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Abstract

In this paper, we study the low-rank matrix completion problem with Poisson obser-

vations, where only partial entries are available and the observations are in the presence

of Poisson noise. We propose a novel model composed of the Kullback-Leibler (KL) diver-

gence by using the maximum likelihood estimation of Poisson noise, and total variation

(TV) and nuclear norm constraints. Here the nuclear norm and TV constraints are uti-

lized to explore the approximate low-rankness and piecewise smoothness of the underlying

matrix, respectively. The advantage of these two constraints in the proposed model is that

the low-rankness and piecewise smoothness of the underlying matrix can be exploited si-

multaneously, and they can be regularized for many real-world image data. An upper error

bound of the estimator of the proposed model is established with high probability, which is

not larger than that of only TV or nuclear norm constraint. To the best of our knowledge,

this is the first work to utilize both low-rank and TV constraints with theoretical error

bounds for matrix completion under Poisson observations. Extensive numerical examples

on both synthetic data and real-world images are reported to corroborate the superiority

of the proposed approach.

Mathematics subject classification: 15A83, 65K10, 90C30.

Key words: Low-rank matrix completion, Nuclear norm, Total variation, Poisson observa-

tions.

1. Introduction

The problem of low-rank matrix completion with Poisson observations is to estimate a low-

rank matrix from given measurements at some subset of its locations, where the observations

follow a Poisson distribution. Poisson observations appear in slew of practical applications

in the areas of astronomical images, positron emission tomography, and magnetic resonance

imaging [18, 33, 36]. Poisson noise is related to the count of photons recorded in the imaging

devices, and can be modeled by a Poisson process, where the observations consist of counts of
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photons arrivals at a detector [50]. The total number of photons collected by imaging sensors

follows a Poisson distribution. Furthermore, many real-world image data are low-rank or ap-

proximately low-rank. And during the data acquisition and processing procedures, only partial

observations are available due to mechanical failure or human-induced factors. In this paper, we

focus on the low-rank matrix completion problem with Poisson observations, where the entries

one observes follow a Poisson distribution.

Low-rank matrix completion has received broad practical interest in past decades, and been

applied in a variety of fields, such as image processing, computer vision, machine learning,

and data mining [8, 12, 19, 22, 25, 27, 29, 38, 47]. For example, Candès et al. [4] presented a nu-

clear norm minimization method for matrix completion without noise and showed that one

can recover a low-rank matrix exactly from a small number of its sampled entries with high

probability. Moreover, Candès et al. [3] studied the matrix completion with additive noise and

showed that the error of the estimator of the resulting model is proportional to the noise level.

In particular, for the underlying matrix corrupted by sparse noise, it is possible to recover both

the low-rank and the sparse components exactly with high probability under suitable assump-

tions by solving a very convenient convex program [2]. Besides, Taherkhani et al. [46] proposed

a matrix completion approach based on nuclear norm minimization to predict the missing label

of unsupervised nodes for graph-based semi-supervised learning, which trained a convolutional

neural network based classifier using a large amount of unlabeled data and a small amount

of labeled data. However, these methods did not consider the local prior information of the

underlying matrix.

Being different from additive Gaussian noise or additive sparse noise, Poisson noise is nonad-

ditive and signal-dependent. For the problem of compressed sensing with Poisson observations,

Raginsky et al. [37] proposed a method consisting of a negative Poisson logarithmic likelihood

term and a penalty term, and then established an upper bound of the estimator, where the

penalty term was utilized to measure signal sparsity. Then Jiang et al. [24] provided minimax

lower bounds on mean square errors for sparse Poisson inverse problems under nonnegative and

flux-preserving constraints. Furthermore, Cao et al. [5] proposed a novel model composed of

Kullback-Leibler (KL) divergence in the objective and the nuclear norm constraint for matrix

completion with Poisson observations, and established an upper bound of the estimator of their

proposed approach, which is minimax optimal up to a logarithmic factor. Soni et al. [45] pro-

posed a novel model with unified framework for structural low-rank matrix completion with

general noise observations, where the underlying matrix is factorized into the product of two

matrices and one factor matrix is sparse. Then the error bounds of the estimator of the result-

ing model were established, where the minimax lower bounds of this kind of models were also

derived in [42]. Recently, McRae et al. [32] proposed a low-rank matrix completion method by

utilizing Frobenius norm for the data-fitting term, where both the nuclear norm constraint and

nuclear norm regularized least squares were studied. However, the method in [32] just utilized

the Frobenius norm for the data-fitting term, which is just suboptimal for Poisson observa-

tions [26]. Recently, Zhang et al. [54] proposed a transformed tensor nuclear norm constraint

method for low-rank tensor completion with Poisson observations, while it only utilized the

low-rankness of the underlying tensor and the local prior information was not considered.

In image restoration, some work discussed and studied grey image recovery with Poisson

noise, where there are no missing entries for the observations, see, e.g. [6, 7, 15, 26, 30, 43, 49,

51, 53, 55, 56]. The main model in the literature composed of the KL divergence data-fitting

term and the total variation (TV) regularization term. The TV regularization is proposed to
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generate piecewise smooth objects and preserve sharp edges for image restoration, where the

TV was first proposed by Rudin et al. [41] for image denoising and then generalized to image

deconvolution [40]. For image restoration with Poisson observations, Le et al. [26] proposed

a variational model combined the TV for the underlying image and the KL divergence for

the data-fitting term to denoise an image, where the TV can preserve good details of images

and the KL divergence is suitable for Poisson noise by the maximum likelihood estimation.

Zhao et al. [56] proposed a nonlocal low-rank model for Poisson noise removal, while it only

utilized the low-rankness of the underlying images. Besides, some fast first-order algorithms

were proposed and studied to solve this kind of models efficiently, see [15, 43, 49, 55] and refer-

ences therein. However, these work cannot deal with the noisy observations with missing entries

and only single prior information of the grey images is utilized.

On the other hand, the above existing work only discuss the low-rankness or piecewise

smoothness of a matrix. However, many real-world matrices, e.g. grey images, are not only

low-rank, but also piecewise smooth. In image restoration, some work were proposed and stud-

ied based on the TV and low-rank properties of images [20, 21, 31, 44, 52]. For example, in

hyperspectral image restoration with mixed Gaussian and sparse noise removal, He et al. [21]

proposed a spatial and spectral TV and low-rank factorization method for the underlying im-

ages, where hyperspectral images are not only assumed to lie in a low-dimensional subspace

from the spectral perspective but also assumed to be piecewise smooth in the spatial dimen-

sion. Moreover, they further proposed a spatial-spectral TV regularized local low-rank matrix

recovery method based on nonlocal self-similarity and low-rank constraint for the underlying

hyperspectral images [20]. For medical image super-resolution, Shi et al. [44] proposed a novel

image super-resolution method that integrates both local and global information for effective

image recovery, whose information is achieved by the TV and low-rank regularization. However,

these previous work did not consider the observations with Poisson noise and missing entries.

More importantly, the theory guarantee combining the low-rankness and TV of the underlying

matrix is not studied and analyzed in the literature.

