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Abstract. Although there are many effective methods for removing impulse noise
in image restoration, there is still much room for improvement. In this paper, we

propose a new two-phase method for solving such a problem, which combines the

nuclear norm and the total variation regularization with box constraint. The popular
alternating direction method of multipliers and the proximal alternating direction

method of multipliers are employed to solve this problem. Compared with other
algorithms, the obtained algorithm has an explicit solution at each step. Numerical

experiments demonstrate that the proposed method performs better than the state-

of-the-art methods in terms of both subjective and objective evaluations.
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1. Introduction

Impulse noise removal is a challenging problem in image restoration. In general,

the image restoration problem, which is subject to blurring and impulse noise, can be

expressed as

f = Nimp(y), y = Kx, (1.1)

where Nimp denotes impulse noise, K is a linear blurring operator, f ∈ Rm×n is the

observed image, and x ∈ Rm×n is the unknown true image. Two types of impulse

noise are widely studied: salt-and-pepper (SP) impulse noise and random-valued (RV)

impulse noise. Let the dynamic range of y belong to [ymin, ymax], i.e., ymin ≤ yij ≤ ymax,

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Salt-and-pepper impulse noise. Observed image f satisfies

fij =





ymin, with probability s/2,

ymax, with probability s/2,

yij, with probability 1− s,

(1.2)

where s denotes the level of the salt-and-pepper noise.

Random-valued impulse noise. Observed image f satisfies

fij =

{
dij , with probability r,

yij, with probability 1− r,
(1.3)

where dij are uniformly distributed random numbers in [ymin, ymax] and r denotes the

level of the random valued noise.

The most popular model for image deblurring with impulse noise is the so-called

L1-TV, which is defined by

min
x

‖Kx− f‖1 + λϕ(Lx), (1.4)

where λ > 0 is the regularization parameter, L : Rm×n → Rm×2n is the first-order

difference matrix, and ϕ : Rm×2n → R is a convex function. If ϕ(·) = ‖ · ‖2 or ϕ(·) =
‖ · ‖1, ϕ(Lx) denotes the isotropic total variation (ITV) and the anisotropic total varia-

tion (ATV), respectively. The first term in (1.4) is usually called data fidelity term, and

the second term is called regularization term. Compared with the classical L2-data fi-

delity term, the L1-data fidelity term is robust for removing outliers. The L1-TV model

(1.4) is difficult to solve because of the nondifferentiable of both the L1-norm data

fidelity term and the TV term. In the last two decades, many efficient iterative algo-

rithms have been proposed to solve (1.4). These include the primal-dual interior point

algorithm [21], alternating minimization algorithm [23], alternating direction method

of multiplies [12,34], and the primal-dual Chambolle-Pock algorithm [6].

Although the L1-TV model (1.4) is effective in removing impulse noise, it does

not take into account whether a pixel is contaminated by noise or not. The perfor-

mance of L1-TV is usually unsatisfactory when the noise level is high, as demonstrated

in studies such as [13, 36]. To address this issue, two-phase methods have gained

popularity. In the first phase, techniques such as the adaptive median (AM) filter or

adaptive center-weighted median (ACWM) filter are used to identify image pixels af-

fected by salt-and-pepper impulse noise or random-valued impulse noise. In the second

phase, filter methods or detail-preserving regularization methods based on the identi-

fied noise-free pixels are utilized to recover the image. Chan et al. [9–11] first proposed

a two-phase method for removing random-valued impulse noise and salt-and-pepper

impulse noise, respectively. They considered solving a variational minimization prob-

lem in the second phase, see also [4, 7, 17]. On the other hand, Chen and Yang [16]

introduced a two-stage method for removing impulse noise, which used an iterative



A Low Rank Two-Phase Method for Image Deblurring 3

and adaptive median-based filter in the second phase. The filter methods in the second

phase have been further improved in [15, 26–28] and many others. Since these works

mentioned above are only designed for pure impulse noise removal, Cai et al. [5] pro-

posed a two-phase method for image deblurring with impulse noise. In contrast, Ma et

al. [29] introduced a general model that includes one-phase and two-phase methods.

They also considered the box constraint [0, 1] on the pixel values of the image. More-

over, Ma et al. [30] proposed a path-based two-phase method that incorporated the

sparse representation prior and the total variation regularization.

Existing two-phase methods are based on total variation regularization for restoring

blurred images with impulse noise [5, 8, 29, 30], which require the empirical selection

of regularization parameters. To overcome this drawback, Sciacchitano et al. [31] pro-

posed a parameter-free model as follows:

min
x

ϕ(Lx)

s.t. (Kx)ij = fij, (i, j) ∈ U,
(1.5)

where ϕ,L,K, and f are the same as (1.4), and U denotes the location of noise-free

pixels. The semismooth Newton method was introduced to solve the reduced convex

minimization problem for K = I. For the general case (i.e., K 6= I), the primal-

dual Chambolle-Pock algorithm was applied to deal with the equality constraint. It

is worth mentioning that the model (1.5) does not consider the box constraint. In the

following, we refer to (1.5) as the ExTV method. In contrast to the two-phase methods,

there are many existing nonconvex models to improve the performance of the L1-TV

model (1.4), such as Nonconvex TV [37,39], TVSCAD [22], TVLog [38], ℓ0TV [25,35],

and Nonconvex-nonconvex [18], etc. In this paper, we mainly focus on extending the

two-phase methods of the ExTV (1.5).

