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Abstract

The truncated singular value decomposition has been widely used in many areas of

science including engineering, and statistics, etc. In this paper, the original truncated

complex singular value decomposition problem is formulated as a Riemannian optimiza-

tion problem on a product of two complex Stiefel manifolds, a practical algorithm based

on the generic Riemannian trust-region method of Absil et al. is presented to solve the

underlying problem, which enjoys the global convergence and local superlinear conver-

gence rate. Numerical experiments are provided to illustrate the efficiency of the proposed

method. Comparisons with some classical Riemannian gradient-type methods, the existing

Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt

and the Riemannian manifold optimization library ROPTLIB, and some latest infeasible

methods for solving manifold optimization problems, are also provided to show the merits

of the proposed approach.
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1. Introduction

In linear algebra, the singular value decomposition (SVD) of a complex matrix A ∈ C
m×n

is a factorization of the form UΣV H , where U ∈ Cm×m and V ∈ Cn×n are unitary matrices,

Σ ∈ Cm×n is a rectangular diagonal matrix with non-negative real numbers on the diagonal.

The diagonal entries σi = Σii of Σ are known as the singular values of A. The number of non-

zero singular values is equal to the rank of A. The columns of U and the columns of V are called

the left-singular vectors and right-singular vectors of A, respectively. The truncated singular

value decomposition (TSVD) is a kind of reduced SVDs, in which only the p (p ≤ rank(A))

column vectors of U and p row vectors of V H corresponding to the p largest singular values

Σp are calculated. The rest of the matrix is discarded. This can be much quicker and more

economical than the compact SVD if p ≪ rank(A). The matrix Up is thus m× p, Σp is p× p

diagonal, and Vp is n× p. Of course the truncated SVD is no longer an exact decomposition of

the original matrix A, but the approximate matrix Ã = UpΣpV
H
p is in a very useful sense the

closest approximation to A that can be achieved by a matrix of rank p. To find p (≤ rank(A))

left and right singular vectors associated with the p largest singular values of a complex matrix

A ∈ Cm×n, a closely related problem is to solve the following optimization problem [3,27,29–31]:

maximize: Tr(UHAVΘ),

subject to: U ∈ C
m×p, V ∈ C

n×p, UHU = Ip, V HV = Ip,
(1.1)

where Θ = diag(µ1, · · · , µp), with µ1 > · · · > µp > 0 arbitrary and 1 ≤ p ≤ rank(A), and

where Ip is the identity matrix of order p. Here, the arbitrary diagonal matrix Θ with positive

diagonal elements in descending order plays a role in appropriately ordering the columns of U

and V ([29, Chapter 5] and [30]). In (1.1), the notation Tr(·) denotes the real part of the trace

of a given complex square matrix, which corresponds to the inner product for complex vector

space, i.e., in C
p×q, we define the inner product

〈M,N〉 := Tr(MHN) = trace
(

Re(M)T Re(N)
)

+ trace
(

Im(M)T Im(N)
)

for all M,N ∈ C
p×q, where Re(M) and Im(M) denote the real and imaginary parts of M ,

respectively. Then C
p×q is a Hilbert inner product space and the norm of a complex matrix

M generated by this inner product is the matrix Frobenius norm given by ‖M‖2 = Tr(MHM).

A global optimal solution to the problem (1.1) provides a collection of p dominant left and right

singular vectors of A. Let (U∗, V ∗) be an optimal solution to the problem (1.1). Then, the

j-th columns of U∗ and V ∗ are the left and right singular vectors of A associated with the j-th

dominant singular value, respectively [3, 27, 29–31]. In addition, the p largest singular values

σ1 ≥ · · · ≥ σp can be calculated through the formula U∗HAV ∗ = diag(σ1, · · · , σp).

Mathematical applications of the TSVD include computing the matrix low-rank approxima-

tion [11], analysing the ill-posed models [19] and solving the ill-conditioned system of algebraic

equation [12]. In the ill-posed models, the ill conditioned of the model is mainly reflected in

the amplification of the small singular values of the coefficient matrix on the parameters and

their variances. The basic idea of the truncated singular value method is to cut off these small

singular values and reconstruct the coefficient matrix to weaken the ill-posedness of the model.

The TSVD is also extremely useful in all areas of science, engineering, and statistics, such as

bioluminescence tomography (BLT) [40] and through-the-wall microwave imaging (TWI) [16].

In BLT, TSVD regularization method is applied to solving BLT inverse problem with the source
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permissible region as a priori knowledge. The numerical simulation shows that the TSVD is fea-

sible and efficient for BLT reconstruction and compared with Tikhonov regularization, TSVD

method has better noise-resistance, less time cost and more convenience for the determination

of regularization parameter. In TWI application, TSVD becomes a suitable inversion technique

when certain data are needed to be neglected. For the sake of example, in TWI scenarios, the

wall itself is the trouble or in medical imaging scenarios, the skin stays out of the region of

interest, therefore, these unwanted outcomes must be truncated from scattering measurements.

In particular, TSVD is applied to make an analysis of breast [34] and brain [33] imaging, and it

is also used for imaging a target in multi path environments [18]. In [14], the generalised cross-

validation method is combined with TSVD to stabilise the inversion. In another study [36],

TSVD is combined with compressive sensing techniques to reduce the number of spatial and

frequency measurements while maintaining the quality of the results. It is also shown that

TSVD is a promising algorithm to detect targets behind the wall experimentally [35, 37].

For solving the optimization problem (1.1), Sato et al. [27,29–31] presented serval numerical

approaches from the perspective of Riemannian optimizations, by noting that the feasible set,

St(m, p,C) = {Y ∈ C
m×p |Y HY = Ip}, of (1.1) can be viewed as the complex Stiefel manifold,

and then the original problem can be formulated (1.1) as the following Riemannian optimization

problem on the complex product manifold St(m, p,C)× St(n, p,C):

minimize: − Tr
(

UHAVΘ
)

,

subject to: (U, V ) ∈ St(m, p,C)× St(n, p,C).
(1.2)

Sato [27] developed an Riemannian nonlinear conjugate gradient method, in which the differen-

tiated retraction as a vector transport is used, for solving the problem (1.2), by rewriting (1.2)

as an equivalent problem on the product of two real manifolds, with each of them being an in-

tersection of the real Stiefel manifold St(2m, 2p,R) (St(2n, 2p,R)) and a quasi-symplectic set

SP(m, p) (SP(n, p)). However, as we know, gradient-type algorithms often perform reasonably

well but might converge slowly when the generated iterates are close to an optimal solution.

Usually, fast local convergence cannot be expected if only the gradient information is used. In

the Euclidean space Rn, it is well known that higher rates of convergence can be achieved by

using second-order information on the cost function. The classical choice is Newton’s method

and trust-region method. Actually, in [31], by realizing St(m, p,C) × St(n, p,C) as the inter-

section of the real Stiefel manifold and the quasi-symplectic set, Sato and Iwai have further

proposed a Riemannian Newton’s method for the problem (1.2). A hybrid method, by com-

bining the conjugate gradient method with Newton’s method is also provided for speeding up

the convergence. However, this algorithm is not easy to implement in its original form because

the Newton’s equation is expressed by a system of matrix equations which is difficult to solve

directly. In [31], Newton’s equation are divided into a collection of subequations by putting

p = 1 and treating the equation on St(m, 1,R) × St(n, 1,R). This makes Newton’s equation

into a vector equation which is easy to solve. In addition, if A is real, U and V T = V H are

real orthogonal matrices, Sato and Iwai [30] also developed the steepest descent, the conjugate

gradient, and Newton’s methods for the truncated real singular value decomposition. While in

the Newton’s method, the problem of solving Newton’s equation with p 6= 1 is also divided into

a set of the problems with p = 1, if suitable initial data are given. Specifically, for the generated

Newton’s equation of Newton’s method on the truncated real singular value decomposition, Ai-

hara and Sato [5] proposed an effective implementation by rewriting the Newton’s equation into

a symmetric linear system. And then a matrix-free Krylov subspace method is used to solve
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this symmetric linear system, in which matrix-vector multiplications can be computed without

explicitly using the coefficient matrix. Numerical experiments demonstrate that the proposed

method is effective for the truncated real singular value decomposition problem.

As we know, in the Euclidean space Rn, the pure Newton method converges only locally,

and it cannot distinguish between local minima, local maxima and saddle points. Compared to

the pure Newton-type algorithm, the advantage of the trust-region algorithm is its more stable

behavior [1], and convergence of the trust-region algorithm to stationary points is guaranteed

for all initial points. Since optimization over the Stiefel manifold can be viewed as a general

nonlinear optimization problem with constraints, trust-region algorithm in the Euclidean space

can be generalized to manifold setting directly, and have been explored and successfully applied

to various applications [1,2,7,9,20,24,28,32,39,41]. Recently, Sato [28] developed a Riemannian

trust-region (RTR) algorithm to the joint singular value decomposition of multiple rectangular

matrices, which is formulated as a Riemannian optimization problem on the product of two

Stiefel manifolds. Ishteva et al. [24] proposed a RTR scheme for the best rank-(R1, R2, R3)

approximation of third-order tensors, which is expressed as a minimization of a cost function

on a product of three Grassmann manifolds. Sato and Sato [32] proposed a RTR method for

H2 optimal model reduction problems of linear systems, which is formulated as a nonlinear

optimization problem on the product manifold of the manifold of symmetric positive-definite

matrices and two Euclidean spaces. Yang et al. [39] presented an RTR algorithm for H2 model

reduction of bilinear systems, where theH2 error norm is treated as a cost function on the Stiefel

manifold. Motivated by the aforementioned works, in the present paper, we are interested in

extending the Riemannian trust-region method to the underlying truncated complex singular

value decomposition problem (1.2). We first derive the specific expression of Riemannian gradi-

ent and Hessian of the objective function of the problem (1.2). By utilizing the Taylor expansion

on the product manifold, RTR algorithm constructs a trust-region subproblem on the tangent

space, based on our expression of the Riemannian Hessian of the objective function. The trust-

region subproblem can be solved by the classical truncated conjugate gradient method, which

is most popular due to its good properties and relatively cheap computational cost. Numerical

results show that the proposed algorithm is quite efficient for solving the problem (1.2). Detail

numerical comparisons with some classical Riemannian gradient-type methods and the exist-

ing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt

and the Riemannian manifold optimization library ROPTLIB are presented. Comparisons with

some latest infeasible methods for solving manifold optimization problems, which simplify the

constrained problem (1.2) by relaxing the constraints and iteratively diminish the degree of

infeasibility, and the resulting intermediate points of the generated sequence may not satisfy

the orthogonality constraints, are also provided to show the merits of the proposed approach.

This paper is organized as follows. In Section 2, after presenting some basic geometric

properties of the product manifold in question, we derive the representation matrix formula of

Riemannian gradient and Hessian of the objective function, and then develop the corresponding

RTR method to solve the transformed Riemannian optimization problem on a product mani-

fold. Numerical examples and numerical comparisons are provided in Section 3. Finally, the

paper ends with concluding remarks in Section 4.

2. Framework of Riemannian Trust-Region Method

We first recall some notation, definitions and basic properties of Riemannian manifolds

used throughout the paper. The tangent space at x on a manifold M is denoted by TxM. For
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manifolds M and N and a mapping f : M → N , the differential of f at x ∈ M is denoted by

Df(x), which is a mapping from TxM to Tf(x)N . Given a smooth function f on a manifold

M ⊂ R
m×p, the symbol f̄ is the extension of f to the ambient Euclidean space R

m×p. The

symbols ∇ and grad denote the Euclidean and Riemannian gradients, respectively; i.e., given

a smooth function f on a manifold M ⊂ R
m×p, ∇ and grad act on f̄ and f , respectively. The

symbol Hess denotes the Riemannian Hessian. The concept of a retraction, which is a smooth

map from the tangent bundle of M into M that approximates the exponential map to the first

order, is given as follows.

Definition 2.1 ([3, Definition 4.1.1]). A retraction on a manifold M is a smooth mapping

R from the tangent bundle TM :=
⋃

v∈M TvM onto M with the following properties. Let Rv

denote the restriction of R to TvM.

