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Abstract. In this study, a (3+1) dimensional unstable gas flow system is applied
and solved successfully via differential quadrature techniques based on various
shape functions. The governing system of nonlinear four-dimensional unsteady
Navier–Stokes equations of gas dynamics is reduced to the system of nonlinear ordi-
nary differential equations using different quadrature techniques. Then, Runge-Kutta
4th order method is employed to solve the resulting system of equations. To obtain
the solution of this equation, a MATLAB code is designed. The validity of these tech-
niques is achieved by the comparison with the exact solution where the error reach
to ≤ 1×10−5. Also, these solutions are discussed by seven various statistical analy-
sis. Then, a parametric analysis is presented to discuss the effect of adiabatic index
parameter on the velocity, pressure, and density profiles. From these computations, it
is found that Discrete singular convolution based on Regularized Shannon kernels is a
stable, efficient numerical technique and its strength has been appeared in this applica-
tion. Also, this technique can be able to solve higher dimensional nonlinear problems
in various regions of physical and numerical sciences.
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1 Introduction

Fluid mechanics play a significant role in this work by unsteady gas flow. Unsteady gas
flow of an ideal polytropic gas in three-dimensional is a system of nonlinear partial differ-
ential equation. The dynamic flow of incompressible fluid is defined via Navier–Stokes
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(N-S) equations where the unknowns are the velocity, pressure, and density as functions
of space (x,y,z) and time variables [1,2]. A result of these equations forecasts the manner
of the fluid, assuming its initial and boundary conditions are known. So, these equations
are considered one of the extreme important types of mathematical physics [3-5].

Recently, researchers applied different methods to get the exact and numerical results
of these problems. Raja et al. [6,7] applied the Lie group of transformations technique
to get the result of unsteady Euler system of gas dynamics. Also, Rashed [8] solved the
previous system via an optimal equation of Lie symmetry vectors. Asymmetry analysis
was applied by Fuchs and Richter [9]. Lie symmetries was developed by Murata [10] to
obtain the solution of 2-D system in radial coordinates. Further, Arora et al. [11] inves-
tigated strong shocks in a non-perfect relaxing gas by the previous technique. Substi-
tution principles were carried out by Oliveri and Speciale [12-18] to solve the unsteady
equations of ideal gases and perfect magneto-gas dynamics equations. Chirkunov et
al. [19] analyzed the gas dynamics with zero sound velocity. There are a lot of numerical
techniques to solve N-S equations where these systems are nonlinear and complicated.
Babaev et al. [20] demonstrated solution for Navier–Stokes system via Variational Itera-
tive techniques. Numerous contributions in analysis Navier–Stokes system using Finite
difference (FD) scheme have been published by various authors [21-23]. Zhao et al. [24]
studied the original boundary condition-enforced immersed boundary method for sim-
ulation of incompressible flows having moving boundaries. Yuan et al. [25] examined
a new gas-kinetic flux solver to simulate the compressible and incompressible flows for
continuum and slip regimes by using finite volume method and Boltzmann equation.
Many software programs are developed depending on Implicit Finite Difference schemes
like MIKE-11 [26] and HEC-RAS [27] for solving the nonlinearity of unsteady flow equa-
tions. Zhou et al. [28] implemented the circular function-based gas-kinetic scheme to
moving boundary problems for moving grids with finite volume method. A simplified
and efficient multiphase lattice Boltzmann flux solver model was proposed for multi-
phase flows large density ratio by Yang et al. [29] The extrapolation formulation was pre-
sented to compute the compressible Navier–Stokes–Fourier equations that considers slip
and jump boundary conditions by Shterev [30]. Lai [31] used method of characteristics
(MOC) for solving the unsteady open-channel flow. This method depends on the choice
of grid points to achieve stability, it is also complex and needs more time in program-
ming compared to the other schemes. But the researchers investigated and developed
a new numerical scheme with more convergence, stable and efficiency to raise numeri-
cal modeling abilities. Differential quadrature (DQ) scheme has been developed to solve
different differential equations as linear or nonlinear. Differential quadrature (DQ) tech-
nique is a stable, converge, and efficient technique for solving various problems of fluid
mechanics with small number of points and less calculations effort [32-37,40]. Shu [32,37]
issued different searches for solving N–S equations and boundary condition in the field of
fluid mechanics by generalized differential quadrature method (GDQM). Rosa et al [38]
applied Differential quadrature technique to estimate the identification of the stiffness
of structural elements. Alqahtani and Jiwari [39] studied the features of nanofluid flow
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and thermal transmission (NFTT) in a rectangular channel which is asymmetric by de-
veloping two numerical algorithms based on scale-2 Haar wavelets (S2HWs), Lagrange’s
interpolation differential quadrature technique (LIDQT), and quasi linearization process
(QP). Mohammad et al. [40] employed DQM for numerical simulation of unsteady open
channel flow. The articles published via DQM solving the steady-state of N-S equations
are limited. To overcome time dependent problems, DQM can be combined with Runge
Kutta, block marching, and finite difference techniques to discretize the time domain [41-
44]. Salah et al. [45-47] solved nonlinear partial differential equations by classical DQM
with Explicit and Implicit Euler method, Runge–Kutta 4th order (RK4), and Block march-
ing to overcome time dependent problems.

