
Journal of Computational Mathematics

Vol.xx, No.x, 2023, 1–32.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2306-m2022-0279

ADAPTIVE REGULARIZED QUASI-NEWTON METHOD USING
INEXACT FIRST-ORDER INFORMATION*

Hongzheng Ruan1)

School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China

Email: hzruan19@fudan.edu.cn

Wei Hong Yang

School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China

Email: whyang@fudan.edu.cn

Abstract

Classical quasi-Newton methods are widely used to solve nonlinear problems in which

the first-order information is exact. In some practical problems, we can only obtain approx-

imate values of the objective function and its gradient. It is necessary to design optimiza-

tion algorithms that can utilize inexact first-order information. In this paper, we propose

an adaptive regularized quasi-Newton method to solve such problems. Under some mild

conditions, we prove the global convergence and establish the convergence rate of the adap-

tive regularized quasi-Newton method. Detailed implementations of our method, including

the subspace technique to reduce the amount of computation, are presented. Encourag-

ing numerical results demonstrate that the adaptive regularized quasi-Newton method is

a promising method, which can utilize the inexact first-order information effectively.

Mathematics subject classification: 90C30, 68Q25.

Key words: Inexact first-order information, Regularization, Quasi-Newton method.

1. Introduction

In this paper, we consider the following problem:

min
x∈Rn

f(x), (1.1)

where f is a continuously differentiable function. In many applications, the first-order infor-

mation can not be known exactly. There are some errors in computations of f(x) and ∇f(x),

which are due to stochastic noise [10], internal discretization [29, 30], and gradient approxima-

tions based on finite differencing, interpolating, or smoothing [4, 5, 23, 24, 31, 33]. Problems of

this type arise in a variety of fields, such as multidimensional numerical integration optimiza-

tion [12], derivative-free optimization (DFO) [15, 28], and machine learning [16].

Devolder et al. [21] introduce the notion of first-order inexact oracle, and study the properties

of several smooth and non-smooth convex optimization algorithms relying on such oracles.

Inexact oracles have been widely studied for smoothing convex optimization problems. Readers

are referred to [17, 20, 22, 32].

Inexact oracles can also be applied to DFO problems. In [7], a derivative-free method based

on inexact oracles is proposed. Recently there has been much interest in the proximal method

for composite optimization with inexact oracles. Readers are referred to [18, 35, 36].

* Received December 12, 2022 / Revised version received March 27, 2023 / Accepted June 28, 2023 /

Published online November 26, 2023 /
1) Corresponding author

2 H.Z. RUAN AND W.H. YANG

Classical quasi-Newton algorithms have been extended to problems with inexact first-order

information. An established BFGS algorithm with inexact gradient, named implicit filtering

method, is proposed in [26]. It is designed for the case when errors are diminishing. Quasi-

Newton method with non-diminishing and bounded errors (BFGSe) is analyzed in [40]. It

describes a noise tolerant modification of the BFGS method. Berahas et al. [3] propose im-

plementations of the BFGS method and L-BFGS method in which gradients are computed

by an appropriate finite differencing technique. The study of BFGS methods with inaccurate

gradients has attracted much interest in recent years. For details readers are referred to [6].

An interesting approach to problem (1.1) is the trust region method. Analysis for trust

region methods with inexact gradients is presented in [11], which establishes strong global

convergence results under the relative error condition. Convergence results for truncated trust

region methods are established in [27]. Trust region methods can also be applied to problems

where only stochastic gradient information can be used. Chen et al. [14] establish almost sure

global convergence under the assumption that the first-order information is sufficiently accurate

with high enough probability. In [2,8], the authors analyze trust region methods with adaptive

accuracy in function and gradient evaluation.

Inspired by the idea in [13, 25], we propose an adaptive regularized quasi-Newton method,

named adaQN, to solve problem (1.1). Specifically, we approximate problem (1.1) and construct

a subproblem by adding a regularization term to the quasi-Newton quadratic model. One major

difference between adaQN and BFGSe is that adaQN does not use the line search and utilizes

a trust-region-like framework to monitor the acceptance of trial steps. In many cases, this strat-

egy can save some computational cost. Numerical experiments demonstrate the effectiveness

of the adaQN method. For large scale problems, we incorporate subspace techniques [37, 41]

into our adaQN method. Such techniques can reduce the amount of computation significantly

in early iterations, especially when the dimension of the problem is very large. We also study

the global convergence of the adaQN method. Under mild conditions, local convergence rates

of adaQN are established.

This paper is organized into six sections. In Section 2, we describe the problem and propose

the adaptive regularized quasi-Newton method. The main convergence results for different

kinds of errors are presented in Section 3. In Section 4, we describe practical implementations

of the proposed method. Numerical experiments, summarized in Section 5, indicate that the

proposed method is more effective and robust. Some conclusions are drawn in Section 6.

2. Problem and Algorithm

Our goal in this section is to design an effective quasi-Newton method, which uses inexact

first-order information to solve problem (1.1). We first introduce some notations that will be

used throughout the paper for our descriptions. We use g(x) to denote ∇f(x) in the paper.