In this paper, we propose a novel method composed of TV and nuclear norm constraints for

low-rank matrix completion with Poisson observations. The objective of the proposed method

is the KL divergence between the underlying matrix and noisy observations, which is derived

by the maximum likelihood estimation of Poisson observations. The TV constraint is utilized

to explore the piecewise smoothness and the nuclear norm constraint is to make use of the low-

rankness of the underlying matrix. The advantage of both constraints in our proposed model

is that the low-rankness and piecewise smoothness of the underlying matrix can be exploited

simultaneously, where many real-world image data have the two properties. Then an upper

error bound of the estimator of the proposed model is established with high probability under

some assumptions, which is not larger than that of the single TV or nuclear norm constraint

for low-rank matrix completion with Poisson observations. Moreover, an alternating direction

method of multipliers (ADMM) is developed to solve the resulting model. Comprehensive nu-

merical experiments on both synthetic data and real-world images demonstrate the recovery

error theory of the estimator and the effectiveness of the proposed model compared with the

models with single TV constraint or nuclear norm constraint.

The remaining parts of this paper are organized as follows. In Section 2, we introduce

some preliminaries and notation which will be used throughout this paper. In Section 3, we

propose a novel model consisted of the KL divergence in the objective and the nuclear norm

and TV constraints for matrix completion with Poisson observations. An upper error bound of
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the estimator of the proposed approach is established with high probability in Section 4. Then

an ADMM based algorithm is designed to solve the resulting model in Section 5. Extensive

numerical experiments are conducted to illustrate the effectiveness of the proposed approach in

Section 6. We conclude our paper in Section 7. The proof of the main theorem is left to the

Appendix B.

2. Preliminaries

We use R
n and R

n1×n2 to denote the n-dimensional real Euclidean space and the set of all

n1 × n2 matrices with real entries, respectively. For an arbitrary matrix X ∈ R
n1×n2 , ‖X‖

denotes the spectral norm of X , which is the largest singular value of X . ‖X‖∗ denotes the

nuclear norm of X , which is the sum of all singular values of X . ‖X‖F represents the Frobenius

norm of X , which is defined as

‖X‖F =
√
〈X,X〉.

Let Rn1×n2

+ (Rn1×n2

++ ) represent the set of all n1 × n2 matrices with nonnegative (positive) and

real entries. For any X ∈ R
n1×n2 , Xij stands for the (i, j)-th entry of X .

Now we recall several information-theoretic preliminaries, which play a pivotal role in the

proof of error bounds of the proposed approach. The KL divergence between two Poisson

distributions with parameters p, q > 0 is defined as

K(p||q) = p log
p

q
− (p− q).

The average KL divergence between Poisson distributions of two matrices P,Q ∈ R
n1×n2

++ , whose

parameters are their entries Pij , Qij , is defined as

K(P ||Q) =
1

n1n2

n1∑

i=1

n2∑

j=1

K(Pij ||Qij).

The square Hellinger distance between two Poisson distributions with parameters p, q > 0 is

defined as

H2(p||q) = 2− 2 exp

(
−1

2

(√
p−√

q
)2
)
.

Similarly, for two matrices P,Q ∈ R
n1×n2

++ , the average square Hellinger distance of two Poisson

distributions, whose parameters are the entries of P,Q, is defined as

H2(P ||Q) =
1

n1n2

n1∑

i=1

n2∑

j=1

H2(Pij ||Qij).

It follows from [10, Theorem 2.1] that

H2(p||q) ≤ K(p||q). (2.1)

For any v ≥ 1 and x, y ∈ R, we have [39, Section 7.3]

|x+ y|v ≤ (|x|+ |y|)v ≤ 2v−1(|x|v + |y|v). (2.2)

For a set C ⊆ R
n1×n2 , the indictor function of C is defined as

δC(X) =

{
0, if X ∈ C,

+∞, otherwise.

We list some notions used throughout this paper, which are summarized as follows.
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• ñ = min{n1, n2} and nm = max{n1, n2}.

• 1 denotes a matrix with all entries being 1, whose corresponding dimension should often

be clear from the context.

3. Matrix Completion with Poisson Observations

For an unknown low-rank matrix X ∈ R
n1×n2

+ , which we aim to estimate, it is corrupted

by Poisson noise and only partial entries are available. The entries of the observation Y is

generated in the following way:

Yij = Poisson(Xij + c), (i, j) ∈ Ω,

where Yij = Poisson(Xij + c) represents that Yij follows a Poisson distribution with parameter

Xij+c > 0, c > 0 is a fixed background, and Ω is a subset of indices {1, 2, . . . , n1}×{1, 2, . . . , n2}.
Here c is used to reflect the noise level of Poisson distribution since X ij + c is the parameter of

Poisson distribution and the probability of the observed entry Yij = k is given by

P{Yij = k} =

(
Xij + c

)k

k!
exp

(
− (Xij + c)

)
, k = 0, 1, 2, . . . .

And the index set Ω chosen at random with E[Ω] = m, where m = |Ω| is the number of entries

of observations. In particular, we assume that Ω follows a Bernoulli model, i.e. each entry

(i, j) ∈ {1, 2, . . . , n1}×{1, 2, . . . , n2} is included in Ω with probability m/(n1n2) independently,

which is denoted by Ω ∼ Bern(s) with s = m/(n1n2).

By the maximum likelihood estimation of Poisson observations (see, e.g. [26]), the data-

fitting term between the observations and the underlying matrixX is the KL divergence given by

fΩ,Y (X) :=
∑

(i,j)∈Ω

(Xij + c)− Yij log(Xij + c). (3.1)

Suppose that each entry of the underlying matrix X is nonnegative and bounded, i.e.

0 ≤ Xij ≤ β, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, which is commonly used in image processing since

the pixels of real-world images are nonnegative and bounded. In many areas of real-world

applications, the singular values of the underlying matrix exhibit only a gradual decay toward

zero rather than an exact low-rank matrix. Therefore, we allow a relaxation of the assumption

that X has rank r exactly. For any matrix with rank at most r, we have

‖X‖∗ ≤
√
r‖X‖F ≤ β

√
rn1n2,

which is a relaxation of the conditions that rank(X) ≤ r and 0≤Xij≤β, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Besides the approximate low-rankness of the underlying matrix, we also assume that the

underlying matrix is piecewise smooth, which is satisfied for many real-world matrices, such as

image data. Then the TV constraint is employed to measure its piecewise smoothness, which

is capable of preserving sharp edges of images. The TV was first proposed by Rudin et al. [41]

for image denoising, and then generalized to image deconvolution [40]. By combining the

nonnegativity, low-rankness and piecewise smoothness, we consider that the underlying matrix

lies in the following set:

D :=
{
X ∈ R

n1×n2 | 0 ≤ Xij ≤ β, ‖X‖∗ ≤ β
√
n1n2r, ‖X‖TV ≤ τ

}
, (3.2)
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where ‖X‖TV is the TV seminorm of X and τ > 0 is a given constant. Specifically, the discrete

directional derivatives of X ∈ R
n1×n2 are defined as

(∇xX)ij =

{
X(i+1)j −Xij , if 0 ≤ i < n1 − 1,

0, otherwise,
(3.3)

(∇yX)ij =

{
Xi(j+1) −Xij , if 0 ≤ j < n2 − 1,

0, otherwise.
(3.4)

Then the TV seminorm of X is defined as

‖X‖TV :=

n1∑

i=1

n2∑

j=1

√
(∇xX)2ij + (∇yX)2ij . (3.5)

Combining (3.1) and (3.2), we propose the following constrained model for low-rank matrix

completion with Poisson observations:

min
X

fΩ,Y (X)

s.t. X ∈ D,
(3.6)

where fΩ,Y (X) is defined as (3.1).