RK4 technique is a numerically scheme mostly applied to solve Initial Value equa-
tions, due to its speed and accuracy requiring less computation of higher-order deriva-
tive [45-47]. Birken [41] employed Runge-Kutta smoothers to get the solution of unsteady
viscous flow problems. Jameson [42] presented an estimate of totally implicit Runge-
Kutta techniques for solving unsteady flow computations. Sheng [43] used Runge-Kutta
techniques with compact Difference methods for solving the unsteady Euler equations.
Tamsir et al. [48-56] solved various nonlinear partial differential equations using mod-
ified cubic B-spline DQM (MCB-DQM), in space to transform the system of partial dif-
ferential equations (PDE) to system of ordinary differential equations (ODE). The solu-
tion is completed by employing a five stage and fourth-order strong stability preserving
Runge–Kutta algorithm, in time (SSP-RK54).

Here, optimal schemes of differential quadrature are developed for applying in math-
ematical analysis of (3+1)-dimensional unsteady turbulent gas flow equations which
defined from the general N–S equations. Different schemes of DQM depend on shape
function like the Polynomial Differential quadrature (PDQ) technique, Sinc Differential
quadrature (SDQ) [55-59] and Discrete Singular convolution (DSC) based on Delta La-
grange (DLK) and Regularized Shannon kernels (RSK) [60-69]. These methods of DQ
reduce the system of unsteady gas flow into nonlinear system of ordinary differential
equations. After that, the acquired system is computed by RK4. For each scheme, a
MATLAB code is designed. Also, the stability, convergence, and efficiency of the pre-
sented techniques are determined. The computed solutions are discussed by various
statistical analysis such as the rate of convergence, order of convergence, absolute error,
RMS, L2 and L∞ errors [70,71]. Moreover, a parametric study is discussed to show the
effect of adiabatic index on the velocity, pressure, and density components.

2 Model formulation of the problem

The governing equations for unsteady flow of ideal polytropic gas in (3+1)-dimensional
can be described as [6-8]:

∂ρ

∂t
+ρ
(∂u

∂x
+

∂v
∂y

+
∂w
∂z

)
+u

∂ρ

∂x
+v

∂ρ

∂y
+w

∂ρ

∂z
=0, (2.1a)
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∂u
∂t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

+
1
ρ

∂p
∂x

=0, (2.1b)

∂v
∂t

+u
∂v
∂x

+v
∂v
∂y

+w
∂v
∂z

+
1
ρ

∂p
∂y

=0, (2.1c)

∂w
∂t

+u
∂w
∂x

+v
∂w
∂y

+w
∂w
∂z

+
1
ρ

∂p
∂z

=0, (2.1d)

∂p
∂t

+γp(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)+u
∂p
∂x

+v
∂p
∂y

+w
∂p
∂z

=0, (2.1e)

0≤ t≤T, X1≤ x≤X2, Y1≤y≤Y2, Z1≤ z≤Z2, (2.1f)

where x, y, and z are the space coordinates, t is the time, u, v, and w are the velocity
components. ρ and p are the density and pressure, respectively. γ is the adiabatic index
(γ>1).

Boundary conditions are determined as:
At (x1,y,z,t):

A1u+B1
∂u
∂x

=F1(y,z,t), A3v+B3
∂v
∂x

=F3(y,z,t), A5w+B5
∂w
∂x

=F5(y,z,t), (2.2a)

A7 p+B7
∂p
∂x

=F7(y,z,t), A9ρ+B9
∂ρ

∂x
=F9(y,z,t). (2.2b)

At (x2,y,z,t):

A2u+B2
∂u
∂x

=F2(y,z,t), A4v+B4
∂v
∂x

=F4(y,z,t), A6w+B6
∂w
∂x

=F6(y,z,t), (2.3a)

A8 p+B8
∂p
∂x

=F8(y,z,t), A10ρ+B10
∂ρ

∂x
=F10(y,z,t). (2.3b)

At (x,y1,z,t):

A11u+B11
∂u
∂y

=F11(x,z,t), A13v+B13
∂v
∂y

=F13(x,z,t), A15w+B15
∂w
∂y

=F15(x,z,t), (2.4a)

A17 p+B17
∂p
∂y

=F17(x,z,t), A19ρ+B19
∂ρ

∂y
=F19(x,z,t). (2.4b)

At (x,y2,z,t):

A12u+B12
∂u
∂y

=F12(x,z,t), A14v+B14
∂v
∂y

=F14(x,z,t), A16w+B16
∂w
∂y

=F16(x,z,t), (2.5a)

A18 p+B18
∂p
∂y

=F18(x,z,t), A20ρ+B20
∂ρ

∂y
=F20(x,z,t). (2.5b)

At (x,y,z1,t) :

A21u+B21
∂u
∂z

=F21(x,y,t), A23v+B23
∂v
∂z

=F13(x,y,t), A25w+B25
∂w
∂z

=F15(x,y,t), (2.6a)

A27 p+B27
∂p
∂z

=F17(x,y,t), A29ρ+B29
∂ρ

∂z
=F19(x,y,t). (2.6b)
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At (x,y,z2,t):

A22u+B22
∂u
∂z

=F22(x,y,t), A24v+B24
∂v
∂z

=F14(x,y,t), A26w+B26
∂w
∂z

=F16(x,y,t), (2.7a)

A28 p+B28
∂p
∂z

=F18(x,y,t), A30ρ+B30
∂ρ

∂z
=F20(x,y,t). (2.7b)

Initial condition is explained as:

u(x,y,z,0)=Φ1(x,y,z), v(x,y,z,0)=Φ2(x,y,z), w(x,y,z,0)=Φ1(x,y,z), (2.8a)
p(x,y,z,0)=Φ3(x,y,z), ρ(x,y,z,0)=Φ4(x,y,z), (2.8b)

where Ah, Bh, Fh, (h=1,2,··· ,30), and Φj(x,y), (j=1,··· ,5) are known functions.

