 3.3: Branch-and-bound algorithm.

Step 1. Initialization.

Step 1.1. Select a convergence tolerance ǫ > 0. Set iteration counter k := 0, initial

upper bound UB = +∞. The set of initial rectangle is set to Ω0 = {D0}. Transform the

problem MIQCQFP into an equivalent form defined by EIGBFP.

Step 1.2. If the initial linear fractional relaxation problem LFRPD0 is infeasible, then

the original problem is unsolvable; otherwise, the optimal solution and value of problem

LFRPD0 are denoted as x0 and LB(D0), respectively. Set the initial lower bound to LB =

LB(D0) and explore the upper bound UB according to the feasibility-based detection rules

outlined in Section 3.2. If UB−LB ≤ ǫ, terminate the algorithm, UB is the optimal value

of EIGBFP, otherwise continue with Step 2.

Step 2. Rectangular adjustment-segmentation rule.

For each sub-rectangle D ⊆ Ωk, the rectangle D is divided into two new sub-rectangles D′

and D′′ according to the adjustment-segmentation rules described in Section 3.1. Remove

the D from Ωk and put the two new sub-rectangles into the remaining rectangular set,

continuing to denote the set of new sub-rectangles as Ωk.

Step 3. Bounding and pruning.

For each sub-rectangle D ⊆ Ωk, solving the linear fractional relaxation programming prob-

lem LFRPD; If LB(D) > UB−ǫ, remove the D from the Ωk; Otherwise, if possible, we can

update the lower and upper bounds according to the feasibility-based detection method

and bounding operation mentioned in Sections 3.1-3.2.

Step 4. Termination.

If UB − LB ≤ ǫ, the algorithm can be stopped, and UB is the global optimal value of

the problem EIGBFP(MIQCQFP). Otherwise, set the LB and UB to the latest lower

and upper bounds of the global optimal value of EIGBFP. Then set k := k + 1. Choose

a rectangle corresponding to the minimum optimal value of the relaxation programming

subproblem for the next partition object, and return to Step 2.
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3.4. Convergence of the algorithm

Theorem 3.1. If problem MIQCQFP is feasible, the algorithm terminates after a finite number

of iterations and returns a global optimal solution for MIQCQFP.

Proof. Suppose F denotes the feasible region of problemMIQCQFP, and if |NI | = n(|NI | de-

notes the number of elements inNI), then the feasible region F is obviously a finite set. Through

the rectangular adjustment-segmentation rule, each adjusted sub-rectangleD = [x, x] ⊆ D0 will

satisfy x = [x], x = [x]. Therefore, there will be a finite number of child nodes in the branch-

and-bound tree, that is, the algorithm has a finite number of iterations.

Otherwise, if |NI | 6= n, we assume that the algorithm has an infinite number of itera-

tions. Then, an infinite rectangle-sequence {Dk} is generated in the light of the rectangular

adjustment-segmentation rule. Since the bisection method is exhausted and the selected rect-

angles to be partitioned is improved, we will know that

lim
k→∞

xk = lim
k→∞

xk = x∗ ∈ F, lim
k→∞

UBk → f(x∗). (3.1)

Moreover, by the pruning and termination rules in Steps 3-4, we have

LB(Dk) ≤ UBk − ǫ. (3.2)

Nevertheless, from the method of determining the lower bound in Step 3 and the conclusion

(iii) of Theorem 2.1, we know that

LB(Dk) → f(x∗). (3.3)

Therefore, taking the limit on both sides of inequality (3.2), and using (3.1) and (3.3) at the

same time, we have

f(x∗) ≤ f(x∗)− ǫ. (3.4)

It can be observed that the establishment of inequality (3.4) is contradictory, so the algorithm

terminates after a finite number of iterations.

If the algorithm terminates at the k-th iteration, then there is a solution xk ∈ F such that

UBk = f(xk). (3.5)

According to the termination rule, we have

UBk − LBk ≤ ǫ. (3.6)

Moreover, from the feasibility-based detection strategy of solutions and the bounding operation

described in Section 3.2, we know that

LBk ≤ f(x∗). (3.7)

Suppose x∗ is a global optimal solution, then according to formulas (3.5)-(3.7), we can obtain

f(x∗)− ǫ ≤ f(xk)− ǫ ≤ LBk ≤ f(x∗),

that is, xk becomes a global optimal solution of problem MIQCQFP. The proof is complete. �
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4. Numerical Experiments

To verify the feasibility and effectiveness of the proposed algorithm, we will utilise this

algorithm to perform some numerical test experiments. In view of this, we have compiled and

executed the code for the algorithms in this paper and some other literature at Matlab (2017a).

In these algorithms, the linear programming subproblems required to be solved are carried out

by using the linprog solver of Matlab. Besides, all the QCQP subproblems needed to be solved in

Dinkelbach’s algorithm [8] are directly carried out by utilizing academic software package SCIP.

All experimental procedures were performed on a desktop computer with Intel(R)Core(TM)i5−

2320 3.00 GHz power processor, 4.00 GB memory, and Microsoft Win7 operating system. In

addition, the convergence accuracy adopted by all numerical experiments is 10−7.

By utilising the proposed algorithm, we first solve 18 existing test problems, which were given

in [18,23,34,46]. Among them, Examples 1-5 are SLFP problems, which correspond to Examples

1, 3-5, and 9 in [23], respectively; Examples 6-9 are MLFP problems, which are Examples

1, 2, 4 and 8 in [18], respectively; Examples 10-13 are LMP problems, which correspond to

Examples 1, 2, 6, and 10 in [34], respectively; Examples 14-18, of course, are MIQCQP problems,

which correspond to Examples 5-9 in [46], respectively. The numerical results for these 18 test

examples are listed in Tables 4.1-4.2.

Moreover, we have constructed 14 additional problems, namely Problems 1-14. The con-

straints adopted to construct these 14 problems are shown in Tables 4.3-4.4, and the properties

of the numerators and denominators and feasible regions in these 14 problems are also recorded

in Table 4.5. These test problems are indicated below, and their numerical results are also

recorded in Tables 4.6-4.7.

As in Tables 4.1 and 4.6-4.9, the symbol for the header line means: Solution: the optimal

solution; Optimum: the optimal value; Iter: the number of iterations; Time: the CPU running

time in seconds; BBA: the proposed algorithm; OSBBA: the algorithm in [36]; BRA: the

algorithm in [11]; Avg.iter: the average number of iterations of the correlation algorithm for

solving the 15 test problems; Avg.time: the average CPU running time(s) spent by the relevant

algorithm for 15 test problems; Avg.Val: the average optimal value obtained from 15 test

problems with relevant algorithm; “–”: the algorithm cannot solve the problem in 3600 seconds

for all cases.