The choice of TV in (3.5) is the isotropic version, which can also be applied to the anisotropic

version of TV. The anisotropic TV just uses the ℓ1 norm instead of the ℓ2 norm in (3.5). The

isotropic and anisotropic induced TV seminorms are thus equivalent up to a factor of
√
2. We

emphasize here that our approach can be applied to both anisotropic and isotropic TV. For

simplicity, we only discuss the isotropic TV version in detail. Moreover, the zero boundary

conditions for the TV are used in (3.3) and (3.4) in our model. Other boundary conditions can

also be employed in the TV seminorm and we refer the reader to [35] for a detailed discussion

on how to address other boundary conditions.

Remark 3.1. In contrast to the model in [5], which only has nuclear norm constraint, our

proposed model in (3.6) not only exploits the low-rankness, but also utilizes the piecewise

smoothness of the underlying matrix. This is important to recover several real-world images

with Poisson observations, where the underlying images are approximately low-rank and piece-

wise smooth simultaneously. The main advantage of both TV and nuclear norm constraints

in (3.6) is that the low-rankness and piecewise smoothness of the underlying matrix can be

exploited simultaneously, which are possessed for many real-world image data.

Remark 3.2. Recently, Zhang et al. [54] proposed a low-rank tensor completion approach for

Poisson observations, where the transformed tensor nuclear norm constraint is utilized. How-

ever, the model in (3.6) incorporates the TV and nuclear norm constraints, which can explore

the piecewise smoothness and global low-rankness of the underlying matrix simultaneously.

Remark 3.3. The constrained formulation of TV is preferable since many real-world matrices

are not exactly piecewise smooth, e.g. images. The discrete directional derivatives of X exhibit

only a gradual decay toward zero rather than an exactly sparse difference at each point [13].

Remark 3.4. In the literature, there are many work based on both low-rank and TV priors for

matrix completion or tensor completion, see [23,28,31,52,57] and references therein. However,

the type of noises are different between the above work and model (3.6). Besides, the above

work did not analyze the error bounds of the corresponding models, while we will establish the

error bound of model (3.6) in the following section.
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4. Error Bounds

In this section, we establish an upper error bound between the optimal solution of (3.6)

and the underlying matrix X , whose proof follows the similar line of [5, Theorem 2]. Let X̂

be an optimal solution of (3.6). Then we have the following main result about the upper error

bound of the estimator of (3.6).

Theorem 4.1. Assume that Ω is chosen at random following the Bernoulli sampling model,

i.e. Ω ∼ Bern(s) with s = m/(n1n2). Then the following inequality holds with probability at

least 1− 1/(n1n2):

‖X̂ −X‖2F
n1n2

≤ Cβc

(
β + c+ log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}

×
√

n1 + n2

m

√
1 +

(n1 + n2) log(n1 + n2)

m
,

where

c̃ = max{c, |c− 1|}, Cβc =
C2(β + c)

e−T
, C2 > 0, T =

β2

8c
.

If m ≥ (n1 + n2) log(n1 + n2), then

‖X̂ −X‖2F
n1n2

≤
√
2Cβc

(
β + c+ log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}√
n1 + n2

m
.

The detailed proof of Theorem 4.1 is delegated to the Appendix B. Theorem 4.1 shows that

the mean square error of the estimator of model (3.6) is proportional to the minimum of the

nuclear norm and TV seminorm constraints. Moreover, the upper error bound of the estimator

may decrease if the rank of the underlying matrix is smaller. At the same time, in light of

Theorem 4.1, we can see that the upper error bound of the estimator decreases as the number

of the observed samples decreases.

Remark 4.1. In contrast to the upper error bound in [5, Theorem 2] for the single nuclear

norm constraint, we add the TV constraint in the model (3.6), where both piecewise smoothness

and low-rankness of the underlying matrix are utilized. In this case, the upper error bound is

related to the minimum of the nuclear norm and TV seminorm constraints, which is not worse

than that of only TV or nuclear norm constraint. In particular, if β
√
r > τ/

√
nm + β, the

upper error bound in Theorem 4.1 is lower than that of [5, Theorem 2].

Remark 4.2. For fixed β and c, the upper error bound in Theorem 4.1 is on the order of

min

{√
r,

τ√
nm

}√
n1 + n2

m
log(n1n2),

when m ≥ (n1+n2) log(n1+n2). Consequently, the nuclear norm and TV seminorm constraints

will influence the upper error bound of the estimator in (3.6) simultaneously. In addition, if the

TV seminorm of the underlying matrix is very small, the upper error bound of the estimator in

Theorem 4.1 is smaller than that of [5, Theorem 2], which will be demonstrated by numerical

experiments in Section 6.1.
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5. Optimization Algorithm

In this section, we develop an ADMM based algorithm [14, 17] to solve the model in (3.6).

Let

D1 :=
{
X ∈ R

n1×n2 | 0 ≤ Xij ≤ β
}
,

D2 :=
{
X ∈ R

n1×n2 | ‖X‖∗ ≤ β
√
n1n2r

}
,

D3 := {X ∈ R
n1×n2 | ‖X‖TV ≤ τ}.

Therefore, one has D = D1 ∩D2 ∩D3. We let X = S,X = M,X = N . Then model (3.6) can

be written equivalently in the following form:

min
X,S,M,N

fΩ,Y (X) + δD1
(S) + δD2

(M) + δD3
(N)

s.t. X = S, X = M, X = N.
(5.1)

The augmented Lagrangian function associated with (5.1) is given by

L(X,S,M,N,Z1, Z2, Z3) = fΩ,Y (X) + δD1
(S) + δD2

(M) + δD3
(N)

+ 〈Z1, X − S〉+ 〈Z2, X −M〉+ 〈Z3, X −N〉

+
ρ

2

(
‖X − S‖2F + ‖X −M‖2F + ‖X −N‖2F

)
, (5.2)

where ρ > 0 is a given parameter. Then the iteration template of ADMM for solving (5.1) is

given as follows:

Xk+1 = argmin
X

{
L
(
X,Sk,Mk, Nk, Zk

1 , Z
k
2 , Z

k
3

)}
, (5.3)

(Sk+1,Mk+1, Nk+1) = arg min
S,M,N

{
L
(
Xk+1, S,M,N,Zk

1 , Z
k
2 , Z

k
3

)}
, (5.4)



Zk+1
1

Zk+1
2

Zk+1
3


 =



Zk
1

Zk
2

Zk
3


 +̟ρ




Xk+1 − Sk+1

Xk+1 −Mk+1

Xk+1 −Nk+1


 , (5.5)

where ̟ ∈ (0, (1 +
√
5)/2) is the step-length.

Let

Ak := ρ(Sk +Mk +Nk)−
(
1+ Zk

1 + Zk
2 + Zk

3

)
.