3 Method of solution

In this section, Lagrange interpolation polynomials, Cardinal sine, delta Lagrange and
Regularized Shannon kernels are used as different shape functions. These shape func-
tions are applied as basis for differential quadrature technique. Thus, there are four
schemes depend on differential quadrature techniques combined with RK4 and they are
employed for solving unsteady turbulent gas flow. RK4 is used to overcome time depen-
dent problems.

Differential quadrature method is realized as the unknown function at any grid spac-
ing f and its derivatives are approximated as a weighted sum of full the functional values
at certain grids in all calculation domain as follows [32-47]:

fx(xi,yj,zk,t)=
Nx

∑
r=1

A(x)
ir f (xr,yj,zk,t), fxx(xi,yj,zk,t)=

Nx

∑
r=1

B(x)
ir f (xr,yj,zk,t), (3.1)

where Ax
ir and Bx

ir are the 1st and 2nd weighting coefficients [32-47].
The computed 1st and 2nd derivatives weighting coefficients are various based on

choice of shape function. Thus, here is how to get it [32-47]:

3.1 Polynomial Differential Quadrature Method (PDQM)

Firstly, Chebyshev-Gauss-Lobatto nodal points are used to obtain the stable solution as
follows [35]:

Xr = a+
b−a

2

[
1−cos

(r−1)π
Nx−1

]
, r=1,2,··· ,Nx, a≤X≤b, (3.2)

where Nx represents the number of nodal points.
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After using Lagrange interpolation polynomials as base function, the weighting coef-
ficients of 1st and 2nd derivatives, are found as [35]:

Ax
ir =



Nx
∏

k=1,k 6=i
(Xi−Xk)

(Xi−Xr)
Nx
∏

k=1,k 6=j
(Xr−Xk)

, i 6= r,

−
Nx

∑
r=1,r 6=i

Air, i= r,

Bx
ir =


2Air

(
Aii−

1
Xi−Xr

)
, i 6= r,

−
Nx

∑
r=1,r 6=i

Bir, i= r.
(3.3)

3.2 Sinc Differential Quadrature Method (SDQM)

In this scheme, the stability of results depends on discretize the spatial area via uniform
nodal points as follows [57-59]:

F(Xi)=
Nx

∑
r=−Nx

sin[π(Xi−Xr)/mX]

π(Xi−Xr)/mX
f (Xr), (i=−Nx,Nx), mX >0. (3.4)

After applying Cardinal sine as base function and differentiating Eq. (3.4), the weighting
coefficients Ax

ir, Bx
ir are given as:

Ax
ir =


(−1)i−j

mX(i− j)
, i 6= r,

0, i= r,
Bx

ir =


−2(−1)i−r

mX2(i−r)2 , i 6= r,

−π2

3mX2 , i= r,

(3.5)

where mX is grid size.

3.3 Discrete Singular Convolution Differential Quadrature
Method (DSCDQM)

In this technique, the stability of results based on discretize the spatial area via uniform
nodal points and the choice of type kernels. For fluid mechanics, Delta Lagrange Kernel
(DLK) and Regularized Shannon kernel (RSK) are used for like problem as follows [60-
69]:

1. For DSCDQM-DLK, which used Delta Lagrange Kernel as base function, the value
of Ax

ir and Bx
ir are found as [60-69]:

F(Xi)=
S

∑
r=−S

S
∏

k=−S
(Xi−Xk)

(Xi−Xr)
S
∏

r=−S,r 6=k
(Xr−Xk)

f (Xr), (i=−S,S), S≥1, (3.6a)
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Ax
ir =


1

(Xi−Xr)

S
∏

k=−S,k 6=i,r

(Xi−Xk)

(Xr−Xk)
, i 6= r,

−
−S
∑

r=−S,r 6=i
Ax

ir, i= r,
Bx

ir =


2(Ax

ir.Ax
ii−

Ax
ir

(Xi−Xr)
), i 6= r,

−
S
∑

r=−S,r 6=i
Bx

ir, i= r.
(3.6b)

2. For DSCDQM-RSK, we used Regularized Shannon kernel as base function, the
value of Ax

ir and Bx
ir are defined as [60-69]:

F(Xi)=
S

∑
r=−S

〈
sin[π(Xi−Xr)/mX ]

π(Xi−Xr)/mX
e
−( (Xi−Xr )2

2ξ2 )

〉
f (Xr), (i=−Nx,Nx), ξ=(g∗mX )>0, (3.7a)

Ax
ir =


(−1)i−r

mX(i−r)
e
−m2

X(
(i−r)2

2ξ2 )
, i 6= r,

0, i= r,
Bx

ir =


(2(−1)i−r+1

mX2(i−r)2 +
1
ξ2

)
e
−m2

X(
(i−r)2

2ξ2 )
, i 6= r,

− 1
ξ2 −

π2

3mX2 , i= r,

(3.7b)

where 2S+1 is the effective calculation bandwidth, ξ and g are the regularization
and computational parameters, respectively.