Problem 1.










min
−x2

1 − x2
2 − 3x2

3 − 4x2
4 − 2x2

5 + 8x1 + 2x2 + 3x3 + x4 + 2x5 + 60000

7x2
1 + 6x2

2 + 12x1 + 8x2
3 + 4x2x3 + 6x2

4 + 2x3x4 + 7x2
5 + 11

,

s.t. x ∈ X1.

Problem 2.










min
x2
1 + x2

2 + x2
3 + x2

4 + x2
5

−x2
1 − 2x2

2 − 8x2
3 − 4x2x3 − 6x2

4 − 2x3x4 − 7x2
5 − 1

,

s.t. x ∈ X1.

Problem 3.










min
7x2

1 + 6x2
2 + 12x1 + 8x2

3 + 4x2x3 + 6x2
4 + 2x1x4 + 11

x2
1 + x2

2 + 3x2
3 + 4x2

4 − x1 − x2 − 3x3 − 2x4
,

s.t. x ∈ X3.



18 B. ZHANG et al.

Problem 4.










min
7x2

1 + 6x2
2 + 12x1 + 8x2

3 + 4x2x3 + 6x2
4 + 2x1x4 + 11

x2
1 + x2

2 + 3x2
3 + 4x2

4 − x1 − x2 − 3x3 − 2x4
,

s.t. x ∈ X3.

Problem 5.










min
−x2

1 − x2
2 − 3x2

3 + 8x1 + 2x2 + 3x3 + 60000

7x2
1 + 6x2

2 − 15.8x1 − 93.2x2 + 8x2
3 − 6x1x3 + 4x2x3 − 63x3 + 440

,

s.t. x ∈ X2.

Problem 6.










min
−5x2

1 − 4x2
2 − 4x2

3 − 6x2
4 − 4x2

5 − 2x1x3 + 2x1x4 + 6x3x4 − 2x3x5 − 4x4x5 − 11

−x2
1 − 2x2

2 − 8x2
3 − 4x2x3 − 6x2

4 − 2x3x4 − 7x2
5 − 1

,

s.t. x ∈ X7.

Problem 7.










min
−5x2

1 − 4x2
2 − 4x2

3 − 6x2
4 − 4x2

5 − 2x1x3 + 2x1x4 + 6x3x4 − 2x3x5 − 4x4x5 − 11

−x2
1 − 2x2

2 − 8x2
3 − 4x2x3 − 6x2

4 − 2x3x4 − 7x2
5 − 1

,

s.t. x ∈ X5.

Problem 8.










min
7x2

1 + 6x2
2 + 8x2

3 + 4x2x3 + 6x2
4 + 7x2

5 + 2x1x4 + 11

x2
1 + 2x2

2 + 3x2
3 + 4x2

4 + 5x2
5 − x1 − x2 − 2x3 − 3x4 − 4x5

,

s.t. x ∈ X5.

Problem 9.










min
5x2

1 + x2
2 + 2x2

3 + 10x2
4 + 5x2

5 + 2x1x3 − 2x1x4 − 2x2x4 + 2x3x5 + 6x4x5

−5x2
1 − 4x2

2 − 4x2
3 − 6x2

4 − 4x2
5 − 2x1x3 + 2x1x4 + 6x3x4 − 2x3x5 − 4x4x5

,

s.t. x ∈ X5.

Problem 10.










min
−x2

1 − x2
2 − 3x2

3 − 4x2
4 − 2x2

5 + 8x1 + 2x2 + 3x3 + x4 + 2x5

7x2
1 + 6x2

2 + 8x2
3 + 4x2x3 + 6x2

4 + 2x3x4 + 7x2
5 + 11

,

s.t. x ∈ X5.

Problem 11.










min
7x2

1 + 6x2
2 + 12x1 + 8x2

3 + 4x2x3 + 6x2
4 + 7x2

5 + 2x1x4 + 11

x2
1 + 2x2

2 + 3x2
3 + 4x2

4 + 5x2
5 − x1 − x2 − 2x3 − 3x4 − 4x5

,

s.t. x ∈ X4.

Problem 12.










min
5x2

1 + x2
2 + 7x2

3 + 5x2
4 + 7x2

5 + 2x1x2 + 4x1x5 + 2x2x5 − 4x3x4 + 15

−3x2
1 − 5x2

2 − 6x2
3 − 6x2

4 − 4x2
5 − 4x1x4 + 6x2x3 + 2x2x4 + 2x3x5 + 2x4x5 + 2552

,

s.t. x ∈ X6.
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Problem 13.










min
−x2

1 − x2
2 − 3x2

3 − 4x2
4 − 2x2

5 + 8x1 + 2x2 + 3x3 + x4 + 2x5

7x2
1 + 6x2

2 + 8x2
3 + 4x2x3 + 6x2

4 + 2x3x4 + 7x2
5 + 11

,

s.t. x ∈ X4.

Problem 14.










min
−x2

1 − x2
2 − 3x2

3 − 4x2
4 − 2x2

5 + 8x1 + 2x2 + 3x3 + x4 + 2x5

−x2
1 − 2x2

2 − 8x2
3 − 4x2x3 − 6x2

4 − 2x3x4 − 7x2
5 − 11

,

s.t. x ∈ X6.

Firstly, it must be pointed out that the algorithms in [11, 18, 19, 22, 23, 34, 36, 46, 47] are all

branch-and-bound algorithms, and the branching operations of the algorithms in [11,18,34,46]

occur in the n-dimensional space where the decision variables are located. Moreover, two well-

known global optimization solvers, SCIP and BARON, which are employed to solve mixed

integer (linear or nonlinear) programming problems, are also mainly integrated on the branch-

and-bound algorithm framework that performs branching operations in n-dimensional space.

Branching operations of the algorithms in [19, 22, 23, 36] take place in the p-dimensional space

where auxiliary variables exist. In contrast, the branching operation of the algorithm in [47]

only takes place in the 1-dimensional space where an auxiliary variable is located. Generally

speaking, n > p > 1, and it can be seen from Table 4.1 that when solving MLFP problems, the

algorithm in [47] performs much better than the algorithm in [18] and our algorithm, which

due to the implicit enumeration characteristics of the branch-and-bound algorithm. Secondly,

as is given in Tables 4.1-4.2, the numerical results show that our algorithm can find the optimal

solution of these 18 test examples within a finite iteration, and the optimal value is at least as

good as that in other literature. Thirdly, although the performance of our algorithm is not the

best, the computing time is not more than three seconds. This demonstrates that our algorithm

is robust and efficient. Fourthly, our algorithm can solve at least four other types of problems,

namely SLFP, MLFP, LMP and MIQCQP, which indicate that our algorithm has a wide range

of application.