Given x ∈ R
n, δ ≥ 0 and η ≥ 0, we use fδ(x) and gη(x) to denote the approximate values of

f(x) and g(x) with errors controlled by δ and η, that is

|f(x)− fδ(x)| ≤ δ, (2.1)

‖g(x)− gη(x)‖ ≤ η. (2.2)

Given a sequence {xk}, g(xk) is denoted as gk for ease of notation. Let {ηk} be a non-negative

sequence. We use the notation g̃k := gηk
(xk), where gηk

(xk) satisfies (2.2).

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 3

In the classical quasi-Newton method, the approximate Hessian matrix Bk is updated by

using sk−1 = xk − xk−1 and yk−1 = gk − gk−1, and the search direction is computed by

dk = −B−1
k gk. Since we can only obtain approximate values of gk and gk−1, we need an inexact

version of the quasi-Newton method. We update Bk by the BFGS update formula

Bk = Bk−1 +
ỹk−1ỹ

⊤
k−1

ỹ⊤k−1sk−1
−

Bk−1sk−1s
⊤
k−1Bk−1

s⊤k−1Bk−1sk−1
, (2.3)

where

sk−1 = xk − xk−1, ỹk−1 = g̃k − g̃k−1.

Let dk = −B−1
k g̃k be the search direction. If ηk > 0, then dk may not be a descent direction in

general.

To generate a descent direction at iterate xk, we add a regularization term to the second-

order Taylor model of f to obtain the objective function of our subproblem

mk(d) := fδk(xk) + g̃⊤k d+
1

2
d⊤Bkd+

1

2
σk‖d‖

2, (2.4)

where {δk}k≥0 is a non-negative sequence, and σk > 0 is the regularization parameter. Let

dk be the solution of (2.4). Then dk = −(Bk + σkI)
−1g̃k. In our algorithm, we adjust σk

adaptively to ensure that dk is a descent direction of f at xk. Such a strategy is used in

adaptive regularized methods (see [25,38,39]). Numerical experiments in [39] demonstrate that

the adaptive regularization strategy can improve the performance of the algorithm.

Now we give a brief description of our method. Our algorithm starts from a feasible initial

point x0, a positive definite matrix B0, and an initial regularization parameter σ0. At iter-

ation k, our method computes dk, the solution of (2.4). In our algorithm, we adjust σk to

guarantee the angle of dk and −g̃k is bounded by an acute angle. Thus, there exists τ > 0 such

that

−g̃⊤k dk ≥ τ‖g̃k‖ ‖dk‖.

Using (Bk + σkI)dk = −g̃k, we can deduce that

mk(0)−mk(dk) = fδk(xk)−

[
fδk(xk) + g̃⊤k dk +

1

2
d⊤k Bkdk +

1

2
σk‖dk‖

2

]

= −
1

2
g̃⊤k dk ≥

τ

2
‖g̃k‖ ‖dk‖. (2.5)

In order to decide whether xk + dk should be accepted as the next iterate and whether the

regularization parameter σk should be updated, we calculate the following ratio:

ρk =
fδk(xk)− fδk(xk + dk) + tζk

mk(0)−mk(dk) + tζk
, (2.6)

where t > 0 is a constant, {ζk} is a positive sequence. Let c1 and c2 be two parameters, which

satisfy 0 < c1 < c2 < 1. If ρk ≥ c2, we say that the iteration is very successful, and we set

xk+1 = xk + dk, if ρk ∈ [c1, c2), we say that the iteration is successful, xk is updated as well,

otherwise, the iteration is not successful, and xk remains the same. Based on the value of ρk,

our algorithm makes corresponding adjustment for σk.

Now we provide a description of our method in Algorithm 2.1.

4 H.Z. RUAN AND W.H. YANG

Algorithm 2.1: Adaptive Regularized Quasi-Newton Method Using Inexact First-

Order Information (adaQN).

Require: Starting point x0, σ0 > 0, B0 ≻ 0, t > 0, τ ∈ (0, 1), 0 < c1 < c2 < 1 and

0 < a0 < a1 < 1 < a2 < a3, error sequences {δk} and {ηk}, and a positive

sequence {ζk}.

1 for k = 0, 1, . . . until convergence do

2 Compute the search direction dk = −(Bk + σkI)
−1g̃k.

3 if −g̃⊤k dk < τ‖g̃k‖ · ‖dk‖ then

4 Update σk = a3σk, and go back to step 2.

5 end

6 Evaluate the ratio ρk as in (2.6).

7 Set

xk+1 =

{
xk + dk, if ρk ≥ c1,

xk, otherwise.
(2.7)

8 Set

σk+1 =





[a0σk, a1σk], if ρk ≥ c2,

σk, if c1 ≤ ρk < c2,

[a2σk, a3σk], otherwise.

9 if ρk ≥ c1 then update Bk+1 by (2.3) else Bk+1 = Bk.