1. Rv(0v) = v, where 0v denotes the zero element of TvM.

2. With the canonical identification T0vTvM ≃ TvM, Rv satisfies

DRv(0v) = idTvM,

where idTvM denotes the identity mapping on TvM.

Given a retraction R and a smooth manifold M, the general feasible algorithm framework

on the manifold can be expressed as

xk+1 = Rxk
(tkξk), (2.1)

where tk is the step size at the k-th iterate xk, and ξk ∈ Txk
M is a tangent vector.

2.1. Riemannian geometry of St(m, p,C)× St(n, p,C)

We next review the geometry of complex product manifold St(m, p,C)× St(n, p,C). Notice

that the dimension of the complex manifold St(m, p,C) and St(n, p,C) are given by [3, 17]

dimSt(m, p,C) = 2mp− p2, dimSt(n, p,C) = 2np− p2.

Then we have

dim
(

St(m, p,C)× St(n, p,C)
)

:= dimSt(m, p,C) + dimSt(n, p,C) = 2p(m+ n− p). (2.2)

Because the product manifold St(m, p,C) × St(n, p,C) is an embedded submanifold of Cm×p

×C
n×p, one may equip with St(m, p,C)× St(n, p,C) the induced Riemannian metric

g(V,P )

(

(ξ, η), (ξ′, η′)
)

:= Tr(ξHξ′) + Tr(ηHη′) (2.3)

for any (U, V ) ∈ St(m, p,C) × St(n, p,C) and (ξ, η), (ξ′, η′) ∈ T(V,P )St(m, p,C) × St(n, p,C),

and its induced norm ‖ · ‖. The tangent space T(U,V )St(m, p,C) × St(n, p,C) at (U, V ) ∈
St(m, p,C)× St(n, p,C) is written as

T(U,V )St(m, p,C)× St(n, p,C)

∼= TUSt(m, p,C)×TV St(n, p,C)

=
{

(ξ, η) ∈ C
m×p × C

n×p | ξHU + UHξ = ηHV + V Hη = 0
}

, (2.4)
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where “∼=” means the identification of two sets. In what follows, we denote by 〈·, ·〉 and ‖ · ‖
the Riemannian metric and its induced norm on St(m, p,C) × St(n, p,C), respectively. Under

the Riemannian metric (2.3), the orthogonal projection map onto the tangent space at (U, V )

acts on (B,C) ∈ C
m×p × C

n×p as

P(U,V )(B,C) =
(

PU (B),PV (C)
)

, (2.5)

where

PU (B) = B − U her(UHB), PV (C) = C − V her(V HC) (2.6)

are orthogonal projections onto TUSt(m, p,C) and TV St(n, p,C), respectively, and where

her(W ) := (W + WH)/2 denotes the Hermitian part of a square matrix W . In this paper

we adapt the well-known Cayley transform for our retraction [38]. We next introduce this re-

traction on the product manifold at the current point (U, V ) for descent direction (ξ, η), one

can refer to [38, 42] for more details. For all (ξ, η) ∈ T(U,V )St(m, p,C) × St(n, p,C), it is easy

to prove that (ξ, η) can be expressed as

(ξ, η) = (WξU, WηV ),

where

Wξ = ΠUξU
H − UξHΠU , ΠU = Im − 1

2
UUH ,

Wη = ΠV ηV
H − V ηHΠV , ΠV = In − 1

2
V V H .

This leads to a retraction on the product manifold

R(U,V )(ξ, η) :=
(

RU (ξ), RV (η)
)

, (2.7)

where

RU (ξ) =

(

Im − 1

2
Wξ

)−1(

Im +
1

2
Wξ

)

U, (2.8)

RV (η) =

(

In − 1

2
Wη

)−1(

In +
1

2
Wη

)

V, (2.9)

which are the so-called Cayley transforms. Wen and Yin [38] proposed a refinement for (2.8)

or (2.9) in the case of low-rank matrices. Rewriting Wξ as Wξ = PξQ
H
ξ ∈ C

m×m, where

Pξ = [ΠUξU ] ∈ C
m×2p and Qξ = [U − ΠUξ] ∈ C

m×2p, then apply the Sherman-Morrison-

Woodbury (SMW) formula

(

Im − 1

2
Wξ

)−1

=

(

Im − 1

2
PξQ

H
ξ

)−1

= Im +
1

2
Pξ

(

Im − 1

2
QH

ξ Pξ

)−1

QH
ξ , (2.10)

we can derive the following refinement scheme:

RU (ξ) = U + Pξ

(

Im − 1

2
QH

ξ Pξ

)−1

QH
ξ U. (2.11)

Similarly, we can obtain

RV (η) = V + Pη

(

In − 1

2
QH

η Pη

)−1

QH
η V, (2.12)
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where Pη = [ΠV ηV ] ∈ C
n×2p, Qη = [V − ΠV η] ∈ C

n×2p. Apparently, if p ≪ m/2 (p ≪ n/2),

inverting Im − QH
ξ Pξ/2 ∈ C

2p×2p (In − QH
η Pη/2 ∈ C

2p×2p) is much easier than inverting

Im − Wξ/2 ∈ C
m×m (In − Wη/2 ∈ C

n×n), hence, (2.11) ((2.12)) should be used to compute

RU (ξ) (RV (η)). However, if p ≥ m/2 (p ≥ n/2), then (2.11) ((2.12)) has no advantage over

(2.8) ((2.9)), if this is the case, we still use (2.8) ((2.9)) to compute RU (ξ) (RV (η)).

2.2. Riemannian gradient and Hessian

The Riemannian gradient and Hessian of an objective function are basic concepts in Rie-

mannian optimization, we next derive the representation matrix formulas of Riemannian gra-

dient and Hessian of the objective function in the problem (1.2). The Riemannian gradient,

gradf(U, V ), of an objective function f at (U, V ) ∈ St(m, p,C) × St(n, p,C) is defined to be

a unique tangent vector which satisfies

〈gradf(U, V ), (ξ, η)〉 = Df(U, V )[(ξ, η)], (ξ, η) ∈ T(U,V )St(m, p,C)× St(n, p,C).

The Hessian, Hessf(U, V ), of f at (U, V ) is defined to be a linear transformation of the tangent

space T(U,V ) ∈ St(m, p,C) × St(n, p,C) through the covariant derivative Ξξgradf of gradf

evaluated at (U, V )

Hessf(U, V )[(ξ, η)] := Ξ(ξ,η)gradf, (ξ, η) ∈ T(U,V )St(m, p,C)× St(n, p,C),

where the covariant derivative is defined through the Levi-Civita connection Ξ on St(m, p,C)×
St(n, p,C) ( [3, Definition 5.5.1]).

In what follows, let f be the objective function of the problem (1.2), i.e.,

f(U, V ) = −Tr(UHAV Θ), (U, V ) ∈ St(m, p,C)× St(n, p,C), (2.13)

and let f be a function with the same form as f defined in C
m×p × C

n×p, that is

f(U, V ) = −Tr(UHAVΘ), (U, V ) ∈ C
m×p × C

n×p. (2.14)

Thus, the objective function f(U, V ) are the restrictions of f onto St(m, p,C)×St(n, p,C), i.e.,

f = f |St(m,p,C)×St(n,p,C). Let (U, V ) ∈ St(m, p,C) × St(n, p,C), expression for the Riemannian

gradient is given in [30] as

gradf(U, V ) = P(U,V )

(

∇f(U, V )
)

, (2.15)

where ∇f(U, V ) is the Euclidean gradient of f on C
m×p × C

n×p, which is computed as

∇f(U, V ) :=
(

∇Uf(U, V ),∇V f(U, V )
)

(2.16)

with

∇U f̄(U, V ) = −AVΘ, ∇V f̄(U, V ) = −AHUΘ. (2.17)

Let (ξ, η) be a tangent vector at (U, V ) ∈ St(m, p,C) × St(n, p,C), by choosing the covari-

ant derivative Ξ(ξ,η)ζ := P(U,V )(Dζ(U, V )[(ξ, η)]) ([4, §5.3.3]), expression for the Riemannian

Hessian is given in [4, 28] as

Hessf(U, V )[(ξ, η)] = P(U,V )

(

D(gradf)(U, V )[(ξ, η)]
)

= P(U,V )

(

D(∇f)(U, V )[(ξ, η)] +DP(U,V )[(ξ, η)]
(

∇f(U, V )
)

)

, (2.18)
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where the Frechét derivative D(∇f)(U, V )[(ξ, η)] is written as

D(∇f)(U, V )[(ξ, η)] = (−AηΘ,−AHξΘ), (2.19)

and where

DP(U,V )[(ξ, η)]
(

∇f(U, V )
)

=
(

ξ her(UHAVΘ), η her(V HAHUΘ)
)

. (2.20)

Thus, we obtain a more concrete expression for Hessf(U, V )[(ξ, η)] acts on (ξ, η) as

Hessf(U, V )[(ξ, η)] =
(

PU

(

ξ her(UHAVΘ)−AηΘ
)

,PV

(

η her(V HAHUΘ)−AHξΘ
)

)

. (2.21)

We can derive an alternative representation of the Hessian Hessf by the following lemma.

Lemma 2.1 ([3, p. 42]). An equivalent form of the tangent space to St(m, p,C) × St(n, p,C)

at (U, V ) ∈ St(m, p,C)× St(n, p,C) is given by

T(U,V )St(m, p,C)× St(n, p,C)

=
{

(UE + U⊥F, V M + V⊥N) |E,M ∈ AH
p×p, F ∈ C

(m−p)×p, N ∈ C
(n−p)×p

}

,

where U⊥ is an m×(m−p) orthogonal matrix such that UUH+U⊥U
H
⊥ = Im, V⊥ is an n×(n−p)

orthogonal matrix such that V V H + V⊥V
H
⊥ = In and AH

p×p denotes the set of all p× p skew-

Hermitian matrices.

Note that for any M = Re(M) + i Im(M) ∈ AH
p×p, by MH = −M , we have Re(M)T =

−Re(M) and Im(M)T = Im(M). From Lemma 2.1, one can easy to check that the vector

space of all tangent vectors has a dimension of

2

(

p(p− 1)

2
+

p(p+ 1)

2

)

+ 2(m− p)p+ 2(n− p)p = 2p(m+ n− p). (2.22)

Let (ξ, η) ∈ T(U,V )St(m, p,C) × St(n, p,C) be the search direction at (U, V ) ∈ St(m, p,C) ×
St(n, p,C). From Lemma 2.1, (ξ, η) can be expressed by

(ξ, η) = (UE + U⊥F, V M + V⊥N), (2.23)

where E,M ∈ AH
p×p, F ∈ C(m−p)×p and N ∈ C(n−p)×p. Since Hessf(U, V )[(ξ, η)] is also

determined to be a unique tangent vector in T(U,V )St(m, p,C)×St(n, p,C), there exists unique

matrices EH ,MH ∈ AH
p×p, FH ∈ C(m−p)×p, NH ∈ C(n−p)×p, which satisfy

Hessf(U, V )[(ξ, η)] = (UEH + U⊥FH , V MH + V⊥NH). (2.24)

The following proposition shows that we can write EH ,MH , FH , NH by using E,M,F,N , whose

analytic framework can be regarded as an extension of the real case discussion in [5] to the

complex case. To make the paper self-contained, we briefly write the proof here.