For Problems 1-14, we solved them with our algorithm, Dinkelbach’s algorithm, SCIP and

BARON respectively. Numerical results in Tables 4.6-4.7 show that all optimal solutions and

values obtained by our algorithm are basically the same as those obtained by the other three

methods. In addition, Dinkelbach’s algorithm based on SCIP generally uses few iterations and

spends the most time in each iteration, but it takes the least time in total, except for Problems 3-

5. When NI = ∅, SCIP could not solve Problem 12 in 3600 seconds (in fact, it could not solve

the problem in 14 hours), and of course, when NI = {1, 2, 3, 4, 5}, SCIP was the least effective.

Except for Problems 2 and 12, SCIP takes less time to address the other 12 problems than our

algorithm. However, our algorithm solves Problems 2, 5, 8-12 with fewer iterations than SCIP.

For Problems 1-5 and 12, our algorithm takes less time than BARON. Also, our algorithm takes

less time than BARON to solve Problems 9, 10, 13 and 14 withNI = {1, 2, 3, 4, 5}. Nevertheless,

our algorithm has fewer iterations than BARON only when solving Problems 9, 12 and 14 with

NI = {1, 2, 3, 4, 5} and Problem 2 with NI = {1, 3, 5}. Although the computational results of

our algorithm are not the best, it is sufficient to demonstrate that the algorithm can effectively

solve these 14 problems with different attributes.

In any case, the numerical results of the above 32 test examples or problems are sufficient to

illustrate that our algorithm is feasible. To further test the proposed algorithm, we also employ

Problems 15 and 16 below for generating a series of random instances.
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Problem 15.






max
p
∑

i=1

(

cTi x+ c0i
)(

dT
i x+ d0i

)

,

s.t. Ax ≤ b, 0 ≤ xj ≤ 1, j = 1, 2, . . . , n,

where the elements of ci, di, ei, fi are pseudo-random numbers in [−1, 1], the real elements

of A,b are pseudo-randomly generated in the range [0, 1]. This problem is a kind of LMP

problems, which has been to run 15 times by five algorithms respectively, and the numerical

results are listed in Table 4.8.

Table 4.1: Comparison of results in Examples 1-9.

Type Example Ref. Solution Optimum Iter Time

SLFP 1 [23] (0.0000,0.2816) 1.6232 25498 257.7659

[22] (0.0000,0.2839) 1.6232 14126 140.6823

BARON (0.0000,0.2839) 1.6232 3 0.0637

SCIP (0.0000,0.2838) 1.6232 39 0.2208

ours (0.0000,0.2813) 1.6232 16 0.1673

2 [23] (5.0000,0.0000,0.0000) 2.8619 18239 192.2375

[22] (5.0000,0.0000,0.0000) 2.8619 132 1.7129

[19] (5.0000,0.0000,0.0000) 2.8619 24509 789.8082

BARON (5.0000,0.0000,0.0000) 2.8619 5 0.0646

SCIP (5.0000,0.0000,0.0000) 2.8619 25 0.1138

ours (5.0000,0.0000,0.0000) 2.8619 128 1.5806

3 [23] (1.1111,0.0000,0.0000) -4.0907 131 1.2846

[22] (1.1111,0.0000,0.0000) -4.0907 94 1.1804

[19] (1.1111,0.0000,0.0000) -4.0907 2992 91.2958

BARON (1.1111,0.0000,0.0000) -4.0907 1 0.0482

SCIP (1.1111,0.0000,0.0000) -4.0907 7 0.0347

ours (1.1111,0.0000,0.0000) -4.0907 18 0.2169

4 [23] (0.0000,1.6667,0.0000) 3.7109 138 1.2973

[22] (0.0000,1.6667,0.0000) 3.7109 63 0.7951

[19] (0.0000,1.6667,0.0000) 3.7109 1708 51.8738

BARON (0.0000,1.6667,0.0000) 3.7109 1 0.0461

SCIP (0.0000,1.6667,0.0000) 3.7109 7 0.0325

ours (0.0000,1.6667,0.0000) 3.7109 49 0.5869

5 [23] (3.0000,4.0000) 3.2917 1251 11.5671

[22] (3.0000,4.0000) 3.2917 8 0.2242

[19] (3.0000,4.0000) 3.2917 660 19.9942

BARON (3.0000,4.0000) 3.2917 1 0.0426

SCIP (3.0000,4.0000) 3.2917 1 0.0124

ours (3.0000,4.0000) 3.2917 1 0.0041

MLFP 6 [18] (1.5,1.5) 1.4895 50 0.5184

[47] (1.5,1.5) 1.4895 1 0.0053

BARON (1.5,1.5) 1.4895 1 0.0322

SCIP (1.5,1.5) 1.4895 1 0.0156

ours (1.5,1.5) 1.4895 6 0.0672

7 [18] (1.0157,0.5905,1.4037) 0.5731 30 0.3235

[47] (1.0157,0.5905,1.4037) 0.5731 4 0.0388

BARON (1.0157,0.5905,1.4037) 0.5731 1 0.0307

SCIP (1.0157,0.5905,1.4037) 0.5731 1 0.0285

ours (1.0157,0.5905,1.4037) 0.5731 27 0.3486

8 [18] (1.0083,0.50,1.45) 2.2851 29 0.3792

[47] (1.0083,0.50,1.45) 2.2851 2 0.0143

BARON (1.0083,0.50,1.45) 2.2851 1 0.0416

SCIP (1.0083,0.50,1.45) 2.2851 1 0.0386

ours (1.0083,0.50,1.45) 2.2851 33 0.3457

9 [18] (1.5054,0.35,1.55) 1.1179 39 0.4721

[47] (1.5054,0.35,1.55) 1.1179 7 0.0558

BARON (1.5054,0.35,1.55) 1.1179 1 0.0535

SCIP (1.5054,0.35,1.55) 1.1179 1 0.0353

ours (1.5054,0.35,1.55) 1.1179 46 0.5127
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Table 4.2: Comparison of results in Examples 10-18.