Low-rank prior has been exploited in many imaging applications, such as image

super-resolution [14, 32], dynamic MRI [24], and functional MRI [33], etc. Although

most natural images do not have strict low-rankness, they usually have approximately

low-rankness. Therefore, by minimizing the nuclear norm, it prefers matrices that

have a small number of singular values with large magnitudes. The main purpose of

this paper is to propose a new two-phase model for image deblurring under impulse

noise, which combines the nuclear norm and total variation regularization with box

constraint. The new model is

min
x

ϕ(Lx) + µ‖x‖∗

s.t. x ∈ C,

Kx ∈ C̃,

(1.6)

where µ > 0 is the regularization parameter, ‖x‖∗ denotes the nuclear norm, C = {x ∈
Rm×n|0 ≤ xij ≤ 1}, and C̃ = {y ∈ Rm×n|yij = fij, (i, j) ∈ U}. When C = Rm×n

and µ = 0, the model (1.6) reduces to the parameter-free model (1.5). Therefore, the

model (1.6) generalizes the model (1.5). When the TV term ϕ(Lx) is missing, (1.6)

reduces to the following constrained nuclear norm regularization model:
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min
x

‖x‖∗

s.t. x ∈ C,

Kx ∈ C̃.

(1.7)

We employ the alternating direction method of multipliers (ADMM) and the proxi-

mal ADMM to solve (1.6). Since the ADMM needs to solve a subproblem, we use

two different approaches. In detail, for periodic boundary conditions, we use the fast

Fourier transform (FFT). For other boundary conditions, we add a proximal term to

the subproblem to get a closed-form solution. Numerical experiments are conducted to

demonstrate the performance of the proposed method, especially compared with the

ExTV method (1.5) for image deblurring with impulse noise.

We summarize the contributions of this paper

1. We propose a new model (1.6) for image deblurring under salt-and-pepper im-

pulse noise, which could be seen as a generalization of the ExTV method (1.5).

In particular, when µ = 0, a constrained ExTV is obtained. The proposed method

can be used for other type of impulse noise after combining with proper noise

detectors.

2. We employ the ADMM and the proximal ADMM to solve the proposed model.

Each subproblem of the proposed algorithm has a closed-form solution. Addi-

tionally, we provide a first-order iterative algorithm to solve (1.5). Compared

with the algorithms in [31], our algorithm does not require smoothing of the

total variation for denoising or calculation of the matrix inverse for deblurring.

The rest of this paper is organized as follows. In Section 2, we briefly review some

concepts and the key feature of the ADMM and the proximal ADMM. In Section 3, we

present the main algorithm for solving the proposed model (1.6). In Section 4, we

present extensive experiments to demonstrate the effectiveness and efficiency of the

proposed method. Finally, we draw some conclusions.

2. Preliminaries

In this section, we briefly review some notations and definitions, which will be used

throughout this paper. Let X be a finite dimensional real vector space, which equipped

with inner product 〈·, ·〉 and associated norm ‖ · ‖. Let M ∈ RN×N be a self-adjoint and

positive matrix, the scale norm ‖ · ‖M is defined by ‖x‖M =
√

〈x,Mx〉, x ∈ RN . The

set of extended-real valued, lower-semicontinuous, proper, and convex functions on X
is denoted by Γ0(X). The sign function, denoted by sgn(x). It returns 1 if x is positive,

−1 if x is negative, and 0 if x = 0. Mathematically, it can be defined as

sgn(x) =





−1, if x < 0,

0, if x = 0,

1, if x > 0.
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Let C be a nonempty closed convex set of X. The indicator function of the set C is

defined by

δC(x) =

{
0, if x ∈ C,

+∞, otherwise.

Let u ∈ Rm×n be a given discrete image, we recall the definition of the total varia-

tion is

TV (u) = ϕ(Lu) =





‖Lu‖2 =
m∑
i=1

n∑
j=1

√
(∇xu)2ij + (∇yu)2ij , (ITV)

‖Lu‖1 =
m∑
i=1

n∑
j=1

(
|∇xu|ij + |∇yu|ij

)
, (ATV)

where

‖y‖2 =

m∑

i=1

n∑

j=1

√(
y1ij
)2

+
(
y2ij
)2
, y = (y1, y2), y1, y2 ∈ Rm×n,

the discrete gradient operator L = ( ∇x ∇y ), where ∇x and ∇y denote the horizonal

and vertical first order differences, respectively.

The proximal operator plays a virtual role in studying many first-order convex min-

imization algorithms, see, e.g., [1].

Definition 2.1. Let g be a proper lower semicontinuous convex function, the proximal

operator of g with index λ > 0 is defined by

proxλg(y) = argmin
x

{
1

2λ
‖x− y‖2 + g(x)

}
.

The proximal operator is a generalization of the classical orthogonal projection PC

with g(x) = δC(x). That is

proxδC (y) = PC(y) = argmin
x∈C

‖x− y‖.

Let x ∈ Rn and λ > 0, the proximal operator of the ℓ1-norm ‖x‖1 is the so-called

soft-thresholding operator, which is defined by

proxλ‖·‖1 = Soft(y, λ) =
(
max(|yi| − λ, 0) ∗ sgn(yi)

)
, i = 1, . . . , n.

The nuclear norm of X ∈ Rm×n is defined to be ‖X‖∗ =
∑r

i=1 σi(X), where σi(X) is

the i-th singular values of X and r = min(m,n). The nuclear norm ‖X‖∗ is a convex

envelope of the rank of matrix X, which has been widely used in low-rank matrix

recovery problems. It is well-known that the proximal operator of the nuclear norm

has a closed-form solution, see, e.g., [3].

Lemma 2.1. Let Y ∈ Rm×n, the proximal operator of λ‖x‖∗ with λ > 0 is

proxλ‖·‖∗(Y ) = USoft(Σ, λ)V T ,

where Y = UΣV T is a singular value decomposition of Y , and Soft(Σ, λ) is the soft-

thresholding operator.
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The ADMM and the proximal ADMM are popular methods for solving the following

constrained convex minimization problem:

min
x,y

f(x) + g(y)

s.t. Ax+By = b,
(2.1)

where X,X1,X2 are real Hilbert spaces, b ∈ X, A : X1 → X and B : X2 → X are

nonzero bounded linear operators, f ∈ Γ0(X1) and g ∈ Γ0(X2).

