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Abstract

An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional

Laplacian on a unit ball of any dimension is proposed in this paper. The symmetric positive

definite linear system is retained explicitly which plays an important role in the numerical

analysis. And a sharp estimate on the algebraic system’s condition number is established

which behaves as N4s with respect to the polynomial degree N , where 2s is the fractional

derivative order. The regularity estimate of solutions to source problems of the fractional

Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces. Then

the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily

derived. Meanwhile, rigorous error estimates of the eigenvalues and eigenvectors are ob-

tained. Numerical experiments are presented to demonstrate the accuracy and efficiency

and to validate the theoretical results.

Mathematics subject classification: 65N35, 65N25.
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1. Introduction

Nonlocal operators have been an active area of research in different branches of mathematics.

These operators arise in many applications such as image processing, finance, electromagnetic

fluids, peridynamics, and porous media flow [7, 13, 23, 24, 33, 36], among which the fractional

Laplace operator is of common interests of mathematicians and physicists.
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In this work, we consider eigenvalue problems concerning the integral fractional Laplacian

(−∆)s with s ∈ (0, 1) on the unit ball of any dimension

{
(−∆)su = λu, xxx ∈ Bd,

u(xxx) = 0, xxx ∈ Rd \ Bd.
(1.1)

Here the fractional Laplacian is defined in singular integral [4]

(−∆)su(xxx) = C(d, s)

∫

Rd

u(xxx)− u(yyy)

|xxx− yyy|d+2s
dyyy, C(d, s) =

22ssΓ(s+ d/2)

πd/2Γ(1− s)
, xxx ∈ R

d. (1.2)

It can also be equivalently defined via a pseudodifferential operator of symbol ‖ξξξ‖2s in the

Fourier space. Indeed, for a function u of the Schwartz class,

(−∆)su(xxx) =
[
F

−1
(
‖ξξξ‖2sû(ξξξ)

)]
(xxx), (1.3)

where we denote by Ff or simply by f̂ the Fourier transform of any function f(xxx) ∈ L2(Rd),

and denote by F−1f̂ the inversion of the Fourier transform

f̂(ξξξ) = [Ff ](ξξξ) :=

∫

Rd

f(xxx)e−i〈ξξξ,xxx〉dxxx,

f(xxx) =
[
F

−1f̂
]
(xxx) :=

1

(2π)d

∫

Rd

f̂(ξξξ)ei〈ξξξ,xxx〉dξξξ.

This eigenvalue problem is closely related to fractional quantum mechanics such as the fractional

Schrödinger equation. In this regard, eigenfunctions of the fractional Laplacian correspond to

the energy states of the system being modeled [31]. Many researchers have shown their interest

in this kind of fractional problem from the physical, mathematical and computational point of

view. Most of existing studies focus on the theoretical research [9,15,19,22,26]. Kwaśnicki [30]

introduced the Weyl’s asymptotic law for the eigenvalues of the one-dimensional fractional

Laplace operator (−∆)s on the interval (−1, 1) with the zeros exterior boundary conditions:

The n-th eigenvalue λn is equal to (nπ/2 − (2 − 2s)π/8)2s + O(1/n). Chen et al. [14] and

DeBlassie [17] have derived the estimate for the n-th eigenvalue λn on a bounded convex domain

in Rd is (nπ/2)2s/2 ≤ λn ≤ (nπ/2)2s. Owing to the non-locality of the fractional Laplacian, it

is usually impossible to obtain analytically a closed expression for the eigenfunctions, and it is

also hard to precisely specify the behavior of an eigenfunction near the boundary of the unit

ball. This motivates researchers to carry out numerical studies on eigenvalue problems of the

fractional Laplacian. Borthagaray et al. [10] have studied the finite element approximation for

one- and two-dimensional eigenvalue problems of the fractional Laplacian in which it showed the

eigenfuncions belonged to Hs+1/2−ε for any ε > 0, and the conforming finite element method

exhibited a convergence rate of order 1 − ε. As mentioned above, the eigenfunctions of the

fractional Laplacian operator have only a limited regularity measured in usual Sobolev space,

and eigensolutions obtained by ordinary numerical methods have a very poor accuracy. Thus,

high order methods may be required to conquer this difficulty.

Some recent advances have been gained on related theoretical analysis and numerical com-

putations on the fractional differential equations [1, 18, 28, 29, 34, 38, 40, 42, 43]. However, the

regularity estimates of solutions to the high-dimensional fractional diffusion-reaction equation

are not yet available. Acosta et al. [2] presented the regularity of (1 − x2)−su(x) was r + 2s

when the regularity index for the right hand side function was r in weighted Sobolev spaces
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with 2s being the order of the fractional Laplacian, which yielded a higher convergence order

of the spectral-Galerkin method for the fractional diffusion equation in one-dimensional space.

But the analysis in [2] is for the fractional diffusion equation and cannot be extended to the

fractional elliptic equation with a reaction term. Zhang in [43] used the Fourier-Jacobi analysis

and regularity bootstrap to show that the regularity index for (1 − x2)−su(x) was 4s+ 1. For

the fractional diffusion equation on a disk, an exponential convergence rate was reported in [12]

when the righthand function was analytic. Hao et al. [27] proved the regularity index in radial

direction for (1 − ‖xxx‖2)−su(xxx) was 5s + 1 − ε with ε > 0 arbitrary small when the righthand

function was smooth enough for the two-dimensional fractional diffusion-reaction equation.

The intrinsic singularity of the fractional Laplace operator is one of the challenges of effi-

ciently computing the fractional Laplace problem on bounded domains. Fortunately, evidences

showed that in general the eigenfunctions of the fractional Laplacian scale as (1 − x2)s as

x→ ±1 [11,44]. Using the ball polynomials {P (s,n+d/2−1)
k (2‖xxx‖2 − 1)Y n

ℓ (xxx)} together with the

multiplier (1− ‖xxx‖2)s to mimic the singular behavior of the eigenfunctions, one may naturally

expect a spectrally high order of convergence rate of the spectral method for the eigenvalue

problems.

Our aim is to propose an efficient spectral Galerkin method for solving the eigenvalue prob-

lems of the fractional Laplacian on the ball of any dimension, and then to conduct a compre-

hensive numerical analysis. We start with the introduction to some Sobolev spaces, in which

the fractional Laplacian is proved to be self-adjoint and positive definite. Thus, eigenvalue

problems of the fractional Laplacian can be equivalently written in a symmetric weak formula-

tion, which plays an important role in the numerical analysis. Moreover, by adopting the ball

functions as the basis functions, an efficient implementation is given for this spectral Galerkin

method. Indeed, the stiffness matrix is identity owing to orthonormality of the basis function

with respect to the inner product induced by the fractional Laplace operators; while all entries

of the mass matrix can be explicitly evaluated via their analytical formula. Meanwhile, an elab-

orative analysis shows that the smallest numerical eigenvalue of the fractional Laplace operator

of order 2s behaves as O(1) while the largest one behaves as O(N4s). This indicates that the

condition number of the mass matrix increases at a rate of O(N4s), the result of which is in

consistent with eigenvalue problems of the Laplace operator. Then, the regularity estimate of

solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly inves-

tigated in weighted Sobolev spaces which helps establish the regularity of eigenfunctions of the

fractional Laplacian eigenvalue problem. In what follows, the orthogonal polynomial approxi-

mation on the unit ball is studied. Following the approximation theory of Babuška and Osborn

on the Ritz method for self-adjoint and positive-definite eigenvalue problems, rigorous error

estimates for the eigenvalue problems of the fractional Laplacian (1.1) for both the eigenvalues

and eigenfunctions are presented.

The main features of this paper are:

• The resulting linear system is symmetric positive definite, which helps estimate the error

of the Spectral-Galerkin approximation for the eigenvalues and eigenvectors. Moreover,

all entries of the mass matrix and stiffness matrix can be explicitly evaluated via their

analytical formula.

• The estimate on the algebraic system’s condition number is established which behaves as

N4s, where 2s is the fractional derivative order.

• The regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is analyzed
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thanks to the regularity of solutions to source problems of the fractional Laplacian in

weighted Sobolev spaces.

The remainder of this paper is organized as follows. We introduce necessary notations and

Sobolev spaces and review relevant polynomials/functions which especially include the spherical

harmonics and ball polynomials/functions in Section 2. In Section 3, we propose the spectral

approximation methods for eigenvalue problems of the fractional Laplacian on the unit ball

of any dimension. In Section 4, we consider the regularity theory and error estimates of the

spectral-Galerkin method for the fractional eigenvalue problems. Numerical results are shown

in Section 5 to verify the condition number and the theoretical convergence order.

2. Preliminaries

In this section, we first introduce some notations. Let Rd denote d-dimensional Euclidean

space. For xxx ∈ Rd, we write xxx = (x1, · · · , xd)t. The inner product of xxx,yyy ∈ Rd is denoted by

xxx · yyy or 〈xxx,yyy〉 :=
∑d

i=1 xiyi, and the norm of xxx is denoted by ‖xxx‖ :=
√
〈xxx,xxx〉 =

√
xxxxxxt, where

(·)t denotes matrix or vector transpose. The unit sphere Sd−1 and the unit ball Bd of Rd are

respectively defined by

S
d−1 :=

{
x̂xx ∈ R

d : ‖x̂xx‖ = 1
}
, B

d :=
{
xxx ∈ R

d : ‖xxx‖ ≤ 1
}
. (2.1)

Let D ⊆ R
d be an arbitrary domain and ω be a generic positive weight function which is

not necessary in L1(D). Denote by

(u, v)ω,D :=

∫

D

u(xxx)v(xxx)ω(xxx)dxxx

the inner product of L2
ω(D) with the norm ‖ · ‖ω,D. Whenever no confusion would arise, we

shall drop the subscripts ω if ω = 1 and drop the subscript D if D = Bd.

2.1. Sobolev spaces

For s ∈ R, it is well known that Hs(Rd) can be defined through the Fourier transform

[25, 32, 39]

Hs(Rd) =
{
u ∈

(
D(Rd)

)′
: ‖u‖s,Rd <∞

}
.

Its norm and seminorm for s ≥ 0 are defined by

‖u‖s,Rd =

(
1

(2π)d

∫

Rd

(1 + |ξξξ|2)s|û(ξξξ)|2dξξξ
)1/2

,

|u|s,Rd =

(
1

(2π)d

∫

Rd

|ξξξ|2s|û(ξξξ)|2dξξξ
)1/2

.