Type Example Ref. NI Solution Optimum Iter Time

LMP 10 [34] ∅ (0.0000,3.0000) -2.5000 813 28.3545

[36] ∅ (0.0000,3.0000) -2.5000 351 3.5209

[11] ∅ (0.0000,3.0000) -2.5000 32 0.4012

BARON ∅ (0.0000,3.0000) -2.5000 1 0.0371

SCIP ∅ (0.0000,3.0000) -2.5000 1 0.0209

ours ∅ (0.0000,3.0000) -2.5000 11 0.1076

11 [34] ∅ (1.3148,0.1396,0.0000,0.4233) 0.8902 697 7.8712

[36] ∅ (1.3148,0.1396,0.0000,0.4233) 0.8902 20 0.2249

[11] ∅ (1.3148,0.1396,0.0000,0.4233) 0.8902 16 0.1372

BARON ∅ (1.3148,0.1396,0.0000,0.4233) 0.8902 9 0.0844

SCIP ∅ (1.3148,0.1396,0.0000,0.4233) 0.8902 11 0.1364

ours ∅ (1.3148,0.1396,0.0000,0.4233) 0.8902 40 0.4036

12 [34] ∅ (0.0000,0.0000) 4 4955 245.6885

[36] ∅ (0.0000,0.0000) 4 26 0.2295

[11] ∅ (0.0000,0.0000) 4 1 0.0051

BARON ∅ (0.0000,0.0000) 4 1 0.0126

SCIP ∅ (0.0000,0.0000) 4 1 0.0104

ours ∅ (0.0000,0.0000) 4 1 0.0036

13 [34] ∅ (5.5556,1.7778,2.6667) -112.7531 3276 112.3467

[36] ∅ (5.5556,1.7778,2.6667) -112.7531 619 6.4089

[11] ∅ (5.5556,1.7778,2.6667) -112.7531 49 0.5459

BARON ∅ (5.5556,1.7778,2.6667) -112.7531 5 0.0993

SCIP ∅ (5.5556,1.7778,2.6667) -112.7531 11 0.0936

ours ∅ (5.5556,1.7778,2.6667) -112.7531 33 0.2863

MIQCQP 14 [11] ∅ (50.5,99,0,99,59.8) -57886.73 84 1.0743

[46] ∅ (50.5,99,0,99,59.8) -57886.73 101 1.0695

BARON ∅ (50.5,99,0,99,59.8) -57886.73 1 0.0301

SCIP ∅ (50.5,99,0,99,59.8) -57886.73 1 0.0284

ours ∅ (50.5,99.0,0.0,99.0,59.8) -57886.73 62 0.5437

[46] {1} (50,99,0,99,59.8) -57840.48 97 0.9853

BARON {1} (50,99,0,99,59.8) -57840.48 3 0.0471

SCIP {1} (50,99,0,99,59.8) -57840.48 1 0.0385

ours {1} (50,99,0,99,59.8) -57840.48 24 0.2355

[46] {5} (50.5,99,0,99,59) -57698.25 167 1.7661

BARON {5} (50.5,99,0,99,59) -57698.25 1 0.0312

SCIP {5} (50.5,99,0,99,59) -57698.25 1 0.0284

ours {5} (50.5,99,0,99,59) -57698.25 38 0.3595

[46] {1, 5} (50,99,0,99,59) -57652.00 92 0.9455

BARON {1, 5} (50,99,0,99,59) -57652.00 3 0.0461

SCIP {1, 5} (50,99,0,99,59) -57652.00 1 0.0442

ours {1, 5} (50,99,0,99,59) -57652.00 21 0.1858

[46] {1, 2, 3, 4, 5} (50,98,0,99,59) -57652.00 86 0.9265

BARON {1, 2, 3, 4, 5} (50,98,0,99,59) -57652.00 3 0.0406

SCIP {1, 2, 3, 4, 5} (50,98,0,99,59) -57652.00 1 0.0209

ours {1, 2, 3, 4, 5} (50,99,0,99,59) -57652.00 20 0.1761

15 [46] {1, 2, 3} (2,6,3) -427.8 54 0.5475

BARON {1, 2, 3} (2,6,3) -427.8 3 0.1178

SCIP {1, 2, 3} (2,6,3) -427.8 1 0.0526

ours {1, 2, 3} (2,6,3) -427.8 24 0.2638

16 [46] {1, 2, 3, 4} (2,7,3,2) -481.2 138 1.5206

BARON {1, 2, 3, 4} (2,7,3,2) -481.2 5 0.3830

SCIP {1, 2, 3, 4} (2,7,3,2) -481.2 5 0.0986

ours {1, 2, 3, 4} (2,7,3,2) -481.2 66 0.7536

17 [46] {1, 2, 3, 4, 5} (2,6,3,2,8) -585.2 609 7.0503

BARON {1, 2, 3, 4, 5} (2,6,3,2,8) -585.2 21 1.9436

SCIP {1, 2, 3, 4, 5} (2,6,3,2,8) -585.2 9 0.3029

ours {1, 2, 3, 4, 5} (2,6,3,2,8) -585.2 233 3.0048

18 [46] {4, 5, 6, 7} (0.2,0.8,1.9079,1,1,0,1) 4.5796 72 0.7666

BARON {4, 5, 6, 7} (0.2,0.8,1.9079,1,1,0,1) 4.5796 1 0.7841

SCIP {4, 5, 6, 7} (0.2,0.8,1.9079,1,1,0,1) 4.5796 1 0.0486

ours {4, 5, 6, 7} (0.2,0.8,1.9079,1,1,0,1) 4.5796 40 0.4639
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In Table 4.8, the numerical results reveal that BBA uses more iterations and CPU running

time than BRA. In fact, it was revealed in [36] that OSBBA is more suitable for solving some

LMP problems with p ≪ n. In Table 4.8, OSBBA uses less CPU running time and iterations

than BBA only when (p,m, n) = (5, 100, 100), (5, 100, 200) and (10, 100, 200), which is precisely

because p ≪ n. Compared to SCIP and BARON, our algorithm BBA has inferior numerical

results in the first 18 or 16 groups. However, BBA is insensitive to the size of parameter p, but

the time taken by both software packages increases as p increases. It can be observed from the

last three and five sets of numerical results, respectively, that SCIP and BARON eventually

consume more CPU running time than BBA, especially BARON is quite sensitive to p. Thus,

when solving LMP problems, there are the following three conclusions:

i) BBA performs worse than BRA, which is mainly caused by the linear relaxation of BBA

not as tight as BRA.

ii) Except for the case of p ≪ n, BBA has a stronger computing power than OSBBA.

iii) BBA performs better than SCIP and BARON in certain cases such as

(p,m, n) = (200, 100, 10), (300, 100, 10), (500, 100, 10).

Table 4.3: Constraints on the constructed test problems for X1-X4.

Problem Numerator curvature

X1



































x1 + x2 + x3 + x4 + x5 ≤ 400,

2x1 + x2 + 6x3 ≤ 200,

x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800,

x3 − x4 + 5x5 ≤ 200,

0 ≤ xi ≤ 99, xi ∈ Z, ∀ i = 1, 2, 3, 4, 5.

X2



























9x2
1 + 10x1x2 + 8x2

2 + 5x2
3 + 6x1x3 + 10x2x3 ≤ 1000,

6x2
1 + 8x1x2 + 6x2

2 + 4x2
3 + 2x1x3 + 2x2x3 ≤ 440,

9x2
1 + 6x2

2 + 8x2
3 − 2x1x2 − 2x2x3 ≤ 340,

1 ≤ xi ≤ 200, xi ∈ Z, ∀ i = 1, 2, 3.