10 end

3. Convergence Analysis

In this section, we study the convergence properties of Algorithm 2.1. When the sequences

{δk} and {ηk} are diminishing, we prove the global convergence of our method under some

mild conditions in Section 3.1, the local convergence rate of Algorithm 2.1 is analyzed in Sec-

tion 3.2. When the sequences {δk} and {ηk} are non-diminishing and bounded, we present the

convergence results of our method in Section 3.3.

We present some assumptions which will be used throughout the paper.

Assumption 3.1. f(x) is bounded below and continuously differentiable. The optimal solution

of (1.1) exists and is denoted by x∗.

Assumption 3.2. g(x) is globally Lipschitz continuous with Lipschitz constant L, that is for

any x, y ∈ R
n,

‖g(x)− g(y)‖ ≤ L‖x− y‖.

Assumption 3.3. Bk is a symmetric matrix and Bk+σkI is nonsingular for all k ≥ 0. There

exists κ > 0 such that ‖Bk‖ ≤ κ for all k ≥ 0. Here ‖ · ‖ denotes the 2-norm of a matrix.

Let τ be the parameter in Algorithm 2.1. We will use the notation τ0 in the following results,

which is defined as

τ0 :=

√
τ2

1− τ2
. (3.1)

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 5

Lemma 3.1. Let x, y be two vectors, and α be a scalar. Suppose ‖x‖ = 1. If

α ≥ (1 + τ0)‖y‖, (3.2)

then (αx+ y)⊤x ≥ τ‖αx + y‖, where τ and τ0 satisfy (3.1).

Proof. Write y as

y = β1x+ β2z,

where β1, β2 ∈ R, z is a unit vector in x⊥ = {w : w⊤x = 0}. Since x and z are unit vectors,

taking into account that z ∈ x⊥, we have

‖y‖ ≥ max{|β1|, |β2|}, (3.3)

(αx + y)⊤x = α+ β1, (3.4)

‖αx+ y‖2 = (α+ β1)
2 + β2

2 . (3.5)

By (3.2) and (3.3), we can deduce that α+ β1 ≥ τ0|β2| ≥ 0, which together with (3.1) implies

(α+ β1)
2 − τ2

(
(α+ β1)

2 + β2
2

)
≥ 0.

Combining the above inequality with (3.4) and (3.5) yields the assertion. �

The following lemma guarantees that in steps 3-5 of Algorithm 2.1, we can find a σk such

that the search direction dk satisfies

−d⊤k g̃k ≥ τ‖g̃k‖ ‖dk‖. (3.6)

Lemma 3.2. Suppose Assumption 3.3 holds. If

σk ≥ (1 + τ0)κ, (3.7)

then dk = −(Bk + σkI)
−1g̃k satisfies (3.6).

Proof. If dk = 0, then (3.6) holds. We only need to consider the case dk 6= 0. If (3.7) holds,

by Assumption 3.3, we have

σk‖dk‖ ≥ (1 + τ0)‖Bk‖ ‖dk‖ ≥ (1 + τ0)‖Bkdk‖.

Letting α = σk‖dk‖, x = dk/‖dk‖ and y = Bkdk, by Lemma 3.1, we can deduce that

[(Bk + σkI)dk]
Tdk ≥ τ‖(Bk + σkI)dk‖ ‖dk‖,

which together with g̃k = −(Bk + σkI)dk implies the assertion. �

From (2.5), it follows that fδk(xk) = mk(0) ≥ mk(dk). Since {ζk} is a positive sequence and

t > 0, the denominator of ρk in (2.5) is greater than zero. Let

rk := [fδk(xk)− fδk(xk + dk) + tζk]− c2[fδk(xk)−mk(dk) + tζk], (3.8)

where c2 is the parameter in Algorithm 2.1. It is obvious that rk ≥ 0 if and only if ρk ≥ c2. In

the rest of the paper, we assume that the parameter t, sequences {δk} and {ζk} satisfy

t(1 − c2) ≥ 2, (3.9)

ζk ≥ δk, ∀k. (3.10)

In the following results, we use the notation

c̄ :=
1

4

(
1−

c2
2

)
. (3.11)

6 H.Z. RUAN AND W.H. YANG

Lemma 3.3. Suppose Assumptions 3.1-3.3 hold, and for the parameter t, sequences {δk} and

{ζk}, (3.9) and (3.10) hold. Further suppose

‖gk‖ ≥ (1/c̄+ 1)ηk. (3.12)

If

σk ≥ σ̄ := max{(1 + τ0)κ, κ+ L/(2c̄), 3κ}, (3.13)

then the k-th iteration is very successful.

Proof. Let λmin(Bk) and λmax(Bk) be the minimum and maximum eigenvalues of Bk. It

follows from Assumption 3.3 that

κ ≥ ‖Bk‖ = max
(
|λmin(Bk)|, |λmax(Bk)|

)
.

By (3.13), Bk + σkI is positive definite. Using the above inequality, we can deduce that

λmin(Bk + σkI) = σk + λmin(Bk) ≥
1

2
(σk + σk − 2κ)

≥
1

2
(σk + κ) ≥

1

2
λmin(Bk + σkI).