And Hs(Ω) can be derived from Hs(Rd) by extension whenever Ω is a bounded Lipschitz

domain [25, 32, 39]

Hs(Ω) =
{
u = U |Ω : U ∈ Hs(Rd)

}
, ‖u‖s = inf

U∈Hs(Rd)
U|Ω=u

‖U‖s,Rd .

The zero extension ũ of u defined on Ω is of particular interest [25, 32]

ũ|Ω = u and ũ|Rd\Ω = 0.
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Besides the zero extension induces a special type of Sobolev spaces

Hs
∗(Ω) =

{
u ∈

(
D(Ω)

)′
: ũ ∈ Hs(Rd)

}
,

its norm and seminorm are defined by

‖u‖s,∗ = ‖ũ‖s,Rd , |u|s,∗ = |ũ|s,Rd .

Actually, D(Ω) is dense in Hs
∗(Ω) for s ≥ 0 [39, Theorem 3.2.4/1], thus the completion of D(Ω)

in Hs
∗(Ω) is H

s
∗(Ω) itself. As a result, one can obtain by Parseval’s theorem that

(
(−∆)su, v

)
Rd =

(
(−∆)s/2u, (−∆)s/2v

)
Rd =

(
v, (−∆)su

)
Rd , u, v ∈ Hs

∗(Ω). (2.2)

Moreover, it gets from (1.3) together with Parseval’s theorem that

|v|s,∗ = ‖(−∆)s/2v‖Rd := |v|s. (2.3)

Lemma 2.1 ([25, Lemma 1.3.2.6]). Let ̟s := ̟s(xxx) = (1 − ‖xxx‖2)s. For all u ∈ Hs
∗(Ω),

0 ≤ s < 1, it holds that

‖u‖2s,∗ ≍ |u|2s,∗ ≍ |u|2s + ‖u‖2̟−2s, u ∈ Hs
∗(Ω). (2.4)

Hereafter, we denote by C1 and C2 some generic positive constants which are independent

of any function, discretization parameter but possibly dependent on the geometry of Ω. We

abbreviate a . b for a ≤ C1b and a ≍ b for C1b ≤ a ≤ C2b.

Owing to the fact that Hs(Ω) with s > 0 is compactly embedded in L2(Ω) and Hs
∗(Ω) ⊆

Hs(Ω), it is concluded with the following embedding theorem.

Theorem 2.1. Hs
∗(Ω) with s > 0 is compactly embedded in L2(Ω).

2.2. Jacobi polynomials

For parameters α, β > −1, the Jacobi weight function is defined by

ωα,β(z) = (1 − z)α(1 + z)β, z ∈ I := (−1, 1).

The Jacobi polynomials, denoted by {P (α,β)
k (z), k ≥ 0}, admit the following hypergeometric

representation on I:

P
(α,β)
k (z) =

(
k + α

k

)
2F1

(
−k, k+α+β+1;α+1;

1− z

2

)
, −k−α−β /∈ {1, 2, · · · , k}, (2.5)

where the hypergeometric function

2F1(a, b; c; z) =

∞∑

k=0

(a)k(b)k
(c)kk!

zk.

They are orthogonal to each other with respect to the weight function ωα,β

∫ 1

−1

P (α,β)
n (η)P (α,β)

m (η)ωα,β(η)dη =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
δnm. (2.6)
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Alternatively, Jacobi polynomials can be defined via the following Rodrigues’ formula:

P
(α,β)
k (z) =

(−1)k

2kk!
(1− z)−α(1 + z)−β∂kz

[
(1− z)α+k(1 + z)β+k

]
. (2.7)

Moreover, replacing z by −z in (2.7) immediately leads to the symmetric relation

P
(α,β)
k (−z) = (−1)kP

(β,α)
k (z). (2.8)

Then, we state some necessary results about Jacobi polynomials.

Lemma 2.2 ([5, p. 304]).

d

dz
P

(α,β)
k (z) =

1

2
(k + α+ β + 1)P

(α+1,β+1)
k−1 (z), (2.9)

(2k + α+ β + 1)P
(α,β)
k (z) = (k + α+ β + 1)P

(α+1,β)
k (z)− (k + β)P

(α+1,β)
k−1 (z), (2.10)

(
k +

α+ β

2
+ 1

)
(1 − z)P

(α+1,β)
k (z) = (k + α+ 1)P

(α,β)
k (z)− (k + 1)P

(α,β)
k+1 (z). (2.11)

Lemma 2.3. For µ ≥ 0, it holds that

∫ 1

−1

P
(α,β)
k (z)(1− z)α(1 + z)µ+βdz

= 2µ+α+β+1 (µ− k + 1)k Γ(k + α+ 1)Γ(µ+ β + 1)

k! Γ(k + µ+ α+ β + 2)
, (2.12)

where the Pochhammer symbol (a)n = a(a+ 1) · · · (a+ n− 1) for any a ∈ R and n ∈ N0.

Proof. By the Rodrigues’ formula (2.7) and integration by parts, one obtains

∫ 1

−1

P
(α,β)
k (z)(1− z)α(1 + z)µ+βdz

=
(−1)k

2kk!

∫ 1

−1

∂kz
[
(1− z)k+α(1 + z)k+β

]
(1 + z)µdz

=
1

2kk!

∫ 1

−1

(1− z)k+α(1 + z)k+β∂kz (1 + z)µdz

=
(µ− k + 1)k

2kk!

∫ 1

−1

(1 − z)k+α(1 + z)µ+βdz

= 2µ+α+β+1 (µ− k + 1)k Γ(k + α+ 1)Γ(µ+ β + 1)

k! Γ(k + α+ µ+ β + 2)
,

where we use (2.6) with m = n = 0 for the fourth equality sign. This completes the proof. �

2.3. Spherical harmonic

Let Pd
n denote the space of homogeneous polynomials of degree n in d variables, i.e.

Pd
n =

{
xxxkkk = xk1

1 x
k2
2 · · ·xkd

d : |kkk| = k1 + k2 + · · ·+ kd = n
}
.

Define Hd
n be the space of all harmonic polynomials of degree n

Hd
n :=

{
p ∈ Pd

n : ∆P (xxx) = 0
}
. (2.13)
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It is known that (cf. [16])

dimPd
n =

(
n+ d− 1

n

)
and adn := dimHd

n =

(
n+ d− 1

n

)
−
(
n+ d− 3

n− 2

)
.

The spherical harmonics are the restriction of elements in Hd
n on the unit sphere. Note that

for any Y ∈ Hd
n, we have

Y (xxx) = rnY (x̂xx), xxx = rx̂xx, r = ‖xxx‖, x̂xx ∈ S
d−1 (2.14)

in spherical-polar coordinates. It is evident that Y (xxx) is uniquely determined by its restriction

Y (x̂xx) ∈ Hd
n on the sphere. With a little abuse of notation, we still use Hd

n to denote the set of

spherical harmonics of degree n on the unite sphere Sd−1.

Spherical harmonics of different degrees are orthogonal with respect to the inner product

(f, g)Sd−1 :=

∫

Sd−1

f(x̂xx)g(x̂xx)dσ(x̂xx),

where dσ is the surface measure. Further, let {Y n
ℓ : 1 ≤ ℓ ≤ adn} be the orthonormal (real)

basis of Hd
n, n ∈ N0 such that

(Y n
ℓ , Y

m
ι )Sd−1 = δnmδℓι, 1 ≤ ℓ ≤ adn, 1 ≤ ι ≤ adm, m ≥ 0, n ≥ 0. (2.15)

Remark 2.1.

• For d = 1, there exist only two orthonormal harmonic polynomials: Y 0
1 = 1/

√
2 and

Y 1
1 = x/

√
2.

• For d = 2, the space H2
n has dimension a2n = 2 − δn,0 and the orthogonal basis of H2

n

can be given by the real and imaginary parts of (x1 + ix2)
n. Thus, in polar coordinates

xxx = (r cos θ, r sin θ)t ∈ R2, we simply take

Y 0
1 (xxx) =

1√
2π
, Y 1

1 (xxx) =
rn√
π
cos(nθ), Y 1

1 (xxx) =
rn√
π
sin(nθ), n ≥ 1.

• For d = 3, the dimensionality of the harmonic polynomial space of degree n is a3n = 2n+1.

In spherical coordinatesxxx = (r sin θ cosφ, r sin θ sinφ, r cos θ)t ∈ R3, the orthonormal basis

can be taken as

Y n
1 (xxx) =

1√
8π
P (0,0)
n (cos θ), Y n

2k(xxx)

=
rn

2k+1
√
π
(sin θ)kP

(k,k)
n−k (cos θ) cos(kφ), 1 ≤ k ≤ n,

Y n
2k+1(xxx) =

rn

2k+1
√
π
(sin θ)kP

(k,k)
n−k (cos θ) sin(kφ), 1 ≤ k ≤ n.

In spherical polar coordinates, the Laplace operator can be written as

∆ =
d2

dr2
+
d− 1

r

d

dr
+

1

r2
∆0, (2.16)

where r = ‖xxx‖. The Laplace-Beltrami operator ∆0 has spherical harmonics as eigenfunctions,

more precisely, for n = 0, 1, 2, . . . ,

∆0Y (x̂xx) = −n(n+ d− 2)Y (x̂xx), Y (x̂xx) ∈ Hd
n, x̂xx ∈ S

d−1. (2.17)

The following lemma shows that the spherical component of the Fourier transform of spher-

ical harmonics is related to the Bessel functions.
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Lemma 2.4 ([5, Lemma 9.10.2]). For any x̂xx, ξ̂ξξ ∈ Sd−1 and w ≥ 0, it holds that

∫

Sd−1

e−iw〈ξ̂ξξ,x̂xx〉Y n
ℓ (x̂xx)dσ(x̂xx) =

(2π)d/2(−i)n

w(d−2)/2
Jn+(d−2)/2(w)Y

n
ℓ (ξ̂ξξ), (2.18)

where Jν(z) is the Bessel function of the first kind of order ν > −1/2.