The problem is diminished to nonlinear ordinary differential equations by substitut-
ing from Eq. (3.1) into Eqs. (2.1a)-(2.1e) as follow:

dρ

dt

∣∣∣(xi,yj,zk,t)=−ρ
[ Nx

∑
r=1

Ax
iru(xr,yj,zk,t)+

Ny

∑
l=1

Ay
jlv(xi,yl ,zkt)

+
Nz

∑
n=1

Az
knv(xi,yl ,zkt)

]
−uijk

Nx

∑
r=1

Ax
irρ(xr,yj,zk,t)

−vijk

Ny

∑
l=1

Ay
jlρ(xi,yl ,zkt)−wijk

Nz

∑
n=1

Az
knv(xi,yl ,zkt), (3.8a)

du
dt

∣∣∣(xi,yj,zk,t)=−uijk

Nx

∑
r=1

Ax
iru(xr,yj,zk,t)−vijk

Ny

∑
l=1

Ay
jlu(xi,yl ,zkt)

−wijk

Nz

∑
n=1

Az
knu(xi,yl ,zkt)− 1

ρijk

Nx

∑
r=1

Ax
ir p(xr,yj,zk,t), (3.8b)

dv
dt

∣∣∣(xi,yj,zk,t)=−uijk

Nx

∑
r=1

Ax
irv(xr,yj,zk,t)−vijk

Ny

∑
l=1

Ay
jlv(xi,yl ,zkt)

−wijk

Nz

∑
n=1

Az
knv(xi,yl ,zkt)− 1

ρijk

Ny

∑
l=1

Ay
jl p(xi,yl ,zkt), (3.8c)

dw
dt

∣∣∣(xi,yj,zk,t)=−uijk

Nx

∑
r=1

Ax
irw(xr,yj,zk,t)−vijk

Ny

∑
l=1

Ay
jlw(xi,yl ,zkt)

−wijk

Nz

∑
n=1

Ay
knw(xi,yl ,zkt)− 1

ρijk

Nz

∑
n=1

Ay
kn p(xi,yl ,zkt), (3.8d)
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dp
dt

∣∣∣(xi,yj,zk,t)=−γpijk

[ Nx

∑
r=1

Ax
iru(xr,yj,zk,t)+

Ny

∑
l=1

Ay
jlv(xi,yl ,zkt)

+
Nz

∑
n=1

Az
knv(xi,yl ,zkt)

]
−uijk

Nx

∑
r=1

Ax
ir p(xr,yj,zk,t)

−vijk

Ny

∑
l=1

Ay
jl p(xi,yl ,zkt)−wijk

Nz

∑
n=1

Az
kn p(xi,yl ,zkt). (3.8e)

Boundary conditions and initial conditions are augmented in the governing equations.
Then, the Runge-Kutta 4th order scheme is applied to solve the nonlinearity ODE’s equa-
tions [41-47].

3.4 Runge-Kutta 4th order (RK4) method

To overcome the transient or time dependent problems, Runge-Kutta 4th order method
is utilized as an efficient technique for solving such problems [41-47]. We applied RK4
method for numerically solving this system, ODE’s, where represented mathematically
as follow [41-47]:

F(xi,yj,zk,t0+∆t)= f (xi,yj,zk,t0)+
1
6

[
Eijk

1 +2Eijk
2 +2Eijk

3 +Eijk
4

]
, (3.9)

where

Eijk
1 =∆t

d f
dt

(uijk,vijk,wijk,pijk,ρijk,t0), (3.10a)

Eij
2 =∆t

d f
dt

(
uijk+

Eijk
1
2

,vijk+
Eijk

1
2

,wijk+
Eijk

1
2

,pijk+
Eijk

1
2

,ρijk+
Eijk

1
2

,t0+
∆t
2

)
, (3.10b)

Eij
3 =∆t

d f
dt

(
uijk+

Eijk
2
2

,vijk+
Eijk

2
2

,wijk+
Eijk

2
2

,pijk+
Eijk

2
2

,ρijk+
Eijk

2
2

,t0+
∆t
2

)
, (3.10c)

Eij
4 =∆t

d f
dt

(
uijk+Eijk

3 ,vijk+Eijk
3 ,wijk+Eijk

3 ,pijk+Eijk
3 ,ρijk+Eijk

3 ,t0+∆t
)

. (3.10d)

We will stop if the condition of convergence is achieved as follow [59]:∣∣∣∣uhx+1

uhx

∣∣∣∣<1,
∣∣∣∣vhx+1

vhx

∣∣∣∣<1,
∣∣∣∣whx+1

whx

∣∣∣∣<1,∣∣∣∣ phx+1

phx

∣∣∣∣<1,
∣∣∣∣ρhx+1

ρhx

∣∣∣∣<1, hx=0,1,2,··· . (3.11)

4 Numerical results

In this section, some numerical results are presented for the system of unsteady gas flow
in (3+1)-dimensional in Eqs. (2.1a)-(2.1e). This system is solved by four quadrature tech-
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niques combined with Runge-Kutta 4th order and then a MATLAB code is designed for
each method to obtain the numerical results.

To get the reliability, stability, convergence, and efficiency of the numerical results,
the present results are compared with the exact ones [8]. Also, various statistical analysis
like rate of convergence (ROC), order of convergence (P), Absolute error, RMS, L2 and
L∞ errors are used for the same purpose. The formulas of various statistical analysis are
given by [70-71]:

AbsoluteError(ε)=
∣∣ fnumerical(xi,yj,zk,tl)− fexact(xi,yj,zk,tl)

∣∣, (4.1a)

RMSError=

√√√√ [Nx ,Ny ,Nz

∑
i,j,k=1

( fnumerical(xi,yj,zk,tl)− fexact(xi,yj,zk,tl))
2

]/
Nx NyNz, (4.1b)

L2 Error=

√√√√∆x∆y∆z
Nx ,Ny ,Nz

∑
i,j,k=1

( fnumerical(xi,yj,zk,tl)− fexact(xi,yj,zk,tl))
2, (4.1c)

L∞ Error= max
1≤i≤Nx
1≤j≤Ny
1≤k≤Nz

∣∣ fnumerical(xi,yj,zk,tl)− fexact(xi,yj,zk,tl)
∣∣, (4.1d)

Rate of convergence (ROC)= log2

( EEk

EEk−1

)
, (4.1e)

Order of convergence(P)= log
( εk+1

εk

)/
log
( εk

εk−1

)
, (4.1f)

where k is mesh size (Nx X Ny X Nz)

EE=

√√√√[Nx ,Ny ,Nz

∑
i,j,k=1

( fnumerical(xi,yj,zk,tl)− fexact(xi,yj,zk,tl))
2

]/Nx ,Ny ,Nz

∑
i,j,k=1

( fexact(xi,yj,zk,tl))
2.