By the above inequality, we have

‖g̃k‖ = ‖ − (Bk + σkI)dk‖ ≤ λmax(Bk + σkI)‖dk‖

≤ 2λmin(Bk + σkI)‖dk‖.

Using the Taylor expansion of f(xk + dk) around xk, we can deduce that

mk(dk)− fδk(xk + dk)

=

[
f(xk) + g̃⊤k dk +

1

2
d⊤k Bkdk +

1

2
σk‖dk‖

2 − f(xk + dk)

]

+
(
fδk(xk)− f(xk)

)
+
(
f(xk + dk)− fδk(xk + dk)

)

≥ −2δk +

[
f(xk) + g̃⊤k dk +

1

2
d⊤k Bkdk +

1

2
σk‖dk‖

2 − f(xk + dk)

]

= −2δk +
(
g̃k − g(ωk)

)⊤
dk +

1

2
d⊤k Bkdk +

1

2
σk‖dk‖

2, (3.14)

where ωk lies in the line segment (xk, xk + dk), and the first inequality is due to the definition

of δk. From (3.9) and (3.10), it follows that

(1 − c2)tζk ≥ 2ζk ≥ 2δk.

Using the above inequality with (3.14), we have

rk = [fδk(xk)− fδk(xk + dk) + tζk]− c2[fδk(xk)−mk(dk) + tζk]

= [mk(dk)− fδk(xk + dk)] + (1− c2)[fδk(xk)−mk(dk)] + (1− c2)tζk

≥
(
g̃k − g(ωk)

)⊤
dk − (1− c2)g̃

⊤
k dk +

c2
2

(
d⊤k Bkdk + σk‖dk‖

2
)
+ (1− c2)tζk − 2δk

≥ (g̃k − gk)
⊤dk +

(
gk − g(ωk)

)⊤
dk +

(
1−

c2
2

)
d⊤k (Bk + σkI)dk

≥ ‖dk‖
(
− ηk − ‖gk − g(ωk)‖+ 4c̄λmin(Bk + σkI)‖dk‖

)
,

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 7

where we use g̃k = −(Bk + σkI)dk in the second inequality, and use ‖g̃k − gk‖ ≤ ηk in the last

inequality. From (3.12), it follows that

‖g̃k‖ ≥ ‖gk‖ − ‖g̃k − gk‖ ≥
ηk
c̄
.

Combining the above inequality with (3.14), we have

2c̄λmin(Bk + σkI)‖dk‖ − ηk ≥ c̄λmax(Bk + σkI)‖dk‖ − ηk

≥ c̄‖(Bk + σkI)dk‖ − ηk

= c̄‖g̃k‖ − ηk ≥ 0. (3.15)

Using Assumption 3.2 and (3.13), we can deduce that

2c̄λmin(Bk + σkI)‖dk‖ − ‖gk − g(ωk)‖

≥ 2c̄
(
σk − κ+ λmin(Bk + κI)

)
‖dk‖ − L‖ωk − xk‖

≥ 2c̄(σk − κ)‖dk‖ − L‖dk‖ ≥ 0. (3.16)

Combining (3.15) and (3.16) yields rk ≥ 0, which is equivalent to ρk ≥ c2. Thus the assertion

holds. �

3.1. Global convergence when {δk} and {ηk} are diminishing

In this subsection, we make the following assumption.

Assumption 3.4. {ηk}, {δk} are two non-negative sequences, and {ζk} is a positive sequence.

Moreover,

ηk → 0 as k → ∞, (3.17)

and
∞∑

k=1

ζk < ∞. (3.18)

By Assumption 3.4, we know that ζk → 0 as k → ∞. From (3.18) and (3.10), it follows that

∞∑

k=1

δk < +∞.

We record the indices of successful and very successful iterations in the set

S := {k ≥ 0 : the k-th iteration is successful or very successful}. (3.19)

By the procedures of Algorithm 2.1, we can see that

xk+1 = xk, ∀k 6∈ S. (3.20)

As usual, |S| is used to denote the cardinality of S. The following result tells us that if |S| is

finite, then gk = 0 for all sufficiently large k.

Theorem 3.1. Suppose Assumptions 3.1-3.4 hold, (3.9) and (3.10) hold for t, {δk} and {ζk}.

Further assume |S| < ∞. Then there exists k′ such that xj = xk′+1 for all j > k′, and gk′+1 = 0.

8 H.Z. RUAN AND W.H. YANG

Proof. Let xk′ be the last successful or very successful iterate, where k′ > 0 is an integer.