Then the optimal solution in (5.3) is given explicitly by

Xk+1 = PΩ



Ak − 3ρc1+

√
(Ak − 3ρc1)2 + 12ρ

(
cAk + PΩ(Y )

)

6ρ


+ PΩ

(
Ak + 1

3ρ

)
, (5.6)

where the square and root are performed in a point-wise manner, and PΩ : Rn1×n2 → R
n1×n2

is the projection onto the sampling pattern Ω, i.e.

(
PΩ(X)

)
ij
=

{
Xij , if (i, j) ∈ Ω,

0, otherwise.
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Since each variable is separate in (5.4), we can solve the subproblems with respect to S,M,N

independently. The optimal solution with respect to S is given by

(Sk+1)ij =





0, if Wij < 0,

Wij , if 0 ≤ Wij ≤ β,

β, otherwise,

(5.7)

where W = Xk+1 + Zk
1 /ρ. For the optimal solution with respect to M , it is the projection of

Xk+1 + Zk
2 /ρ onto D2, which is given by

Mk+1 = ΠD2

(
Xk+1 +

Zk
2

ρ

)
, (5.8)

where ΠD2
(Xk+1+Zk

2 /ρ) denotes the projection ofXk+1+Zk
2 /ρ ontoD2. LetQ = Xk+1+Zk

2 /ρ.

Consider the SVD of Q as
∑min{n1,n2}

i=1 σiuiv
T
i . By [16, Lemma 2.1], the projection onto the

nuclear norm ball constraint D2 is given by

ΠD2
(Q) =





Q, if Q ∈ D2,

min{n1,n2}∑

i=1

max{0, σi − t}uiv
T
i , otherwise,

where t ≥ 0 is the unique solution to the equation

min{n1,n2}∑

i=1

max{0, σi − t} = β
√
n1n2r.

Here we use a fast algorithm in [9] to search such unique t exactly and in finite time.

For the optimal solution with respect to N , it is the projection of Xk+1 + Zk
3 /ρ onto the

TV seminorm ball constraint D3, i.e.

Nk+1 = ΠD3

(
Xk+1 +

Zk
3

ρ

)
. (5.9)

However, one cannot get its exact solution. Recently, Fadili et al. [13] proposed a first-order

algorithm for solving such projection problem efficiently. The projection onto the TV seminorm

ball constraint is computed by a dual formulation, which yields an iterative soft thresholding

algorithm to the dual vector field. We also refer the reader to [13] for more detailed discussions

about the projection onto the TV seminorm ball constraint.

Now we are ready to state the ADMM for solving (5.1) in Algorithm 5.1.

Algorithm 5.1: Alternating Direction Method of Multipliers for Solving (5.1).

Input. Let ρ > 0, ̟ ∈ (0, (1 +
√
5)/2) be given constants.

Choose S0,M0, N0, Z0
1 , Z

0
2 , Z

0
3 .

For k = 0, 1, 2, . . . , perform the following steps:

Step 1. Compute Xk+1 via (5.6).

Step 2. Compute Sk+1,Mk+1, Nk+1 by (5.7), (5.8), (5.9), respectively.

Step 3. Update Zk+1
1 , Zk+1

2 , Zk+1
3 via (5.5).

Since there are only two blocks X and (S,M,N) in the objective of (5.1), the ADMM in

Algorithm 5.1 is convergent [14, Appendix B]. For brevity, we omit the details of the convergence

of ADMM here.
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6. Numerical Results

In this section, numerical examples are presented to demonstrate the effectiveness of the

proposed low-rank and TV constraints (LRTVC) method for matrix completion with Poisson

observations. We compare LRTVC with only the TV constraint (TVC) method and only the

nuclear norm constraint (NNC) method [5], respectively, where the objective functions of NNC

and TVC are the same as that of LRTVC.

The Karush-Kuhn-Tucker (KKT) conditions of model (5.1) are given as follows:




∇XfΩ,Y (X) + Z1 + Z2 + Z3 = 0,

0 ∈ ∂δD1
(S)− Z1, 0 ∈ ∂δD2

(M)− Z2, 0 ∈ ∂δD3
(N)− Z3,

X − S = 0, X −M = 0, X −N = 0,

where ∇X denotes the gradient of fΩ,Y with respect to X and ∂g denotes the subdifferential of

a function g. The following KKT residual is adopted to measure the accuracy of an approximate

optimal solution for model (5.1):

ηmax := max{η1, η2, η3, η4, η5, η6, η7},

where

η1 =

∥∥PΩ

(
1− PΩ(Y )/(X + c1)

)
+ Z1 + Z2 + Z3

∥∥
F

1 + ‖X‖F + ‖Z1‖F + ‖Z2‖F + ‖Z3‖F
,

η2 =
‖S −ΠD1

(Z1 + S)‖F
1 + ‖S‖F + ‖Z1‖F

, η3 =
‖M −ΠD2

(Z2 +M)‖F
1 + ‖M‖F + ‖Z2‖F

,

η4 =
‖N −ΠD3

(Z3 +N)‖F
1 + ‖N‖F + ‖Z3‖F

, η5 =
‖X − S‖F

1 + ‖X‖F + ‖S‖F
,

η6 =
‖X −M‖F

1 + ‖X‖F + ‖M‖F
, η7 =

‖X −N‖F
1 + ‖X‖F + ‖N‖F

.

Here / stands for the point-wise division. In our experiments, Algorithm 5.1 will be terminated

when ηmax < 10−4 or the maximum number of iterations reaches 200.

The signal-to-noise ratio (SNR) is used to evaluate the quality of the recovered matrix,

which is defined as

SNR := 10 log10
‖X‖2F

‖X −X‖2F
,

where X and X denote the recovered and original matrices, respectively. Moreover, the struc-

tural similarity index (SSIM) [48] is also used to measure the quality of the recovered data.

The sampling ratio (SR) is defined as SR = |Ω|/(n1n2), where Ω is generated uniformly at

random and |Ω| denotes the cardinality of Ω. Since Poisson noise is data-dependent [49], the

noise level of the observed data is related to the pixel intensity of X . In order to test different

noise levels for Poisson observations, different peak intensities of the underlying data matrix

are considered. The noisy and missing data in our experiments is simulated as follows: The

original matrix is first scaled with the peak intensities and the background of the scaled matrix

is added. Then the Poisson noise is added using the function poissrnd in MATLAB. Finally,

we generate the index set Ω and get the observed matrix.

In Algorithm 5.1, we set the parameter ̟ as 1.618 for fast convergence in the experiments.

The penalty parameter ρ is chosen from the set {0.1, 0.01, 0.001, 0.0001, 0.00001} to get the
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Fig. 6.1. SNR values versus number of outer iterations in Algorithm 5.1 for different number of inner

iterations: (a) Cameraman, (b) Chart.

best recovery performance in all experiments. For computing the projection onto TV semi-

norm constraint, we employ the first-order projection algorithm in [13] to get an approximately

optimal solution. We first investigate the performance of different number of inner iterations

for computing the projection onto the TV seminorm constraint, which is chosen from the set

{5, 10, 20, 30}. Fig. 6.1 shows the SNR values versus number of outer iteration in Algorithm 5.1

for different number of inner iterations, where β = 50, c = 10, and SR = 0.5 for the Cameraman

and Chart images. Here the details of the testing images can be found in Section 6.2. It can

be observed from this figure that the SNR values increase as the number of outer iterations

increases. Moreover, the final performance of different number of inner iterations of computing

the projection onto the TV seminorm constraint is very close for the two images. However,

larger number of inner iterations implies to take more CPU time. Therefore, we choose the

number of iterations as 20 for computing the projection onto the TV seminorm ball constraint

in (5.9) in the following experiments for simplicity.