The iteration scheme of ADMM is read as





xk+1 = argmin
x

{
f(x) + 〈λk, Ax〉+

ρ

2
‖Ax+Byk − b‖2

}
,

yk+1 = argmin
y

{
g(y) + 〈λk, By〉+

ρ

2
‖Axk+1 +By − b‖2

}
,

λk+1 = λk + ρ
(
Axk+1 +Byk+1 − b

)
,

(2.2)

where ρ > 0. To get a closed-form solution of {xk+1} and {yk+1}, the proximal ADMM

has also received much attention, which is defined by





xk+1 = argmin
x

{
f(x) + 〈λk, Ax〉+

ρ

2
‖Ax+Byk − b‖2 +

1

2
‖x− xk‖2M1

}
,

yk+1 = argmin
y

{
g(y) + 〈λk, By〉+

ρ

2
‖Axk+1 +By − b‖2 +

1

2
‖y − yk‖2M2

}
,

λk+1 = λk + ρ
(
Axk+1 +Byk+1 − b

)
,

(2.3)

where M1 and M2 are self-adjoint, positive matrices. The convergence of the ADMM

(2.2) and the proximal ADMM (2.3) can be found in [2,19,20] and references therein.

3. Main algorithm

In this section, we present the main algorithm for solving (1.6). Specifically, we

employ the ADMM (2.2) and the proximal ADMM (2.3) to solve (1.6). First, we intro-

duce several auxiliary variables: Let Lx = y, x = z, x = w, and Kx = q. Then, we can

reformulate (1.6) as the following constrained minimization problem:

min
x,y,z,w,q

ϕ(y) + δC(z) + µ‖w‖∗ + δ
C̃
(q)

s.t. Lx = y, x = z, x = w, Kx = q.
(3.1)

To give the detail of the ADMM, we define the corresponding augmented Lagrangian

function as

L(x, y, z, w, q, λ1, λ2, λ3, λ4)

= ϕ(y) + 〈λ1, Lx− y〉+
ρ

2
‖Lx− y‖2
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+ δC(z) + 〈λ2, x− z〉+
ρ

2
‖x− z‖2

+ µ‖w‖∗ + 〈λ3, x− w〉+
ρ

2
‖x− w‖2

+ δ
C̃
(q) + 〈λ4,Kx− q〉+

ρ

2
‖Kx− q‖2,

where ρ > 0 is the penalty parameter and λ1, λ2, λ3, and λ4 are the Lagrangian multi-

pliers. Then, the ADMM for solving (3.1) is given by





xk+1 = argmin
x

L
(
x, yk, zk, wk, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)
,

yk+1 = argmin
y

L
(
xk+1, y, zk, wk, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)
,

zk+1 = argmin
z

L
(
xk+1, yk+1, z, wk , qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)
,

wk+1 = argmin
w

L
(
xk+1, yk+1, zk+1, w, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)
,

qk+1 = argmin
q

L
(
xk+1, yk+1, zk+1, wk+1, q, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)
,

λk+1
1 = λk

1 + ρ
(
Lxk+1 − yk+1

)
,

λk+1
2 = λk

2 + ρ
(
xk+1 − zk+1

)
,

λk+1
3 = λk

3 + ρ
(
xk+1 − wk+1

)
,

λk+1
4 = λk

4 + ρ
(
Kxk+1 − qk+1

)
.

(3.2)

In the following, we present how to solve the subproblems of (3.2).

(1) For the subproblem {xk+1}, we consider two approaches to solve it. First, we

assume the periodic boundary condition. According to the first-order optimality condi-

tion of {xk+1}, we have

LTλk
1 + ρLT

(
Lxk+1 − yk

)
+ λk

2 + ρ
(
xk+1 − zk

)

+ λk
3 + ρ

(
xk+1 − wk

)
+KTλk

4 + ρKT
(
Kxk+1 − qk

)
= 0,

which can be rewritten as

(
ρLTL+ 2ρI + ρKTK

)
xk+1

= LT
(
ρyk − λk

1

)
+ ρzk − λk

2 + ρwk − λk
3 +KT

(
ρqk − λk

4

)
. (3.3)

Under the assumption of periodic boundary condition, the matrix ρLTL+2ρI+ρKTK
has a block circulant matrix with circulant blocks (BCCB) structure. Therefore, the

Eq. (3.3) can be effectively solved via fast Fourier transform (FFT), i.e.,

xk+1 = F−1

(
F(LT (ρyk − λk

1) + ρzk − λk
2 + ρwk − λk

3 +KT (ρqk − λk
4))

F(ρLTL+ 2ρI + ρKTK)

)
, (3.4)

where F and F−1 represent the Fourier transform and the inverse Fourier transform,

respectively.
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For the other boundary conditions, such as the zero boundary condition, reflexive

boundary condition, and anti-reflexive boundary condition. We solve {xk+1} in the

ADMM scheme (3.2) by borrowing the idea of the proximal ADMM (2.3) and adding

a proximal term ‖x − xk‖2M1
/2, where M1 = I/λ − ρLTL − 2ρI − ρKTK such that

λ < 1/(ρ‖L‖2 + 2ρ+ ρ‖K‖2). That is

xk+1 = argmin
x

L
(
x, yk, zk, wk, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)
+

1

2
‖x− xk‖2M1

. (3.5)

By the first-order optimality condition of (3.5) and after simple calculation, we get

xk+1 = xk − λ
(
LTλk

1 + ρLT (Lxk − yk) + λk
2 + ρ(xk − zk)

+ λk
3 + ρ(xk − wk) +KTλk

4 + ρKT (Kxk − qk)
)
. (3.6)

(2) For the subproblem {yk+1}, we have

yk+1 = argmin
y

L
(
xk+1, y, zk, wk, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)