By (3.20), we have xj = xk′+1 for all j > k′. Now we prove gk′+1 = 0. We show it by

contradiction. Assume that ǫ := ‖gk′+1‖ > 0. Let c̄ be defined by (3.11). From Assumption 3.4,

we know that ηk → 0. Thus, there exists k1 such that ǫ > (1/c̄+1)ηk for all k > k1. Note that

the k-th iteration is unsuccessful for all k > k′. By the step 8 of Algorithm 2.1, σk+1 ≥ a2σk

for all k > k′. Thus, there exists k2 > max{k′, k1} such that σk2
> σ̄, where σ̄ is defined

by (3.13). From k2 > k′, it follows that ‖gk2
‖ > ǫ and therefore ‖gk2

‖ > (1/c̄ + 1)ηk. Using

this and σk2
> σ̄, by Lemma 3.3, we obtain that the k2-th iteration is very successful, giving

a contradiction. Thus gk′+1 = 0. �

By Theorem 3.1, we can assume that |S| = ∞ in the rest of the paper.

Now we present our main results of this subsection. We separate our proof into two parts.

First, we prove a weak convergence result lim infk→∞ ‖gk‖ = 0 in Theorem 3.2. Next, with the

help of the result of Theorem 3.2, we establish the stronger convergence result in Theorem 3.3.

Theorem 3.2. Suppose Assumptions 3.1-3.4 hold. Further assume that (3.9) and (3.10) hold

for the parameter t, sequences {δk} and {ζk}. Then we have

lim inf
k→∞

‖gk‖ = 0. (3.21)

Proof. The proof is by contradiction. Assume that (3.21) does not hold. Then there exist

ǫ > 0 and k1 such that ‖gk‖ ≥ 2ǫ for all k > k1. Since {ηk} is a diminishing sequence, without

loss of generality, assume that ηk < ǫ for all k > k1, which implies that

‖g̃k‖ ≥ ‖gk‖ − ‖gk − g̃k‖ ≥ ǫ, ∀k > k1. (3.22)

Let us first prove ∑

k∈S

‖dk‖ < ∞, (3.23)

where S is defined by (3.19). From (2.1), (2.6) and (2.7), we know that for all k ∈ S,

f(xk)− f(xk+1) ≥
(
fδk(xk)− fδk(xk+1) + tζk

)
− (2δk + tζk)

≥ c1
(
mk(0)−mk(dk) + tζk

)
− (2δk + tζk)

= −c1

(
g̃⊤k dk +

1

2
d⊤k Bkdk +

1

2
σk‖dk‖

2

)
−
(
2δk + (1 − c1)tζk

)

= −
c1
2
g̃⊤k dk −

(
2δk + (1− c1)tζk

)

≥
τc1
2

‖g̃k‖ ‖dk‖ −
(
2δk + (1 − c1)tζk

)
, (3.24)

where the second equality is due to (Bk + σkI)dk = −g̃k, and the last inequality follows from

steps 3-5 of Algorithm 2.1.

Pick an integer k2 in S such that k2 > k1. From (3.20), we know that for any j ∈ S with

j ≥ k2, we have

f(xk2
)− f(xj+1) =

j∑

k=k2

[f(xk)− f(xk+1)] =
∑

k2≤k≤j,k∈S

[f(xk)− f(xk+1)]

≥
τc1
2

∑

k2≤k≤j,k∈S

‖g̃k‖ ‖dk‖ −
∑

k2≤k≤j,k∈S

[2δk + (1− c1)tζk]

≥
τc1ǫ

2

∑

k2≤k≤j,k∈S

‖dk‖ −
∑

k2≤k≤j,k∈S

[2δk + (1− c1)tζk], (3.25)

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 9

where the first inequality follows from (3.24) and the last inequality is due to (3.22). By (3.10)

and (3.18), there exists M > 0 such that

∑

k2≤k≤j,k∈S

[2δk + (1− c1)tζk] < M, ∀j ≥ k2,

which together with (3.25) and Assumption 3.1 implies

j∑

k=k2,k∈S

‖dk‖ <
2

τc1ǫ

(
M + f(xk2

)− f(x∗)
)
. (3.26)

Letting j → ∞ in (3.26) yields
∑∞

k=k2,k∈S
‖dk‖ < ∞, and therefore (3.23) holds.

It follows from (3.23) that

lim
k∈S,k→∞

‖dk‖ = 0.

Note that for k ∈ S with k > k1, it holds that

ǫ ≤ ‖g̃k‖ = ‖ − (Bk + σk)dk‖ ≤ (κ+ σk)‖dk‖,

which implies that

σk → ∞ as k → ∞, k ∈ S. (3.27)

Let σ̄ be defined by (3.13). Since ηk → 0, there exists k3 such that (3.12) holds for all

k ≥ k3. For any k′ ≥ k3, by Lemma 3.3, we can see that

if σk′ ≥ σ̄, then k′ ∈ S. (3.28)

For an integer k ∈ S with k > k3, we consider two cases k − 1 ∈ S or not. If k − 1 6∈ S,

by (3.28), we know that σk−1 < σ̄. From the procedures of Algorithm 2.1, it holds that

σk ≤ a3σk−1 < a3σ̄. If k − 1 ∈ S, then σk ≤ σk−1. Combining the two cases, we can deduce

that σk ≤ max{σk3
, a3σ̄} for all k ∈ S with k > k3, a contradiction to (3.27). �

In Theorem 3.3, we show that limk→∞ ‖gk‖=0, which is equivalent to limk→∞ ‖g̃k‖=0. The

equivalence can be deduced by using (3.17) and the fact that ‖gk − g̃k‖ ≤ ηk.