6.1. Synthetic data

In this subsection, we test three kinds of synthetic data to validate the effectiveness of the

LRTVC. The details of the three data are given as follows:

• We constructed a low-rank matrix (called Data I) while its TV seminorm is large. Data

I is generated as follows: X = UV T , where U ∈ R
n1×r
+ , V ∈ R

n2×r
+ and T stands for

the transpose of a matrix. Here U and V are generated by the MATLAB commands

rand(n1, r) and rand(n1, r), respectively. We set n1 = n2 = 200 and r = 2. In this case,

X is low-rank while its TV seminorm is large.

• The second data (called Data II) is a symmetric Toeplitz matrix with size 200 × 200,

where the first ten elements are 0 and others are 1 for the first row. The visual image of

this matrix is shown in Fig. 6.2(a). The TV seminorm of Data II is small while it is a full

rank matrix.

• The third data (called Data III) is a full one matrix with size 200 × 200 but its central

region with size 51 × 51 is a zero matrix, whose visual image is shown in Fig. 6.2(b).

Data III is not only low-rank but also its TV seminorm is small.
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Table 6.1 shows the SNR and SSIM values of different methods for the three testing data

with different β and c, where the sampling ratio is 50%. It can be seen from this table that

the performance of LRTVC is best compared with that of NNC and TVC if the data is not

only low-rank but also its TV seminorm is small, see the results of Data III, where the TVC

outperforms NNC for the testing cases with different β and c. For Data I, which is low-rank

but its TV seminorm is large, the NNC and LRTVC perform much better than TVC in terms

of SNR and SSIM values. This phenomenon is due to the low-rankness of Data I while its TV

seminorm is large. And the performance of NNC and LRTVC is nearly the same, where the

SNR of LRTVC is just slightly better than that of NNC. The main reason is that the TV term

has little influence on the performance of matrix recovery for this data and the parameters may

also influence of the performance of LRTVC slightly. Similarly, for Data II, the performance

obtained by TVC and LRTVC is much better than that obtained by NNC in terms of SNR and

SSIM values, which is due to Data II is not low-rank while its TV seminorm is small. At the

same time, the performance of TVC and LRTVC is almost the same since the nuclear norm

constrain has little influence for this data, which also demonstrates that the performance of

LRTVC is not worse than that of NNC and TVC in Theorem 4.1.

Fig. 6.3 shows the SNR values versus sampling ratios of different methods for the testing

three data, where β = 100 and c = 1. We can observe from the three figures that the SNR

values obtained by the three methods increase as the sampling ratios increase for different data.

When the data is just low-rank, the NNC and LRTVC perform much better than TVC in terms

of SNR values, see Fig. 6.3(a). Moreover, the performance of LRTVC is almost the same as

that of NNC for different sampling ratios since Data I is only low-rank and the TV term has

little influence for this data. Similarly, when the TV seminorm of the data is small while it

is not low-rank, the TVC and LRTVC perform much better than NNC in terms of SNR, see

(a) (b)

Fig. 6.2. The visual images of Data II and Data III: (a) Data II. (b) Data III.
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Fig. 6.3. SNR versus sampling ratio of different methods for synthetic data, where β = 100 and c = 1:

(a) Data I. (b) Data II. (c) Data III.
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Fig. 6.3(b). It can be seen from this figure that the performance of TVC and LRTVC is almost

the same for different sampling ratios since Data II is not low-rank and the nuclear norm term

has little influence for this data. When the TV seminorm and nuclear norm of the data are

both small (e.g. Data III), the performance of LRTVC is much better than that of NNC and

TVC. At the same time, the performance of TVC is better than that of NNC in terms of SNR

values, see Fig. 6.3(c).

In the following, we consider different relaxations for the nuclear norm and TV seminorm

constraints. Let β∗ = ‖X0‖∗/
√
n1n2r, where X0 is the true matrix and r is the rank of X0.

We set the nuclear norm constraint as ‖X‖∗ ≤ β̃
√
n1n2r in our model and discuss different β̃.

Table 6.2 shows the performance of different β̃ of NNC and LRTVC for Data I. It can be seen

that when β̃ = β∗, the SNR values of recovered matrices are highest for both NNC and LRTVC.

Moreover, the decreases of SNR of NNC and LRTVC for β̃ > β∗ are smaller than those for

β̃ < β∗, which implies that large β̃ is more safe than small β̃ in order to get good recovery

performance. Besides, the TV seminorm of the recovered matrix of LRTVC is smaller than

that of NNC for most cases, where the TV seminorm of the underlying matrix is 1.02× 104.

Let τ∗ = ‖X0‖TV. We set ‖X‖TV ≤ τ̃ and discuss different τ̃ for the constraints of TVC and

LRTVC, where Data II is tested with 50% sampling ratio and β = 50, c = 1. Here τ∗ = 3.80×104

for Data II. Table 6.3 shows the SNR, nuclear norm, and TV seminorm of the recovered matrix

by TVC and LRTVC. It can be seen from this table that both TVC and LRTVC obtain highest

SNR values when τ̃ = τ∗. Moreover, the decreases of SNR values of TVC and LRTVC when

Table 6.1: SNR and SSIM values of different methods for the synthetic data with 50% sampling ratio.

β c
SNR SSIM

NNC TVC LRTVC NNC TVC LRTVC

Data I

50
1 17.47 8.29 17.67 0.9678 0.5177 0.9713

10 16.90 7.90 16.97 0.9688 0.4350 0.9699

100
1 18.20 8.95 18.41 0.9787 0.6327 0.9774

10 17.13 8.68 18.19 0.9699 0.6128 0.9718

Data II

50
1 16.38 25.92 25.97 0.1721 0.9421 0.9427

10 15.87 25.63 25.65 0.1572 0.9416 0.9428

100
1 16.60 26.49 26.82 0.1911 0.9462 0.9493

10 16.35 26.20 26.23 0.1799 0.9437 0.9455

Data III

50
1 27.84 36.58 38.36 0.7296 0.9938 0.9947

10 26.92 35.92 38.29 0.6715 0.9853 0.9864

100
1 30.94 38.38 39.99 0.8379 0.9958 0.9972

10 30.18 37.16 39.89 0.8019 0.9926 0.9916

Table 6.2: SNR, nuclear norm, and TV seminorm of different methods for Data I with 50% sampling

ratio, where β = 50 and c = 1.

β̃ − β∗
NNC LRTVC

SNR ‖X‖∗ ‖X‖TV SNR ‖X‖∗ ‖X‖TV

Data I

-10 8.50 3.85× 103 4.12 × 105 8.84 6.86 × 103 5.10 × 105

5 13.89 5.22× 103 5.60 × 105 14.00 7.36 × 103 5.65 × 105

0 17.47 6.45× 103 6.77 × 105 17.67 7.32 × 103 6.69 × 105

5 17.14 7.78× 103 7.10 × 105 17.60 8.16 × 103 6.99 × 105

10 16.92 9.39× 103 7.65 × 105 17.15 9.18 × 103 6.99 × 105
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τ̃ > τ∗ are smaller than those when τ̃ < τ∗. In fact, when τ̃ = τ∗ + 20000, the SNR values of

TVC and LRTVC are much higher than those when τ̃ = τ∗ − 20000. This implies that larger

regions of the TV seminorm constraint are more safe than smaller regions in order to get good

recovery performance.