= argmin
y

{
ϕ(y) +

ρ

2

∥∥∥∥Lx
k+1 − y +

1

ρ
λk
1

∥∥∥∥
}

= prox 1

ρ
ϕ

(
Lxk+1 +

1

ρ
λk
1

)
. (3.7)

If ϕ = ‖ · ‖1 or ‖ · ‖2, the proximal operator of prox 1

ρ
ϕ has a closed-form solution. In

detail, when ϕ = ‖ · ‖2, we have

(yk+1)ij =

(
(yk+1

x )ij

(yk+1
y )ij

)
=




max(Γij − 1/ρ, 0) ∗
(∇xx

k+1 + λk
1,x/ρ)ij

Γij

max(Γij − 1/ρ, 0) ∗
(∇yx

k+1 + λk
1,y/ρ)ij

Γij


 ,

where

Γij =

√(
∇xxk+1 +

1

ρ
λk
1,x

)2

ij

+

(
∇yxk+1 +

1

ρ
λk
1,y

)2

ij

, i = 1, . . . ,m, j = 1, . . . , n.

When ϕ = ‖ · ‖1, we have

(yk+1)ij =

(
(yk+1

x )ij

(yk+1
y )ij

)

=




max

(∣∣∣∣∣

(
∇xx

k+1 +
1

ρ
λk
1,x

)

ij

∣∣∣∣∣−
1

ρ
, 0

)
∗ sgn

((
∇xx

k+1 +
1

ρ
λk
1,x

)

ij

)

max

(∣∣∣∣∣

(
∇yx

k+1 +
1

ρ
λk
1,y

)

ij

∣∣∣∣∣−
1

ρ
, 0

)
∗ sgn

((
∇yx

k+1 +
1

ρ
λk
1,y

)

ij

)




.
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(3) For the subproblem {zk+1}, we have

zk+1 = argmin
z

L
(
xk+1, yk+1, z, wk, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)

= argmin
z

{
δC(z) +

ρ

2

∥∥∥∥x
k+1 − z +

1

ρ
λk
2

∥∥∥∥
}

= PC

(
xk+1 +

1

ρ
λk
2

)
, (3.8)

where PC denotes the orthogonal projection onto the closed convex set C. Consider

the definition of C = {x ∈ Rm×n | 0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n}, we have

zk+1
ij =





0, if

(
xk+1 +

1

ρ
λk
2

)

ij

< 0,
(
xk+1 +

1

ρ
λk
2

)

ij

, if 0 ≤

(
xk+1 +

1

ρ
λk
2

)

ij

≤ 1,

1, if

(
xk+1 +

1

ρ
λk
2

)

ij

> 1.

(3.9)

(4) For the subproblem {wk+1}, we have

wk+1 = argmin
w

L
(
xk+1, yk+1, zk+1, w, qk, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)

= argmin
w

{
µ‖w‖∗ +

ρ

2

∥∥∥∥x
k+1 − w +

1

ρ
λk
3

∥∥∥∥
}

= proxµ
ρ
‖·‖∗

(
xk+1 +

1

ρ
λk
3

)
. (3.10)

(5) For the subproblem {qk+1}, we have

qk+1 = argmin
q

L
(
xk+1, yk+1, zk+1, wk+1, q, λk

1 , λ
k
2 , λ

k
3 , λ

k
4

)

= argmin
q

{
δ
C̃
(q) +

ρ

2

∥∥∥∥Kxk+1 − q +
1

ρ
λk
4

∥∥∥∥
}

= P
C̃

(
Kxk+1 +

1

ρ
λk
4

)
, (3.11)

where P
C̃

denotes the orthogonal projection onto the closed convex set C̃. Taking into

account the definition of C̃, we have

qk+1
ij =





fij, if (i, j) ∈ U,
(
Kxk+1 +

1

ρ
λk
4

)

ij

, if (i, j) ∈ I\U.
(3.12)

In summary, the detailed ADMM for solving (1.6) is summarized in Algorithm 3.1.
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Algorithm 3.1 The ADMM and the proximal ADMM for solving (1.6)

Input: For arbitrarily x0, y0, z0, w0, and q0. Choose ρ > 0.

1: Update xk+1 by (3.4) or (3.6).

2: Update yk+1 by (3.7).

3: Update zk+1 by (3.8).

4: Update wk+1 by (3.10).

5: Update qk+1 by (3.11).

6: Update the multipliers by

λk+1
1 = λk

1 + ρ(Lxk+1 − yk+1),

λk+1
2 = λk

2 + ρ(xk+1 − zk+1),

λk+1
3 = λk

3 + ρ(xk+1 − wk+1),

λk+1
4 = λk

4 + ρ(Kxk+1 − qk+1).

Stop when a given stopping criterion is met.

Output: xk+1.

In the following, we briefly discuss the convergence of the proposed Algorithm 3.1.

Let

u =




y
z
w
q


 , A =




L
I
I
K


 , B =




−I 0 0 0
0 −I 0 0
0 0 −I 0
0 0 0 −I


 .

Define

g(u) = ϕ(y) + δC(z) + µ‖w‖∗ + δ
C̃
(q),

then (3.1) can be rewritten as

min
x,u

g(u)

s.t. Ax+Bu = 0.

Therefore, the convergence of the iterative sequences generated by Algorithm 3.1 fol-

lows directly from the classical convergence analysis of the ADMM and the proximal

ADMM, respectively.