Theorem 3.3. Under the assumptions of Theorem 3.2, we have

lim
k→∞

‖gk‖ = 0. (3.29)

Proof. We prove the assertion by contradiction. If (3.29) does not hold, there exist a scalar

ǫ > 0 and a sequence {ti} such that

‖gti‖ ≥ 4ǫ, ∀i. (3.30)

Since |S| = ∞, by (3.20), we can assume that {ti} ⊆ S. Since {ηk} is diminishing, there exists

k̄ such that |ηk| ≤ ǫ for all k ≥ k̄. Without loss of generality, assume that ti ≥ k̄ for all i. By

Theorem 3.2, for each ti there exists li such that

li > ti, ‖gli‖ < 3ǫ. (3.31)

From (3.30) and (3.31), it follows that

‖gli − gti‖ ≥ ‖gti‖ − ‖gli‖ ≥ ǫ. (3.32)

10 H.Z. RUAN AND W.H. YANG

By (3.20), we can assume that li ∈ S. Further we assume that li is the smallest integer in

set S which satisfies (3.31). Then, for k ∈ S satisfying ti < k < li, we have ‖gk‖ ≥ 3ǫ. Let

K := {k ∈ S : ti ≤ k < li}. Note that k ≥ k̄ for all k ∈ K. Then we have ηk ≤ ǫ for all k ∈ K.

Thus, we can deduce that

‖g̃k‖ ≥ ‖gk‖ − ηk ≥ 2ǫ, ∀k ∈ K. (3.33)

Let

pk := f(xk)−

k∑

i=0

[2δi + (1− c1)tζi], k ≥ 0.

If k 6∈ S, then pk ≥ pk+1, otherwise, by (3.24), we have

pk − pk+1 = f(xk)− f(xk+1) + [2δk + (1− c1)tζk] ≥
τc1
2

‖g̃k‖ ‖dk‖. (3.34)

Thus {pk} is a non-increasing sequence, and therefore limk→∞ pk exists. Further, we can deduce

that

pti − pli ≥
∑

k∈K

[f(xk)− f(xk+1) + 2δk + (1 − c1)tζk]

≥ τc1ǫ

li−1∑

k=ti,k∈S

‖dk‖ = τc1ǫ

li−1∑

k=ti

‖xk+1 − xk‖ ≥ τc1ǫ‖xti − xli‖, (3.35)

where the second inequality is due to (3.33) and (3.34). Since pti − pli converges to zero as

i → ∞, from (3.35) it follows that ‖xli − xti‖ → 0. Thus, we have

‖gli − gti‖ ≤ L‖xli − xti‖ → 0,

yielding a contradiction to (3.32). �

3.2. Convergence rate analysis when {δk} and {ηk} are diminishing

In this subsection, we establish the convergence rate of Algorithm 2.1. For the convenience

of discussion, assume that the parameter t and the sequence {ζk} satisfy

t =
2

1− c2
, ζk = δk, ∀k. (3.36)

Then (3.9) and (3.10) hold for t and {ζk}. We separate the contents of this subsection into

three parts.

3.2.1. O(1/ǫ2) complexity

We now give some assumptions needed in this subsection.

Assumption 3.5. The sequence {ηk} satisfies

ηk ≤ (1/c̄+ 1)−1‖gk‖, ∀k, (3.37)

where c̄ is defined by (3.11), and the sequence {δk} satisfies

δk < A‖gk‖
2, ∀k, (3.38)

where

A <
8c1τ

(κ+ a3σ̄)(5− c2/2)2
(
2 + t(1− c1)

) . (3.39)

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 11

It follows from (2.2) and (3.37) that

1 + c̄

1 + 2c̄
‖gk‖ ≤ ‖g̃k‖ ≤

1 + 2c̄

1 + c̄
‖gk‖,

that is, ‖gk‖ = O(‖g̃k‖). Since we can only compute the value of g̃k in the numerical experi-

ments, we set ηk = ω‖g̃k‖ in Section 5.3.

Under the previous assumptions, we can prove {σk} is bounded in the following result. Let

N0 :=

⌊
loga1

σ̄

σ0

⌋
+ 1,

N1 := max{0, N0}. (3.40)

Lemma 3.4. Suppose Assumptions 3.1-3.3 and 3.5 hold. Further suppose (3.36) holds for the

parameter t, sequences {δk} and {ζk}. Then for all k ≥ N1, we have

σk ≤ a3σ̄. (3.41)

Proof. Assume that σ0 ≥ σ̄. Then N1 = N0 ≥ 1. Now we prove

there exists k0 ∈ {0, 1, . . . , N0} such that σk0
< σ̄. (3.42)

By (3.37) and Lemma 3.3, we know that if σk ≥ σ̄, then the k-th iteration is very successful,

which implies σk+1 ≤ a1σk. Thus, if σi ≥ σ̄ for i = 0, . . . , N0− 1, then σN0
< σ̄. That is, (3.42)

holds. Next, we prove (3.41) holds for all k ≥ k0. We prove it by induction. Obviously, it holds

for k = k0. Assume that (3.41) holds for some k = j ≥ k0. If σj < σ̄, by the procedures of

Algorithm 2.1 (see steps 4 and 8), we can deduce that σj+1 ≤ a3σ̄; if σj ≥ σ̄, from Lemma 3.3

it follows that σj+1 ≤ a1σj , which together with the induction hypothesis implies σj+1 < a3σ̄.