Proposition 2.1. Let (U, V ) ∈ St(m, p,C)×St(n, p,C), U⊥ ∈ St(m−p, p,C) satisfy UHU⊥=0,

and V⊥ ∈ St(n − p, p,C) satisfy V HV⊥ = 0. If a tangent vector (ξ, η) ∈ T(U,V )St(m, p,C)

×St(n, p,C) is expressed as (2.23), then the Hessian Hessf(U, V ) of the objective function acts

on (ξ, η) as in (2.24) with

EH = skewH
(

E her(UHAVΘ)− UHAVMΘ− UHAV⊥NΘ
)

, (2.25)

FH = F her(UHAVΘ)− UH
⊥ AVMΘ− UH

⊥ AV⊥NΘ, (2.26)

MH = skewH
(

M her(V HAHUΘ)− V HAHUEΘ− V HAHU⊥FΘ
)

, (2.27)

NH = N her(V HAHUΘ)− V H
⊥ AHUEΘ− V H

⊥ AHV⊥FΘ, (2.28)

where skewH(W ) := (W −WH)/2 denotes the skew-Hermitian parts of a square matrix W .
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Proof. From (2.21) and (2.24), we have the following equality:

UEH + U⊥FH = PU

(

ξ her(UHAV Θ)−AηΘ
)

, (2.29)

VMH + V⊥NH = PV

(

η her(V HAHUΘ)−AHξΘ
)

. (2.30)

Note that UHPU (W ) = skewH
(

UHW
)

, UH
⊥ PU (W ) = UT

⊥W for any W ∈ Cn×p. Multiplying

Eq. (2.29) by UH from the left and using the relations UHU = Ip and UHU⊥ = 0 yields

EH = UHPU

(

ξ her(UHAVΘ)−AηΘ
)

= skewH
(

UHξ her(UHAVΘ)− UHAηΘ
)

. (2.31)

By substituting (2.23) into (2.31), and using the relation UHξ = UH(UE + U⊥F ) = E, we

obtain the expression of EH in (2.25), by using E and F . Similarly, we multiply (2.30) by UH
⊥

from the left to obtain

FH = UH
⊥ PU

(

ξ her(UHAVΘ)−AηΘ
)

= UH
⊥ ξ her(UHAVΘ)− UH

⊥ AηΘ. (2.32)

By substituting (2.23) into (2.32), and using the relation UH
⊥ ξ = UT

⊥(UE + U⊥F ) = F , we

obtain the expression of FH in (2.26). Based on the same analogy as used for the derivation of

(2.31) and (2.32), we also obtain the following equations using (2.30):

MH = skewH
(

V Hη her(V HAHUΘ)− V HAHξΘ
)

, (2.33)

NH = V H
⊥ η her(V HAHUΘ)− V H

⊥ AHξΘ. (2.34)

By substituting (2.23) into (2.33) and (2.34), and using the relation V Hη = M and V H
⊥ η = N ,

we obtain (2.27) and (2.28). �

2.3. Riemannian trust-region method for the problem (1.2)

Since we have already obtained the matrix expressions of gradf and Hessf , and some other

requisites for Riemannian optimization algorithms, we next develop the Riemannian trust-region

method for the problem (1.2). The trust-region method is an iterative method for minimizing

a cost function. At each iteration step a quadratic model of the cost function is obtained. This

model is assumed to be suitable in a region (the trust-region) around the current iterate. Then

an update is computed as the minimizer of the model in the trust region. The quality of the

trial update is evaluated; it is consequently accepted or rejected, and the trust-region radius is

adjusted.

In a Euclidean space E, if f : E → R and 〈·, ·〉 is the inner product in E, the trust-region

subproblem for finding the update ξ ∈ E for the current iterate xk ∈ E is given by

minimize
ξ∈E

m(ξ) = f(xk) +Df(xk)[ξ] +
1

2
D2f(xk)[ξ, ξ],

subject to : 〈ξ, ξ〉 ≤ ∆2
k,

where Df(xk)[z] denotes the directional derivative of the function f at xk in the direction of z,

∆k is the trust-region radius. The quality of the model m is evaluated by means of the quotient

ρk =
f(xk)− f(xk + ξ)

m(0)−m(ξ)
.

If ρ is close to 0 or negative, then the model is very inaccurate, i.e., the step must be rejected, and

the trust-region radius must be reduced. If ρ is larger but still small, the step is accepted, and
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the trust-region radius is reduced. Finally, if ρ is close to 1, then there is a good correspondence

between the model and the cost function; the step is accepted, and the trust-region radius can

be increased.

In the Riemannian trust-region method, at the k-th iteration (U (k), V (k)), by utilizing the

Taylor expansion on the product manifold, we consider the following trust-region subproblem

on the tangent space:

minimizeM(U(k),V (k))(ξ, η)

subject to : (ξ, η) ∈ T(U(k),V (k))St(m, p,C)× St(n, p,C),

‖(ξ, η)‖ =
√

〈(ξ, η), (ξ, η)〉 ≤ ∆(k),

(2.35)

where

M(U(k),V (k))(ξ, η) = f(U (k), V (k)) +
〈

gradf(U (k), V (k)), (ξ, η)
〉

+
1

2

〈

Hessf(U (k), V (k))[(ξ, η)], (ξ, η)
〉

.

From (2.23) and (2.24) we have

〈

Hessf(U (k), V (k))[(ξ, η)], (ξ, η)
〉

=
〈

(

U (k)E
(k)
H + U

(k)
⊥ F

(k)
H , V (k)M

(k)
H + V

(k)
⊥ N

(k)
H

)

,
(

U (k)E + U
(k)
⊥ F, V (k)M + V

(k)
⊥ N

)

〉

= Tr

(

E
(k)
H

H
E + F

(k)
H

H
F +M

(k)
H

H
M +N

(k)
H

H
N

)

,

where the matrices EH , FH ,MH , NH are given in Proposition 2.1. On the other hand, since

gradf(U (k), V (k)) ∈ T(U(k),V (k))St(m, p,C) × St(n, p,C), then from Lemma 2.1, there exists

unique matrices E
(k)
g , M

(k)
g ∈ AH

p×p, F
(k)
g ∈ C

(m−p)×p and N
(k)
g ∈ C

(n−p)×p such that

gradf(U (k), V (k)) can also be expressed as

gradf(U (k), V (k)) =
(

U (k)E(k)
g + U

(k)
⊥ F (k)

g , V (k)M (k)
g + V

(k)
⊥ N (k)

g

)

.

Similar to the proof of Proposition 2.1, the matrices Eg, Fg,Mg, Ng can be computed as follows:

Eg = − skewH(UHAVΘ), Fg = −UH
⊥ AVΘ,

Mg = − skewH(V HAHUΘ), Ng = −V H
⊥ AHUΘ.

Then we have

〈

gradf(U (k), V (k)), (ξ, η)
〉

=
〈

(

U (k)E(k)
g + U

(k)
⊥ F (k)

g , V (k)M (k)
g + V

(k)
⊥ N (k)

g

)

,
(

U (k)E + U
(k)
⊥ F, V (k)M + V

(k)
⊥ N

)

〉

= Tr
(

E(k)
g

H
E + F (k)

g

H
F +M (k)

g

H
M +N (k)

g

H
N
)

.

Therefore, the Riemannian trust-region subproblem (2.35) can be rewritten as

minimizeM(U(k),V (k))(E,F,M,N)

subject to : E,M ∈ AH
p×p, F ∈ C

(m−p)×p, N ∈ C
(n−p)×p,

Tr(EHE + FHF +MHM +NHN) ≤ ∆(k)2,

(2.36)
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where

M(U(k),V (k))(E,F,M,N) = f(U (k), V (k)) + Tr
(

E
(k)
t

H
E + F

(k)
t

H
F +M

(k)
t

H
M +N

(k)
t

H
N
)

with

E
(k)
t = E(k)

g +
1

2
E

(k)
H , F

(k)
t = F (k)

g +
1

2
F

(k)
H ,

M
(k)
t = M (k)

g +
1

2
M

(k)
H , N

(k)
t = N (k)

g +
1

2
N

(k)
H .

In order to provide a guidance for selecting the new trust-region radius ∆(k), we introduce

the quotient

ρ(k) =
f(U (k), V (k))− f

(

R(U(k),V (k))(ξ
(k), η(k))

)

M(U(k),V (k))(0(U(k),V (k)))−M(U(k),V (k))(ξ
(k), η(k))

,

which is also used to judge the acceptance or rejection of the candidate R(U(k),V (k))(ξ
(k), η(k))

with
(

ξ(k), η(k)
)

=
(

U (k)E(k) + U
(k)
⊥ F (k), V (k)M (k) + V

(k)
⊥ N (k)

)

and (E(k), F (k),M (k), N (k)) is a solution of (2.36). Due to the fact that M(U(k),V (k))(0(U(k),V (k)))

= f(U (k), V (k)), ρ(k) can be given by

ρ(k) =
f
(

R(U(k),V (k))(ξ
(k), η(k))

)

− f(U (k), V (k))

Tr
(

E
(k)
t

H
E(k) + F

(k)
t

H
F (k) +M

(k)
t

H
M (k) +N

(k)
t

H
N (k)

)

. (2.37)

As in the Euclidean space setting, the constants 1/4 and 3/4 are compared with the ratio ρ(k)

and the result determines the trust-region radius in the next iteration. Except that, the constant

ρ′ ∈ [0, 1/4) is used to measure ρ(k). The trust-region step will be taken as the next iteration if

ρ(k) > ρ′, and rejected, otherwise. Specifically, we present the Riemannian trust-region method

for the problem (1.2) as follows.

The trust-region subproblem (2.36) is solved iteratively and forms the inner iteration of Algo-

rithm 2.1. Note that (2.36) is a minimization problem in AH
p×p×C

(m−p)×p×AH
p×p×C

(n−p)×p

and there are varieties of iterative routines to approach the exact minimum to arbitrarily high

precision. Of particularly efficient and appropriate is the truncated conjugate-gradient (tCG)

method due to the following reasons:

1. The tCG is a Krylov subspace based solver in which if the initial guess E0 ∈ AH
p×p,

F 0 ∈ C
(m−p)×p,M0 ∈ AH

p×p, N0 ∈ C
(n−p)×p then the sequence {Ej}, {F j}, {M j}, {N j}

generated by tCG are always satisfy Ej ∈ AH
p×p, F j ∈ C(m−p)×p,M j ∈ AH

p×p and

N j ∈ C(n−p)×p, and hence the approximation

(ξj , ηj) =
(

U (k)Ej + U
(k)
⊥ F j , V (k)M j + V

(k)
⊥ N j

)

∈ T(U(k),V (k))St(m, p,C)× St(n, p,C).

2. The sequence {M(U(k),V (k))(E
j , F j ,M j, N j)} is strictly decreasing while

Tr
(

EjHEj + F jHF j +M jHM j +N jHN j
)

is strictly increasing, which makes the RTR a descent approach and guarantees the global

convergence (see [3, Proposition 7.3.2.]).
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Algorithm 2.1: Riemannian trust-region method for the problem (1.2).

1 Choose parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), ρ′ ∈ [0, 1/4), and an initial point

(V (0), P (0)) ∈ St(m, p,C)× St(n, p,C).

2 for k = 0, 1, 2, . . . do

3 Obtain (ξ(k), η(k)) = (U (k)E(k) + U
(k)
⊥ F (k), V (k)M (k) + V

(k)
⊥ N (k)) by solving the

trust-region subproblem (2.36). An approximate solution is given by the tCG

algorithm (Algorithm 2.2).

4 Evaluate ρ(k) from (2.37).

5 if ρ(k) < 1/4 then

6 ∆(k+1) = ∆(k)/4

7 else

8 if ρ(k) > 3/4 and ‖(ξ(k), η(k))‖ = ∆(k) then

9 ∆(k+1) = min(2∆(k), ∆̄)

10 else

11 ∆(k+1) = ∆(k)

12 end if

13 end if

14 if ρ(k) > ρ′ then

15 (U (k+1), V (k+1)) = R(U(k),V (k))(ξ
(k), η(k))

16 else

17 (U (k+1), V (k+1)) = (U (k), V (k))

18 end if

19 end for

The pseudo-code of tCG is presented in Algorithm 2.2 for completeness. Note that we use

indices in superscript without round brackets to denote the evolution of E,F,M,N within the

inner iteration, while superscripts with round brackets are used in the outer iteration. We

should point out that finding a nearly exact solution to the subproblem is neither necessary for

the overall convergence nor favourable in terms of computation speed. Actually, one can reduce

the computational cost of the trust-region algorithm without losing its fast local convergence

rate. This can be done by choosing a stopping criterion for the inner iteration (Algorithm 2.2)

based on the gradient of the cost function as in [2]. In this case, few inner tCG steps are

taken when the outer iterate is far away from the solution, i.e., when the gradient is large, and

more inner tCG steps are taken close to the solution (this behavior is illustrated in Fig. 2.1).