The exact solutions used for comparison are taken from in the literature as follows [8]:

u(x,y,z,t)=C2t− z
2
+

C5−y
2

+tln
( z−y

C5+2t

)
−C1, (4.2a)

v(x,y,z,t)= ln
( z−y

C5+2t

)
+

y−z
C5+2t

+C2, (4.2b)

w(x,y,z,t)= ln
( z−y

C5+2t

)
+

y−z
C5+2t

+C2, (4.2c)

p(x,y,z,t)=C4(C5+2t)−γ, ρ(x,y,z,t)=C3
(C5+2t)

(z−y)2 , (4.2d)

0≤ t≤T, X1≤ x≤X2, Y1≤y≤Y2, Z1≤ z≤Z2. (4.2e)

4.1 Comparison of four DQM results with exact ones

To compare with the available results, the values of Ai =1, Bj =0, (i, j=1,2,··· ,30). Table
1 displays the comparison among the non-uniform PDQM, SDQM and exact solution.



10 M. Salah et al. / Adv. Appl. Math. Mech., 15 (2023), pp. 1-22

Table 1: Numerical solution via Non-uniform PDQM, SDQM and exact solution at γ=1.13, y=0.6, z=0.5 and
T=0.111msec. (For exact solution C1 =C2 =C3 =C4 =C5 =1).

NxxNyxNz Exact [8] Non-uniform DQM SDQM
Computed Results L2 error L∞ error Computed Results L2 error L∞ error

5×5×5

u -1.0501 -1.0501 2.7987e-5 3.2532e-7 -1.0499 1.0557e-4 1.2922e-6
v -1.2028 -1.2026 2.3478e-4 2.3484e-6 -1.2026 2.1500e-4 1.9072e-6
p 0.9997 1.0000 1.7895e-4 2.3357e-6 0.9999 2.3780e-4 3.0441e-6
ρ 100.0222 100.0065 0.0254 3.6266e-4 100.0013 0.0126 1.2451e-4

5×7×7 u -1.0501 -1.0501 3.2589e-5 6.3011e-7 -1.0502 1.4282e-4 3.2888e-6
v -1.2028 -1.2022 4.1698e-4 9.0320e-6 -1.2025 3.2348e-4 6.0042e-6
p 0.9997 0.9996 2.3125e-4 5.0454e-6 0.9999 3.0010e-4 7.1013e-6
ρ 100.0222 99.8533 0.1179 0.0036 99.9949 0.0403 0.0012

5×9×9 u -1.0501 -1.0501 3.4497e-5 9.3029e-7 -1.0498 1.8859e-4 6.2035e-6
v -1.2028 -1.2011 0.0014 7.4531e-5 -1.2025 4.7740e-4 1.4737e-5
p 0.9997 0.9986 0.0014 3.9588e-5 0.9998 4.1644e-4 1.3668e-5
ρ 100.0222 98 2.5170 0.1388 100 0.3009 0.0151

Computation time 19.307833 at 5 × 5 × 5 17.185643 at 5 × 5 × 5
(sec) 50.407644 at 5 × 7 × 7 45.358427 at 5 × 7 × 7

Table 2: Numerical solution via DSCDQM-DLK, DSCDQM-RSK and exact solution at different bandwidth
(2S+1), regularization parameter ζ, and grid size NxxNyxNz (γ=1.13, y=1.7, z=1.6 and T=1.11msec) (for
exact solution C1 =C2 =C3 =C4 =C5 =1).

NxxNyxNz S DSCDQM-DLK DSCDQM-RSK DSCDQM-RSK
ξ=2mx ξ=5mx ξ=7mx ξ=10mx ξ=15mx

5×5×5

u 1 -2.1521 -2.1513 -2.1515 -2.1515 -2.1515 -2.1515 -2.15142 -2.1509 -2.1499 -2.1492 -2.1491 -2.1491 -2.1491

v=w 1 -1.2042 -1.2030 -1.2031 -1.2031 -1.2031 -1.2031 -1.20502 -1.2033 -1.2030 -1.2031 -1.2031 -1.2031 -1.2031

p 1 1.0015 1.0002 1.0002 1.0002 1.0002 1.0002 0.99752 1.0006 1.0002 1.0002 1.0002 1.0002 1.0002

ρ
1 100.2447 100.0364 100.0404 100.0408 100.0411 100.0412 100.22202 100.0840 100.0368 100.0412 100.0416 100.0418 100.0420

Computation time 1 20.816402 20.465740 –
(sec) 2 22.219444 22.246534 –

5×7×7

u 1 -2.1525 -2.1509 -2.1510 -2.1510 -2.1510 -2.1510 -2.15142 -2.1501 -2.1498 -2.1493 -2.1493 -2.1493 -2.1492
v=w 1 -1.2054 -1.2030 -1.2031 -1.2031 -1.2031 -1.2031 -1.20502 -1.2015 -1.2027 -1.2026 -1.2026 -1.2026 -1.2026

p 1 1.0026 1.0000 1.0000 1.0000 1.0000 1.0000 0.99752 0.9989 0.9999 0.9998 0.9998 0.9998 0.9998
ρ 1 100.4714 100.0351 100.0390 100.0394 100.0396 100.0397 100.22202 99.8361 100.0103 100.0009 99.9997 99.9991 99.9987

Computation time 1 54.665468 48.647755 –
(sec) 2 60.597793 48.705488 –

This table show that the results via SDQM is more stable and convergence than non-
uniform PDQM. Also, the presented results are good agree with exact solutions at grid
size (5×5×5). Furthermore, the values of statistical analysis as L2 errors = 2×10−4, L∞
errors =2×10−6 at (5×5×5) for SDQ technique it achieved less CPU time =17.18 second
than the classical DQ scheme. Thus, the scheme based on Cardinal sine is stable and
accurate than scheme based on Lagrange interpolation polynomials.