2.4. Ball polynomials/functions

For any α > −1, ball polynomials which are orthogonal polynomials on Bd are defined by

Pα,n
k,ℓ (xxx) = P

(α,n+d/2−1)
k (2‖xxx‖2 − 1)Y n

ℓ (xxx), xxx ∈ B
d, n, k ∈ N0, 1 ≤ ℓ ≤ adn. (2.19)

Note that the total degree of Pα,n
k,ℓ (xxx) is n+2k. They are orthogonal with respect to the weight

function ̟α(xxx) = (1 − ‖xxx‖2)α [16, Proposition 11.1.13]

∫

Bd

Pα,n
k,ℓ (xxx)Pα,m

j,ι (xxx)̟α(xxx)dxxx

= χα
k,nδm,nδk,jδℓ,ι, k, j,m, n ∈ N0, 1 ≤ ℓ ≤ adn, 1 ≤ ι ≤ adm, (2.20)

where

χα
k,n =

Γ(k + α+ 1)Γ(k + n+ d/2)

2(2k + α+ n+ d/2)Γ(k + 1)Γ(k + α+ n+ d/2)
.

Theorem 2.2 ([16, Theorem 11.1.5]). The ball polynomials are the eigenfunctions of the

differential operator

Kα
xxxP

α,n
k,ℓ (xxx) :=

(
−∆+∇ · xxx(2α+ xxx · ∇)− 2αd

)
Pα,n
k,ℓ (xxx) = γ(α)m Pα,n

k,ℓ (xxx),

where γ
(α)
m = m(m+ 2α+ d).

The following theorem indicates that the Sturm-Liouville operator Kα
xxx has an equivalent

form.

Theorem 2.3 ([41, Theorem 2.2]). For α > −1, it holds that

Kα
xxx = −(1− ‖xxx‖2)−α∇ · (1− ‖xxx‖2)α+1∇−∆0.

Lemma 2.5. For any integer ν ∈ N0, it holds that

(−∆)νPα,n
k,ℓ (xxx) = (−4)ν

(
k + n+ α+

d

2

)

ν

(
k + n+

d

2
− ν

)

ν

Pα+2ν,n
k−ν,ℓ (xxx). (2.21)

To be undistracted from the main results, we postpone the proof of Lemma 2.5 to Ap-

pendix A.

For any α > −1, ball functions on Bd are defined by

Q−α,n
k,ℓ (xxx) :=

{
̺αk,n

(
1− ‖xxx‖2

)α
Pα,n
k,ℓ (xxx), xxx ∈ Bd,

0, xxx 6∈ Bd,
k, n ∈ N0, 1 ≤ ℓ ≤ adn, (2.22)

where

̺αk,n =
Γ(k + 1)Γ(k + n+ α+ d/2)

Γ(k + α+ 1)Γ(k + n+ d/2)
.
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Lemma 2.6. For α > −1 and n, k ∈ N0, 1 ≤ ℓ ≤ adn, it holds that

∫

Rd

Q−α,n
k,ℓ (xxx) e−i〈ξξξ,xxx〉dxxx

=
(−i)n+2k2α(2π)d/2Γ(k+n+α+d/2)

ρd/2+αΓ(k + n+ d/2)
Jn+2k+d/2+α(ρ)Y

n
ℓ (ξ̂ξξ), (2.23)

where ξξξ = ρξ̂ξξ with ρ = ‖ξξξ‖, ξ̂ξξ ∈ Sd−1.

The proof of this lemma is given in Appendix A.

Based on the definition of the fractional Laplacian (1.3), we can obtain the following theorem.

Theorem 2.4. For s ≥ 0 and any integer ν ∈ [0, s+ d/2), it holds that

(−∆)s−νQ−s,n
k,ℓ (xxx) := σs,ν

k,nP
s−2ν,n
k+ν,ℓ (xxx), xxx ∈ R

d, (2.24)

where

σs,ν
k,n =

Γ(k + n+ s+ d/2)Γ(n+ k + d/2 + s− ν)

(−1)ν22ν−2sΓ(k + n+ d/2 + ν)Γ(k + n+ d/2)
. (2.25)

The proof of Theorem 2.4 is in Appendix A. Combining (2.2), (2.20) and Theorem 2.4 yields

the following theorem.

Theorem 2.5. For s > 0 and n, k ∈ N0, 1 ≤ ℓ ≤ adn, Q
−s,n
k,ℓ form a complete orthogonal system

in H
s/2
∗ (Bd). More precisely,

(
(−∆)s/2Q−s,n

k,ℓ , (−∆)s/2Q−s,m
j,l

)
Rd =

22s−1Γ2(k + n+ s+ d/2)

(2k + s+ n+ d/2)Γ2(k + n+ d/2)
δℓ,lδk,jδm,n. (2.26)

3. Spectral Approximation Methods

3.1. Approximation scheme and implementation of the spectral Galerkin method

The variational form of (1.1) reads: To find nontrivial (λ, u) ∈ R×H
s/2
∗ (Bd) such that

a(u, v) = λ b(u, v), v ∈ H
s/2
∗ (Bd), (3.1)

where a(·, ·) and b(·, ·) are the bilinear forms defined by

a(u, v) =
(
(−∆)s/2u, (−∆)s/2v

)
Rd , u, v ∈ H

s/2
∗ (Bd),

b(u, v) = (u, v), u, v ∈ L2(Bd).

It is obvious that a(·, ·) and b(·, ·) are symmetric, positive definite, continuous and coercive

on H
s/2
∗ (Bd)×H

s/2
∗ (Bd) and L2(Bd)× L2(Bd) respectively.

Remark 3.1. Problem (1.1) has an infinite sequence of eigensolutions {(λi, ψi)}∞i=1 with eigen-

values being ordered increasing, λ1 < λ2 ≤ λ3 ≤ · · · . All eigenvalues of (1.1) are real and

positive. The following lemma indicates that

λ1 >
22sΓ(s+ 1)Γ(d/2 + s)

Γ(d/2)
.
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Lemma 3.1. ∀u ∈ H
s/2
∗ (Bd)\{0}, it holds that

‖(−∆)s/2u‖Rd > 2s

√
Γ(s+ 1)Γ(d/2 + s)

Γ(d/2)
‖u‖̟−s > 2s

√
Γ(s+ 1)Γ(d/2 + s)

Γ(d/2)
‖u‖.

Proof. We first show that for n, k ∈ N0,

Γ(k + s+ 1)

Γ(k + 1)
=

(k + s)(k + s− 1) · · · (s+ 1)

k!
Γ(s+ 1) > Γ(s+ 1),

Γ(n+ k + s+ d/2)

Γ(n+ k + d/2)
=

(n+ k + d/2 + s− 1)(n+ k + d/2 + s− 2) · · · (d/2 + s)Γ(d/2 + s)

(n+ k + d/2− 1)(n+ k + d/2− 2) · · · d/2Γ(d/2)

>
Γ(d/2 + s)

Γ(d/2)
.

Then, for any

u(xxx) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

ûs,nk,ℓ̟
sP s,n

k,ℓ (xxx) ∈ H
s/2
∗ (Bd),

it is derived from (2.2), (2.20), Theorem 2.4 together with the Parseval’s identity that

‖(−∆)s/2u‖2
Rd =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

22sΓ(k + s+ 1)Γ(n+ k + d/2 + s)

Γ(k + 1)Γ(k + n+ d/2)

∣∣ûs,nk,ℓ

∣∣2∥∥P s,n
k,ℓ

∥∥2
̟s

>
22sΓ(s+ 1)Γ(d/2 + s)

Γ(d/2)

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

∣∣ûs,nk,ℓ

∣∣2∥∥P s,n
k,ℓ

∥∥2
̟s

=
22sΓ(s+ 1)Γ(d/2 + s)

Γ(d/2)
‖u‖2̟−s >

22sΓ(s+ 1)Γ(d/2 + s)

Γ(d/2)
‖u‖2,

which ends the proof. �

Define

WN,K = span

{√
2k + s+ n+ d/2

22s−1

Γ(k + n+ d/2)Q−s,n
k,ℓ (xxx)

Γ(k + n+ s+ d/2)
=: Q̃−s,n

k,ℓ (xxx) :

1 ≤ ℓ ≤ adn, 0 ≤ k ≤ K, 0 ≤ n ≤ N

}
, (3.2)

the Galerkin spectral approximation to (1.1) amounts to find a nontrivial eigenpair (λN,K , uN,K)

∈ R×WN,K such that

a(uN,K , v) = λN,Kb(uN,K , v), ∀v ∈ WN,K . (3.3)

Let us expand uN,K as follows:

uN,K(xxx) =
N∑

n=0

ad
n∑

ℓ=1

K∑

k=0

ûnk,ℓQ̃
−s,n
k,ℓ (xxx),

and denote

û =
(
û01, û

0
2, · · · , û0ad

0
, û11, û

1
2, · · · , û1ad

1
, · · · , ûN1 , ûN2 , · · · , ûNad

N

)T
, ûnℓ =

(
ûn0,ℓ, û

n
1,ℓ, · · · , ûnK,ℓ

)
,
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S = diag
{
(Sn

ℓ )0≤n≤N,1≤ℓ≤ad
n

}
, Sn

ℓ =
[
a
(
Q̃−s,n

k,ℓ , Q̃−s,m
j,l

)]
0≤k,j≤K

,

M = diag
{
(Mn

ℓ )0≤n≤N,1≤ℓ≤ad
n

}
, Mn

ℓ =
[
b
(
Q̃−s,n

k,ℓ , Q̃−s,m
j,l

)]
0≤k,j≤K

.

Then the algebraic eigen system associated with (3.3) can be written as

Sû = λN,KMû.

The following lemma indicates that the stiffness matrix S is diagonal. Thanks to the or-

thogonality of spherical harmonics, M is a block diagonal matrix.

Lemma 3.2. For k, j, n,m ∈ N0 and 1 ≤ ℓ ≤ adn, 1 ≤ ι ≤ adm, it holds that

(
(−∆)s/2Q̃−s,n

k,ℓ , (−∆)s/2Q̃−s,m
j,ι

)
Rd := δm,nδℓ,ιδk,j , (3.4)

(
Q̃−s,n

k,ℓ , Q̃−t,m
j,ι

)
:= ms,t,n

k,j δm,nδℓ,ι, (3.5)

where

ms,t,n
k,j =

(−1)k+j
√
(2k + s+ n+ d/2)(2j + t+ n+ d/2)Γ(n+ k + j + d/2)Γ(s+ t+ 1)

2s+tΓ(j + t− k + 1)Γ(k + s− j + 1)Γ(s+ t+ n+ k + j + 1 + d/2)
.