X3







































9x2
1 + 10x1x2 + 8x2

2 + 5x2
3 + 6x1x3 + 10x2x3 + 7x2

4 + 10x1x4 + 6x2x4 + 2x3x4 ≤ 1100,

6x2
1 + 8x1x2 + 6x2

2 + 4x2
3 + 2x1x3 + 2x2x3 + 8x2

4 − 2x1x4 − 10x2x4 ≤ 440,

9x2
1 + 6x2

2 + 8x2
3 − 2x1x2 − 2x2x3 + 6x2

4 − 4x1x4 − 4x2x4 + 2x3x4 ≤ 310,

8x2
1 + 4x2

2 + 9x2
3 + 7x2

4 + 2x1x2 + 2x1x3 + 4x2x3 − 6x1x4 − 2x2x4 + 2x3x4 ≤ 460,

1 ≤ xi ≤ 200, xi ∈ Z, ∀ i = 1, 2, 3, 4.

X4







































































































9x2
1 + 10x1x2 + 8x2

2 + 5x2
3 + 6x1x3 + 10x2x3 + 7x2

4 + 10x1x4

+ 6x2x4 + 2x3x4 + 2x2x5 + 7x2
5 ≤ 1000,

6x2
1 + 8x1x2 + 6x2

2 + 4x2
3 + 2x1x3 + 2x2x3 + 8x2

4

− 2x1x4 − 10x2x4 + 2x1x5 + 6x2x5 − 6x4x5 − 7x2
5 ≤ 1150,

9x2
1 + 6x2

2 + 8x2
3 − 2x1x2 − 2x2x3 + 6x2

4 − 4x1x4

− 4x2x4 + 2x3x4 + 6x1x5 + 2x2x5 − 4x4x5 + 6x2
5 ≤ 800,

8x2
1 + 4x2

2 + 9x2
3 + 7x2

4 + 2x1x2 + 2x1x3 + 4x2x3

− 6x1x4 − 2x2x4 + 2x3x4 + 6x1x5 + 4x2x5 + 2x3x5 − 6x2
5 ≤ 1100,

4x2
1 + 5x2

2 + 8x2
3 + 6x2

4 − 2x1x2 + 6x1x3 + 2x1x4

− 6x2x4 + 2x3x4 + 4x1x5 − 2x2x5 + 6x3x5 + 7x2
5 + 8x4x5 ≤ 975,

1 ≤ xi ≤ 200, xi ∈ Z, ∀ i = 1, 2, 3, 4, 5.
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Table 4.4: Constraints on the constructed test problems for X5-X7.

Problem Numerator curvature

X5











































































−5x2
1 − 6x2

2 − 3x2
3 − 5x2

4 − 7x2
5 − 2x1x2 − 4x1x3 − 2x1x4 − 2x2x3 + 2x2x5

− 2x3x4 + 9x1 − 10x2 − 6x3 + 8x4 − 8x5 ≤ 1320,

−4x2
1 − 3x2

2 − 2x2
3 − 3x2

4 − 5x2
5 − 2x1x2 − 2x1x3 + 2x1x5 − 4x2x3 − 2x2x4

− 2x3x4 + 4x4x5 − 9x1 − 6x2 − 4x4 − x5 ≤ 1250,

−4x2
1 − 5x2

2 − 4x2
3 − 5x2

4 − 3x2
5 − 4x1x4 − 2x3x4 − 2x3x5

− 4x4x5 − 4x1 − 9x2 − 8x3 + 3x4 − 3x5 ≤ 950,

−4x2
1 − 4x2

2 − 3x2
3 − 6x2

4 − 8x2
5 + 4x1x2 − 2x1x4 + 2x2x3

+ 2x2x4 − 4x3x4 + 2x4x5 − x1 − 5x2 − 6x3 − 4x4 + 5x5 ≤ 1000,

1 ≤ xi ≤ 20, xi ∈ Z, ∀ i = 1, 2, 3, 4, 5.

X6











































































2x2
1 + 8x2

2 + 5x2
3 + 2x2

4 + 4x2
5 − 4x1x2 − 4x1x3 + 4x1x5 − 2x2x3

− 2x2x4 − 8x3x4 − 2x3x5 + 4x4x5 ≤ 378,

−2x2
1 − 3x2

2 − 4x2
3 − 5x2

4 − 3x2
5 − 4x1x3 − 4x1x4 − 2x1x5 − 2x2x3

− 2x2x4 − 2x3x4 + 2x3x5 + 2x4x5 ≤ 216,

3x2
1 − x2

2 + 5x2
3 + 4x2

4 + 4x2
5 + 2x1x2 + 2x1x4 + 2x1x5 + 2x2x4

+ 2x2x5 − 2x3x4 − 4x3x5 ≤ 1511,

2x2
1 + x2

2 − x2
3 − x2

4 − 3x2
5 − 2x1x2 − 2x2x3 − 2x2x4 + 10x4x5

+ x1 + 4x2 − 6x3 + 8x4 − 6x5 ≤ 671,

1 ≤ xi ≤ 100, xi ∈ Z, ∀ i = 1, 2, 3, 4, 5.

X7











































































9x2
1 + 10x1x2 + 8x2

2 + 5x2
3 + 6x1x3 + 10x2x3 + 7x2

4 + 10x1x4

+ 6x2x4 + 2x3x4 + 2x2x5 + 7x2
5 ≤ 1430,

6x2
1 + 8x1x2 + 6x2

2 + 4x2
3 + 2x1x3 + 2x2x3 + 8x2

4

− 2x1x4 − 10x2x4 + 2x1x5 + 6x2x5 − 6x4x5 + 7x2
5 ≤ 1150,

9x2
1 + 6x2

2 + 8x2
3 − 2x1x2 − 2x2x3 + 6x2

4 − 4x1x4

− 4x2x4 + 2x3x4 + 6x1x5 + 2x2x5 − 4x4x5 + 6x2
5 ≤ 850,

4x2
1 + 5x2

2 + 8x2
3 + 6x2

4 − 2x1x2 + 6x1x3 + 2x1x4

− 6x2x4 + 2x3x4 + 4x1x5 − 2x2x5 + 6x3x5 + 7x2
5 + 8x4x5 ≤ 1030,

1 ≤ xi ≤ 200, xi ∈ Z, ∀ i = 1, 2, 3, 4, 5.

Problem 16.


















min
xTQ0x+ cT0 x+ d0
xTHx+ hTx+ q

,

s.t. xTQjx+ cTj x+ dj ≤ 0, j = 1, 2,

Ax ≤ b, x ≥ 0, xi ∈ Z, i ∈ {1, 2, . . . , n}

where Q0, Q1, Q2, H are n×n real symmetric matrices. A is an m×n real matrix, the elements

of Q0, H , vectors c0, h and real number d0, q are randomly generated in interval [0, 10], the

elements of Q1, Q2 and vectors c1, c2 are randomly generated in interval [−10, 10], the entries

of matrix A are randomly generated in the range [0, 10], d1, d2 are randomly generated between

−10 and 0, the elements of vector b are randomly generated in [0, 100]. For this problem,

we tested 20 groups of instances with different sizes. For each group (m,n) in Table 4.9, we

randomly generate 15 instances by using Problem 16, so a total of 300 instances are required

to be solved.