In Table 6.4, we show the SNR, nuclear norm, and TV seminorm of the recovered matrices of

different relaxations of the nuclear norm and TV seminorm constraints for Data III, where the

sampling ratio is 50% and β = 50, c = 1. Here r = 2, β∗ = 40.54, τ∗ = 1.02×104. It can be seen

Table 6.3: SNR, nuclear norm, and TV seminorm of different methods for Data II with 50% sampling

ratio, where β = 50 and c = 1.

τ̃ − τ∗
TVC LRTVC

SNR ‖X‖∗ ‖X‖TV SNR ‖X‖∗ ‖X‖TV

Data II

-20000 18.12 1.91 × 104 2.87× 104 18.58 2.01× 104 3.05 × 104

10000 24.16 2.41 × 104 3.06× 104 24.44 2.41× 104 3.25 × 104

0 25.92 2.59 × 104 3.82× 104 25.97 2.62× 104 3.82 × 104

10000 24.51 2.60 × 104 4.18× 104 25.10 2.61× 104 4.81 × 104

20000 23.53 2.60 × 104 5.10× 104 24.20 2.62× 104 5.81 × 104

Table 6.4: SNR, nuclear norm, and TV seminorm of different methods for Data III with 50% sampling

ratio, where β = 50 and c = 1.

β̃ − β∗ τ̃ − τ∗
NNC TVC LRTVC

SNR ‖X‖∗ ‖X‖TV SNR ‖X‖∗ ‖X‖TV SNR ‖X‖∗ ‖X‖TV

-10

-4000

12.70 8.63 × 103 6.50× 104

12.80 8.62× 103 9.88 × 103

-2000 12.73 8.65× 103 9.88 × 103

0 12.70 8.64× 103 1.03 × 104

2000 12.72 8.64× 103 1.22 × 104

4000 12.73 8.64× 103 1.41 × 104

-5

-4000

18.51 1.00 × 104 6.10× 104

18.23 1.01× 104 1.04 × 104

-2000 18.57 1.00× 104 1.05 × 104

0 18.67 1.00× 104 1.05 × 104

2000 18.67 1.00× 104 1.22 × 104

4000 18.67 1.00× 104 1.41 × 104

0

-4000

28.13 1.14 × 104 6.21× 104

25.10 1.22 × 104 1.00× 104 25.44 1.15× 104 1.03 × 104

-2000 29.09 1.18 × 104 1.01× 104 29.73 1.15× 104 1.08 × 104

0 36.13 1.16 × 104 1.09× 104 38.59 1.14× 104 1.07 × 104

2000 35.25 1.19 × 104 1.15× 104 37.70 1.14× 104 1.22 × 104

4000 34.25 1.22 × 104 1.25× 104 36.72 1.14× 104 1.41 × 104

5

-4000

25.641 1.28 × 104 1.07× 105

25.34 1.21× 104 1.04 × 104

-2000 29.66 1.17× 104 1.05 × 104

0 36.03 1.17× 104 1.08 × 104

2000 34.59 1.20× 104 1.25 × 104

4000 33.49 1.22× 104 1.44 × 104

10

-4000

22.96 1.42 × 104 1.56× 105

24.92 1.21× 104 1.04 × 104

-2000 29.63 1.18× 104 1.06 × 104

0 34.33 1.17× 104 1.08 × 104

2000 34.30 1.19× 104 1.25 × 104

4000 32.23 1.23× 104 1.44 × 104
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from this table that the NNC, TVC, and LRTVC obtain highest SNR values when τ̃ = τ∗ and

β̃ = β∗. For larger τ̃ , e.g. τ̃ = τ∗ +2000, the SNR values of TVC and LRTVC decrease slightly

compared with those of smaller τ̃ . In fact, the SNR values obtained by TVC and LRTVC for

τ̃ < τ∗ are much smaller than those for τ̃ = τ∗, whose decreases are much larger than those

for τ̃ > τ∗. The same phenomenon occurs for different β̃ for NNC and LRTVC. In particular,

when τ̃ = τ∗ and β̃ = β∗, the SNR values obtained by LRTVC are higher than those obtained

by NNC and TVC, where TVC performs better than NNC in terms of SNR values.

6.2. Real-world image data

In this subsection, we test three real-world images to demonstrate the effectiveness of the

LRTVC method. The testing images include Cameraman (256× 256), Chart (256× 256), and

Airplane (256 × 256)1) , which are shown in Fig. 6.4. It can be seen from this figure that the

low-rankness of Chart and Airplane is better than that of Cameraman.

Now we discuss the parameters τ, β, r in the LRTVC model for the real-world images. In

Fig. 6.5(a), we show the SNR values versus r of different β for the Chart image, where the peak

value of the underlying image is 100, c = 10, and SR = 0.5. It can be seen from this figure that

the SNR values obtained by LRTVC keep almost the same for different r. And β has much

influence than r for the recovery performance. Therefore, we choose r = 20 in all experiments

in order to balance the CPU time and recovery quality. Moreover, when β is larger than the

peak value 100, e.g. β = 110, 120, its performance is almost the same as that when β = 100.

(a) (b) (c)

Fig. 6.4. Original images: (a) Cameraman. (b) Chart. (c) Airplane.
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Fig. 6.5. Performance of different parameters of LRTVC for the Chart image: (a) SNR values versus r

for different β. (b) SNR values versus sampling ratio for different τ .

1) http://sipi.usc.edu/database/
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While the performance is worse when β is smaller than 100, e.g. β = 80, 90. As a consequence,

slightly larger β is more safe to get good recovery performance. In Fig. 6.5(b), we show the SNR

values versus sampling ratio for different τ , where the true TV seminorm is almost 4.5 × 105.

It can be observed from this figure that when the chosen value τ is around the true value, e.g.

from 3×105 to 5×105, the SNR values obtained by LRTVC are very close. However, when τ is

too large or too small, the performance of LRTVC is not good in terms of SNR values. In our

following experiments, we choose τ from the set {1 × 105, 2 × 105} for the Cameraman image,

the set {2.5×105, 5.5×105} for the Chart image, and the set {4×104, 9×104} for the Airplane

image, to get the best recovery performance.

In Table 6.5, we show the SNR and SSIM values of different methods for the three testing

images, where the sampling ratio is 40%. It can be observed that the TVC and LRTVC perform

almost the same for the Cameraman for different β and c, which are better than NNC. This

phenomenon is due to the fact that the low-rankness of the Cameraman image is not well.

For the Chart and Airplane images, the SNR and SSIM values obtained by LRTVC are much

higher than those obtained by TVC for different β and c, which are higher than those of NNC.

These demonstrate that when the images are low-rank and piecewise smooth, the performance

of LRTVC is much better than that of NNC and TVC.