Proof. In view of (2.26), one readily gets (3.4). To prove (3.5), we first resort to the

following connection identity of two Jacobi polynomials with different indexes of the weight

function [5, Theorem 7.1.3]:

P (γ,β)
n (xxx) =

n∑

m=0

cγ,αn,mP
(α,β)
m (xxx),

cγ,αn,m =
(β + 1)n(γ − α)n−m(α+ β + 1)m(α+ β + 2m+ 1)(β + γ + n+ 1)m

(α+ β + 2)n(n−m)!(β + 1)m(α + β + 1)(α+ β + n+ 2)m
.

(3.6)

We now concentrate on the main body of the proof. By Rodrigues’ formula and integration

by parts, one can obtain

(
Q−s,n

k,ℓ , Q−t,m
j,ι

)

=

∫

Sd−1

Y n
ℓ (x̂xx)Y m

ι (x̂xx)dσ(x̂xx)

×
∫ 1

0

P
(s,n+d/2−1)
k (2r2 − 1)P

(t,m+d/2−1)
j (2r2 − 1)(1− r2)s+trn+m+d−1dr

=

(
1

2

)s+t+n+d/2+1

δm,nδℓ,ι

∫ 1

−1

P
(s,n+d/2−1)
k (ρ)P

(t,n+d/2−1)
j (ρ)(1− ρ)s+t(1 + ρ)n+d/2−1dρ

=

(
1

2

)s+t+n+d/2+1

δm,nδℓ,ι
(−1)k

2kk!

×
∫ 1

−1

dk

dρk
[
(1− ρ)s+k(1 + ρ)k+n+d/2−1

][
P

(t,n+d/2−1)
j (ρ)(1 − ρ)t

]
dρ

=
1

2s+t+n+d/2+1+kk!
δm,nδℓ,ι

∫ 1

−1

(1− ρ)s+k(1 + ρ)k+n+d/2−1 dk

dρk
[
P

(t,n+d/2−1)
j (ρ)(1 − ρ)t

]
dρ,

where the second equality sign is derived from variable substitution ρ = 2r2 − 1.
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To proceed, we recall the property of the hypergeometric function derived from [5, p. 123,

Exercise 43(b)]
d

dζ

[
ζc−1

2F1(a, b; c; ζ)
]
= (c− 1)ζc−2

2F1(a, b; c− 1; ζ),

which is equivalent to the following form:

d

dζ

[(
1− ζ

2

)c−1

2F1

(
a, b; c;

1− ζ

2

)]
= −c− 1

2

(
1− ζ

2

)c−2

2F1

(
a, b; c− 1;

1− ζ

2

)
. (3.7)

Using (3.7) repeatedly together with (2.5) yields that

dk

dρk
[
P

(t,n+d/2−1)
j (ρ)(1 − ρ)t

]
= (−1)k(j + t− k + 1)k(1 − ρ)t−kP

(t−k,n+d/2−1+k)
j (ρ).

As a result, one obtains that

∫ 1

−1

(1− ρ)s+k(1 + ρ)k+n+d/2−1 dk

dρk
[
P

(t,n+d/2−1)
j (ρ)(1 − ρ)t

]
dρ

= (−1)k(j + t− k + 1)k

∫ 1

−1

(1− ρ)s+t(1 + ρ)k+n+d/2−1P
(t−k,n+d/2−1+k)
j (ρ)dρ,

where P
(t−k,n+d/2−1+k)
j is the generalized Jacobi polynomial as discussed in [37, §4.22] whenever

t − k ≤ −1 and/or n + d/2 − 1 + k ≤ −1. Then, we use (3.6) to expand P
(t−k,n+d/2−1+k)
j as

∑j
m=0 c

t−k,s+t
j,m P

(s+t,n+d/2−1+k)
j . Owing to the orthogonality of Jacobi polynomials (2.6), it

holds that

(
Q−s,n

k,ℓ , Q−t,m
j,ι

)

=
(−1)k

2s+t+n+d/2+1+kk!

Γ(j + t+ 1)

Γ(j + t− k + 1)
δm,nδℓ,ι

×
∫ 1

−1

(1− ρ)s+t(1 + ρ)k+n+d/2−1ct−k,s+t
j,0 P

(s+t,n+d/2−1+k)
0 dρ

=
(−1)k+j

2s+t+n+d/2+1+kk!

Γ(j + t+ 1)

Γ(j + t− k + 1)

(n+ d/2 + k)j(s+ k − j + 1)j
(s+ t+ n+ k + d/2 + 1)jj!

h
s+t,n+d/2−1+k
0 δm,nδℓ,l

=
(−1)k+jΓ(j + t+ 1)Γ(n+ d/2 + k + j)Γ(s+ k + 1)Γ(s+ t+ 1)

2k!j!Γ(t+ j − k + 1)Γ(s+ k − j + 1)Γ(s+ t+ n+ k + d/2 + 1 + j)
δm,nδℓ,l.

Thus, (3.5) is an immediate consequence of the above equation. �

3.2. Estimate of the spectral condition number

The goal of this subsection is to give estimates on the smallest and greatest numerical

eigenvalues, and thus on the condition number of the mass matrix M .

Let {λiN,K , ψ
i
N,K}(N+1)2

i=1 be eigensolutions of (3.3) such that λ1N,K ≤ λ2N,K ≤ · · · ≤ λ
(N+1)2

N,K ,

here we take K = N in the finite dimensional space (3.2). The following lemma indicates that

each numerical eigenvalue satisfies λiN,N . N4s.

Lemma 3.3. For any uN ∈ WN,N , it holds that

‖(−∆)s/2uN‖2
Rd . N4s‖uN‖2. (3.8)
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Proof. For

uN =

N∑

n=0

ad
n∑

ℓ=1

N∑

k=0

ûs,nk,ℓQ
−s,n
k,ℓ (xxx) ∈ WN,N ,

it follows from (2.2), (2.20) and (2.24):

‖(−∆)s/2uN‖2
Rd =

N∑

n=0

ad
n∑

ℓ=1

N∑

k=0

∣∣ûs,nk,ℓ

∣∣2σs,0
k,n

∥∥P s,n
k,ℓ

∥∥2
̟s

.

N∑

n=0

ad
n∑

ℓ=1

N∑

k=0

ks(k + n)s
∣∣ûs,nk,ℓ

∣∣2∥∥P s,n
k,ℓ

∥∥2
̟s

. N2s
N∑

n=0

ad
n∑

ℓ=1

N∑

k=0

∣∣ûs,nk,ℓ

∣∣2∥∥P s,n
k,ℓ

∥∥2
̟s , (3.9)

where we have used the limit for asymptotic approximations [35, Eq. (1.66)]

lim
n→+∞

Γ(n+ α)

Γ(n)nα
= 1. (3.10)

On the other hand, we resort to the following inequality which is derived from [8, Corol-

lary 6.2] extended to high dimension that for any φN ∈ PN (Bd),

‖φN‖̟s . Ns‖φN‖̟2s . (3.11)

The detailed proof of (3.11) is postponed to Appendix B. Since ̟−suN ∈ PN (Bd), one obtains

‖uN‖2 = ‖̟−suN‖2̟2s & N−2s‖̟−suN‖2̟s = N−2s
N∑

n=0

ad
n∑

ℓ=1

N∑

k=0

∣∣ûs,nk,ℓ

∣∣2∥∥P s,n
k,ℓ

∥∥2
̟s .

Combining this with (3.9) leads to the desired result. �

Theorem 3.1. As N tends to infinity, it holds that

λ1N,N = O(1), λ
(N+1)2

N,N = O(N4s). (3.12)

Moreover, the spectral condition number of the mass matrix M satisfies

χN (M) =
λ
(N+1)2

N,N

λ1N,N

= O(N4s). (3.13)

Proof. By means of the min-max principle and Lemma 3.1, we get that

22sΓ(s+ 1)Γ(d/2 + s)

Γ(d/2)
< λ1 = min

u∈H
s/2
∗ (Bd)

‖(−∆)s/2u‖2
Rd

‖u‖2 ≤ min
u∈WN

‖(−∆)s/2u‖2
Rd

‖u‖2 = λ1N,N ,

λ1N,N = min
u∈WN

‖(−∆)s/2u‖2
Rd

‖u‖2 ≤
∥∥(−∆)s/2Q̃−s,n

0,ℓ

∥∥2
Rd∥∥Q̃−s,n

0,ℓ

∥∥2 =
1

m0,0

=
22sΓ(s+ 1)2Γ(2s+ n+ d/2 + 1)

(s+ n+ d/2)Γ(n+ d/2)Γ(2s+ 1)
=

√
π(2s+ n+ d/2)Γ(2s+ n+ d/2)Γ(s+ 1)

(s+ n+ d/2)Γ(n+ d/2)Γ(s+ 1/2)
,
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where the identity Γ(z)Γ(z+1/2) = 21−2z
√
π Γ(2z) is used for the last equality sign. This leads

to the conclusion λ1N,N = O(1).

In the sequel, it follows from the equality (3.8) that

λ
(N+1)2

N,N = max
u∈WN

‖(−∆)s/2u‖2
Rd

‖u‖2 . N4s.

To prove λ
(N+1)2

N,N = O(N4s), it suffices to verify that for

φN (xxx) =
Γ(2s+ n+ d/2 +N + 1)

Γ(n+ d/2 +N)
(1− ‖xxx‖2)sP (2s+1,n+d/2−1)

N (2‖xxx‖2 − 1)Y n
ℓ (xxx) ∈ WN,N ,

‖(−∆)s/2φN‖2
Rd = O(N8s+2), ‖φN‖2 = O(N4s+2), N → +∞.

In fact, thanks to (3.6), we obtain that

φN (xxx) = (1 − ‖xxx‖2)s
N∑

m=0

(2s+ n+ d/2 + 2m)Γ(2s+ n+ d/2 +m)

Γ(n+ d/2 +m)

× P (2s,n+d/2−1)
m (2‖xxx‖2 − 1)Y n

ℓ (xxx).