4. Numerical experiments

In this section, we will demonstrate the performance of the proposed method and

compare it to other methods. We refer to the proposed method as LR CExTV. All ex-

periments were performed on a Laptop with an Intel Core 2 Duo 2.70 GHz and 4GB

memory, running on Windows 7 and MATLAB R2014a.
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To measure the quality of the restored images, we use the peak signal-to-noise ratio

(PSNR) and the structural similarity (SSIM) index, which are defined by

PSNR = 10 log10
P 2

∑
i,j(xij − x̃ij)2/mn

,

SSIM =
(2µxµx̃ + c1)(2σxx̃ + c2)

(2µ2
xµ

2
x̃
+ c1)(σ2

x + σ2
x̃
+ c2)

,

where P is the maximum peak value of the original image x ∈ Rm×n, x̃ ∈ Rm×n is the

restored image, c1 > 0 and c2 > 0 are small constants, µx and µx̃ are the mean values

of x and x̃, respectively; σx and σx̃ are the variances of x and x̃, respectively; σxx̃ is the

covariance of x and x̃.

4.1. Experiment setting

Test images. We choose the 256-by-256 gray level image “Parrot”, the 256-by-256

gray level image “House”, the 512-by-512 gray level image “Bridge”, and the 517-by-

493 gray level image “Building” as test images, which are shown in Fig. 1.

(a) Parrot (b) House

(c) Bridge (d) Building

Figure 1: Test images.
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Parameters. In our experiments, we solve a sequence of the convex minimization

problem (1.6) with a varied choice of µ and record the best choice of µ that gives the

highest PSNR. We set λ = 0.01 in the update of the sequences {xk+1} of (3.6). For the

parameter ρ, we set it to be 14, which performs stably and efficiently throughout the

experiments.

Noisy pixels detection. In the first phase, we detect the noisy pixel location and obtain

the set of U in our method (1.6). Different from other two-phase methods [5, 8], we

do not use an adaptive median filter to detect the noisy pixels. It is enough to set the

observed pixels fij = 0 or 1 as salt-and-pepper noise and the rest pixels are viewed as

noise-free. This approach is also used in the ℓ0TV method [35].

Stopping criterion. The stopping criterion is defined by

‖xk+1 − xk‖

‖xk‖
≤ ǫ,

where ǫ is a given small constant. In the following experiments, we set ǫ = 10−6.

4.2. Numerical results and discussions

In the first experiment, we demonstrate the motivation of the proposed model (1.6),

particularly with the introduction of nuclear norm regularization. We select “House”

and “Building” as the test images and construct approximate images with low rank,

which are shown in Fig. 2. We compare the proposed model (1.6) with the ExTV (1.5)

and (1.7), referred to as CExLR. We add salt-and-pepper impulse noise at different

levels to the corresponding images. The obtained results are presented in Tables 1-2.

The hyphen symbol (−) indicates that the maximum number of iterations 4000 was

exceeded. The results from the Tables 1-2 show that the model based on nuclear norm

regularization is significantly better than the other two models when the rank of the

test image is very small. When the rank of the test image increases and the noise level

is low, the model based on nuclear norm regularization still outperforms the other two

models. When the noise level is high, the proposed model is better than both the

nuclear norm regularization model and the total variation regularization model. For

full-rank images, the proposed model consistently outperforms the other two models.

Considering that using only nuclear norm or total variation regularization cannot fully

represent the prior information of natural images, we adopt a combination of nuclear

norm and total variation regularization for our proposed model.

In the second experiment, we consider salt-and-pepper denoising without blurring.

To show the influence of the regularization parameter, Fig. 3 shows the PSNR against

the regularization parameter µ for the test images. It can be observed from Fig. 3 that

the PSNR obtained by µ > 0 is always larger than µ = 0. For the choice of µ > 0, the

PSNR values nearly keep stagnating.

We now compare the proposed method (1.6) with the ExTV method (1.5) and the

CExTV method (i.e., µ = 0 in (1.6)). The obtained results are presented in Table 3. It
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(a) Rank = 2 (b) Rank = 50 (c) Rank = 128

(d) Rank = 2 (e) Rank = 50 (f) Rank = 240

Figure 2: Low rank approximation images of “House” and “Building”.

Table 1: Numerical results of different methods for “House” image with fixed rank.

Rank Noise level
Input ExTV CExLR LR CExTV (1.6)

PSNR/SSIM PSNR/SSIM/Iter PSNR/SSIM/Iter PSNR/SSIM/Iter

2

10% 15.64/0.0977 60.85/0.9996/1190 116.28/1.0000/216 66.49/0.9999/1025

30% 10.83/0.0232 53.66/0.9980/1110 113.82/1.0000/307 92.77/1.0000/1402

50% 8.68/0.0120 48.57/0.9946/1134 112.82/1.0000/415 90.12/1.0000/1787

70% 7.20/0.0068 43.19/0.9842/2528 107.78/1.0000/603 84.50/1.0000/2249

90% 6.11/0.0044 32.73/0.9167/− 104.31/ 1.0000/896 73.39/1.0000/3727

50

10% 15.42/0.1728 45.24/0.9942/954 109.93/1.0000/197 49.68/0.9969/874

30% 10.69/0.0590 38.89/0.9765/908 95.01/1.0000/677 60.08/0.9998/2492

50% 8.47/0.0281 34.54/0.9500/1073 34.35/0.9437/592 37.26/0.9723/1188

70% 7.03/0.0159 30.57/0.9021/2103 26.08/0.7256/532 31.60/0.9107/898

90% 5.92/0.0075 23.49/0.7689/− 19.68/0.3572/1456 24.18/0.7786/1081

128

10% 15.48/0.1818 43.63/0.9921/954 49.88/0.9978/489 46.54/0.9748/892

30% 10.70/0.0595 37.93/0.9703/908 36.54/0.9543/558 38.99/0.9748/828

50% 8.46/0.0307 33.21/0.9370/1117 30.49/0.8590/1471 34.54/0.9419/842

70% 7.03/0.0158 29.47/0.8840/2271 23.33/0.6791/1917 30.35/0.8896/1087

90% 5.91/0.0052 22.64/0.7421/− 19.41/0.3405/1994 23.35/0.7520/1033

Full rank

10% 15.44/0.1809 43.63/0.9917/286 43.02/0.9876/1043 44.76/0.9926/463

30% 10.70/0.0591 37.29/0.9685/510 35.47/0.9425/718 38.15/0.9711/409

50% 8.46/0.0309 33.27/0.9360/1043 30.20/0.8483/474 34.21/0.9388/377

70% 7.00/0.0155 29.17/0.8808/1986 25.16/0.6674/1281 30.17/0.8870/449

90% 5.90/0.0063 22.79/0.7416/− 19.24/0.3156/− 23.22/0.7495/1772
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(a) Parrot (b) House