In Fig. 6.6, we show the SNR versus sampling ratio for the testing three images, where β = 50

and c = 1. It can be seen that the SNR values increase as the sampling ratios increase for the

three images. Moreover, for the Cameraman image, the performance of TVC and LRTVC is

almost the same, which performs much better than NNC in terms of SNR values. This is due to

the fact that low-rankness of the Cameraman image is not well while the piecewise smoothness

of this image is more obvious. For the Chart and Airplane images, their low-rankness is better

than that of the Cameraman image. And the LRTVC outperforms TVC in terms of SNR values

for different sampling ratios, where both LRTVC and TVC perform much better than NNC for

different sampling ratios.

In Fig. 6.7, we show the visual quality of the recovered images by NNC, TVC, and LRTVC

for the Cameraman, Chart, and Airplane images, where β = 50, c = 10, and SR = 0.6. It can be

Table 6.5: SNR and SSIM values of different methods for the Cameraman, Chart, and Airplane images

with 40% sampling ratio.

Image β c
SNR SSIM

NNC TVC LRTVC NNC TVC LRTVC

Cameraman

50
1 12.99 18.44 18.48 0.2679 0.7131 0.7134

10 12.62 18.13 18.21 0.2422 0.6783 0.6977

100
1 14.35 19.17 19.18 0.3314 0.7507 0.7540

10 13.95 19.08 19,14 0.3071 0.7340 0.7349

Chart

50
1 17.39 19.29 20.66 0.4370 0.6636 0.6782

10 16.88 19.11 20.17 0.4192 0.6539 0.6756

100
1 19.06 19.71 21.29 0.5125 0.6351 0.6888

10 18.79 19.14 21.10 0.5007 0.6251 0.6820

Airplane

50
1 19.28 25.62 26.51 0.2572 0.7318 0.8049

10 18.86 25.33 25.87 0.2407 0.7210 0.7965

100
1 20.69 26.73 27.23 0.3264 0.7999 0.8056

10 20.41 26.71 27.10 0.3136 0.7959 0.8018
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Fig. 6.6. SNR versus sampling ratio of different methods for the real-world images, where β = 50 and

c = 1: (a) Cameraman. (b) Chart. (c) Airplane.
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Fig. 6.7. Recovered images by NNC, TVC, and LRTVC on Cameraman, Chart, and Airplane, where

β = 50, c = 10, and SR = 0.6: (a) Observed images. (b) Recovered images by NNC. (c) Recovered

images by TVC. (d) Recovered images by LRTVC.

seen from the figure that the visual quality recovered by TVC and LRTVC is almost the same

for the Cameraman image, which is better than NNC. For the Chart and Airplane images, the

images recovered by LRTVC are more clear than those recovered by TVC and NNC. Besides,

the TVC performs better than NNC in terms of visual quality for the two images.
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7. Concluding Remarks

In this paper, we have proposed a novel approach combined with TV and nuclear norm

constraints for low-rank matrix completion with Poisson observations, where the KL divergence

is derived by the maximum likelihood estimation of Poisson noise for the data-fitting term. The

TV seminorm and nuclear norm constraints are utilized to explore the piecewise smoothness and

low-rankness of the underlying matrix data, respectively. Furthermore, an upper error bound

of the estimator of the LRTVC model is established with high probability, which is not larger

than that of single nuclear norm constraint [5] or TV seminorm constraint. Then an ADMM

based algorithm is designed to solve the resulting optimization model. The LRTVC is validated

to outperform other compared methods both theoretically and empirically.

Since we only establish the upper bound of the estimator of model (3.6), we will discuss

the minimax lower bound for our problem in the future. Besides, an interesting direction for

future work is to extend the Poisson matrix completion problem with TV and nuclear norm

constraints to the tensor case, which can address higher order data (cf. [54,57]). Another future

research direction involves the fast algorithms by using matrix factorization methods instead

of using the nuclear norm constraint for the low-rank matrix completion problem with Poisson

observations, which can reduce the computational complexity further. Moreover, since many

real-world images are corrupted by Gaussian noise and Poisson noise simultaneously, we will

also go to extend our model to address this kind of mixed noise in the future.

Appendix A

In the appendix, we establish the central inequality of fΩ,Y (X) under the constraint set D

in (3.2).

Lemma A.1. Let fΩ,Y (X) and D be defined as (3.1) and (3.2), respectively. Suppose that Ω is

chosen at random following the Bernoulli sampling model, i.e. Ω ∼ Bern(s) with s = m/(n1n2).

Then the following inequality holds with probability at least 1− 1/(n1n2):

sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣

≤ C1

c

(
(β + c)(e2 − 1) + 4 log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}

×
√
m(n1 + n2) + n1n2 log(n1 + n2),

where C1 > 0 is a given constant and c̃ = max{c, |c− 1|}.

Proof. Let

ω :=
C1

c

(
(β + c)(e2 − 1) + 4 log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}

×
√
m(n1 + n2) + n1n2 log(n1 + n2).

By Markov’s inequality, for any p ≥ 1, one has

P

(
sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣ ≥ ω

)
≤ E

ωp

[
sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣p
]
. (A.1)
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Next we estimate an upper bound of E[supX∈D
|fΩ,Y (X) − E[fΩ,Y (X)]|p]. Let ǫij be a Rade-

macher sequence taking values 1 and −1 with probability 1/2, respectively, σΩ(i, j) be 1 if

(i, j) ∈ Ω, otherwise 0. In this case, σΩ(i, j) is a random variable taking value 1 with probability

m/(n1n2), otherwise 0 with probability 1−m/(n1n2). Notice that

E

[
sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)
∣∣p
]

(A.2)

≤ 2pE

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)
(
(Xij + c)− Yij log(Xij + c)

)∣∣∣∣
p
]

≤ 22p−1
E

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)Yij

(
− log(Xij + c)

)∣∣∣∣
p

+ sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)(Xij + c)

∣∣∣∣
p
]

= 22p−1
E

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)Yij

(
− log(Xij+c)

)∣∣∣∣
p
]
+22p−1

E

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)(Xij+c)

∣∣∣∣
p
]
,

where the first inequality follows from [1, Theorem 14.3] and the second inequality follows from

(2.2). Let R,PΩ ∈ R
n1×n2 represent two random matrices whose entries are given by ǫij and σij ,

respectively. Then we get that

E

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)(Xij + c)

∣∣∣∣
p
]

= E

[
sup
X∈D

|〈R ◦ PΩ, X + c1〉|p
]

≤ E

[
sup
X∈D

‖R ◦ PΩ‖p‖X + c1‖p∗
]
, (A.3)

where ◦ denotes the Hadamard product of two matrices and the inequality holds by the Cauchy-

Swartz inequality. Let a be the average value of all entries of X . It can be verified directly

that

‖X + c1‖∗ = ‖X − a1+ a1+ c1‖∗
≤ ‖X − a1‖∗ + ‖(a+ c)1‖∗
≤

√
ñ‖X − a1‖F + (a+ c)

√
n1n2

≤
√
ñ‖X − a1‖TV + (β + c)

√
n1n2, (A.4)

where the last inequality holds by [34, Proposition 7] and a ≤ β. By the definition of TV, we

know that ‖X‖TV = ‖X − a1‖TV. Note that ‖X + c1‖∗ ≤ ‖X‖∗ + c
√
n1n2. As a consequence,

we have

sup
X∈D

{‖X + c1‖∗} ≤ min
{
(β
√
r + c)

√
n1n2,

√
ñτ + (β + c)

√
n1n2

}

= min

{
β
√
r + c,

τ√
nm

+ β + c

}√
n1n2. (A.5)

Plugging (A.5) into (A.3), we obtain that

E

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)(Xij + c)

∣∣∣∣
p
]

≤
(
min

{
β
√
r + c,

τ√
nm

+ β + c

})p

(n1n2)
p

2 E
[
‖R ◦ PΩ‖p

]
. (A.6)
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By the proof of [11, Lemma A.1], we know that

E
[
‖R ◦ PΩ‖p

]
≤ Cp

0

(√
m(n1 + n2) + n1n2 log(n1 + n2)

n1n2

)p

, (A.7)

where C0 > 0 is a given constant.