Table 2 compares the results of DSCDQM-DLK, DSCDQM-RSK and exact solution.
The calculated results show that DSCDQM-DLK are stable and accurate at mesh size
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Table 3: The RMS error and Computation time for all proposed schemes of DQ when γ= 1.13 and grid size
(5×7×7) (for exact solution [8] C1 =C2 =C3 =C4 =C5 =1).

Time Non-uniform PDQM SDQM DSCDQM-DLK DSCDQM-RSK
RMS Comput time(sec) RMS Comput time(sec) RMS Comput time(sec) RMS Comput time(sec)

5.10e-5 u 6.0666e-5 21.49375 5.6252e-5 22.33199 5.2629e-5 23.18151 2.1913e-5 22.68310
v 1.6458e-4 1.2741e-4 2.6371e-4 1.1030e-4
p 9.1480e-5 1.1819e-4 1.7326e-4 4.8214e-5
ρ 0.0991 0.0159 0.0774 0.0151

1.11e-4 u 1.3201e-4 47.53356 1.2241e-4 53.34495 1.1454e-4 52.10686 4.7697e-5 49.08529
v 3.5294e-4 2.7727e-4 5.7339e-4 2.4005e-4
p 1.9906e-4 2.5723e-4 3.7733e-4 1.0491e-4
ρ 0.2157 0.0346 0.1682 0.0328

1.499e-4 u 1.7824e-4 66.26420 1.6530e-4 73.70444 1.5468e-4 74.56526 6.4416e-5 73.27504
v 4.7377e-4 3.7441e-4 7.7385e-4 3.2417e-4
p 2.6877e-4 3.4736e-4 5.0977e-4 1.4165e-4
ρ 0.2912 0.0467 0.2269 0.0443

2.499e-4 u 2.9704e-4 135.0072 2.7551e-4 130.1553 2.5786e-4 139.6777 1.0740e-4 130.4887
v 7.8201e-4 6.2408e-4 0.0013 5.4039e-4
p 4.4790e-4 5.7905e-4 8.5072e-4 2.3605e-4
ρ 0.4853 0.0778 0.3771 0.0739

7.499e-4 u 8.8964e-4 724.3832 8.2581e-4 772.8073 7.7367e-4 714.9515 3.2254e-4 726.1091
v 0.0023 0.0019 0.0038 0.0016
p 0.0013 0.0017 0.0026 7.0687e-4
ρ 1.4538 0.2333 1.1146 0.2217

0.00111 u 0.0013 45.22108 0.0012 51.85603 0.0011 52.27803 4.7768e-4 51.48021
v 0.0034 0.0028 0.0056 0.0024
p 0.0020 0.0026 0.0038 0.0010
ρ 2.1491 0.3452 1.6324 0.3281

(5×7×7) and S=2. But DSCDQM-RSK is stable and accurate at mesh size (5×5×5) and
S = 1 and ξ = 5∗mx. Also, the two methods are more in agreement with the exact one.
As well as, the computation time for DSCDQM-RSK =20.465740sec while for DSCDQM-
DLK =60.597793sec.

In Table 3, RMS error is calculated for four schemes based on different shape func-
tions and combined with RK4 at different times (0.0051≤ t≤1.11)msec. Thus, the results
in this table explain that the value of RMS error is least in the DSCDQ-RSK at all time
and velocity components, pressure, and density. Also, this method achieved the least
computation time. This value of CPU time is different at each time.

As well as, Root mean square error (RMSE) for all proposed techniques is presented
in Fig. 1 by different the value of C3 = 0.01. This figure refers to the value of RMSE for
u≤ 10−4, v=w≤ 3e10−3, p≤ 2e10−4 and ρ≤ 10−4 by using PDQM. Also, via SDQM the
value of RMSE for u≤1.5e10−4, v=w≤1.6e10−3, p≤4e10−4 and ρ≤2e10−4. Further, the
value of RMSE by using DSCDQM-DLK for u≤ 1.1e10−3, v = w≤ 5.5e10−3, p≤ 6e10−3

and ρ≤ 9e10−3. But, for the scheme DSCDQ-RSK the value of RMSE for u≤ 8e10−5,
v=w≤8e10−4, p≤2.3e10−4, and ρ≤2e10−4. Thus, from Table 3 and Fig. 1, the least RMSE
is achieved via DSCDQ-RSK.

Table 4 displays the comparative stability study between the PDQM and DSCDQ-
RSK by computing absolute norm error (ε), root mean square error (RMS), relative norm
error (E), rate of convergence, and order of convergence at different grid size. From the
obtained results, PDQM is first-order accurate for u, fourth-order for v, w, third-order
for p and second-order accurate for ρ at mesh size (5×7×7). DSCDQM based on RSK
at 2S+1 = 3, ξ = 5∗mx, mesh size 5×5×5 and computation time = 20.568624 seconds
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Table 4: Stability analysis for Non-uniform PDQM and DSCDQ-RSK when γ= 1.13 at time 0.111msec (for
exact solution C1 =C2 =C3 =C4 =C5 =1).