(c) Bridge (d) Building

Figure 3: The PSNR values with respect to the regularization µ for the test images corrupted by salt-and-
pepper noise with different noise levels. The best PSNR is marked by the square (�).

can be seen from Table 3 that the CExTV method is slightly better than the ExTV method

without box constraint in most cases. This confirms the advantage of incorporating

information about the pixel values. We see that the proposed method outperforms

the other two methods. In particular, for the test images of “Building”, the proposed

method achieves 3 dB higher than the other two methods. The proposed method re-

quires fewer iterations than the other two methods, especially when the noise level is

above 30%. For a noise level of 90%, the proposed method significantly reduces the

number of iterations compared to the other methods. Fig. 4 presents the computation

time of the proposed algorithm for the test images of “Parrot” and “Bridge”. Fig. 5

shows the restored images of “Building” from salt-and-pepper noise with noise levels

of 70% and 90%. It can be seen from Fig. 5 that the proposed method significantly

outperforms the other two methods visually, especially when the noise level is 90%.

In the third experiment, we report numerical results for restoring blurred images

with salt-and-pepper noise. We consider Gaussian blur with a size of 7×7 and standard

derivation 5. We use the same way in the first experiment to obtain the noise-free set U .

To show the influence of the regularization parameter on the restoration results, Fig. 6

shows the PSNR values to the regularization parameter µ for the test images.
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Table 2: Numerical results of different methods for “Building” image with fixed rank.

Rank Noise level
Input ExTV CExLR LR CExTV (1.6)

PSNR/SSIM PSNR/SSIM/Iter PSNR/SSIM/Iter PSNR/SSIM/Iter

2

10% 15.72/0.2434 41.30/0.9920/968 116.91/1.0000/216 72.67/1.0000/998

30% 10.95/0.0769 34.86/0.9645/948 114.51/1.0000/326 96.08/1.0000/1159

50% 8.74/0.0368 31.16/0.9193/1227 112.59/1.0000/449 93.61/1.0000/1331

70% 7.27/0.0180 28.00/0.8334/2437 109.97/1.0000/682 89.68/1.0000/1791

90% 6.18/0.0073 23.49/0.5921/− 104.57/ 1.0000/1292 42.49/ 0.9919/2744

50

10% 15.64/0.3399 37.89/0.9884/835 76.09/1.0000/203 74.88/1.0000/713

30% 10.84/0.1231 31.35/0.9491/897 74.05/1.0000/418 71.83/1.0000/1025

50% 8.60/0.0646 27.64/0.8817/1218 53.79/0.9999/871 50.99/0.9997/2522

70% 7.15/0.0316 24.59/0.7672/3721 33.36/0.9652/2013 33.40/0.9655/3322

90% 6.06/0.0108 20.52/0.4797/− 23.71/0.7028/1393 24.49/0.7367/1234

240

10% 15.62/0.3604 36.55/0.9854/805 50.43/0.9993/1260 47.19/0.9984/1392

30% 10.81/0.1330 30.18/0.9381/870 35.01/0.9703/1944 35.54/0.9751/1281

50% 8.25/0.0542 26.72/0.8617/1551 30.15/0.9114/1486 30.86/0.9277/1013

70% 6.79/0.0257 23.93/0.7344/3194 26.66/0.8165/1304 27.39/0.8434/917

90% 5.70/0.0096 20.06/0.4408/− 22.41/0.6244/1214 23.12/0.6538/919

Full rank

10% 15.60/0.3627 36.45/0.9850/359 39.53/0.9887/1881 40.19/0.9913/829

30% 10.86/0.1361 30.10/0.9364/756 33.28/0.9546/650 34.00/0.9643/760

50% 8.63/0.0668 26.74/0.8602/1398 29.70/0.8999/558 30.45/0.9192/783

70% 7.15/0.0312 23.90/0.7315/3396 26.40/0.8068/492 27.13/0.8349/831

90% 6.06/0.0109 20.15/0.4434/− 22.39/0.6231/502 23.12/0.6501/790

Table 3: The PSNR (dB), SSIM, and number of iterations (Iter) of different methods for images corrupted
by salt-and-pepper noise.

Image Noise level
Input ExTV CExTV LR CExTV (1.6)