By the orthogonality relation of (2.15) and (2.6) together with (3.10)

‖φN‖2 =
N∑

m=0

(2s+ n+ d/2 + 2m)2Γ(2s+ n+ d/2 +m)2

Γ(n+ d/2 +m)2

×
∫ 1

0

P (2s,n+d/2−1)
m (2r2 − 1)P (2s,n+d/2−1)

m (2r2 − 1)(1− r2)2sr2n+d−1dr

=

(
1

2

)2s+n+d/2+1 N∑

m=0

(2s+ n+ d/2 + 2m)2Γ(2s+ n+ d/2 +m)2

Γ(n+ d/2 +m)2

×
∫ 1

−1

P (2s,n+d/2−1)
m (ρ)P (2s,n+d/2−1)

m (ρ)(1−ρ)2s(1+ρ)n+d/2−1dρ

=
N∑

m=0

(2s+ n+ d/2 + 2m)Γ(2s+ n+ d/2 +m)Γ(2s+m+ 1)

2Γ(n+ d/2 +m)Γ(m+ 1)
= O(N4s+2),

where the second equality sign is derived from variable substitution ρ = 2r2 − 1.

Meanwhile, by the connection relation (3.10) once again

φN (xxx) =

N∑

m=0

Γ(s+1+N−m)Γ(s+n+d/2+m)Γ(n+d/2+2s+1+N+m)(s+n+d/2+2m)

Γ(s+ 1)Γ(N −m+ 1)Γ(n+ d/2 +m)Γ(s+ n+ d/2 +m+ 1 +N)

× P (s,n+d/2−1)
m (2‖xxx‖2 − 1)Y n

ℓ (xxx)(1 − ‖xxx‖2)s,

which together with (2.4) and (2.26) gives that

‖(−∆)s/2φN‖2
Rd =

22s−1

Γ(s+1)2

N∑

m=0

Γ(s+1+N−m)2Γ(s+n+d/2+m)2Γ(n+d/2+2s+1+N+m)2

Γ(N−m+1)2Γ(n+d/2+m)2Γ(n+d/2+s+1+N+m)2

× Γ(m+ s+ 1)2(s+ n+ 2m+ d/2)

Γ(m+ 1)2
= O(N8s+2).

This completes the proof that λ
(N+1)2

N,N = O(N4s). And (3.13) is an immediate consequence

of (3.12). �



Spectral Methods for Eigenvalue Problems of the Integral Fractional Laplacian 15

4. Regularity Theory and Error Estimates

4.1. Regularity theory

We first introduce a weighted Sobolev space for our regularity analysis and error estimates,

then present our regularity results in weighted Sobolev spaces and their proofs.

Define the weighted space Bµ,ν
s (Bd) for any µ, ν > 0,

Bµ,ν
s (Bd) :=

{
u ∈ L2

̟s(Bd) : |u|Bµ,ν
s (Bd) <∞

}
,

furnished with the semi-norm

|u|2Bµ,ν
s (Bd) =

∥∥∇µ
0u
∥∥2
̟s + ‖u‖2ν,̟s , (4.1)

where

∇µ
0 =

{
(−∆0)

µ/2, µ is even,

(−∆0)
µ−1/2∇0, µ is odd,

and

‖u‖ν,̟s =





‖u‖̟s, ν = 0,
(
‖∇u‖2̟s+1 + ‖∇0u‖2̟s

)1/2
, ν = 1,∥∥(−∆+∇ · xxx(2α+ xxx · ∇)− 2αd

)l
u
∥∥
t,̟s , ν = 2l+ t ≥ 2, t ∈ {0, 1}.

The semi-norm |u|Bµ,ν
s (Bd) admits an equivalent norm

|u|2Bµ,ν
s (Bd) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
n2µ + (n+ k)2ν

]∣∣ũs,nk,ℓ

∣∣2χs
k,n, u =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

ũs,nk,ℓP
s,n
k,ℓ . (4.2)

The norm in this space is defined for any µ, ν > 0 as ‖ · ‖Bµ,ν
s (Bd), that is

‖u‖2Bµ,ν
s (Bd) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
1 + n2µ + (n+ k)2ν

]∣∣ûs,nk,ℓ

∣∣2χs
k,n. (4.3)

4.1.1. Regularity of solution to the source problem

In order to obtain the regularity estimate for the eigenfunction of the eigenvalue problem (1.1),

the regularity of solution to the following source problem of the fractional Laplacian in weighted

Sobolev spaces is firstly considered

{
(−∆)su+ c u = f, xxx ∈ Bd,

u(xxx) = 0, xxx ∈ Rd \ Bd,
(4.4)

where f is a smooth and given function, c ≥ 0 is a constant. A combination of (2.2), (2.3),

Lemma 2.1 as well as the Lax-Milgram theorem leads to the well-posedness of the problem (4.4)

shown in the following theorem.

Theorem 4.1. For the problem (4.4) with c ≥ 0 and f ∈ H−s
∗ (Bd), there exists a unique

solution u ∈ Hs
∗(B

d) such that ‖u‖s,∗ ≤ ‖f‖s,Rd, where H−s
∗ (Bd) is the dual space of Hs

∗(B
d)

with respect to the inner product (u, v)ω,Ω.
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The full regularity for the solution (1−‖xxx‖2)−su instead of u to the problem (4.4) is obtained

as stated in Theorem 4.2. For the proof, please see Appendix C.

Theorem 4.2. For the problem (4.4) with c = 0, if f ∈ Bµ,ν
s (Bd)

⋂
H−s

∗ (Bd) with µ, ν ≥ 0,

then

(1− ‖xxx‖2)−su ∈ Bµ+s,ν+2s
s (Bd).

However, the regularity result in above theorem does not hold for the fractional Laplace

equation (4.4) with c > 0. The following lemma plays an essential role in the analysis of

regularity for the Eq. (4.4) when c 6= 0.

Lemma 4.1. If v∈Bµ,ν
s (Bd) with µ, ν≥0, then (1−‖xxx‖2)sv ∈ Bµ,min(ν,3s+1−ε)

s (Bd) with ε > 0.

The proof of this lemma is given in Appendix C.

Theorem 4.3. For the problem (4.4) with c > 0, and f ∈ Bµ,ν
s (Bd)

⋂
H−s

∗ (Bd) with µ, ν ≥ 0,

we have for any arbitrary small ε > 0 that

(1− ‖xxx‖2)−su ∈ Bµ+s,min(ν,3s+1−ε)+2s
s (Bd).

Proof. Denote ũ = (1 − ‖xxx‖2)−su. Since f ∈ Hs
∗(B

d), it follows u ∈ L2
̟s(Bd) from Theo-

rems 4.1 and 2.4. Then it yields that

f̃ = f − cu ∈ B0,0
s (Bd).

Now we use the bootstrapping technique to lift the regularity of solution ũ. Due to the

conclusion of Theorem 4.2 and (−∆)su = f̃ , it yields

ũ ∈ Bmin(µ,0)+s,min(ν,0)+2s
s (Bd).

Thence by Lemma 4.1, we obtain

u ∈ Bmin(µ,0)+s,min(ν,0)+2s
s (Bd).

Repeating the above procedure if µ, ν > 0, we obtain

f̃ = f − cu ∈ Bmin(µ,s),min(ν,2s)
s (Bd),

and then by Theorem 4.2 and (−∆)su = f̃ , it yields that

ũ ∈ Bmin(µ,s)+s,min(ν,2s)+2s
s (Bd).

If we further have µ ≥ s and ν ≥ 2s, we repeat the above procedure and obtain

ũ ∈ Bmin(µ,2s)+s,min(ν,4s)+2s
s (Bd).

If ν ≥ 4s, by Lemma 4.1, it yields that

ũ ∈ Bmin(µ,2s)+s,min(ν,3s+1−ε)+2s
s (Bd).

If µ is large enough, we can repeat the above procedure k times and obtain

ũ ∈ Bmin(µ,ks)+s,min(ν,3s+1−ε)+2s
s (Bd)

until k ≥ µ/s. Thus by Lemma 4.1, we get the desired conclusion. �
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4.1.2. Regularity of eigenfunctions for the fractional eigenvalue problem

In this subsection, it is to obtain the regularity estimate for the eigenfunction of the eigenvalue

problem (1.1).

Theorem 4.4. Assume u is an eigenfunction of the fractional eigenvalue problem (1.1), we

have for any arbitrary small ε > 0 that

(1− ‖xxx‖2)−su ∈ B∞,5s+1−ε
s (Bd). (4.5)

Proof. For the problem (4.4) with c > 0 and f = 0, using the result of Theorem 4.3, it leads

to the desired conclusion (4.5). �

4.2. Error estimate

This subsection studies the orthogonal polynomial approximation on the unit ball. Then,

an optimal error estimate for the spectral-Galerkin method in weighted Sobolev space is given

at last.

Introduce the orthogonal projection Πs
N,K : Hs

∗(B
d) →WN,K such that

(
(−∆)s(Πs

N,Ku− u), v
)
Rd = 0, v ∈WN,K .

Owing to the orthogonality relation (2.20), ∀u ∈ Hs
∗(B

d) can be represented as

u(xxx) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

ûs,nk,ℓ (1− ‖xxx‖2)sP s,n
k,ℓ (xxx), ûs,nk,ℓ =

(
u, (1− ‖xxx‖2)sP s,n

k,ℓ

)
̟−s

χs
k,n

, (4.6)

and Πs
N,Ku is then a truncated series of u,

Πs
N,Ku(xxx) =

N∑

n=0

ad
n∑

ℓ=1

K∑

k=0

ûs,nk,ℓ (1 − ‖xxx‖2)sP s,n
k,ℓ (xxx). (4.7)

Lemma 4.2. For (1− ‖xxx‖2)−su ∈ Bµ,ν
s (Bd) with µ, ν ≥ 0, we have the following estimate:

∥∥u−Πs
N,Ku

∥∥
̟−s . (N−γ1 +K−γ2)|̟−su|Bγ1,γ2

s (Bd), (4.8)

where γ1 = µ+ s and γ2 = 2s+min(3s+ 1− ε, ν) with arbitrary small ε > 0.