NxxNyxNz Non-uniform PDQM DSCDQM-RSK
ε EE ROC p RMS ε EE ROC p RMS

5×3×3 9.3893e-6 1.3416e-6 - - 3.1298e-6 9.5269e-6 2.9180e-5 — — 3.1756e-5
5×5×5 5.5708e-4 4.8113e-5 5.1644 0.1328 1.1142e-4 6.7510e-5 5.0027e-5 0.7777 1.0729 1.1455e-4

u 5×7×5 9.5816e-4 7.0050e-5 0.5420 0.5626 1.6196e-4 5.5185e-4 4.0870e-5 0.2917 0 9.3280e-5
5×7×7 0.0013 7.8432e-5 0.1631 1.8700 1.8105e-4 5.5185e-4 4.0870e-5 0 Inf 9.3280e-5
5×9×9 0.0023 1.1179e-4 0.5113 — 2.5759e-4 8.2719e-4 4.0534e-5 0.0119 — 9.1911e-5
5×3×3 2.1427e-4 3.0616e-5 — — 7.1422e-5 2.0417e-4 7.4787e-5 — — 8.1390e-5
5×5×5 0.0011 9.5280e-5 1.6379 0.1021 2.2064e-4 7.9430e-4 1.0305e-4 0.4625 0.3626 1.5886e-4

v 5×7×5 0.0013 9.2803e-5 0.0380 1.9480 2.1457e-4 0.0013 9.5826e-5 0.1049 0 2.1866e-4
5×7×7 0.0018 1.1313e-4 0.2857 4.1734 2.6115e-4 0.0013 9.5826e-5 0 Inf 2.1871e-4
5×9×9 0.0070 3.3923e-4 1.5843 — 7.8165e-4 0.0026 1.2576e-4 0.3922 — 2.8516e-4
5×3×3 2.8580e-4 4.0837e-5 — — 9.5266e-5 2.4010e-4 7.6817e-5 — — 8.1600e-5
5×5×5 9.0902e-4 7.8508e-5 0.9430 0.1645 1.8180e-4 9.0659e-4 9.0008e-5 0.2286 0.0738 1.8132e-4

p 5×7×5 7.5151e-4 5.4942e-5 0.5149 1.5013 1.2703e-4 0.0010 7.7221e-5 0.2211 0 1.7622e-4
5×7×7 0.0010 6.3833e-5 0.2164 3.9605 1.4735e-4 0.0010 7.7221e-5 0 Inf 1.7624e-4
5×9×9 0.0031 1.4793e-4 1.2125 — 3.4087e-4 0.0019 9.4815e-5 0.2961 — 2.1499e-4
5×3×3 0.0176 0.0025 — — 0.0059 0.0122 0.0068 —- — 0.0074
5×5×5 0.0403 0.0035 0.4854 0.2285 0.0081 0.0427 0.0037 0.8780 0.1772 0.0083

ρ 5×7×5 0.0487 0.0036 0.0036 1.5667 0.0082 0.0342 0.0025 0.5656 0 0.0058
5×7×7 0.0362 0.0022 0.7105 2.8534 0.0052 0.0342 0.0025 0 Inf 0.0058
5×9×9 0.0843 0.0407 4.2095 — 0.9377 0.0284 0.0014 0.8365 — 0.0032

Comput time 21.113659 for 5×5×5 20.568624 for 5×5×5
(sec) 50.958409 for 5×7×7 49.806566 for 5×7×7

(a) PDQM (b) SDQM

(c) DSCDQM-DLK (d) DSCDQ-RSK

Figure 1: Root mean square error (RMSE) using proposed techniques at γ= 1.13, C1 =C2 =C4 =C5 = 1 and
C3 =0.01.
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(a) Exact solution (b) DSCDQ-RSK

Figure 2: Velocity component (u) profile at C1 =C2 =C5 =1, y=0.6 and γ=1.68 by using Exact solution and
DSCDQ-RSK.

(a) Exact solution (b) DSCDQ-RSK

Figure 3: Velocity component (v=w) profile at C1 =C2 =C5 =1, y=0.6 and γ=1.68 by using Exact solution
and DSCDQ-RSK.

(a) Exact pressure (b) Pressure using DSCDQ-RSK

Figure 4: 3D representations of pressure (p) distribution using Exact solution and DSCDQ-RSK with C3=C4=1,
C5 =2 at t=0.11sec and γ=1.13.

gives accurate results better than Classical DQM. Also, the results by DSCDQM-RSK are
in a very good agreement with the exact solution (C1 =C2 =C3 =C4 =C5 = 1). Further,
the order of convergence tends to infinity and the rate of convergence is fast at mesh
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(a) Exact pressure (b) Pressure using DSCDQ-RSK

Figure 5: 3D representations of pressure (p) distribution using Exact solution and DSCDQ-RSK with C3=C4=1,
C5 =2 at t=0.11sec and γ=1.68.

(a) Exact density (b) Density using DSCDQ-RSK

Figure 6: 3D representations of density (ρ) distribution using Exact solution and DSCDQ-RSK with C3=C4=1,
C5 =2 at t=0.11sec and γ=1.13.

size (5×5×5). From comparison the obtained results by using different schemes, exact
solutions, various statistical analysis, and CPU time it is found the method of DSCDQM
based on RSK is the better schemes used for solving this system of unsteady gas flow.