PSNR/SSIM PSNR/SSIM/Iter PSNR/SSIM/Iter PSNR/SSIM/Iter

Parrot

10% 14.92/0.2522 35.75/0.9905/439 35.76/0.9905/316 36.30/0.9902/939

30% 10.18/0.1037 30.34/0.9636/519 30.35/0.9637/542 30.77/0.9636/353

50% 7.98/0.0574 26.48/0.9213/1084 26.48/0.9213/1086 27.24/0.9229/390

70% 6.46/0.0295 23.17/0.8507/2181 23.17/0.8507/2181 23.93/0.8553/561

90% 5.39/0.0102 18.50/0.6759/− 18.50/ 0.6759/− 19.08/ 0.6821/1072

House

10% 15.44/0.1809 43.63/0.9917/286 43.75/0.9917/301 44.76/0.9926/463

30% 10.70/0.0591 37.29/0.9685/510 37.32/0.9685/510 38.15/0.9711/409

50% 8.46/0.0309 33.27/0.9360/1043 33.27/0.9360/1043 34.21/0.9388/377

70% 7.00/0.0155 29.17/0.8808/1986 29.17/0.8808/1986 30.17/0.8870/449

90% 5.90/0.0063 22.79/0.7416/− 22.79/0.7416/− 23.22/0.7495/1772

Bridge

10% 15.25/0.3315 34.21/0.9768/2220 34.21/0.9768/2220 34.45/0.9759/394

30% 10.48/0.1124 29.71/0.9267/2124 29.71/0.9267/2124 29.92/0.9258/400

50% 8.25/0.0542 26.77/0.8496/2899 26.77/0.8495/2899 26.97/0.8498/430

70% 6.79/0.0257 24.18/0.7207/− 24.18/0.7207/− 24.49/0.7240/399

90% 5.70/0.0096 20.65/0.4535/− 20.65/0.4535/− 20.88/0.4582/1179

Building

10% 15.60/0.3627 36.45/0.9850/359 36.49/0.9851/352 40.19/0.9913/829

30% 10.86/0.1361 30.10/0.9364/756 30.11/0.9366/756 34.00/0.9643/760

50% 8.63/0.0668 26.74/0.8602/1398 26.74/0.8603/1398 30.45/0.9192/783

70% 7.15/0.0312 23.90/0.7315/3396 23.90/0.7315/3396 27.13/0.8349/831

90% 6.06/0.0109 20.15/0.4434/− 20.15/0.4434/− 23.12/0.6501/790
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(a) ExTV (b) CExTV (c) LR CExTV

(d) ExTV (e) CExTV (f) LR CExTV

Figure 4: The PSNR values with respect to the CPU time in seconds are compared for the different methods.
(a)-(c) The test image is “Parrot”; (d)-(f) The test image is “Bridge”.

(a) 70%/7.15 (b) ExTV/23.90 (c) CExTV/23.90 (d) LR CExTV/27.13

(e) 90%/6.06 (f) ExTV/20.15 (g) CExTV/20.15 (h) LR CExTV/23.12

Figure 5: Restored images (with PSNR (dB)) of different methods. First column: noisy image “Building”
with salt-and-pepper noise at 70% and 90%. Second column: restored images by the ExTV method. Third
column: restored images by the CExTV method. Forth column: restored images by the LR CExTV method.
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(a) Parrot (b) House

(c) Bridge (d) Building

Figure 6: The PSNR values with respect to the regularization µ for the test images corrupted by Gaussian
blur and salt-and-pepper noise with different noise levels. The best PSNR is marked by the square (�).

It is well-known that the ADMM usually exhibits slow convergence when reaching

high precision solutions. In Table 4, we report numerical results of the compared meth-

ods when the maximum iteration number of 4000 is reached. It can be seen from Table 4

that the proposed LR CExTV method outperforms the other two methods in terms of

PSNR and SSIM values. However, the proposed LR CExTV method requires more CPU

time than the other two methods due to its involvement of the proximal operator of

the nuclear norm. Furthermore, we present the number of iterations where the stop-

ping criterion reached in Table 5. The symbol “ − ” means that the maximum number

of iterations of 4 × 105 is exceeded. It can be observed from Tables 4 and 5 that the

proposed algorithm can quickly converge to a solution with low accuracy. For the noise

levels below 50%, when the number of iterations exceeds 4 × 105, the solution quality

will improve more and more slowly. Therefore, more iteration numbers are required

to achieve higher precision solutions. For case of large noise (e.g., 90%), the quality

of the images recovered by the two different stopping criteria is almost the same. This

shows that the proposed algorithm could be stopped early for the restoration of high

noisy images.
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Table 4: The PSNR (dB), SSIM, and CPU time (in seconds) of different methods for images corrupted by
Gaussian blur and salt-and-pepper noise when the iteration number is fixed by 4000.

Image Noise level
Input ExTV CExTV LR CExTV (1.6)

PSNR/SSIM PSNR/SSIM/Time PSNR/SSIM/Time PSNR/SSIM/Time

Parrot

10% 14.05/0.1319 32.31/0.9436/157.3 32.34/0.9436/173.2 32.51/0.9447/271.7

30% 9.94/0.0484 31.10/0.9338/178.4 31.17/0.9340/178.1 31.34/0.9356/277.6

50% 7.85/0.0221 29.79/0.9195/181.5 29.83/0.9198/266.2 30.15/0.9221/412.8

70% 6.42/0.0122 27.39/0.8907/255.0 27.60/0.8915/200.7 27.95/0.8955/301.7

90% 5.40/0.0072 23.09/0.7965/192.7 23.21/0.7977/198.4 23.75/ 0.8071/302.8

House

10% 15.17/0.1103 38.27/0.9507/152.3 38.27/0.9506/162.6 39.02/0.9540/256.5

30% 10.64/0.0322 37.36/0.9423/166.1 37.36/0.9424/262.1 38.24 /0.9467/342.1

50% 8.43/0.0173 36.00/0.9278/189.0 36.00/0.9278/169.2 37.01/0.9332/263.6

70% 6.97/0.0096 34.17/0.9027/181.4 34.17/0.9027/181.7 35.16/0.9098/339.8

90% 5.89/0.0050 29.88/0.8433/231.6 29.88/0.8433/204.7 30.55/0.8503/266.0

Bridge

10% 14.51/0.1123 29.66/0.8931/625.0 29.67/0.8936/727.9 29.77/0.8953/1316.1

30% 10.25/0.0329 28.90/0.8741/685.3 28.90/0.8745/713.1 29.05/0.8769/1186.0

50% 8.18/0.0178 27.92/0.8435/682.9 27.93/0.8442/709.6 28.12/0.8476/1174.3

70% 6.75/0.0084 26.43/0.7820/655.2 26.44/0.7829/673.5 26.77/0.7907/1144.1

90% 5.68/0.0048 23.79/0.6063/654.6 23.80/0.6072/680.1 24.26/0.6299/1148.0

Building

10% 14.64/0.1091 33.06/0.9418/580.4 33.07/0.9418/689.2 33.47/0.9452/1141.6

30% 10.58/0.0369 32.03/0.9284/755.4 32.03/0.9284/710.4 32.57/0.9342/1111.8

50% 8.50/0.0182 30.47/0.9028/629.8 30.47/0.9028/683.5 31.33/0.9149/1219.1

70% 7.10 /0.0106 27.62/0.8354/661.6 27.62/0.8354/952.6 29.17/0.8689/1175.9

90% 6.05/0.0056 23.12/0.6106/655.0 23.12/0.6106/689.4 24.96/0.6985/1276.6

Table 5: The PSNR (dB), SSIM, and number of iterations (Iter) of different methods for images corrupted
by Gaussian blur and salt-and-pepper noise when the stopping criterion ǫ = 1× 10

−6.