Table 4.9 lists the numerical results of our algorithm BBA and two software packages (SCIP

and BARON). Firstly, the global optimal values found by these three methods are close to each

other, which again shows the effectiveness of BBA. Secondly, it can be observed that, with the
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Table 4.5: Properties of objective functions and constraints of the Problems 1-14.

Problem Numerator curvature Denominator curvature Constraints curvature

1 concave convex linear

2 convex concave linear

3 convex concave convex

4 convex convex convex

5 concave convex convex

6 concave concave convex

7 concave concave concave

8 convex convex concave

9 convex concave concave

10 concave convex concave

11 convex convex indefinite

12 convex concave indefinite

13 concave convex indefinite

14 concave concave indefinite

exception of random instances with (m,n) = (20, 200), (20, 250), the larger the scale of problem,

the more iterations and CPU running time the three algorithms require. Thirdly, from the first

11 groups of numerical results, the time taken of BBA is about 1.2−2.1 times that of SCIP, while

the number of iterations of the former is about 1.9 − 48.5 times that of the latter. However,

as the size of the problem increases, the advantage of BBA will gradually become apparent

even though it still has far more iterations than SCIP. Depending on the experimental results

of the last 9 groups, SCIP takes more time than BBA and fails to solve the last six groups of

problems in less than 3600 seconds. Finally, BBA requires more iterations than BARON except

for problems with (m,n) = (5, 20), (5, 30), (5, 40) and (5, 50), while BBA consumes less time

than BARON except for problems with (m,n) = (5, 5), (5, 10), (10, 20), (10, 30) and (20, 50).

Significantly, BARON was also unable to solve the last five sets of problems in 3600 seconds.

As a result, our algorithm can handle specific medium-scale problems faster than SCIP and

BARON. Of course, for certain small-scale problems (e.g. (m,n) = (5, 20), (5, 30), (5, 40) and

(5, 50)), our algorithm can perform better than BARON.

To sum up, our algorithm is effective and robust, suitable for solving Problem 16 and four

varieties of problem MIQCQFP, and can address Problem 16 with at least 700 dimensions in

3600 seconds.

5. Concluding Remarks

In this study, we propose a new global optimization algorithm for solving mixed integer

quadratically constrained quadratic fractional programming problems. This problem extends

both continuous quadratic fractional programming and pure integer quadratic fractional pro-

gramming. By taking advantage of the simple property of the multiplication of amatrix and

a vector, the numerator, denominator, and quadratic constraints of the problem are trans-

formed into the bilinear form. Taking into account this bilinear structure, we establish a linear

fractional relaxation programming problem, and then the rest of our algorithm is to address

the general linear fractional programming problem. To enhance the efficiency of the algorithm,
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Table 4.6: Comparison of results in Problems 1-7.