Thus (3.41) holds for k = j + 1, and therefore the assertion holds.

If σ0 < σ̄, then N1 = 0. Similarly, we can prove that (3.41) holds for all k ≥ 0 by induction.

We omit the detail. �

Recall S is defined by (3.19). We write it as S = {k1, k2, · · · }. From the procedures of

Algorithm 2.1, we have

σk+1

σk
≥ a0, if k ∈ S, (3.43)

σk+1

σk
≥ a2, if k 6∈ S. (3.44)

Moreover, for the index k satisfying ki < k ≤ ki+1, by (3.20), we have f(xk) = f(xki+1
). In the

following result, we study the properties of the sequence {f(xki
)}.

We use the notation

φ :=
32c1τ

(κ+ a3σ̄)(10− c2)2
−
(
2 + (1− c1)t

)
A, (3.45)

where A is defined by (3.39). From Assumption 3.5 it follows that φ > 0. By (3.13), we have

φ ≤
32c1τ

(κ+ a3σ̄)(10− c2)2
≤

32

81σ̄
≤

32

81L/2c̄
≤

16

81L
. (3.46)

Lemma 3.5. Suppose Assumptions 3.1-3.3 and 3.5 hold. Further suppose (3.36) holds for the

parameter t, sequences {δk} and {ζk}. Then for all ki ≥ N1,

f(xki
)− f(xki+1

) ≥ φ‖gki
‖2, ∀i ≥ 1. (3.47)

12 H.Z. RUAN AND W.H. YANG

Proof. For all k ≥ N1, by Assumption 3.3 and (3.41), we can deduce that

‖g̃k‖ = ‖ − (Bk + σkI)dk‖ ≤ (‖Bk‖+ σk)‖dk‖ ≤ (κ+ a3σ̄)‖dk‖. (3.48)

Assume that ki ≥ N1. By (3.24), (3.36) and (3.48), we have

f(xki
)− f(xki+1

) ≥
c1τ

2
‖g̃ki

‖ ‖dki
‖ −

(
2δki

+ (1− c1)tζki

)

≥
c1τ

2(κ+ a3σ̄)
‖g̃ki

‖2 −
(
2 + (1− c1)t

)
δki

. (3.49)

From (3.37), it follows that

‖g̃ki
‖ ≥ ‖gki

‖ − ηki
≥

1

1 + c̄
‖gki

‖. (3.50)

Combining (3.11), (3.38), (3.49) and (3.50) yields

f(xki
)− f(xki+1

) ≥
32c1τ

(κ+ a3σ̄)(10− c2)2
‖gki

‖2 −
(
2 + (1− c1)t

)
δki

≥

(
32c1τ

(κ+ a3σ̄)(10− c2)2
−
(
2 + (1 − c1)t

)
A

)
‖gki

‖2.

That is, (3.47) holds. �

It is easy to prove the following result and the proof is omitted.

Corollary 3.1. Under the assumptions of Lemma 3.5, we have

lim
k→∞

‖gk‖ = 0.

For a positive integer k, assume that kN < k ≤ kN+1 for some N ≥ 1. By (3.43) and (3.44),

we have

σk = σ0

k−1∏

j=0

σj+1

σj
= σ0

∏

j∈S

j<k

σj+1

σj

∏

j 6∈S

j<k

σj+1

σj
≥ σ0a

N
0 ak−N

2 ,

which together with (3.41) implies (assume that k ≥ N1)

ln(a3σ̄) ≥ lnσk ≥ lnσ0 +N ln a0 + (k −N) ln a2. (3.51)

Thus, we can deduce that

k ≤ loga2

(
a2
a0

)
N + loga2

a3σ̄

σ0
. (3.52)

Next, we give the iteration complexity analysis of the Algorithm 2.1.

Theorem 3.4. Suppose Assumptions 3.1-3.3 and 3.5 hold. Further suppose (3.36) holds for

the parameter t, sequences {δk} and {ζk}. Let

γ1 = loga2

(
a2
a0

)
1

φ

[
N1∑

i=0

2(2− c1)δi + f(x0)− f(x∗)

]
, (3.53)

γ2 = loga2

(
a2
a0

)
N1 + loga2

a3σ̄

σ0
, (3.54)

where N1 is defined by (3.40). If k ≥ γ1/ǫ
2 + γ2, then

min
j=0,...,k

‖gj‖ < ǫ.