Proof. It follows from (4.6), (4.7) and Parseval’s theorem that

∥∥Πs
N,Ku− u

∥∥2
̟−s =

(
∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

−
N∑

n=0

ad
n∑

ℓ=1

K∑

k=0

)
ûs,nk,ℓ (1− ‖xxx‖2)s

∥∥P s,n
k,ℓ

∥∥2
̟−s

=

(
∞∑

n=N+1

ad
n∑

ℓ=1

∞∑

k=0

+
∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=K+1

−
∞∑

n=N+1

ad
n∑

ℓ=1

∞∑

k=K+1

)
∣∣ûs,nk,ℓ

∣∣2χs,n
k

≤
(

∞∑

n=N+1

ad
n∑

ℓ=1

∞∑

k=0

+

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=K+1

)
∣∣ûs,nk,ℓ

∣∣2χs,n
k .
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Using the facts that

N2µ ≤ n2µ + (n+ k)2ν , n ≥ N + 1, k ≥ 0,

K2ν ≤ n2µ + (n+ k)2ν , n ≥ 0, k ≥ K + 1,
(4.9)

we have

∥∥Πs
N,Ku− u

∥∥2
̟−s ≤ (N−2µ +K−2ν)

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
n2µ + (n+ k)2ν

]∣∣ûs,nk,ℓ

∣∣2χs,n
k ,

which implies by the definition of the semi-norm (4.2) that

∥∥u−Πs
N,Ku

∥∥
̟−s . (N−µ +K−ν)

∣∣(1 − ‖xxx‖2)−su
∣∣
Bµ,ν

s (Bd)
. (4.10)

Above result together with the regularity estimate in Theorem 4.3 leads to (4.8). �

Lemma 4.3. For (1−‖xxx‖2)−su ∈ Bµ+s,ν+s
s (Bd) with µ, ν ≥ 0, we have the following estimate:

∣∣u−Πs
N,Ku

∣∣
s,∗

. (Ns−γ1 +Ks−γ2)|̟−su|Bγ1,γ2
s

, (4.11)

where γ1 = µ+ s and γ2 = 2s+min(3s+ 1− ε, ν) with arbitrary small ε > 0.

Proof. It follows from (4.6), (4.7), (2.2), (2.3), (2.22), (2.24) that

∣∣u−Πs
N,Ku

∣∣2
s,∗

=
∥∥(−∆)s/2

(
u−Πs

N,Ku
)∥∥2

Rd

=
(
(−∆)s

(
u−Πs

N,Ku
)
, u−Πs

N,Ku
)
Rd

≤
(

∞∑

n=N+1

ad
n∑

ℓ=1

∞∑

k=0

+

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=K+1

)
22sΓ(k + s+ 1)Γ(k + n+ s+ d/2)

Γ(k + 1)Γ(k + n+ d/2)

∣∣ûs,nk,ℓ

∣∣2χs
k,n.

Using the facts (4.9) and the estimate (C.2), we have

|u−Πs
N,Ku|2s,∗

≤ (N−2µ +K−2ν)

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

22sΓ(k + s+ 1)Γ(k + n+ s+ d/2)

Γ(k + 1)Γ(k + n+ d/2)

[
n2µ + (n+ k)2ν

]∣∣ûs,nk,ℓ

∣∣2χs
k,n

. (N−2µ +K−2ν)
∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
n2µ+2s + (n+ k)2ν+2s

]∣∣ûs,nk,ℓ

∣∣2χs
k,n,

which implies by the definition of the semi-norm (4.2) that

∣∣u−Πs
N,Ku

∣∣
s,∗

. (N−µ +K−ν)
∣∣(1− ‖xxx‖2)−su

∣∣
Bµ+s,ν+s

s
.

Above conclusion together with the regularity estimate in Theorem 4.3 leads to (4.11). �

Remark 4.1. Thanks to Lemmas 4.2 and 4.3, the convergence order of the spectral-Galerkin

method for source problems of the fractional Laplace equation (4.4) with c > 0 can be derived,

which is 5s+ 1 in L2
̟−s-norm and 4s+ 1 in Hs

∗-norm.
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Recall that a(·, ·) is symmetric, continuous and coercive on H
s/2
∗ (Bd) × H

s/2
∗ (Bd), b(·, ·)

is continuous on L2(Bd) × L2(Bd), and H
s/2
∗ (Bd) is compactly imbedded in L2(Bd). Thus,

based on the approximation theory of Babuška and Osborn on the Ritz method for self-adjoint

and positive-definite eigenvalue problems [6, pp. 697-700], we now arrive at the following main

theorem.

Theorem 4.5. Let {λiN,K} be the eigenvalues of (3.3) ordered non-decreasingly with respect

to i, repeated according to their multiplicities. Further let λk be an eigenvalue of (1.1) with the

geometric multiplicity q and assume that λk = λk+1 = · · · = λk+q−1. It holds that

0 ≤ λjN,K − λk . K−8s−2+ε, j = k, k + 1, . . . , k + q − 1,

where

E(λk) :=
{
ψ is an eigenfunction corresponding to λk with ‖(−∆)s/2ψ‖Rd = 1

}
.

Let ψj
N,K be an eigenfuction corresponding to λjN,K for j = k, k+1, . . . , k+ q−1, then there

holds

inf
u∈E(λk)

∥∥u− ψj
N,K

∥∥
s,∗

. K−4s−1+ε.

Let ψk be an eigenfuction corresponding to λk, there exist a function

vN ∈ span
{
ψk
N,K , · · · , ψk+q−1

N,K

}

such that

‖ψk − vN‖s,∗ . K−4s−1+ε.

5. Numerical Tests

In this section, we present several numerical examples to illustrate the accuracy and effi-

ciency of our spectral-Galerkin method and validate the theoretical results related. We first

present the numerical results on the condition number of the mass matrixM , then show numer-

ical approximation results to verify the expected convergence orders of numerical eigenvalues.

5.1. Condition number

In this subsection, we present in Fig. 5.1 the condition number versus N with various

fractional order s from 0.3 to 1.0 in logarithm-logarithm scale. The result shows that, for

each s, the condition number χN(M) grows algebraically with respect to N . In order to

investigate the growth tendency of the condition number numerically, we draw the condition

number together with the function N4s in logarithm-logarithm scale. The straight lines indicate

that χN (M) = O(N4s), which is predicted by Theorem 3.1.

5.2. Convergence order

At the beginning of this subsection, our results are compared with those available in the

literature. In [20], the authors provide sharp estimates on the eigenvalues of the fractional

Laplacian in the unit ball of any dimension; meanwhile, the finite element approximation for the

fractional Laplacian eigenvalue problem is studied in [10]. Table 5.1 reports the first eigenvalue
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Table 5.1: The first eigenvalue in the unit ball in R
2. Estimate from [20], upper bound obtained by

FEM in [10] with a meshsize h ∼ 0.02, results by our spectral-Galerkin method with N = 6.

s Ref. [20] Ref. [10] Present

0.005 1.00475 1.00480 1.00475

0.05 1.05095 1.05145 1.05095

0.25 1.34373 1.34626 1.34373

0.5 2.00612 2.01060 2.00612

0.75 3.27594 3.28043 3.27594

by our spectral-Galerkin method with N = 6 for various s and the numerical approximation to

λ1 computed by the methods in [20] and [10]. We can observe that these outcomes are in good

agreement.

On the other hand, in logarithm-logarithm scale, the approximation errors of the 4 smallest

eigenvalues with different fractional orders are presented in Figs. 5.2-5.4. Error plots reveal

that the computational eigenvalues converge at a rate of O(N−8s−2), which is consistent with

the result in Theorem 4.5.

Finally, we present some figures of the first two eigenfunctions in two dimensions with

different fractional order s = 0.6, 0.8, 1.0 and K = N = 10 in Figs. 5.5-5.7, respectively. Fig. 5.8

visualize of ψi
N,K with s = 0.8 and different n, k, ℓ in three dimensions.

(a) d = 1 (b) d = 2 (c) d = 3

Fig. 5.1. The condition number and polynomial function N4s versus N with different fractional orders

s = 0.3, 0.7, 1.0 in logarithm-logarithm scale.

(a) s = 0.2 (b) s = 0.8

Fig. 5.2. Approximation errors λi
N,K − λi(◦ : λ1,∇ : λ2,△ : λ3,� : λ4) versus the reference function

N−8s−2 with different fractional orders in logarithm-logarithm scale in one dimension.



Spectral Methods for Eigenvalue Problems of the Integral Fractional Laplacian 21

(a) s = 0.2 (b) s = 0.8

Fig. 5.3. Approximation errors λi
N,K − λi(◦ : λ1,∇ : λ2,△ : λ3,� : λ4) versus the reference function

N−8s−2 with different fractional orders in logarithm-logarithm scale in two dimensions.

(a) s = 0.2 (b) s = 0.8

Fig. 5.4. Approximation errors λi
N,K − λi(◦ : λ1,∇ : λ2,△ : λ3,� : λ4) versus the reference function

N−8s−2 with different fractional orders in logarithm-logarithm scale in three dimensions.

(a) s = 0.6 (b) s = 0.8 (c) s = 1.0

Fig. 5.5. The figures of ψ1
N,K for different fractional orders with N = K = 10 in two dimensions.

(a) s = 0.6 (b) s = 0.8 (c) s = 1.0

Fig. 5.6. The figures of ψ2
N,K corresponding to Y 1

1 =r cos θ for different fractional orders with N=K=10

in two dimensions.
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(a) s = 0.6 (b) s = 0.8 (c) s = 1.0

Fig. 5.7. The figures of ψ2
N,K corresponding to Y 1

2 =r sin θ for different fractional orders with N=K=10

in two dimensions.

(a) (n, k, ℓ) = (0, 0, 1) (b) (n, k, ℓ) = (0, 1, 1) (c) (n, k, ℓ) = (0, 2, 1)

(d) (n, k, ℓ) = (1, 0, 1) (e) (n, k, ℓ) = (1, 1, 1) (f) (n, k, ℓ) = (1, 2, 1)

(g) (n, k, ℓ) = (1, 0, 2) (h) (n, k, ℓ) = (1, 1, 2) (i) (n, k, ℓ) = (1, 2, 2)

Fig. 5.8. The figures of ψi
N,K corresponding to k and Y n

ℓ with s = 0.8 in three dimensions.

Appendix A. The Proofs in Section 2

A.1. The proof of Lemma 2.5

It is obvious that (2.21) holds for ν = 0. When ν = 1, one can obtain from (2.16), (2.17)

and (2.14) that

∆Pα,n
k,ℓ (xxx)

Y n
ℓ (xxx)

=
1

rn

[
∂2r +

d− 1

r
∂r −

n(n+ d− 2)

r2

] [
rnP

(α,n+d/2−1)
k (2r2 − 1)

]

=

[
∂2r +

2n+ d− 1

r
∂r

]
P

(α,n+d/2−1)
k (2r2 − 1),
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where the last equality sign is derived from a direct reduction. Making a change of variable

ρ = 2r2 − 1, one deduces by (2.9) that

[
∂2r +

2n+ d− 1

r
∂r

]
P

(α,n+d/2−1)
k (2r2 − 1)

= 8

[
(ρ+ 1)∂2ρ +

(
n+

d

2

)
∂ρ

]
P

(α,n+d/2−1)
k (ρ)

= 2

(
k + α+ n+

d

2

)[(
k + α+ n+

d

2
+ 1

)
(ρ+ 1)P

(α+2,n+d/2+1)
k−2 (ρ)

+ 2

(
n+

d

2

)
P

(α+1,n+d/2)
k−1 (ρ)

]
.