As suggested by Absil et al. [1–3], the algorithm can stop in either after a fixed number of

iterations, or by the criterion
√

Tr
(

RH
E,jRE,j +RH

F,jRF,j + SH
M,jSM,j + SH

N,jSN,j

)

≤ max
(

‖R0‖min(‖R0‖θ, κ)
)

, (2.38)

where κ, θ>0 are real parameters and

‖R0‖ =
√

Tr
(

RH
E,0RE,0 +RH

F,0RF,0 + SH
M,0SM,0 + SH

N,0SN,0

)

.

In our numerical testing, we set κ = 0.1 and θ = 1.

Remark 2.1. Fix k, and let (ξj , ηj) ∈ T(U(k),V (k))St(m, p,C)×St(n, p,C) be the j-th iterate of

the tCG method for the subproblem expressed by (2.35). In the existing RTR method, which
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Algorithm 2.2: The truncated CG (tCG) method for the trust-region subproblem

(2.36).

1 Initialization: set

E0 = 0, F 0 = 0, M0 = 0, N0 = 0;

RE,0 = E(k)
g , RF,0 = F (k)

g SM,0 = M (k)
g , SN,0 = N (k)

g ;
δE,0 = −RE,0, δF,0 = −RF,0, φM,0 = −SM,0, φN,0 = −SN,0.

2 for j = 0, 1, 2, . . . do

3 if a stopping criterion is satisfied then

4 Return E,F,M,N .

5 else

6 if Tr(δHE,jEδ,j + δHF,jFδ,j + φH
M,jMφ,j + φH

N,jNφ,j) ≤ 0 (negative curvature) then

7 Compute τ such that

E = Ej + τδE,j , F = F j + τδF,j , M = M j + τφM,j , N = N j + τφN,j

minimize M(U(k),V (k))(E,F,M,N) in (2.36) and satisfies

Tr(EHE + FHF +MHM +NHN) = ∆(k)2.

8 Return E,F,M,N .

9 else

10 Set

αj =
Tr
(

RH
E,jRE,j +RH

F,jRF,j + SH
M,jSM,j + SH

N,jSN,j

)

Tr
(

δHE,jEδ,j + δHF,jFδ,j + φH
M,jMφ,j + φH

N,jNφ,j

) .

11 Set Ej+1 = Ej + αjδE,j, F
j+1 = F j + αjδF,j, M

j+1 = M j + αjφM,j ,

N j+1 = N j + αjφN,j .

12 if Tr(Ej+1HEj+1 + F j+1HF j+1 +M j+1HM j+1 +N j+1HN j+1) ≥ ∆(k)2

(exceeded trust region) then

13 Compute τ ≥ 0 such that

E = Ej+τδE,j , F = F j+τδF,j, M = M j+τφM,j , N = N j+τφN,j

satisfies Tr(EHE + FHF +MHM +NHN) = ∆(k)2.

14 Return E,F,M,N .

15 else

16 Set RE,j+1=RE,j+αjEδ,j , RF,j+1=RF,j+αjFδ,j , SM,j+1=SM,j+αjMφ,j ,

SN,j+1 = SN,j + αjNφ,j

17 Set

βj+1=
Tr
(

RH
E,j+1RE,j+1+RH

F,j+1RF,j+1+SH
M,j+1SM,j+1+SH

N,j+1SN,j+1

)

Tr
(

RH
E,jRE,j +RH

F,jRF,j + SH
M,jSM,j + SH

N,jSN,j

) .

Set δE,j+1 = −RE,j+1 + βj+1δE,j, δF,j+1 = −RF,j+1 + βj+1δF,j,

φM,j+1 = −SM,j+1 + βj+1φM,j , φN,j+1 = −SN,j+1 + βj+1φN,j.

18 end if

19 end if

20 end if

21 end for
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Fig. 2.1. Number of inner tCG steps per trust-region step. The date matrix has elements taken from

Bai/qc324, Bai/dwg961a, Bai/dwg961b, Bai/mhd1280a, Bai/mhd1280b and Bai/qc2534, respectively.

Few tCG iterations are performed in the first trust-region steps and more in the neighborhood of the

solution.

directly solves the subproblem (2.35), (ξj , ηj) is updated as a tangent vector in T(U(k),V (k))

St(m, p,C)×St(n, p,C). While in Algorithm 2.2, we update Ej ∈ AH
p×p, F j ∈ R(m−p)×p,M j ∈

AH
p×p and N j ∈ R(n−p)×p, and where ξj = U (k)Ej + U

(k)
⊥ F j and ηj = V (k)M j + V

(k)
⊥ N j .

That is, if the tCG method for (2.35) terminates with Ej , F j ,M j, N j , we only have to compute

ξj = U (k)Ej + U
(k)
⊥ F j and ηj = V (k)M j + V

(k)
⊥ N j . We do not have to compute ξi and ηi for

i < j. Furthermore, in the existing RTR method, Hessf((U (k), V (k)))[(δj , φj)] for some

(δj , φj) =
(

U (k)δE,j + U
(k)
⊥ δF,j , V

(k)φM,j + V
(k)
⊥ φN,j

)

∈ T(U(k),V (k))St(m, p,C)× St(n, p,C)

must be computed at each iteration of the tCG method. However, the proposed Algorithm 2.2

needs only Eδ,j ∈ AH
p×p, Fδ,j ∈ C(m−p)×p,Mφ,j ∈ AH

p×p, Nφ,j ∈ C(n−p)×p, and where

Hessf
(

U (k), V (k)
)[

(δj , φj)
]

=
(

U (k)Eδ,j + U
(k)
⊥ Fδ,j , V

(k)Mφ,j + V
(k)
⊥ Nφ,j

)

.

Therefore, if the number of iterations in the inner tCG method needed for solving the trust-

region subproblems is sufficiently large, the proposed Algorithm 2.2 may have a shorter total

computational time than the existing RTR method which directly solves the subproblem (2.35).

These facts imply that our proposed method can reduce the computational cost.

Remark 2.2. Similar to unconstrained optimization in the Euclidean space,

‖gradf(U (k), V (k))‖ < ε

for some constant ε > 0 is a reasonable stopping criterion for Riemannian optimization ap-

proaches to the problem (1.2). In fact, the Lagrangian of the problem (1.2) is

L := L(U, V,Λ,Ω) = f(U, V )− 1

2
Tr
(

Λ(UHU − Ip)
)

− 1

2
Tr
(

Ω(V HV − Ip)
)

,
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where Λ,Ω are two Hermitian matrices representing the Lagrange multipliers. Then the first-

order optimality conditions in the Euclidean sense [38] are

UHU = Ip,
∂

∂U
L = ∇Uf − U∇Uf

H
U = 0,

V HV = Ip,
∂

∂V
L = ∇V f − V∇V f

H
V = 0

with Λ = ∇Uf
H
U,Ω = ∇V f

H
V . Under the conditions UHU = Ip and V HV = Ip, ∂L/∂U = 0

and ∂L/∂V = 0 are equivalent to gradf(U, V ) = 0, since it follows from (2.15), (2.5) and (2.6)

that:

PU (∇Uf) =

(

Im − 1

2
UUH

)

(

∇Uf − U∇Uf
H
U
)

=

(

Im − 1

2
UUH

)

∂

∂U
L,

PV (∇V f) =

(

In − 1

2
V V H

)

(

∇V f − V∇V f
H
V
)

=

(

In − 1

2
V V H

)

∂

∂V
L.

Thus, first-order critical points in the Euclidean sense can be interpreted as stationary points

in the Riemannian sense.

The convergence of the general RTR-tCG on a smooth Riemannian manifold has been

extensively analyzed in [2,3] where both the global convergence and local convergence rate have

been established under appropriate assumptions. Therefore, to understand the performance of

the RTR-tCG method for solving the problem (1.2), we only need to check these assumptions,

which leads to the following conclusions.

Theorem 2.1 (Global Convergence). Let {(U (k), V (k))} be a sequence of iterates generated

by Algorithms 2.1-2.2, and let an iterate be accepted if ρk > ρ′ with ρ′ ∈ (0, 1/4). Then

lim
k→∞

gradf(U (k), V (k)) = 0.

In fact, this conclusion is a straightforward result of [2, Theorem 4.4 and Corollary 4.6],

based on the fact that the cost function f(U, V ) and the adopted retraction as described in

Section 2 are smooth, and the involved product manifold St(m, p,C) × St(n, p,C) is a smooth

and compact Riemannian product manifold.

Theorem 2.2 (Local Convergence Speed). Consider Algorithms 2.1-2.2 with retraction

R as in Section 2 and stopping criterion in Algorithm 2.2 as in (2.38). Let (U∗, V ∗) ∈
St(m, p,C) ×St(n, p,C) be a nondegenerate local minimum of f , (i.e., gradf(U∗, V ∗) = 0

and Hessf(U∗, V ∗) is positive definite). Then there exists c > 0 such that for all sequences

{(U (k), V (k))} generated by the algorithm converging to (U∗, V ∗) and exists K > 0 such that

for all k > K,

dist
(

(U (k+1), V (k+1)), (U∗, V ∗)
)

≤ c
{

dist
(

(U (k), V (k)), (U∗, V ∗)
)

}min{θ+1,2}

with θ>0 as in (2.38), and dist defines the Riemannian distance on product manifold St(m, p,C)

×St(n, p,C) [3, p. 46].

Theorem 2.2 indicates that superlinear convergence takes place when the convergent point is

a nondegenerate local solution, which, in general, is not easy to identify in advance. However, in
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some special cases, the positive definiteness of the Hessian operator can be ensured at a global

solution of the problem (1.2). Actually, Sato et al. [30] have described in detail what will

happen if the Hessian of f is degenerate at a critical point in the case of A is real, U and

V T = V H are real orthogonal matrices, they proved that degenerate optimal solutions form

a submanifold diffeomorphic to the product of orthogonal groups and Stiefel manifolds of smaller

dimension. It then turns out that, according to whether the singular values are distinct or

degenerate, the optimal solution set is a discrete finite set or a disconnected submanifold. For

more details, we refer the reader to the [30, Propositions 6.1, 6.2] and their proofs. Especially,

they pointed out that if the largest p singular values σ1, · · · , σp of the given matrix A in question

are positive and all distinct, that is, σ1 > · · · > σp > 0, then, there are 2p global optimal

solutions (U∗, V ∗) to the problem (1.2) and the Hessian Hessf(U∗, V ∗) is positive definite on

each T(U∗,V ∗)St(m, p,R) × St(n, p,R). However, we should point out that, for real problems,

if the largest p singular values σ1, · · · , σp are distinct, then the global optimal solutions are

isolated. The equivalent minimizers are given by changing the signs of columns of the solution

matrix (U, V ). Therefore, they are disconnected. However, for complex problems, the equivalent

minimizers are given by (UD, V D), with D being the diagonal matrix with all diagonal entries

being norm 1. Therefore, the set of the equivalent minimizers is connected. Thus, the global

minimizers are not isolated.

3. Numerical Experiments

In this section, we report the numerical performance of the proposed algorithm for the prob-

lem (1.2). All the numerical experiments were completed on a personal computer with a Intel(R)

Core(TM)2 Quad of 2.33 GHz CPU and 3.00 GB of RAM equipped with MATLAB R2019b.

To illustrate the efficiency of our Algorithm 2.1, we first test it on the problem (1.2) with

large sparse data matrix A taken from the UF Sparse Matrix Collection [15], and then report

numerical comparison to show advantage of the proposed algorithm over MATLAB’s built-in

function svd or svds. We also compare our proposals with some classical Riemannian gradient-

type methods which are all applicable to the problem (1.2) with necessary modifications and

the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox

Manopt and the Riemannian manifold optimization ROPTLIB. Comparison with some latest

infeasible methods for solving manifold optimization are also given to show the merits of the

proposed approach.