Problem Methods NI Solution Optimum Iter Time

1 Dinkelbach ∅ (50.5,99.0,0.0,99.0,59.8) 0.0131 2 0.0817

BARON ∅ (50.5,99.0,0.0,99.0,59.8) 0.0131 2 0.2457

SCIP ∅ (50.5,99.0,0.0,99.0,59.8) 0.0131 13 0.1225

ours ∅ (50.5,99.0,0.0,99.0,59.8) 0.0131 20 0.2126

BARON {1, 2, 3, 4, 5} (50,99,0,99,59) 0.0147 15 0.2149

SCIP {1, 2, 3, 4, 5} (50,99,0,99,59) 0.0147 8 0.1053

ours {1, 2, 3, 4, 5} (50,99,0,99,59) 0.0147 21 0.2176

2 Dinkelbach ∅ (99.0,0.0,0.0,0.0,0.0) -0.9999 5 0.2408

BARON ∅ (99.0,0.0,0.0,0.0,0.0) -0.9999 147 1.3051

SCIP ∅ (99.0,0.0,0.0,0.0,0.0) -0.9999 9181 39.6775

ours ∅ (98.9924,0.0,0.0,0.0,0.0) -0.9999 68 0.6471

BARON {1, 3, 5} (99,0.0,0,0.0,0) -0.9999 51 1.2511

SCIP {1, 3, 5} (99,0.0,0,0.0,0) -0.9999 1658 3.8786

ours {1, 3, 5} (99,0.0,0,0.0,0) -0.9999 45 0.4589

BARON {1, 3, 5, 4, 5} (99,0,0,0,0) -0.9999 5 0.4315

SCIP {1, 2, 3, 4, 5} (99,0,0,0,0) -0.9999 455 1.2033

ours {1, 2, 3, 4, 5} (99,0,0,0,0) -0.9999 38 0.3978

3 Dinkelbach ∅ (2.0036,6.2239,2.9595) 0.00018 3 0.2847

BARON ∅ (2.0041,6.2199,2.9605) 0.00018 1390 2.6331

SCIP ∅ (2.0036,6.2239,2.9595) 0.00018 21 0.2669

ours ∅ (2.0238,6.2173,2.9351) 0.00018 47 0.4063

BARON {1, 2, 3} (2,6,3) 0.00020 5 0.8401

SCIP {1, 2, 3} (2,6,3) 0.00020 2 0.1347

ours {1, 2, 3} (2,6,3) 0.00020 29 0.2476

4 Dinkelbach ∅ (1.0000,1.0000,1.0000,7.4821) 1.9087 4 0.6405

BARON ∅ (1.0000,1.0000,1.0000,7.4821) 1.9087 3 1.0681

SCIP ∅ (1.0000,1.0000,1.0000,7.4821) 1.9087 41 0.2567

ours ∅ (1.0000,1.0000,1.0000,7.4821) 1.9087 80 0.8243

BARON {1, 2, 3, 4} (1,1,1,7) 1.95604 7 1.0012

SCIP {1, 2, 3, 4} (1,1,1,7) 1.95604 5 0.1507

ours {1, 2, 3, 4} (1,1,1,7) 1.95604 58 0.5536

5 Dinkelbach ∅ (6.1491,1.0000,1.0000) 138.78045 12 3.5731

BARON ∅ (6.1491,1.0000,1.0000) 138.78045 1835 2.5305

SCIP ∅ (6.1491,1.0000,1.0000) 138.78045 504 0.2673

ours ∅ (6.1491,1.0000,1.0000) 138.78045 39 0.4161

BARON {1, 2, 3} (6,1,1) 141.87469 61 0.3741

SCIP {1, 2, 3} (6,1,1) 141.87469 778 0.2933

ours {1, 2, 3} (6,1,1) 141.87469 23 0.2587

6 Dinkelbach ∅ (1.00,1.5797,8.6188,5.9170,1.00) 0.2847 3 1.0107

BARON ∅ (1.00,1.5795,8.6188,5.9170,1.00) 0.2847 77 2.5617

SCIP ∅ (1.00,1.5795,8.6188,5.9170,1.00) 0.2847 605 1.0998

ours ∅ (1.00,1.5769,8.6187,5.9164,1.00) 0.2847 909 10.0894

BARON {1, 2, 3, 4, 5} (1,1,8,6,1) 0.2907 37 1.2665

SCIP {1, 2, 3, 4, 5} (1,1,8,6,1) 0.2907 49 0.3152

ours {1, 2, 3, 4, 5} (1,1,8,6,1) 0.2907 251 2.4681

7 Dinkelbach ∅ (1.00,2.7544,20.00,14.0398,1.00) 0.2421 4 0.9504

BARON ∅ (1.00,2.7548,20.00,14.0398,1.00) 0.2421 239 1.4847

SCIP ∅ (1.00,2.7548,20.00,14.0398,1.00) 0.2421 377 0.9706

ours ∅ (1.00,2.7412,20.00,14.0428,1.00) 0.2421 1346 13.8745

BARON {1, 2, 3, 4, 5} (1,3,20,14,1) 0.2422 33 0.8574

SCIP {1, 2, 3, 4, 5} (1,3,20,14,1) 0.2422 74 0.2628

ours {1, 2, 3, 4, 5} (1,3,20,14,1) 0.2422 572 4.7131
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Table 4.7: Comparison of results in Problems 8-14.

Problem Methods NI Solution Optimum Iter Time

8 Dinkelbach ∅ (1.00,1.00,1.00,1.00,20.00) 1.4789 5 0.2689

BARON ∅ (1.00,1.00,1.00,1.00,20.00) 1.4789 41 0.3476

SCIP ∅ (1.00,1.00,1.00,1.00,20.00) 1.4789 813 3.3611

ours ∅ (1.00,1.00,1.00,1.00,20.00) 1.4789 737 6.3781

BARON {1, 2, 3, 4, 5} (1,1,1,1,20) 1.4789 7 0.2912

SCIP {1, 2, 3, 4, 5} (1,1,1,1,20) 1.4789 648 2.2879

ours {1, 2, 3, 4, 5} (1,1,1,1,20) 1.4789 441 4.3374

9 Dinkelbach ∅ (1.0,1.0,17.7665,20.0,1.0) -2.8727 7 1.3542

BARON ∅ (1.0,1.0,17.7664,20.0,1.0) -2.8727 6539 26.1264

SCIP ∅ (1.0,1.0,17.7664,20.0,1.0) -2.8727 5223 19.3193

ours ∅ (1.0,1.0,17.7665,20.0,1.0) -2.8727 3977 40.4857

BARON {1, 2, 3, 4, 5} (1,1,18,20,1) -2.8724 15558 57.9524

SCIP {1, 2, 3, 4, 5} (1,1,18,20,1) -2.8724 3736 7.4178

ours {1, 2, 3, 4, 5} (1,1,18,20,1) -2.8724 2031 18.7865

10 Dinkelbach ∅ (1.00,1.00,1.00,20.00,1.00) -0.6331 5 0.2348

BARON ∅ (1.00,1.00,1.00,20.00,1.00) -0.6331 29 1.1565

SCIP ∅ (1.00,1.00,1.00,20.00,1.00) -0.6331 157 0.9143

ours ∅ (1.00,1.00,1.00,20.00,1.00) -0.6331 148 1.5433

BARON {1, 2, 3, 4, 5} (1,1,1,20,1) -0.6331 39 1.0801

SCIP {1, 2, 3, 4, 5} (1,1,1,20,1) -0.6331 103 0.6961

ours {1, 2, 3, 4, 5} (1,1,1,20,1) -0.6331 94 0.8521

11 Dinkelbach ∅ (1.00,1.00,1.00,1.00,10.8240) 1.6061 4 0.4507

BARON ∅ (1.00,1.00,1.00,1.00,10.8240) 1.6061 13 1.1555

SCIP ∅ (1.00,1.00,1.00,1.00,10.8240) 1.6061 321 1.3854

ours ∅ (1.00,1.00,1.00,1.00,10.8239) 1.6061 183 1.9868

BARON {1, 2, 3, 4, 5} (1,1,1,1,10) 1.6328 27 1.5688

SCIP {1, 2, 3, 4, 5} (1,1,1,1,10) 1.6328 50 0.1805

ours {1, 2, 3, 4, 5} (1,1,1,1,10) 1.6328 165 1.6907

12 Dinkelbach ∅ (1.00,1.00,1.00,1.00,1.00) 0.0174 2 0.0658

BARON ∅ (1.00,1.00,1.00,1.00,1.00) 0.0174 15945 63.2852

SCIP ∅ – – – –

ours ∅ (1.00,1.00,1.00,1.00,1.00) 0.0174 82 0.6964

BARON {1, 2, 3, 4, 5} (1,1,1,1,1) 0.0174 5363 14.7129

SCIP {1, 2, 3, 4, 5} (1,1,1,1,1) 0.0174 40518 19.6671

ours {1, 2, 3, 4, 5} (1,1,1,1,1) 0.0174 77 0.6873

13 Dinkelbach ∅ (1.00,1.00,1.00,10.3919,1.00) -0.5811 3 0.3582

BARON ∅ (1.00,1.00,1.00,10.3919,1.00) -0.5811 23 1.1289

SCIP ∅ (1.00,1.00,1.00,10.3919,1.00) -0.5811 71 0.5104

ours ∅ (1.00,1.00,1.00,10.3919,1.00) -0.5811 125 1.2657

BARON {1, 2, 3, 4, 5} (1,1,1,10,1) -0.5762 33 1.2849

SCIP {1, 2, 3, 4, 5} (1,1,1,10,1) -0.5762 57 0.2739

ours {1, 2, 3, 4, 5} (1,1,1,10,1) -0.5762 87 0.8939

14 Dinkelbach ∅ (3.1597,1.00,1.00,1.00,1.00) -0.2660 5 0.2832

BARON ∅ (3.1597,1.00,1.00,1.00,1.00) -0.2660 225 2.4403

SCIP ∅ (3.1597,1.00,1.00,1.00,1.00) -0.2660 513 2.2057

ours ∅ (3.1599,1.00,1.00,1.00,1.00) -0.2660 629 6.5334

BARON {1, 2, 3, 4, 5} (3,1,1,1,1) -0.2653 831 5.3614

SCIP {1, 2, 3, 4, 5} (3,1,1,1,1) -0.2653 368 0.8281

ours {1, 2, 3, 4, 5} (3,1,1,1,1) -0.2653 489 5.1104
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Table 4.8: Numerical results for Problem 15 compared with OSBBA, BRA, SCIP and BARON.