Image Noise level
Input ExTV CExTV LR CExTV (1.6)

PSNR/SSIM PSNR/SSIM/Iter PSNR/SSIM/Iter PSNR/SSIM/Iter

Parrot

10% 14.05/0.1319 41.52/0.9901/− 41.59/0.9901/− 37.81/0.9796/66912

30% 9.94/0.0484 35.92/0.9766/− 36.09/0.9768/− 34.64/0.9669/51335

50% 7.85/0.0221 31.89/0.9521/− 32.06/0.9525/− 31.90/0.9462/34079

70% 6.42/0.0122 28.06/0.9100/252736 28.26/0.9110/256216 28.47/0.9092/22000

90% 5.40/0.0072 23.09/0.7994/88476 23.21/0.8006/89310 23.77/ 0.8094/8851

House

10% 15.17/0.1103 46.79/0.9907/− 46.80/0.9907/− 41.72/0.9736/19472

30% 10.64/0.0322 43.48/0.9828/− 43.48/0.9828/− 40.43/0.9665/18145

50% 8.43/0.0173 39.60/0.9647/− 39.60/0.9647/− 38.77/0.9537/17845

70% 6.97/0.0096 35.47/0.9255/237823 35.47/0.9255/237850 36.11/0.9256/17174

90% 5.89/0.0050 29.96/0.8464/91789 29.96/0.8464/92691 30.61/0.8529/10153

Bridge

10% 14.51/0.1123 36.98/0.9791/− 37.06/0.9796/− 34.80/0.9660/91393

30% 10.25/0.0329 32.75/0.9493/− 32.84/0.9505/− 31.96/0.9380/60055

50% 8.18/0.0178 29.59/0.8987/− 29.63/0.9000/− 29.58/0.8952/42575

70% 6.75/0.0084 26.94/0.8119/279872 26.96/0.8132/282316 27.26/0.8186/25476

90% 5.68/0.0048 23.85/0.6125/95199 23.86/0.6134/95270 24.29/0.6348/10741

Building

10% 14.64/0.1091 41.19/0.9896/− 41.19/0.9896/− 37.30/0.9755/35846

30% 10.58/0.0369 37.14/0.9759/− 37.14/0.9759/− 35.39/0.9638/29942

50% 8.50/0.0182 33.08/0.9448/− 33.08/0.9449/− 33.13/0.9423/24076

70% 7.10 /0.0106 28.29/0.8593/269037 28.29/0.8594/268189 30.06/0.8925/19606

90% 6.05/0.0056 23.14/0.6125/97312 23.14/0.6124/96660 25.07/0.7084/12192
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(a) ExTV (b) CExTV (c) LR CExTV

(d) ExTV (e) CExTV (f) LR CExTV

Figure 7: The PSNR values with respect to the CPU time in seconds for the compared methods. (a)-(c)
The test image is “House”; (d)-(f) The test image is “Building”.

(a) 70%/7.10 (b) ExTV/28.29 (c) CExTV/28.29 (d) LR CExTV/30.06

(e) 90%/6.05 (f) ExTV/23.14 (g) CExTV/23.14 (h) LR CExTV/25.07

Figure 8: Restored images (with PSNR (dB)) of different methods. First column: noisy image “Building”
with Gaussian blur and salt-and-pepper noise 70% and 90%. Second column: restored images by the ExTV
method. Third column: restored images by the CExTV method. Forth column: restored images by the
LR CExTV method.
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Compared with the ExTV and CExTV, LR CExTV can save the number of iterations

when the same stopping criterion is satisfied. Fig. 7 shows the PSNR versus CPU time

in seconds for the compared methods. It can be seen from Fig. 7 that the proposed

LR CExTV method takes less CPU time than the other two methods, especially when the

noise level is high. To visually show the restored images, Fig. 8 presents the recovered

“Building” images from blurring and salt-and-pepper noise. It can be observed from

Fig. 8 that the proposed method outperforms the other two methods in terms of details

in recovering image quality.

Remark 4.1. We did not compare the proposed model with other impulse noise models,

especially several nonconvex models, such as Nonconvex TV [39], TVSCAD [22], Non-

convex [18], ℓ0TV [25, 35], and TV-Log [38], among others. The main reason is that

these models heavily rely on the selection of regularization parameters and other fac-

tors. To replicate the results of this paper, the code is available at https://github.com/

hhaaoo1331/LRCExTV.

5. Conclusions

In this paper, we proposed a new two-phase method involved with low rank, total

variation and box constraint for image deblurring with impulse noise. In the first phase,

the noise pixels are detected by prior knowledge of the impulse noise. Then, in the

second phase, we employ the ADMM and the proximal ADMM to solve a constrained

minimization problem to get a clean image. Compared with existing algorithms, the

obtained iterative algorithm has a simple structure, which is easy to be implemented.

Numerical experiments show that the solutions with low precision can be obtained

quickly. For a high accurate solution, it needs to spend more iteration numbers and

computing time. Therefore, how to speed up the proposed algorithm to solve the

problem (1.6) is a question worthy of further study.
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