In the implementation of Algorithm 2.1, we choose the standard parameters in the Manopt

Toolbox [10] for handling the Riemannian trust-region scheme, i.e., ∆ = dim(Mr), where Mr

denotes the underlying product manifold, ∆0 = ∆/8 and ρ′ = 0.1. The stopping criteria of

Algorithm 2.1 is set to be

‖gradf(U (k), V (k))‖ < ε

with ε = 10−6. All starting points U (0), V (0) were feasible and generated randomly by means of

U (0) = orth(randn(m, p) + irandn(m, p)) and V (0) = orth(randn(n, p) + irandn(n, p)). Here,

the notation follows MATLAB conventions.

3.1. Numerical performance of Algorithm 2.1 for large sparse matrices

In this subsection, we test the performance of our Algorithm 2.1 on the problem (1.2) with

the date matrix A using the 26 instances of large sparse matrices taken from the UF Sparse
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Table 3.1: Numerical results of 26 instances in the UF Sparse Matrix Collection.

Name Type m,n p CT. IT. T-INIT. Grad. Obj.

Bai/qc324 complex symmetric 324, 324 10 7.96 18 808 1.05×10−9
−62.27

Bai/dwg961a complex symmetric 961, 961 10 8.24 23 1169 4.55×10−8
−26648780.46

Bai/dwg961b complex symmetric 961, 961 10 24.48 26 3746 1.25×10−9
−30210.82

Bai/mhd1280a complex unsymmetric 1280, 1280 10 23.33 30 2230 4.23×10−9
−2257843.18

Bai/mhd1280b complex Hermitian 1280, 1280 10 9.03 23 781 1.86×10−10
−1946.30

Bai/qc2534 complex symmetric 2534, 2534 10 59.94 19 1131 2.93×10−11
−155.37

Bai/bfwa62 real symmetric 62, 62 10 1.44 18 644 1.76×10−8
−450.06

Bai/bfwa398 real symmetric 398, 398 10 10.69 20 2050 2.18×10−9
−553.44

Bai/ck400 real unsymmetric 400, 400 10 14.28 22 2797 7.33×10−9
−165.93

Bai/ck656 real unsymmetric 656, 656 10 18.32 23 2818 1.39×10−11
−165.93

Bai/bfwa782 real unsymmetric 782, 782 10 12.96 22 2122 4.18×10−8
−666.70

Bai/cdde6 real unsymmetric 961, 961 10 43.33 24 7774 8.31×10−8
−424.53

Bai/dw2048 real unsymmetric 2048, 2048 10 378.11 28 27404 2.33×10−7
−52.94

Bai/cryg2500 real unsymmetric 2500, 2500 10 14.57 23 1191 7.34×10−10
−435754.46

Bai/mhd3200a real unsymmetric 3200, 3200 10 14.61 27 880 1.48×10−8
−2938754.06

DRIVCAV/cavity08 real unsymmetric 1182, 1182 10 6.58 21 712 3.43×10−7
−1723.67

DRIVCAV/cavity10 real unsymmetric 2597, 2597 10 110.31 23 24819 2.10×10−7
−717.00

Boeing/bcsstk34 real symmetric 588, 588 10 18.46 33 2878 9.15×10−7
−1983593969.04

Boeing/msc01050 real symmetric 1050, 1050 10 4.79 24 576 5.93×10−7
−786358036.90

Boeing/msc01440 real symmetric 1440, 1440 10 22.34 23 2022 2.42×10−7
−72290559.82

Boeing/nasa1824 real symmetric 1824, 1824 10 15.26 28 1451 9.79×10−7
−891998058.97

Grund/b
−
dyn real unsymmetric 1089, 1089 10 92.60 57 18967 9.37×10−7

−292549.28

Grund/b2
−
ss real unsymmetric 1089, 1089 10 17.39 24 1686 1.50×10−8

−10687460.45

Grund/meg1 real unsymmetric 2904 2904 10 29.94 34 2280 4.97×10−7
−29050454.76

Grund/poli real unsymmetric 4008 4008 10 29.84 20 1250 4.43×10−11
−271.28

Grund/meg4 real symmetric 5860 5860 10 5.16 17 268 8.13×10−7
−11691510.64

Matrix Collection [15]. In addition, we fix p = 10 and Θ = diag{10, 9, . . . , 1}. Table 3.1 reports

the numerical results corresponding to this experiment, in which the term “CT.” denotes the

total computational times, “IT.” denotes the outer iteration numbers of Algorithm 2.1, “T-

INIT.” denotes the total number of inner iterations of Algorithm 2.2, “Grad.” denotes the

norm of Riemannian gradient ‖gradf(U (k), V (k))‖ and “Obj.” means the objective function

value −Tr(U (k)HAV (k)Θ) at the final iterate by implementing the proposed algorithm. From

Table 3.1, we see that our Algorithm 2.1 work very efficiently on solving the problem (1.2) for

different large sparse data matrix A with different problem sizes, and all the tested problems

achieve the required accuracy in terms of the gradient norm.

3.2. Numerical comparison of Algorithm 2.1 with MATLAB’s build-in function svd

or svds

In this subsection, we compared the singular value decomposition obtained by MATLAB’s

build-in svd or svds function with that obtained by the proposed Algorithm 2.1 to check the

accuracy of numerical solutions. We generated the matrix A ∈ Cm×n in question of the form

A = Ur diag(σ1, σ2, . . . , σn)V
T
r
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together with Θ = diag(p, . . . , 2, 1) and fixed p = 5, and where Ur ∈ Cm×n and Vr ∈ Cn×n

are orthonormal matrices with randomly chosen elements. Singular values σ1 ≥ · · · ≥ σn are

also chosen randomly from the interval [0, 100] under the condition that A has distinct singular

values among the largest p singular values of A. In this setting, the optimal solutions of the

problem (1.2) are given by Uopt := UrIn,p and Vopt := VrIn,p with

In,p =

(

Ip
0

)

∈ C
n×p.

Suppose we obtain factors Ũ , Σ̃ and Ṽ of the truncated singular value decomposition of A by

applying MATLAB’s svd function.

For different parameters m,n and the generated matrix A, let U∗ and V ∗ be matrices

obtained by performing the proposed Algorithm 2.1. To see the degree of accuracy, for different

stopping criteria ε of Algorithm 2.1, we compare the Frobenius norms

norm1 :=
∥

∥ŨHAṼ − UH
optAVopt

∥

∥, norm2 =
∥

∥U∗HAV ∗ − UH
optAVopt

∥

∥.

The comparison results are reported in Table 3.2, where “CT.” denotes the actual total com-

putation times. We can see from Table 3.2 that, the proposed Algorithm 2.1 can generate the

Table 3.2: Comparison results on accuracy of numerical solutions between Algorithm 2.1 and MAT-

LAB’s svd function.

m,n p
svd Algorithm 2.1

norm1 CT. ε norm2 CT.

2000, 10 5 1.57 × 10−13 0.157

10−2 3.36×10−4 0.423

10−4 5.40×10−8 0.640

10−6 1.05×10−13 0.719

10−8 4.52×10−12 1.010

4000, 20 5 2.22 × 10−13 0.996

10−2 5.0×10−4 0.821

10−4 3.46×10−6 1.150

10−6 5.02×10−8 1.184

10−8 5.74×10−12 1.801

8000, 30 5 2.14 × 10−13 6.402

10−2 1.91×10−3 1.216

10−4 3.38×10−10 1.894

10−6 5.47×10−8 2.423

10−8 1.35×10−13 2.858

12000, 40 5 9.41 × 10−14 10.062

10−2 4.83×10−5 3.212

10−4 2.52×10−8 4.083

10−6 3.52×10−11 4.862

10−8 2.76×10−12 5.703

15000, 50 5 2.39 × 10−13 35.299

10−2 4.56×10−5 6.871

10−4 8.82×10−10 5.278

10−6 1.40×10−10 6.508

10−8 1.34×10−12 6.804
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Table 3.3: Errors of the largest p singular values generated by MATLAB’s svds function and Algo-

rithm 2.1 of 10 instances in the UF Sparse Matrix Collection.

Name Type m,n p Error

Bai/qc324 complex symmetric 324, 324 10 1.01×10−12

Bai/dwg961a complex symmetric 961, 961 10 2.08×10−9

Bai/dwg961b complex symmetric 961, 961 10 3.80×10−10

Bai/mhd1280a complex unsymmetric 1280, 1280 10 2.99×10−10

Bai/mhd1280b complex Hermitian 1280, 1280 10 7.33×10−13

Bai/qc2534 complex symmetric 2534, 2534 10 1.78×10−13

Bai/bfwa62 real symmetric 62, 62 10 5.72×10−12

Bai/bfwa398 real symmetric 398, 398 10 2.66×10−11

Bai/ck400 real unsymmetric 400, 400 10 1.28×10−10

Bai/ck656 real unsymmetric 656, 656 10 1.09×10−11

largest p singular values of each A with comparable accuracy as those generated by MATLAB’s

svd function, and the performance of Algorithm 2.1 slightly better than that of svd in terms

of computational time, this phenomenon becomes more pronounced as the problem sizes in-

crease. Table 3.3 reported the errors of the largest p singular values of each A generated by

Algorithm 2.1 and MATLAB’s svds function, which is best suited for finding a few singular

values of a large sparse matrix. In Table 3.3, the given large sparse data matrices A taken from

the UF Sparse Matrix Collection, together with Θ = diag(p, . . . , 2, 1) and fixed p = 10.

3.3. Numerical comparison of Algorithm 2.1 with Riemannian gradient-type

methods and limited-memory Riemannian BFGS algorithms

To show the efficiency of Algorithm 2.1, in this subsection, we compare it with the existing

Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt [10]

and the Riemannian manifold optimization library ROPTLIB [21–23] (denoted respectively by

RLBFGS-Manopt and LRBFGS-ROPTLIB), and some Riemannian gradient-based methods,

including OptStiefelGBB, which is a state-of-art algorithm proposed by Wen and Yin [38], and

Riemannian Dai’s nonmonotone conjugate gradient method adopted in [26], which is denoted

by RCG. We first introduce the iterative framework of the two compared Riemannian gradient-

based methods for solving the problem (1.2).

The OptStiefelGBB method [38] designed to solve the problem (1.2) use the Cayley trans-

formation (2.7)-(2.9) (or (2.7), (2.11)-(2.12) if p ≪ m/2 and p ≪ n/2) to construct the re-

traction, and update the iterated by using the following scheme starting in (U (0), V (0)) ∈
St(m, p,C)× St(n, p,C) with

(U (k+1), V (k+1)) = R(U(k),V (k))

(

tk(ξ
(k), η(k))

)

, (3.1)

where
(

ξ(k), η(k)
)

= −gradf
(

U (k), V (k)
)

∈ T(U(k),V (k))St(m, p,C)× St(n, p,C)

is the search direction and tk is the step size at the current iterate (U (k), V (k)). Similar to

Euclidean line search methods, tk is determined by inexact curvilinear search condition. Given
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ρ, ̺, δ ∈ (0, 1), the nonmonotone Armijo rules try to find the smallest integer h satisfying

f
(

R(U(k),V (k))

(

tk(ξ
(k), η(k))

))

≤ Ck + ρtk
〈

gradf(U (k), V (k)), (ξ(k), η(k))
〉

, (3.2)

where tk = γkδ
h and γk is an initial step size. Here, the reference value Ck+1 is a convex

combination of Ck and f(U (k+1), V (k+1)) and is calculated via

Ck+1 =
1

Qk+1

(

̺QkCk + f(U (k+1), V (k+1))
)

,

where C0 = f(U (0), V (0)), Qk+1 = ̺Qk+1 and Q0 = 1. It is well known that an initial step size

computed by the Barzilai-Borwein (BB) method often speeds up the convergence in Euclidean

optimization. Similarly and as in [38], we consider the following initial step sizes:

γ
(1)
k =

Tr(SH
u,k−1Su,k−1) + Tr(SH

v,k−1Sv,k−1)
∣

∣Tr(ZH
u,k−1Su,k−1) + Tr(ZH

v,k−1Sv,k−1)
∣

∣

(3.3a)

or

γ
(2)
k =

∣

∣Tr(SH
u,k−1Zu,k−1) + Tr(SH

v,k−1Zv,k−1)
∣

∣

Tr(ZH
u,k−1Zu,k−1) + Tr(ZH

v,k−1Zv,k−1)
, (3.3b)

where we take

(Su,k−1, Sv,k−1) = (U (k) − U (k−1), V (k) − V (k−1)),

(Zu,k−1, Zv,k−1) = gradf(U (k), V (k))− gradf(U (k−1), V (k−1)).