Note that a combination of (2.8) and (2.11), (2.10) leads to the following relations:

(
k +

α+ β

2
+ 1

)
(1 + z)P

(β,α+1)
k (z) = (k + α+ 1)P

(β,α)
k (z) + (k + 1)P

(β,α)
k+1 (z), (A.1)

(2k + α+ β + 1)P
(β,α)
k (z) = (k + α+ β + 1)P

(β,α+1)
k (z) + (k + β)P

(β,α+1)
k−1 (z). (A.2)

Thus, one can get from (2.10), (A.1) and (A.2) that

∆Pα,n
k,ℓ (xxx)

Y n
ℓ (xxx)

=
4(k + α+ n+ d/2)2
2k + α+ n+ d/2

[(
k+n+

d

2
−1

)
P

(α+2,n+d/2)
k−2 (ρ)+(k − 1)P

(α+2,n+d/2)
k−1 (ρ)

]

+
4(n+ d/2)(k + α+ n+ d/2)

2k + α+ n+ d/2

[(
k + α+ n+

d

2
+ 1

)
P

(α+2,n+d/2)
k−1 (ρ)

−
(
k − 1 + n+

d

2

)
P

(α+2,n+d/2)
k−2 (ρ)

]

=
4(k + α+ n+ d/2)(k + n+ d/2− 1)

2k + α+ n+ d/2

[(
k + α+ n+

d

2
+ 1

)
P

(α+2,n+d/2)
k−1 (ρ)

+ (k + α+ 1)P
(α+2,n+d/2)
k−2 (ρ)

]

= 4

(
k + n+

d

2
− 1

)(
k + n+ α+

d

2

)
P

(α+2,n+d/2−1)
k−1 (ρ),

which proves (2.21) in the case that ν = 1. For the integer ν > 1, we repeat the above process

and deduces that

(−∆)νPα,n
k,ℓ (xxx) = (−4)ν−1

(
k + n+ α+

d

2

)

ν−1

(
k + n+

d

2
− ν + 1

)

ν−1

∆P
α+2(ν−1),n
k−ν+1,ℓ (xxx)

= (−4)ν
(
k + n+ α+

d

2

)

ν

(
k + n+

d

2
− ν

)

ν

Pα+2ν,n
k−ν,ℓ (xxx).

This ends the proof. �

A.2. The proof of Lemma 2.6

We first note the fact that

∫

Bd

f(xxx)dxxx =

∫ 1

0

rd−1dr

∫

Sd−1

f(rx̂xx)dσ(x̂xx).
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Then, by the definition (2.22), a technical reduction and Lemma 2.4, one can obtain
∫

Bd

(1− ‖xxx‖2)αPα,n
k,ℓ (xxx) e−i〈ξξξ,xxx〉dxxx

=

∫ 1

0

(1− r2)αP
(α,n+d/2−1)
k (2r2 − 1)rn+d−1dr

∫

Sd−1

e−iρr〈ξ̂ξξ,x̂xx〉Y n
ℓ (x̂xx)dσ(x̂xx)

=

∫ 1

0

(1− r2)αP
(α,n+d/2−1)
k (2r2 − 1)rn+d−1 (2π)

d/2(−i)n

(ρr)d/2−1
Jn+d/2−1(rρ)dr Y

n
ℓ (ξ̂ξξ)

=
(2π)d/2(−i)n

ρd/2−1

[∫ 1

0

(1 − r2)αP
(α,n+d/2−1)
k (2r2 − 1)rn+d/2Jn+d/2−1(rρ)dr

]
Y n
ℓ (ξ̂ξξ). (A.3)

Using the expression of the Bessel function of the first kind

Jν(z) =

∞∑

m=0

(−1)m

m! Γ(m+ ν + 1)

(z
2

)2m+ν

,

the variable transformation z = 2r2 − 1 and (2.12), one further derives

∫ 1

0

(1− r2)αP
(α,n+d/2−1)
k (2r2 − 1)rn+d/2Jn+d/2−1(rρ)dr

=
∞∑

m=0

(−1)m

m!Γ(m+ n+ d/2)

∫ 1

0

(rρ
2

)2m+n+d/2−1

(1 − r2)αP
(α,n+(d−2)/2)
k (2r2 − 1)rn+d/2dr

=

∞∑

m=0

(−1)m2−α−m−n−d/2−1

m!Γ(m+ n+ d/2)

(ρ
2

)2m+n+d/2−1
∫ 1

−1

P
(α,n+(d−2)/2)
k (z)(1−z)α(1+z)m+n+d/2−1dz

=

∞∑

m=0

(−1)m

m!Γ(m+ n+ d/2)

(ρ
2

)2m+n+d/2−1 (m− k + 1)k
2 k!

Γ(k + α+ 1)Γ(m+ n+ d/2)

Γ(k + α+m+ n+ d/2 + 1)

=
Γ(k + α+ 1)

2(−1)kk!

(ρ
2

)−α−1 ∞∑

m=0

(−1)m−k

(m− k)!Γ(k + α+m+ n+ d/2 + 1)

(ρ
2

)2(m−k)+(n+d/2+2k+α)

=
(−1)k2αΓ(k + α+ 1)

k!
ρ−α−1Jn+2k+d/2+α(ρ).

This together with (A.3) leads to the desired conclusion (2.23) immediately. �

A.3. The proof of Theorem 2.4

Owing to (2.21), it suffices to prove Theorem 2.4 with the integer ν ∈ [s/2− 1/2, s+ d/2).

To this end, we start with (2.23) in view of the definition of the fractional Laplacian (1.3)

‖ξξξ‖2s−2ν
[
FQ−s,n

k,ℓ

]
(ξξξ) =

(−i)n+2k(2π)d/22sΓ(k + n+ s+ d/2)

‖ξξξ‖d/2−s+2νΓ(k + n+ d/2)
Jn+2k+d/2+s(‖ξξξ‖)Y n

ℓ (ξ̂ξξ),

and get from (2.18) that

F
−1
[
‖ξξξ‖2s−2ν

FQ−s,n
k,ℓ

]

=

∫

Rd

2sΓ(k + n+ s+ d/2)

(2π)d/2in+2kΓ(k + n+ d/2)

Jn+2k+d/2+s(‖ξξξ‖)
‖ξξξ‖d/2−s+2ν

Y n
ℓ (ξ̂ξξ)ei〈ξξξ,xxx〉dξξξ

=

∫ ∞

0

(−i)n+2k2sΓ(k + n+ s+ d/2)

(2π)d/2ρ1−d/2−s+2νΓ(k + n+ d/2)
Jn+2k+d/2+s(ρ)dρ

∫

Sd−1

Y n
ℓ (ξ̂ξξ)eiρr〈ξ̂ξξ,x̂xx〉dσ(ξ̂ξξ)
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=

∫ ∞

0

(−i)n+2k2sΓ(k + n+ s+ d/2)

(2π)d/2ρ1−d/2−s+2νΓ(k + n+ d/2)
Jn+2k+d/2+s(ρ)

(2π)d/2in

(ρr)d/2−1
Jn+d/2−1(ρr)dρY

n
ℓ (x̂xx)

=
2sΓ(k + n+ s+ d/2)

(−1)kΓ(k + n+ d/2)rd/2−1

∫ ∞

0

ρs−2νJn+2k+d/2+s(ρ)Jn+d/2−1(ρr)dρY
n
ℓ (x̂xx), (A.4)

where ξξξ = ρξ̂ξξ with ρ = ‖ξξξ‖, ξ̂ξξ ∈ Sd−1.

Further, we derive from [21, Eq. (8.11.9)] that when µ+ ν + 1 > λ > −1

∫ +∞

0

Jµ(x)Jν(xy)x
−λy1/2dx

=
Γ
(
(µ+ ν − λ+ 1)/2

)
yν+1/2

2λΓ(ν + 1)Γ
(
(λ+ µ− ν + 1)/2

)

× 2F1

(
µ+ ν − λ+ 1

2
,
ν − λ− µ+ 1

2
; ν + 1; y2

)
, 0 < y < 1. (A.5)

For 0 ≤ r ≤ 1 and ν ∈ (s− 1/2, s+ d/2), it yields by (A.5) and (2.5) that

F
−1
[
‖ξξξ‖2s−2ν

FQ−s,n
k,ℓ (xxx)

]

=
22s−2νΓ(k + n+ s+ d/2)Γ(n+ k + d/2 + s− ν)

(−1)kΓ(k + n+ d/2)Γ(n+ d/2)Γ(k + ν + 1)
Y n
ℓ (xxx)

× 2F1

(
− k − ν, n+ k +

d

2
+ s− ν;n+

d

2
; r2
)
.

If ν is integer, then

F
−1
[
‖ξξξ‖2s−2ν

FQ−s,n
k,ℓ

]

=
Γ(n+ k + s+ d/2)Γ(n+ k + d/2 + s− ν)

(−1)k22ν−2sΓ(n+ k + d/2)Γ(n+ k + ν + d/2)
Y n
ℓ (xxx)P

(n+d/2,s−2ν)
k+ν,ℓ (1− 2r2)

=
Γ(n+ k + d/2 + s)Γ(n+ k + d/2 + s− ν)

(−1)ν22ν−2sΓ(n+ k + d/2)Γ(n+ k + ν + d/2)
P s−2ν,n
k+ν,ℓ (xxx).