Let Z = X + (c − 1)1 and a be the average value of all entries of X . Then we observe

through simple calculations that

‖Z‖∗ = ‖X + (c− 1)1‖∗
= ‖X − a1+ a1+ (c− 1)1‖∗
≤ ‖X − a1‖∗ + ‖(a+ c− 1)1‖∗
≤

√
ñ‖X − a1‖TV + (a+ |c− 1|)√n1n2

=
√
ñ‖X‖TV + (a+ |c− 1|)√n1n2

≤
√
ñτ + (a+ |c− 1|)√n1n2, (A.8)

where the second inequality follows from (A.4) and the third equality holds by ‖X − a1‖TV =

‖X‖TV. For the first term of (A.2), by the proof of [5, Lemma 4], we have

E

[
sup
X∈D

∣∣∣∣
∑

i,j

ǫijσΩ(i, j)Yij

(
− log(Xij + c)

)∣∣∣∣
p
]

≤
(
2

c

)p

E

[
max
i,j

Y p
ij

]
E

[
sup
X∈D

|〈R ◦ PΩ, Z〉|p
]

≤
(
2

c

)p

E

[
max
i,j

Y p
ij

]
E

[
sup
X∈D

‖R ◦ PΩ‖p‖Z‖p∗
]

≤
(
2

c

)p

E

[
max
i,j

Y p
ij

]
E[‖R ◦ PΩ‖p]

×
(
min

{
β
√
r + |c− 1|, τ√

nm

+ β + |c− 1|
}√

n1n2

)p

, (A.9)

where the last inequality holds by (A.8) and

‖Z‖∗ ≤ ‖X‖∗ + |c− 1|√n1n2 ≤ (β
√
r + |c− 1|)√n1n2.

For the Poisson observation Yij , by the proof of [5, Lemma 4], we get that

E

[
max
i,j

Y p
ij

]
≤ 22p−1

(
(β + c)p + tp0 + E

[
max
i,j

Sp
ij

])

≤ 22p−1
(
(β + c)p + tp0 + 2p−1

(
2p! + logp(n1n2)

))
, (A.10)

where t0 = (β + c)(e2 − 3) and Sij is the independent and identically distributed exponential

random variables with parameter 1, and the second inequality follows from [54, Lemma 2.1].

Combining (A.2), (A.6), (A.7), and (A.9), we get that

(
E

[
sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣p
]) 1

p



Low-Rank Matrix Completion with Poisson Observations 21

≤ C02
2− 1

p

{
min

{
β
√
r + c,

τ√
nm

+ β + c

}
+

2

c

(
E

[
max
i,j

Y p
ij

]) 1

p

×min

{
β
√
r + |c− 1|, τ√

nm

+ β + |c− 1|
}}

×
√
m(n1 + n2) + n1n2 log(n1 + n2)

≤ 8C0

c

(
(β + c)(e2 − 1) + 4 log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}

×
√
m(n1 + n2) + n1n2 log(n1 + n2),

where the second inequality follows from the fact that

(ap + bp + cp + dp)
1

p ≤ a+ b+ c+ d

for any a, b, c, d > 0 and c̃ = max{c, |c− 1|}, p = log(n1n2). Therefore, the probability in (A.1)

is (
8C0

C1

)log(n1n2)

≤ 1

n1n2
,

if C1 ≥ 8C0e. This completes the proof. �

Appendix B. Proof of Theorem 4.1

For any X ∈ D, we have

fΩ,Y

(
X
)
− fΩ,Y (X) = fΩ,Y (X)− E

[
fΩ,Y (X)

]
+ E

[
fΩ,Y (X)

]

− E[fΩ,Y (X)] + E[fΩ,Y (X)]− fΩ,Y (X)

≤ E
[
fΩ,Y (X)

]
− E[fΩ,Y (X)] +

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣

+
∣∣fΩ,Y (X)− E

[
fΩ,Y (X)

]∣∣

≤ E
[
fΩ,Y (X)

]
− E[fΩ,Y (X)]

+ 2 sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣. (B.1)

Note that

E
[
fΩ,Y (X)

]
− E[fΩ,Y (X)] =

m

n1n2

∑

i,j

−
(
X ij + c

)
log

(
X ij + c

Xij + c

)
+Xij −Xij

= − m

n1n2

∑

i,j

K
(
Xij + c||Xij + c

)

= −mK
(
X + c||X + c

)
. (B.2)

Since X̂ is an optimal solution of (3.6), we get that

0 ≤ fΩ,Y

(
X
)
− fΩ,Y

(
X̂
)
≤ −mK

(
X + c||X̂ + c

)
+ 2 sup

X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣,

which implies that

K
(
X + c||X̂ + c

)
≤ 2

m
sup
X∈D

∣∣fΩ,Y (X)− E[fΩ,Y (X)]
∣∣. (B.3)
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It follows from (2.1) that the average KL divergence can be bounded below by the average

square Hellinger distance for two matrices. Consequently, we obtain that

H2
(
X + c||X̂ + c

)
≤ K

(
X + c||X̂ + c

)
. (B.4)

For M,X ∈ D, by [5, Lemma 5], we can deduce that

H2(M + c||X + c) ≥ 1− e−T

4(β + c)T

‖M −X‖2F
n1n2

≥ e−T

4(β + c)

‖M −X‖2F
n1n2

, (B.5)

where T = β2/(8c) and the last inequality holds by the fact that 1− e−T ≥ Te−T . Combining

(B.3)-(B.5), Lemma A.1, and the fact that n1n2 ≤ (n1 + n2)
2, we get that the following

inequality holds with probability at least 1− 1/(n1n2):

‖X̂ −X‖2F
n1n2

≤ 8C1(β + c)

e−T

(
(β + c)(e2 − 1) + 4 log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}

×
√

n1 + n2

m

√
1 +

(n1 + n2) log(n1 + n2)

m

≤ Cβc

(
β + c+ log(n1n2)

)
min

{
β
√
r + c̃,

τ√
nm

+ β + c̃

}

×
√

n1 + n2

m

√
1 +

(n1 + n2) log(n1 + n2)

m
,

where c̃ = max{c, |c− 1|} and Cβc = C2(β + c)/e−T with C2 = 56C1 > 0. In particular, when

m ≥ (n1 + n2) log(n1 + n2), we have

√
1 +

(n1 + n2) log(n1 + n2)

m
≤

√
2.

As a consequence, the desired conclusion can be obtained easily. �
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