The Riemannian case of Dai’s nonlinear CG method (RCG) designed to solve the prob-

lem (1.2) use the same Cayley transformation as in OptStiefelGBB algorithm to construct the

retraction, and the same update scheme (3.1) starting in (U (0), V (0)) ∈ St(m, p,C)×St(n, p,C).

The search direction

(ξ(0), η(0)) = −gradf(U (0), V (0)),

(ξ(k), η(k)) ∈ T(U(k),V (k)) ∈ St(m, p,C)× St(n, p,C)

with k ≥ 1 is determined by

(ξ(k+1), η(k+1)) = −gradf(U (k+1), V (k+1)) + βk+1Ttk(ξ(k),η(k))(ξ
(k), η(k)), (3.4)

where tk is the step size, βk is a parameter that determines the property of the conjugate

gradient method, and T is a vector transport on St(n, p) [3], which is a smooth mapping from

the product of tangent bundles T(U,V )St(m, p,C)× St(n, p,C)⊕T(U,V )St(m, p,C)× St(n, p,C)

to the tangent bundle T(U,V )St(m, p,C) × St(n, p,C), where ⊕ is the Whitney sum. In (3.4),

the vector transport is constructed by the differentiated retraction as follows:

Tt(ξ,η)(ξ, η) =
((

Im − t

2
Wξ

)−2

ξ,

(

In − t

2
Wη

)−2

η

)

,

where

Wξ = PξQ
H
ξ ∈ C

m×m, Wη = PηQ
H
η ∈ C

n×n
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with

Pξ = [ΠUξ, U ], Qξ = [U,−ΠUξ], ΠU = Im − 1

2
UUH ,

Pη = [ΠV η, V ], Qη = [V,−ΠV η], ΠV = In − 1

2
V V H .

If p ≪ m/2 and p ≪ n/2, similarly and as in [26, 42], applying the SMW format (2.10), the

computation of Tt(ξ,η)(ξ, η) is replaced by its refined scheme

Tt(ξ,η)(ξ, η) =
(

Pξ

(

M1
ξ +

t

2
M2

ξM
3
ξ +

t

2

(

I2p −
t

2
M2

ξ

)−1

M2
ξM

3
ξ

)

,

Pη

(

N1
η +

t

2
N2

ηN
3
η +

t

2

(

I2p −
t

2
N2

η

)−1

N2
ηN

3
η

)

)

with

M1
ξ = QH

ξ U, M2
ξ = QH

ξ Pξ, M3
ξ =

(

I2p −
t

2
QH

ξ Pξ

)−1

QH
ξ U,

N1
η = QH

η V, N2
η = QH

η Pη, N3
η =

(

I2p −
t

2
QH

η Pη

)−1

QH
η V.

The step size tk is determined by the following nonmonotone line search condition instead of

the Wolfe conditions:

f
(

R(U(k),V (k))

(

tk(ξ
(k), η(k))

))

≤ max
{

f(U (k), V (k)), · · · , f(U (k−hk), V (k−hk))
}

+ δtk
〈

gradf(U (k), V (k)), (ξ(k), η(k))
〉

,

where hk = min{h − 1, k} and h is a positive integer. The parameter βk+1 is computed as

βk+1 ∈ [0, βD
k+1] with

βD
k+1 =

‖gradf(U (k+1), V (k+1))‖2
max

{

T,−
〈

gradf(U (k), V (k)), (ξ(k), η(k))〉
} ,

and

T =
〈

gradf(U (k+1), V (k+1)), Ttk(ξ(k),η(k))(ξ
(k), η(k))

〉

−
〈

gradf(U (k), V (k)), (ξ(k), η(k))
〉

.

Since convergence of first-order methods can slow down as the iterates approach a stationary

point, in our implementation, for the compared two gradient-based methods, we use the same

stopping criterion as that in [26, 38]: we let algorithms run up to K iterations and stop it at

iteration k < K if ‖gradf(U (k), V (k))‖ ≤ ε, or relk(U,V ) ≤ ǫuv and relkf ≤ ǫf , or

mean
{

rel
k−min{k,T}+1
(U,V ) , · · · , relk(U,V )

}

≤ 10ǫuv, mean
{

rel
k−min{k,T}+1
f , · · · , relkf

}

≤ 10ǫf

for some constants ǫ, ǫuv, ǫf ∈ (0, 1), and T,K ∈ N+, where

relk(U,V ) =
‖U (k+1) − U (k)‖√

m
+

‖V (k+1) − V (k)‖√
n

,

relkf =
|f(U (k+1), V (k+1))− f(U (k), V (k))|

|f(U (k), V (k))|+ 1
.
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The default values of ǫuv, ǫf , T and K are 10−10, 10−12, 5 and 20000, respectively. In addition,

all the parameters in the compared OptStiefel and RCG methods are chosen in a standard

way as in their corresponding literature. The largest number of iterations in the limited-

memory Riemannian BFGS algorithms in the MATLAB toolbox Manopt and ROPTLIB are

both modified to be 5000. Note that all the compared OptStiefel, RCG and RBFGS methods

only use a single inner iteration in every outer iteration.

In this example, we randomly generate the data matrix A using the MATLAB command

A = randn(m,n)+irandn(m,n), and select by Θ = diag{p, p−1, . . . , 1}. We compare our Algo-

rithm 2.1 with the compared OptStiefelGBB, RCG, RLBFGS-Manopt and LRBFGS-ROPTLIB

methods for solving the problem (1.2) with different problem size parameters (m,n, p). Our nu-

merical comparison results are reported in Table 3.4, where the terms “CT.”, “IT.”, “T-INIT.”,

“Grad.” and “Obj.” are the same as those in Table 3.1. We see from Table 3.4 that, all the

considered algorithms work very efficiently for solving the problem (1.2) for all tested prob-

lems, for most cases all the compared methods obtain same objective function values, while

the performance of Algorithm 2.1 is slightly better than that of the other algorithms in terms

of the number of iterations and the norm of the gradient. In addition, we present in Fig. 3.1

the evolutions of the gradient norm ‖gradf(V (k), P (k))‖ vs iteration to compare further the

efficiency of five algorithms. We see that, the gradient-based algorithms converge slowly when

the generated iterates are close to an optimal solution, while Algorithm 2.1 outperformed the

other competitors in general. We can also see from Table 3.4 that when the problem size is

large, Algorithm 2.1 uses much more computing time than that of the compared algorithms in

a single iteration. This is because Algorithm 2.1 involves an inner iteration, the tCG method

for the trust-region subproblem (2.36), it consumes a lot of time to get an approximate solution

to the subproblem, especially when the system dimension is large. Even though Algorithm 2.1

takes the longest time per iteration among the compared algorithms, the convergence is very

quick as a whole. In addition, we should point out from Table 3.4 that, the implementation of

limited-memory RBFGS in Manopt takes much more computing time than that of the imple-

mentation in ROPTLIB, which is consistent with the description given in the comments of the

rlbfgs.m in Manopt. That is because the default memory size of RBFGS in Manopt is 30

and the default vector transport is by projection. This implies Manopt’s implementation needs

to compute the vector transport by projection 30 times in every iteration, which can dominate

the computational cost. While the implementation of limited-memory RBFGS in ROPTLIB

uses the vector transport by parallelization which is much more efficient.

3.4. Numerical comparison of Algorithm 2.1 with infeasible methods for solving

manifold optimization

In this subsection, we compare the performance of Algorithm 2.1 with some latest infeasible

methods for solving manifold optimization which are all applicable to the problem (1.2), in-

cluding the splitting of orthogonality constraints (denoted by SOC) method [25], the proximal

alternating minimized augmented Lagrangian (denoted by PAMAL) method [6, 13] and the

extended proximal alternating linearized minimized augmented Lagrangian (denoted by EPAL-

MAL) method [8,43]. We first describe briefly how to apply these compared infeasible methods

for solving manifold optimization problems to the problem (1.2). For all infeasible methods,

we use indices in superscript without round brackets to denote the evolution of variables in the

outer iteration.
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Table 3.4: Comparison results of Algorithm 2.1 with OptStiefelGBB, RCG and Riemannian version of

limited-memory BFGS methods.

m,n, p CT. IT. T-INIT. Grad. Obj.

Algorithm 2.1

100,50,5

0.90 18 445 1.82×10−11
−233.86

OptStifelGBB 0.07 384 384 2.35×10−5
−233.86

RCG 0.10 437 437 1.77×10−6
−233.86

RLBFGS-Manopt 6.03 265 265 8.29×10−7
−233.86

LRBFGS-ROPTLIB 0.12 332 332 7.67×10−5
−233.86

Algorithm 2.1

300, 50, 15

4.14 20 1464 1.61×10−8
−2691.31

OptStifelGBB 1.79 1874 1874 3.79×10−4
−2691.31

RCG 3.49 2258 2258 6.96×10−5
−2691.31

RLBFGS-Manopt 39.17 1121 1121 5.14×10−6
−2691.31

LRBFGS-ROPTLIB 1.33 900 900 6.42×10−4
−2691.31

Algorithm 2.1

300, 100, 15

4.02 20 1408 1.97×10−8
−3034.01

OptStifelGBB 1.32 1346 1346 4.02×10−4
−3034.01

RCG 3.34 1837 1837 2.18×10−5
−3034.01

RLBFGS-Manopt 43.79 1205 1205 6.41×10−6
−3034.01

LRBFGS-ROPTLIB 1.45 880 880 6.03×10−4
−3034.01

Algorithm 2.1

500, 200, 20

13.77 22 2792 1.90×10−7
−7160.04

OptStifelGBB 9.55 3728 3728 1.51×10−3
−7160.04

RCG 30.40 6697 6697 5.75×10−5
−7160.04

RLBFGS-Manopt 133.24 2237 2237 2.10×10−5
−7160.04

LRBFGS-ROPTLIB 7.01 2144 2144 1.30×10−3
−7160.04

Algorithm 2.1

500, 200, 50

44.24 25 6280 1.30×10−8
−41109.87

OptStifelGBB 53.29 9526 9526 4.37×10−3
−41109.87

RCG 210.72 20000 20000 9.25×10−2
−41109.87

RLBFGS-Manopt 343.20 3571 3571 3.70×10−5
−41109.87

LRBFGS-ROPTLIB 18.62 2526 2526 5.12×10−3
−41109.87

Algorithm 2.1

1200, 300, 20

25.64 20 2281 3.37×10−8
−10432.26

OptStifelGBB 23.23 2406 2406 1.65×10−3
−10432.26

RCG 56.54 3435 3435 1.52×10−4
−10432.26

RLBFGS-Manopt 153.13 1952 1952 1.84×10−5
−10432.26

LRBFGS-ROPTLIB 18.53 1510 1510 1.70×10−3
−10432.26

Algorithm 2.1

1200, 400, 30

105.83 28 7006 2.33×10−10
−24183.40

OptStifelGBB 68.10 4868 4868 4.51×10−3
−24183.40

RCG 337.18 13915 13915 1.48×10−4
−24183.40

RLBFGS-Manopt 414.50 3694 3694 5.42×10−5
−24183.40

LRBFGS-ROPTLIB 43.57 2729 2729 3.70×10−3
−24183.40

Algorithm 2.1

1200, 500, 40

118.90 23 6561 9.70×10−8
−44322.81

OptStifelGBB 141.67 7202 7202 7.63×10−3
−44322.81

RCG 240.12 12270 12270 6.02×10−2
−44322.81

RLBFGS-Manopt 559.57 4132 4132 5.35×10−5
−44322.81

LRBFGS-ROPTLIB 109.38 5257 5257 4.02×10−3
−44322.81

Algorithm 2.1

1500, 300, 20

40.41 21 3154 4.95×10−7
−11364.50

OptStifelGBB 66.59 5906 5906 2.87×10−3
−11364.50

RCG 142.72 7333 7333 1.12×10−4
−11364.50

RLBFGS-Manopt 185.12 2123 2123 3.31×10−5
−11364.50

LRBFGS-ROPTLIB 27.20 2035 2035 2.13×10−3
−11364.50

Algorithm 2.1

1500, 400, 30

117.20 24 6869 2.74×10−9
−26041.22

OptStifelGBB 154.80 9604 9604 5.10×10−3
−26041.22

RCG 571.32 20000 20000 2.57×10−2
−26041.20

RLBFGS-Manopt 500.43 4111 4111 4.21×10−5
−26041.22

LRBFGS-ROPTLIB 58.38 3199 3199 3.74×10−3
−26041.22

Algorithm 2.1

1500, 500, 40

105.11 25 5057 5.20×10−7
−47618.65

OptStifelGBB 177.86 8250 8250 8.56×10−3
−47618.65

RCG 682.66 18038 18038 3.37×10−4
−47618.65

RLBFGS-Manopt 614.62 4063 4063 3.95×10−5
−47618.65

LRBFGS-ROPTLIB 68.65 2879 2879 6.52×10−3
−47618.65
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Fig. 3.1. Comparison among the performances of the five algorithms for different problem sizes. The

horizontal axis represents the iteration number k and the vertical axis represents the corresponding

norm log10 ‖gradf(V (k), P (k))‖.