The proof is complete. �

Appendix B. The Proof of Eq. (3.11)(3.11)(3.11)

We prove (3.11) in two steps. The first step asserts that any polynomial ϕN in PN (Bd)

satisfies

‖ϕN‖L2
̟α (Bd) . N‖ϕN‖L2

̟α+1(B
d), α > −1. (B.1)

Indeed, for

ϕN (xxx) =

N∑

n=0

ad
n∑

ℓ=1

⌊N−n
2 ⌋∑

k=0

ûα+1,n
k,ℓ Pα+1,n

k,ℓ (xxx),

we have

‖ϕN‖L2

̟α+1(B
d) =

(
N∑

n=0

ad
n∑

ℓ=1

⌊N−n
2 ⌋∑

k=0

∣∣ûα+1,n
k,ℓ

∣∣2∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α+1(B
d)

)1/2

.
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Meanwhile, it follows from the triangle inequality and the Cauchy-Schwarz inequality that

‖ϕN‖L2
̟α (Bd) ≤

N∑

n=0

ad
n∑

ℓ=1

⌊N−n
2 ⌋∑

k=0

∣∣ûα+1,n
k,ℓ

∣∣∥∥Pα+1,n
k,ℓ

∥∥
L2

̟α (Bd)

≤
(

N∑

n=0

ad
n∑

ℓ=1

⌊N−n
2 ⌋∑

k=0

∣∣ûα+1,n
k,ℓ

∣∣2∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α+1(B
d)

)1/2

×




N∑

n=0

ad
n∑

ℓ=1

⌊N−n
2 ⌋∑

k=0

∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α (Bd)∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α+1(B
d)




1/2

≤ ‖ϕN‖L2

̟α+1(B
d)




N∑

n=0

ad
n∑

ℓ=1

⌊N−n
2 ⌋∑

k=0

∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α (Bd)∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α+1(B
d)




1/2

.

To evaluate this inequality further, we derive from (3.6) that

P
(α+1,n+d/2−1)
k (r) =

(n+ d/2)k
(α+ n+ d/2 + 1)k

×
k∑

m=0

(1)k−m(α+ n+ d/2)m(α+ n+ d/2 + 2m)

(k −m)!(n+ d/2)m(α+ n+ d/2)
P

(α,n+d/2−1)
k (r)

=
Γ(n+ d/2 + k)

Γ(α+ n+ d/2 + k + 1)

×
k∑

m=0

Γ(α+ n+ d/2 +m)(α+ n+ d/2 + 2m)

Γ(n+ d/2 +m)
P (α,n+d/2−1)
m (r).

Then one can get from (2.20) that

∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α (Bd)
=

Γ(n+ d/2 + k)2

Γ(α+ n+ d/2 + k + 1)2

×
k∑

m=0

Γ(α+ n+ d/2 +m)2(α + n+ d/2 + 2m)2

Γ(n+ d/2 +m)2

∥∥Pα,n
m,ℓ

∥∥2
L2

̟α(Bd)

=
Γ(n+ d/2 + k)2

(α + n+ d/2 + k)2Γ(α+ n+ d/2 + k)2

×
k∑

m=0

Γ(α+ n+ d/2 +m)Γ(m+ α+ 1)(α+ n+ d/2 + 2m)

2Γ(n+ d/2 +m)Γ(m+ 1)
,

which indicates that ‖Pα+1,n
k,ℓ ‖2

L2
̟α(Bd)

= O(1). Recalling that ‖Pα,n
k,ℓ ‖2

L2
̟α(Bd)

behaves like

(n+ 2k)−1, it yields that ∥∥Pα+1,n
k,ℓ

∥∥2
L2

̟α (Bd)
∥∥Pα+1,n

k,ℓ

∥∥2
L2

̟α+1(B
d)

. n+ 2k,

which completes the proof of (B.1).

Next we obtain the following result via an interpolation argument that any polynomial ϕN

in PN (Bd) satisfies

‖ϕN‖L2
̟α(Bd) . Nβ−α‖ϕN‖L2

̟β (Bd), α > −1, β > 0, α ≤ β. (B.2)
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In the case that β−α ≤ 1, we consider the identity operator which is continuous from the space

PN (Bd) with the norm L2
β(B

d) into the space PN (Bd) with the norm L2
α(B

d). One can obtain

by the interpolation argument that

‖ϕN‖L2

̟β−λ(Bd) . Nλ‖ϕN‖L2

̟β (Bd), 0 ≤ λ ≤ 1,

which is based on the fact

‖ϕN‖L2

̟β (Bd) . ‖ϕN‖L2

̟β (Bd),

‖ϕN‖L2

̟β−1(B
d) . N‖ϕN‖L2

̟β (Bd).

Taking α = β−λ gives the result (B.2). In the case that β−α ≥ 1, one can obtain by iterating

inequality (B.1)

‖ϕN‖L2
̟α(Bd) . Nk‖ϕN‖L2

̟α+k
(Bd).

This ends the proof of (B.2). Thus (3.11) is an immediate consequence of (B.1) combined with

(B.2). The proof is complete. �

Appendix C. The Proofs in Section 4

C.1. The proof of Theorem 4.2

For

f(xxx) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

f̂ s,n
k,ℓ P

s,n
k,ℓ (xxx) ∈ Bµ,ν

s (Bd),

it follows from the norm (4.3) that

‖f‖2Bµ,ν
s (Bd) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
1 + n2µ + (n+ k)2ν

]∣∣f̂ s,n
k,ℓ

∣∣2χs,n
k <∞.

For f ∈ H−s
∗ (Bd), it is derived u ∈ Hs

∗(B
d) from Theorem 4.1. And it is readily to derive

u ∈ L2
̟−s(Bd) due to (2.4). Then it follows that (1 − ‖xxx‖2)−su ∈ L2

̟s(Bd). Thus, using the

definition (2.22), it yields that

u(xxx) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

1

̺sk,n
ûs,nk,ℓQ

−s,n
k,ℓ (xxx).

One gets from (2.22), (2.24) with ν = 0, the equation (−∆)su = f that

ûs,nk,ℓ =
̺sk,n

σs,0
k,n

f̂ s,n
k,ℓ =

2−2sΓ(k + 1)Γ(k + n+ d/2)

Γ(k + s+ 1)Γ(k + n+ s+ d/2)
f̂ s,n
k,ℓ .

Then it follows from the norm (4.3) that

‖(1− ‖xxx‖2)−su‖2
Bµ+s,ν+2s

s (Bd)

=
∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
1 + n2µ+2s + (n+ k)2ν+4s

]∣∣ûs,nk,ℓ

∣∣2χs,n
k



28 S.N. MA, H.Y. LI, Z.Z. ZHANG, H. CHEN AND L.Z. CHEN

=
∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

2−4sΓ2(k + 1)Γ2(k + n+ d/2)

Γ2(k + s+ 1)Γ2(k + n+ s+ d/2)

×
[
1 + n2µ+2s + (n+ k)2ν+4s

]∣∣f̂ s,n
k,ℓ

∣∣2χs,n
k . (C.1)

Based on the asymptotic formula (3.10), we have the asymptotic estimate

Γ(k + 1)Γ(k + n+ d/2)

Γ(k + s+ 1)Γ(k + n+ s+ d/2)
≍ k−s(k + n)−s. (C.2)

Substituting (C.2) into (C.1), we get

∥∥(1− ‖xxx‖2)−su
∥∥2
Bµ+s,ν+2s

s (Bd)

≤ C
∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

[
1 + n2µ + (n+ k)2ν

]∣∣f̂ s,n
k,ℓ

∣∣2χs,n
k < +∞. (C.3)

This completes the proof. �

C.2. The proof of Lemma 4.1

v(xxx) =

∞∑

n=0

ad
n∑

ℓ=1

∞∑

k=0

v̂s,nk,ℓP
s,n
k,ℓ (xxx) ∈ Bµ,ν

s (Bd)

can be rewritten as

v =

∞∑

n=0

ad
n∑

ℓ=1

vnℓ (r)r
nY n

ℓ (x̂xx), vnℓ (r) =

∞∑

k=0

v̂s,nk,ℓ P
(s,n+d/2−1)
k,ℓ (2r2 − 1), xxx = rx̂xx.

Define an equivalent semi-norm of | · |Bµ,ν
s (Bd) analogous to the two-dimensional case in [27]

|v|2Bµ,ν
s (Bd) =

∞∑

n=0

(n+ k)2µ‖ṽn‖2L2
s,n+d/2−1

(Λ) +

∞∑

n=0

|ṽn|2Bν
s,n+d/2−1

(Λ), (C.4)

where

ṽn(z) = vnℓ

√
(1 + z)/2

2(n+d/2−1)/2
.

Here L2
γ,β(Λ) with the associated norm ‖ · ‖L2

γ,β(Λ)(γ, β ∈ R) in one dimension is denoted by

the weighted space of all functions defined on the unit interval Λ = (−1, 1)

‖u‖2L2
γ,β(Λ) =

∫ 1

−1

u2(z)(1− z)γ(1 + z)βdz <∞.

The non-uniformly Jacobi-weighted Sobolev space BJ
γ,β(Λ), when J is a nonnegative integer, is

defined by

BJ
γ,β(Λ) :=

{
u | ∂jru ∈ L2

γ+j,β+j(Λ), j = 0, 1, . . . , J
}
,

which is equipped with the following norm:

‖u‖BJ
γ,β(Λ) =

(
J∑

j=0

|u|2BJ
γ,β(Λ)

)1/2

, |u|Bj
γ,β(Λ) = ‖∂jru‖L2

γ+j,β+j(Λ).
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When J = s is not an integer, the space can be defined via classic interpolation method, e.g.

K-method [3]. To prove the lemma, we need the following conclusion [28].

If v(z) ∈ Bν
s,m(Λ), then

(
1− r2(z)

)s
v(z) ∈ Bmin(ν,3s+1−ε)

s,m (Λ), (C.5)

where r(z) =
√
(1 + z)/2 and ε > 0 arbitrarily small.

Since v ∈ Bµ,ν
s (Bd) with µ, ν ≥ 0, the semi-norm (C.4) of v can be bounded

|v|2Bµ,ν
s (Bd) =

∞∑

n=0

(n+ k)2µ‖ṽn‖2L2
s,n+d/2−1

(Λ) +

∞∑

n=0

|ṽn|2Bν
s,n+d/2−1

(Λ) <∞, (C.6)

where

ṽn(z) = vnℓ

√
(1 + z)/2

2(n+d/2−1)/2
.

It suffices to show semi-norm of product (1 − r2(z))sv can also be bounded. Applying the

result (C.5), we have

∣∣(1 − r2)sṽn
∣∣2
B

min(ν,3s+1−ε)

s,n+d/2−1
(Λ)

. |ṽn|2Bν
s,n+d/2−1

(Λ) <∞. (C.7)

Then it is obtained ∣∣(1 − r2)sv
∣∣2
B

µ,min(ν,3s+1−ε)
s (Bd)

≤ |v|2Bµ,ν
s (Bd),

which completes the proof. �
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