(p,m,n)
BBA BRA OSBBA SCIP BARON

Avg.iter Avg.time Avg.iter Avg.time Avg.iter Avg.time Avg.iter Avg.time Avg.iter Avg.time

(5,10,10) 45.6667 0.6629 36.6667 0.5279 2574.0667 28.0407 11.5333 0.3214 24.7333 0.2727

(5,10,20) 293.5333 4.0133 78.5333 1.3228 17785.9333 207.4884 19.5333 0.6064 20.2000 0.2920

(5,20,20) 164.3333 2.2988 72.0667 1.3572 3030.4000 33.2958 19.1333 0.8841 54.1333 0.4668

(5,30,20) 94.7333 1.3694 22.3333 0.7423 1658.6667 19.8844 5.9333 0.4810 21.9333 0.1453

(5,30,50) 13219.4667 182.1351 5342.6000 67.3081 18843.6000 267.4946 22.7333 4.8601 51.5333 0.5253

(5,50,50) 974.8667 13.3334 87.6000 2.3797 1055.6000 20.5542 17.8000 8.2939 63.5333 0.7327

(5,100,100) 5648.6000 268.3961 593.8667 27.5891 1088.4667 81.0076 11.9333 74.4139 106.8000 1.5747

(5,100,200) 10271.4667 849.3485 1160.5333 274.6944 1634.4000 178.7851 37.5333 791.3414 196.7333 8.6647

(10,100,100) 9629.3333 354.8235 238.1333 16.1573 7635.0667 748.4875 29.9333 65.4982 473.8000 6.5833

(10,100,200) 18351.8000 1529.5781 1840.6667 165.8318 5796.1333 800.4769 63.1333 777.9274 1503.3333 45.3067

(20,100,100) 8827.0000 225.7681 337.9333 19.0229 9560.2667 1269.9644 60.0667 71.3325 3645.7333 163.6533

(5,100,10) 18.0000 0.4779 2.5333 0.2716 70.2000 1.4560 1.1333 0.0509 10.6000 0.0893

(10,100,10) 32.7333 0.5273 8.3333 0.3439 994.2000 29.4666 1.2667 0.0780 7.9333 0.1103

(20,100,10) 27.1333 0.4355 4.3333 0.2860 1158.7333 33.3676 1.1333 0.0857 7.0000 0.1213

(30,100,10) 18.5333 0.3172 1.6000 0.2560 2302.6667 69.0055 1.4000 0.1082 6.5333 0.1814

(50,100,10) 17.5333 0.2990 1.4667 0.2612 2832.2000 110.6273 2.6000 0.1568 12.4667 0.2527

(80,100,10) 20.0667 0.3351 2.6000 0.2747 4362.6667 206.9593 1.4000 0.2347 10.2000 0.3781

(100,100,10) 38.0667 0.5751 6.8667 0.2987 9100.0667 467.2352 1.1333 0.2953 27.0000 11.9787

(200,100,10) 33.0667 0.5365 6.9333 0.3464 80101.5333 2880.5421 1.4000 0.9855 42.8667 21.3873

(300,100,10) 34.6667 0.5345 5.9333 0.3209 − − 1.3333 2.5525 105.1333 148.2053

(500,100,10) 29.2667 0.4813 6.1333 0.3299 − − 1.4000 10.8483 138.8667 716.5332

Table 4.9: Numerical results for Problem 16 compared with SCIP and BARON.

(m,n)
BBA SCIP BARON

Avg.iter Avg.time Opt.val Avg.iter Avg.time Opt.val Avg.iter Avg.time Opt.val

(5,5) 37.7333 0.3729 0.879822 15.7333 0.2627 0.879822 17.7333 0.3187 0.879822

(5,10) 79.1333 0.8936 0.939956 34.6667 0.4481 0.939956 64.6667 0.8347 0.939956

(5,20) 267.6000 1.6023 0.965676 80.6667 1.3274 0.965676 624.4000 7.0347 0.965676

(5,30) 503.8667 5.6721 0.960491 138.6667 3.0068 0.960491 668.0667 14.8752 0.960543

(5,40) 882.3333 11.4537 0.982090 463.5333 6.3554 0.982090 2112.5333 78.3750 0.982090

(5,50) 1351.8667 18.7243 0.993946 370.8000 10.8044 0.993946 4179.0667 315.8417 0.993946

(10,20) 110.2000 1.4683 0.989525 20.6667 0.7808 0.989525 22.4667 1.0253 0.989525

(10,30) 218.1333 3.2277 0.990251 25.0667 1.6721 0.990251 63.6000 2.4847 0.990251

(10,40) 412.0667 6.4886 0.992798 48.0667 3.7727 0.992798 293.8000 17.1160 0.992798

(20,50) 547.0667 9.2630 0.998811 11.9333 5.7336 0.998811 26.5333 6.9246 0.998811

(20,60) 694.4667 14.3036 0.999540 14.3333 8.3332 0.999540 31.1333 19.3853 0.999540

(20,80) 886.4667 20.7495 0.999712 34.4000 21.5692 0.999712 61.9333 24.3907 0.999712

(20,100) 1841.8667 48.5929 0.999532 56.7333 58.4821 0.999532 225.3333 53.5538 0.999532

(20,200) 2988.3333 313.0292 0.999831 127.3333 1556.3246 0.999825 172.0000 899.3313 0.999843

(20,250) 2767.8667 364.1949 0.999905 − − − 35.8667 1587.7987 0.999905

(20,300) 2732.1333 628.8606 0.999935 − − − − − −

(20,400) 3151.6000 1250.0636 0.999952 − − − − − −

(20,500) 4958.1333 2088.1734 0.999975 − − − − − −

(20,600) 5551.0667 2654.3681 0.999981 − − − − − −

(20,700) 6542.0667 3566.0278 0.999991 − − − − − −

the rectangular adjustment-segmentation technique and the midpoint sampling strategy are

integrated into the branch-and-bound framework. Numerical results show that the proposed

algorithm can be employed to solve problems SLFP, MLFP, LMP and MIQCQP. In addition,

this algorithm can solve small and medium-scale MIQCQFP problems, and can address spe-

cific medium-sized problems faster than SCIP and BARON. For solving large-scale MIQCQFP

problems, techniques that can be integrated into this algorithm are currently being studied.
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Moreover, it can be seen from Remark 2.1 that when the parameters λj and ηij are set to 1 and

0 respectively, the constructed relaxation problem is obtained. However, the parameters λj and

ηij can also be selected within the interval [0, 1], so a useful parameter selection method may

encourage us to construct a better relaxation problem for the original problem, which may be

particularly important for improving the performance of the algorithm. In the future, we will

also focus on the selection of parameter vectors in order to give a more appropriate parameter

selection scheme.
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