By introducing auxiliary variables X and Y , the SOC method presented in [25] solves the

following reformulation of (1.2):

minimize: − Tr(UHAVΘ),

subject to: U = X, V = Y,

X ∈ St(m, p,C), Y ∈ St(n, p,C).

(3.5)

Using the ideas of alternating direction method of multipliers and the split Bregman method,

the SOC method solves (3.5) by alternately updating the variables (U, V,X, Y,Λ1,Λ2)
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Uk ∈ argmin
U

− Tr(UHAV k−1Θ) +
r

2

∥

∥U −Xk−1 + Λk−1
1

∥

∥

2
,

V k ∈ argmin
V

− Tr
(

UkHAVΘ
)

+
r

2

∥

∥V − Y k−1 + Λk−1
2

∥

∥

2
,

Xk ∈ argmin
X

r

2

∥

∥X − (Uk + Λk−1
1 )

∥

∥

2
, subject to X ∈ St(m, p,C),

Y k ∈ argmin
Y

r

2

∥

∥Y − (V k + Λk−1
2 )

∥

∥

2
, subject to Y ∈ St(n, p,C),

Λk
1 = Λk−1

1 + Uk −Xk,

Λk
2 = Λk−1

2 + V k − Y k.

Note that the X-subproblem and Y -subproblem correspond to the projection onto St(m, p,C)

and St(n, p,C), respectively, whose closed-form solutions can be derived by the singular value

decomposition (SVD) [25]. The U -subproblem and V -subproblem are both convex optimization

problem without constraints, which can be solved efficiently by deriving the KKT conditions.

Specially, we get the following updating of (Uk, V k, Xk, Y k) of any fixed k ∈ N:

Uk = Xk−1 − Λk−1
1 +

1

r
AV k−1Θ,

V k = Y k−1 − Λk−1
2 +

1

r
AHUkΘ,

Xk = argmax
XHX=Il

〈

X,Uk + Λk−1
1

〉

= P̃1Q̃
T
1 ,

Y k = argmax
Y HY=Il

〈

Y, V k + Λk−1
2

〉

= P̃2Q̃
T
2 ,

where Uk + Λk−1
1 = P̃1Σ̃1Q̃

T
1 and V k + Λk−1

2 = P̃2Σ̃2Q̃
T
2 are the reduced SVDs of Uk + Λk−1

1

and V k + Λk−1
2 , respectively. Note that the SOC method only uses a single inner iteration in

every outer iteration.

The PAMAL method presented in [13] can be viewed as a method that hybridizes the

augmented Lagrangian method and the proximal alternating minimization (denoted by PAM)

techniques [6]. By denoting Λ := (ΛT
1 ,Λ

T
2 )

T ∈ C
(n+2l)×l, the classical augmented Lagrangian

function associated with (3.5) is given by

L(U, V,X, Y ; Λ, ρ) = −Tr(UHAVΘ) + δSt(m,p,C)(X) + 〈Λ1, U −X〉+ ρ

2
‖U −X‖2

+ δSt(n,p,C)(Y ) + 〈Λ2, V − Y 〉+ ρ

2
‖V − Y ‖2, (3.6)

where ρ is a positive penalty parameter, δSt(m,p,C) and δSt(n,p,C) are two indicator functions

associated with the two complex Stiefel manifolds St(m, p,C) and St(n, p,C), respectively. The

augmented Lagrangian method for solving (3.6) is then given by

(Uk, V k, Xk, Y k) := argmin
U,V,X,Y

L(U, V,X, Y ; Λ̄k, ρk),

Λk+1
1 = Λ̄k

1 + ρk(Uk −Xk),

Λk+1
2 = Λ̄k

2 + ρk(V k − Y k),

(3.7)

where Λ̄k+1
t is the projection of Λk+1

t on {Λt : Λt,min ≤ Λt ≤ Λt,max}, t = 1, 2. The penalty

parameter is updated as

ρk+1 :=

{

ρk, if ‖Rk
i ‖∞ ≤ τ‖Rk−1

i ‖∞, i = 1, 2,

µρk, otherwise,
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where Rk
1 = Uk − Xk, Rk

2 = V k − Y k. Similar to [13], at the k-th outer iteration, the PAM

method is applied to solve the subproblem in (3.7) inexactly as follows, which can be viewed

as a proximal regularization of a three-block Gauss-Seidel method

Uk,j ∈ argmin
U

L(U, V k,j−1, Xk,j−1, Y k,j−1; Λ̄k, ρk) +
ck,j−1
1

2
‖U − Uk,j−1‖2,

V k,j ∈ argmin
V

L(Uk,j , V,Xk,j−1, Y k,j−1; Λ̄k, ρk) +
ck,j−1
2

2
‖V − V k,j−1‖2,

Xk,j ∈ argmin
X

L(Uk,j, V k,j , X, Y k,j−1; Λ̄k, ρk) +
ck,j−1
3

2
‖X −Xk,j−1‖2,

Y k,j ∈ argmin
Y

L(Uk,j , V k,j , Xk,j , Y ; Λ̄k, ρk) +
ck,j−1
4

2
‖Y − Y k,j−1‖2,

(3.8)

where the proximal parameters, ck,j−1
i , can be arbitrarily chosen as long as they satisfy 0 < c

≤ ck,j−1
i ≤ c̄ < ∞, k, j ∈ N, i = 1, . . . , 4, for some predetermined positive constants c and c̄.

We get the following updating of (V k,j , P k,j , Xk,j, Y k,j) of any fixed k ∈ N by KKT conditions:

Uk,j =
1

ρk + ck,j−1
1

(

ρkXk,j−1 − Λ̄k
1 + ck,j−1

1 Uk,j−1 +AV k,j−1Θ
)

,

V k,j =
1

ρk + ck,j−1
2

(

ρkY k,j−1 − Λ̄k
2 + ck,j−1

2 V k,j−1 +AHUk,jΘ
)

,

Xk,j = argmax
XHX=Ip

〈

X,
1

ρk + ck,j−1
3

(

ρkUk,j + Λ̄k
1 + ck,j−1

3 Xk,j−1
)

〉

= P̃3Q̃
T
3 ,

Y k,j = argmax
Y HY=Ip

〈

Y,
1

ρk + ck,j−1
4

(

ρkV k,j + Λ̄k
2 + ck,j−1

4 Y k,j−1
)

〉

= P̃4Q̃
T
4 ,

where

P̃3Σ̃3Q̃
T
3 =

1

ρk + ck,j−1
3

(

ρkUk,j + Λ̄k
1 + ck,j−1

3 Xk,j−1
)

,

P̃4Σ̃4Q̃
T
4 =

1

ρk + ck,j−1
4

(

ρkV k,j + Λ̄k
2 + ck,j−1

4 Y k,j−1
)

are the reduced SVDs. The inner iteration (3.8) is terminated when there exists Θk,j ∈
∂L(Uk,j , V k,j , Xk,j, Y k,j ; Λ̄k, ρk) satisfying [13]

‖Θk,j‖∞ ≤ ǫk, Uk,jHUk,j = Ip, V k,jHV k,j = Ip,

where the term Θk,j := (Θk,j
U ,Θk,j

V ,Θk,j
X ,Θk,j

Y ) has the explicit expression as follows:

Θk,j
U = −∇UL(U

k,j , V k,j−1, Xk,j−1, Y k,j−1; Λ̄k, ρk)− ck,j−1
1 (Uk,j − Uk,j−1)

+∇UL(U
k,j , V k,j , Xk,j, Y k,j ; Λ̄k, ρk)

= A(V k,j−1 − V k,j)Θ + ρk(Xk,j−1 −Xk,j) + ck,j−1
1 (Uk,j−1 − Uk,j),

Θk,j
V = −∇V L(U

k,j , V k,j , Xk,j−1, Y k,j−1; Λ̄k, ρk)− ck,j−1
2 (V k,j − V k,j−1)

+∇V L(U
k,j, V k,j , Xk,j, Y k,j ; Λ̄k, ρk)

= ρk(Y k,j−1 − Y k,j) + ck,j−1
2 (V k,j−1 − V k,j),
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Θk,j
X = ck,j−1

3 (Xk,j−1 −Xk,j),

Θk,j
Y = ck,j−1

4 (Y k,j−1 − Y k,j).

Zhu et al. [43] studied another algorithm called EPALMAL for nonconvex and nonsmooth

optimization with generalized orthogonality, which is also applicable to the problem (1.2). The

EPALMAL method is based on the augmented Lagrangian method and the proximal alternating

linearized minimization (denoted by PALM) method [8]. The difference between EPALMAL

and PAMAL is that they use different algorithms to minimize the augmented Lagrangian func-

tion inexactly. In particular, EPALMAL uses the PALM algorithm [8], while PAMAL uses

PAM [6]. By denoting Λ := (ΛT
1 ,Λ

T
2 )

T ∈ C
(m+n)×p, as suggested in [43], we consider the scaled

form of the augmented Lagrangian function associated with (3.5) as follows:

L(U, V,X, Y ; Λ̄, ρ) =
1

ρ
δSt(m,p,C)(X) +

1

ρ
δSt(n,p,C)(Y ) +H(U, V,X, Y ),

where

H(U, V,X, Y ) = −1

ρ
Tr(UHAVΘ) +

〈

Λ̄1

ρ
, U −X

〉

+
1

2
‖U −X‖2 +

〈

Λ̄2

ρ
, V − Y

〉

+
1

2
‖V − Y ‖2.

Similar to [43], at the k-th outer iteration, the PALMmethod is employed to find an approximate

minimizer of the scaled augmented Lagrangian function L(U, V,X, Y ; Λ̄k, ρk)

Uk,j ∈argmin
U

〈

U−Uk,j−1,∇UHk(U
k,j−1, V k,j−1, Xk,j−1, Y k,j−1)

〉

+
1

2
‖U−Uk,j−1‖2

B
k,j−1
1

,

V k,j ∈argmin
V

〈

V−V k,j−1,∇V Hk(U
k,j , V k,j−1, Xk,j−1, Y k,j−1)

〉

+
1

2
‖V−V k,j−1‖2

B
k,j−1
2

,

Xk,j∈argmin
X

1

ρk
δSt(m,p,C)(X) +Hk(U

k,j , V k,j , X, Y k,j−1) +
1

2
‖X −Xk,j−1‖2

Bk
3
,

Y k,j ∈argmin
Y

1

ρk
δSt(n,p,C)(Y ) +Hk(U

k,j , V k,j , Xk,j , Y ) +
1

2
‖Y − Y k,j−1‖2

Bk
4
,

(3.9)

where






















Bk,j−1
1 = γ1L

k,j−1
1 Im, γ1 > 1,

Bk,j−1
2 = γ2L

k,j−1
2 In, γ2 > 1,

Bk
3 = γ3Im, γ3 > 1,

Bk
4 = γ4In, γ4 > 1.