Figs. 2-8 show 3-D representations of velocities components profiles (u,v), pressure
(p) and density (ρ) via DSCDQM-RSK and Exact solutions at different values of adiabatic
index (γ) and different locations. In Figs. 2 and 3, it is noticed that velocities components
(u,v=w) are agreed with the exact solution at C1 =C2 =C5 = 1 at y= 0.6 and γ= 1.68.
Also, Figs. 4-7 show the effect of adiabatic index on the pressure (p) and density (ρ) in
3-D distribution by comparing with exact results with C3 =C4 = 1, C5 = 2 at t= 0.11sec.
Pressure (p) is affected by change the value of adiabatic index (γ) and its value decreases
with increasing adiabatic index. Density (ρ) is not influenced by change the value of
adiabatic index (γ). Further, Figs. 3, 8 display the velocity profile (v = w) influenced
by variation the value of γ and various locations. Also, these figures show the value of
velocity component (v=w) is not approximately affected by change the value of adiabatic
index (γ).

Fig. 9 displays velocity component (u) where show a linear decrease in the value of
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(a) Exact density (b) Density using DSCDQ-RSK

Figure 7: 3D representations of pressure (p) and density (ρ) distribution using Exact solution and DSCDQ-RSK
with C3 =C4 =1, C5 =2 at t=0.11sec and γ=1.68.

(a) Exact density (b) Density using DSCDQ-RSK

Figure 8: Velocity profile (v=w) using DSCDQ-RSK at C2 =C5 =1 and γ=1.13.

(a) (b)

Figure 9: Velocity component (u) profile using DSCDQM-RSK with C1 =C2 =C5 =1, t=1msec and γ=1.13
at different value of y, z.

velocity at (0.1≤y≤1.1), (0≤z≤1.0) and γ=1.13. Fig. 10 explains velocities components,
pressure, and density profiles with time varying in interval (0≤ t≤ 0.012) and different
locations, showing a velocity in x-direction is approximately does not change with time.
Also, velocity in y-direction decreases with time at (y = 0.267, z = 0.067) and (y = 0.95,
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(a) u (b) v=w

(c) p (d) ρ

Figure 10: Velocities components, pressure and density profiles using DSCDQM-RSK with C1=C2=C3=C4=
C5 =1 and γ=1.13 at different value of y, z, t.

(a) y=0.6, z=0.75 (b) y=0.35, z=0.5

Figure 11: Pressure distribution with C4 =C5 =1 for different values of adiabatic index γ at various materials
and locations at 20◦C due to DSCDQM-RSK.

z= 0.75) and increases slightly at (y= 0.45, z= 0.25). Pressure is inversely proportional
with t, y, and z. The range of pressure is (0.975≤ y≤ 1) and the initial value is 1 for
different locations and it is matching with exact solutions. Further, density decreases
with time at (y = 0.45, z = 0.25), increases at (y = 0.267, z = 0.067) and approximately
constant at (y=0.7, z=0.5).

Figs. 11 and 12 illustrate the influence of γ adiabatic index on pressure specially.
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(a) y=0.35, z=0.5 (b) y=0.6, z=0.75

Figure 12: The influence of adiabatic thermal index γ on the results with C4=C5=1 due to DSCDQM-RSK at
different times and location.

Figure 13: Velocity component (U) profile with C1 =C2 =C5 = 1 at t= 1.1msec, different value of y, z and
γ=1.13 due to DSCDQM-RSK.

Fig. 11 exhibits that p decreases as γ increasing at different materials at 20◦C and time
(0≤ t≤ 0.012). Also, Fig. 12 exhibits that pressure p decays during increase time incre-
ment and adiabatic index (γ). Further, these figures display the p decreasing when t
increases. Pressure is approximately does not change with different locations. The re-
lation between pressure and time is closing to linear at little times and the nonlinearity
appears at larger times at t>0.1sec.

Fig. 13 represents the relation between velocity component (u) with spatial variables
(y and z) at t=1.1. The exact solution matches very well with the results using DSCDQ-
RSK. From this figure, it is shown that u decreases as y and z increase.

5 Conclusions

This work investigates four methods based on various shape functions combined
with Runge-Kutta 4th order scheme to solve nonlinear four-dimensional unsteady
Navier–Stokes equations of gas dynamics. The first one applied polynomial differen-
tial quadrature method (PDQM) with Chebyshev discretization. After that, SDQM,
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DSCDQM-DLK, and DSCDQM-RSK are used. Then, the problem is reduced to system
of nonlinear ordinary differential equations. So, Runge-Kutta 4th order (RK4) is em-
ployed to complete the solution. A MATLAB program is carried out for solving (3+1)-
dimensional unsteady gas flow. These methods match very well with the exact results [8].
It is found from the results that PDQM scheme leads to unstable oscillatory results as
much as grid size > 11×11×11 and other strategies overcame the instability disadvan-
tages arising with PDQM. But it is found from the comparison with exact solutions and
various statistical analysis calculated that the DSCDQM-RSK is more stable, accurate and
efficient method with an RMS≤10−5, at mesh size (5×5×5), 2S+1=3, ξ=5∗mx and Com-
putation time =20.465740second. Further, the effect of parameter Adiabatic index is ex-
amined at different material, different locations and times on the velocities profile, pres-
sure, and density. From the results, it is noticed that the velocities component decreases
throughout increasing y and z. As well as the value of velocity component (u,v=w) is not
affected by change the value of adiabatic index (γ). Pressure profile decreases through-
out increasing time and adiabatic thermal index. But it approximately does not change
with different locations. Also, density increases when increasing the time and is not in-
fluenced when the value of adiabatic index (γ) changes. On the other hand, we hope
to apply these methods for higher dimensional issues in various regions of physical and
numerical sciences.
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