Here, Lk,j−1
1 and Lk,j−1

2 are the two global Lipschitz constants of ∇UHk(U, V
k,j−1, Xk,j−1,

Y k,j−1) and ∇V Hk(U
k,j , V,Xk,j−1, Y k,j−1), respectively. By simple calculation we have Lk,j−1

1

= Lk,j−1
2 = 1. For the subproblems regardingX and Y , we use the PAMmethod rather than the

PALM method since Hk(U
k,j , V k,j , X, Y k,j−1) and Hk(U

k,j , V k,j , Xk,j , Y ) are both quadratic

on X and Y . The updating schemes of (Uk,j , V k,j , Xk,j, Y k,j) can be get by following:

Uk,j = Uk,j−1 − 1

γ1L
k,j−1
1

∇UHk(U
k,j−1, V k,j−1, Xk,j−1, Y k,j−1)

= Uk,j−1 − 1

γ1

(

1

ρk
Λ̄k
1 + Uk,j−1 −Xk,j−1 − 1

ρk
AV k,j−1Θ

)

,
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V k,j = V k,j−1 − 1

γ2L
k,j−1
2

∇V Hk(U
k,j , V k,j−1, Xk,j−1, Y k,j−1)

= V k,j−1 − 1

γ2

(

1

ρk
Λ̄k
2 + V k,j−1 − Y k,j−1 − 1

ρk
AHUk,jΘ

)

,

Xk,j = argmax
XHX=Ip

〈

X,
1

1 + γ3

(

Uk,j +
1

ρk
Λ̄k
1 + γ3X

k,j−1

)〉

= P̃5Q̃
T
5 ,

Y k,j = argmax
Y HY=Ip

〈

Y,
1

1 + γ4

(

V k,j +
1

ρk
Λ̄k
2 + γ4Y

k,j−1

)〉

= P̃6Q̃
T
6 ,

where

P̃5Σ̃5Q̃
T
5 =

1

1 + γ3

(

Uk,j +
Λ̄k
1

ρk
+ γ3X

k,j−1

)

,

P̃6Σ̃6Q̃
T
6 =

1

1 + γ4

(

V k,j +
Λ̄k
2

ρk
+ γ4Y

k,j−1

)

are the reduced SVDs. The inner iteration (3.9) is terminated when there exists Θk,j ∈
∂L(Uk,j , V k,j , Xk,j, Y k,j ; Λ̄k, ρk) satisfying [43]

‖Θk,j‖∞ ≤ ǫk

ρk
, Uk,jHUk,j = Ip, V k,jHV k,j = Ip,

where Θk,j = (Θk,j
U ,Θk,j

V ,Θk,j
X ,Θk,j

Y ) is given by

Θk,j
U = −∇UHk(U

k,j−1, V k,j−1, Xk,j−1, Y k,j−1)−Bk,j−1
1 (Uk,j − Uk,j−1)

+∇UHk(U
k,j , V k,j , Xk,j , Y k,j)

=
1

ρk
A(V k,j−1 − V k,j)Θ + (γ1 − 1)(Uk,j−1 − Uk,j) + (Xk,j−1 −Xk,j),

Θk,j
V = −∇V Hk(U

k,j , V k,j−1, Xk,j−1, Y k,j−1)−Bk,j−1
2 (V k,j − V k,j−1)

+∇V Hk(U
k,j , V k,j , Xk,j , Y k,j)

= (γ2 − 1)(V k,j−1 − V k,j) + (Y k,j−1 − Y k,j),

Θk,j
X = Bk

3 (X
k,j−1 −Xk,j) = γ3(X

k,j−1 −Xk,j),

Θk,j
Y = Bk

4 (Y
k,j−1 − Y k,j) = γ4(Y

k,j−1 − Y k,j).

In our experiments, the parameters of the three infeasible methods are set as follows: in

the SOC method, we choose Λ0
1 = 0n×l,Λ

0
2 = 02l×l and the penalty parameter r = 300 as

recommended in [25]. Our numerical experiments show that the convergence rate of the SOC

method is not very sensitive to this parameter as long as it is greater than a certain value. In the

PAMAL method, parameters are set to be the same as in [13, p.B587], i.e., ǫk = (0.999)k, k ∈
N, Λ̄1

1 = 0n×l, Λ̄
1
2 = 02l×l, Λ̄t,min = −100, Λ̄t,max = 100, t = 1, 2, τ = 0.99, µ = 1.01 and c =

ck,ji = c̄ = 0.5 for all k, j, i. In the EPALMAL method, as recommended in [43], γ1 = γ2 = γ3 =

γ4 = 1.01, while parameters ǫk, Λ̄1
1, Λ̄

1
2, Λ̄p,min, Λ̄p,max, τ and µ are set to be the same as in the

PAMAL method. In particular, in both the PAMAL and EPALMAL methods, we set ρ1 = 50n

empirically, which works quite well in most cases for the tested problems with different problem

sizes. In addition, the relative errors of the objective function does not depend on the values of

ρ1 once the two methods converge, while the iteration numbers of the two methods do depend
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on the parameter ρ1. For all three methods, we use the same random orthogonal initial points

as those in Algorithm 2.1 and terminate the outer iteration when

|f(Uk, V k)− f(Uk−1, V k−1)|
max

{

1, |f(Uk−1, V k−1)|
} < 10−5 and max

{

‖Uk −Xk‖, ‖V k − Y k‖
}

< 10−2.

In this example, the data matrices A and Θ in (1.2) are generated as same as in that in the

last example. The numerical comparison results of Algorithm 2.1 and the three compared in-

feasible methods are reported in Table 3.5, where the terms “CT.”, “IT.”, “T-INIT.”, “Grad.”

and “Obj.” are the same as those in Table 3.4, the terms “FeasiU” and “FeasiV ” mean respec-

tively the feasibility ‖UkHUk − Ip‖ and ‖V kHV k − Ip‖ at the final iterate by implementing the

proposed algorithms. We also plot the evolutions of the objective function value f(U (k), V (k)),

vs. iterations for different problem sizes in Fig. 3.2. Based on the results reported in Table 3.5

and Fig. 3.2 and many other performed unreported tests which show similar patterns, we see

that our proposed Algorithm 2.1 outperformed all the compared infeasible methods in most

cases in terms of the computational time, the total numbers of iteration and the quality of the

solutions. In addition, it can be seen that for most cases all the compared methods obtain

similar objective function values. Notice that in many cases EPALMAL needs more inner it-

erations than PAMAL, especially with increase of k. This is mainly because EPALMAL uses

linearization in solving inner subproblems which usually needs more inner iterations to reach

certain accuracy.

Fig. 3.2. Comparison among the performances of the four algorithms for different problem sizes. The

horizontal axis represents the iteration number k and the vertical axis represents the corresponding

function value f(V (k), P (k)).
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Table 3.5: Comparison results of Algorithm 2.1 with EPALMAL, PALMAL and SOC methods.

m,n, p CT. IT. T-INIT. Grad. Obj. FeasiU FeasiV

Algorithm 2.1

50 30 3

0.375 15 204 2.79×10−7 -96.929 5.56×10−16 7.47×10−16

SOC 0.141 538 538 3.22×10−1 -96.828 1.75×10−4 1.75×10−4

PALMAL 0.084 145 549 4.40×100 -93.051 1.15×10−2 1.15×10−2

EPALMAL 0.439 172 2094 2.47×100 -95.852 1.14×10−2 1.15×10−2

Algorithm 2.1

100 50 5

1.266 14 350 1.24×10−8 -334.583 1.24×10−15 8.45×10−16

SOC 0.658 353 353 1.02×100 -333.911 7.13×10−5 7.11×10−5

PALMAL 0.485 197 660 6.95×100 -331.712 8.95×10−3 8.95×10−3

EPALMAL 6.361 259 8768 3.00×100 -337.086 8.93×10−3 8.93×10−3

Algorithm 2.1

150 50 5

1.461 15 472 2.34×10−8 -373.689 8.43×10−16 1.12×10−15

SOC 0.458 496 496 1.09×100 -372.667 1.04×10−4 1.04×10−4

PALMAL 0.537 207 684 7.20×100 -368.687 8.96×10−3 8.96×10−3

EPALMAL 6.411 220 7199 3.59×100 -374.841 8.94×10−3 8.95×10−3

Algorithm 2.1

200 50 5

1.323 16 407 3.61×10−9 -425.972 7.46×10−16 7.77×10−16

SOC 0.352 296 296 1.16×100 -424.884 1.34×10−4 1.34×10−4

PALMAL 0.572 221 634 8.66×100 -421.537 8.94×10−3 8.94×10−3

EPALMAL 11.373 286 11240 3.63×100 -429.298 8.93×10−3 8.93×10−3

Algorithm 2.1

250 80 5

2.575 19 734 4.66×10−11 -496.580 7.92×10−16 5.91×10−16

SOC 0.586 339 339 1.26×100 -494.739 1.37×10−4 1.37×10−4

PALMAL 1.039 188 998 8.47×100 -492.137 8.92×10−3 8.92×10−3

EPALMAL 10.210 197 6588 4.77×100 -498.010 8.89×10−3 8.89×10−3

Algorithm 2.1

300 100 5

2.171 17 574 1.02×10−11 -556.929 5.35×10−16 6.29×10−16

SOC 0.704 332 332 1.33×100 -554.737 1.75×10−4 1.75×10−4

PALMAL 1.546 249 1189 1.03×101 -549.478 8.89×10−3 8.89×10−3

EPALMAL 12.975 191 6260 5.45×100 -557.435 8.95×10−3 8.95×10−3

Algorithm 2.1

350 100 10

4.312 17 797 1.81×10−7 -2107.214 1.25×10−15 1.37×10−15

SOC 2.585 691 691 8.00×100 -2093.519 1.77×10−5 1.77×10−5

PALMAL 3.819 343 1508 1.44×101 -2103.491 6.31×10−3 6.31×10−3

EPALMAL 51.657 297 15879 9.44×100 -2117.996 6.31×10−3 6.31×10−3

Algorithm 2.1

400 150 10

6.195 19 954 4.28×10−8 -2397.133 7.09×10−16 1.17×10−15

SOC 3.869 721 721 8.55×100 -2380.523 2.21×10−5 2.21×10−5

PALMAL 6.661 356 2079 1.61×101 -2390.650 6.33×10−3 6.33×10−3

EPALMAL 65.248 279 15391 1.09×101 -2407.595 6.31×10−3 6.31×10−3

Algorithm 2.1

500 200 10

15.279 19 1553 8.18×10−9 -2717.906 1.71×10−15 8.72×10−16

SOC 7.756 695 695 9.12×100 -2701.082 3.08×10−5 3.08×10−5

PALMAL 11.479 362 2851 1.70×101 -2713.819 6.29×10−3 6.29×10−3

EPALMAL 130.314 254 14076 1.26×101 -2729.258 6.29×10−3 6.29×10−3

4. Conclusion

In this paper, we have developed a Riemannian trust-region method to solve the truncated

complex singular value decomposition problem, which can be transformed to a Riemannian

optimization problem on a complex product Stiefel manifold. Under our proposed framework,
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a new trust-region subproblem is constructed based on our expressions of the Hessian of the

objection function, a truncated conjugate gradient method has been proposed to solve the new

trust-region subproblem. Moreover, the developed algorithm converges globally with a fast rate,

which is important for data matrices with large sizes. In the numerical experiments part, nu-

merical comparisons with some other methods are provided to illustrate the performance of the

proposed algorithm, including some classical gradient-based algorithms, the Riemannian ver-

sion of limited-memory BFGS methods and some latest infeasible methods for solving manifold

optimization.
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