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 13

Proof. Let ki0 be the smallest integer in S such that ki0 ≥ N1. We consider two cases σ0 ≥ σ̄

or σ0 < σ̄.

1) Assume that σ0 ≥ σ̄. Then N1 = N0 ≥ 1. From (3.40), it is easy to see that i0 ≤ N1+1.

For any integer k > ki0 , assume that kN < k ≤ kN+1 for some N . If ‖gj‖ ≥ ǫ for all

j ∈ {0, · · · , k}, by (3.47), we have

f(xki0
)− f(x∗) ≥ f(xki0

)− f(xkN+1
) ≥ φ

N∑

i=i0

‖gki
‖2 ≥ φ(N − i0 + 1)ǫ2. (3.55)

From σ0 ≥ σ̄ and Lemma 3.3, it follows that xk1
= x0. From (3.24), we can deduce that

f(xki0
) ≤ f(x0) +

N1∑

i=0

(
2δi + (1− c1)tζi

)
.

Combining this and above inequality, we have

N ≤
1

φǫ2

(
N1∑

i=0

2(2− c1)δi + f(x0)− f(x∗)

)
+N1,

which together with (3.52) implies k < γ1/ǫ
2 + γ2, where γ1 and γ2 are defined by (3.53) and

(3.54).

2) Assume that σ0 < σ̄. Then N1 = 0, and therefore i0 = 1. From (3.20), we can deduce

that x0 = xk1
. Then the assertion follows directly from (3.55). �

3.2.2. Linear convergence

Under the Polyak-Lojasiewicz condition, we can establish the linear convergence rate of Algo-

rithm 2.1.

Assumption 3.6. Assume that f satisfies the Polyak-Lojasiewicz inequality [34], that is, for

some µ > 0, the following inequality holds:

‖g(x)‖2 ≥ 2µ
(
f(x)− f(x∗)

)
, ∀x ∈ R

n. (3.56)

If g satisfies Assumption 3.2, then ‖g(x)‖2 ≤ 2L(f(x)− f(x∗)), which together with (3.56)

implies L ≥ µ. Recall that φ is defined by (3.45). By (3.46) and L ≥ µ, we have 2µφ < 1.

Then we can prove the following result. We use the notation N1, which is defined by (3.40).

Theorem 3.5. Suppose Assumptions 3.1-3.6 except 3.4 hold. Further suppose (3.36) holds for

the parameter t, sequences {δk} and {ζk}. Then for all k ≥ N1, we have

f(xk)− f(x∗) ≤ Θνk,

where

ν := (1− 2µφ)1/ loga2
(a2/a0), Θ = ν−N1−loga2

(a3σ̄/σ0a
N1
0

)
(
f(xN1

)− f(x∗)
)
.

14 H.Z. RUAN AND W.H. YANG

Proof. Pick any k ≥ N1. Assume that kN is the smallest integer in S such that k ≤ kN .

Then xk = xkN
. Assume that kÑ is the smallest integer in S such that N1 ≤ kÑ . Then

xN1
= xk

Ñ
. For any i ≥ Ñ , by (3.47) and (3.56), we can deduce that

f(xki+1
)− f(x∗) = f(xki+1

)− f(xki
) + f(xki

)− f(x∗)

≤
(
f(xki

)− f(x∗)
)
− φ‖gki

‖2

≤ (1− 2µφ)
(
f(xki

)− f(x∗)
)
.

Using the above inequalities recursively from Ñ to N , we have

f(xkN
)− f(x∗) ≤ (1− 2µφ)N−Ñ

(
f(xk

Ñ
)− f(x∗)

)
. (3.57)

Similar to the derivation of (3.52), we can deduce that

k −N1 ≤ loga2

(
a2
a0

)
(N − Ñ) + loga2

a3σ̄

σN1

≤ loga2

(
a2
a0

)
(N − Ñ) + loga2

a3σ̄

σ0a
N1

0

, (3.58)

where the last inequality follows from σN1
≥ σ0a

N1

0 (see (3.43) and (3.44)). Combining (3.57)

and (3.58) yields the assertion. �

3.2.3. Superlinear convergence

In this subsection, we establish the superlinear convergence of Algorithm 2.1. Assume that f(x)

is twice continuously differentiable. We use G(x) to denote ∇2f(x). The following assumptions

arise commonly in the proof of superlinear convergence.

Assumption 3.7. G(x) is Lipschitz continuous near x∗, that is

‖G(x)−G(y)‖ ≤ LG‖x− y‖ (3.59)

for all x, y near x∗, where LG > 0. Meanwhile, there exist positive constant m and M such that

m‖z‖2 ≤ z⊤G(x)z ≤ M‖z‖2, ∀z ∈ R
n (3.60)

for all x near x∗.

Assumption 3.8. There exists κ > 0 such that κI � Bk � κI for all k ≥ 0.

Assumption 3.9. Assume that xk converges to x∗, and Bk satisfies the following Dennis-Móre

condition [19]: ∥∥(Bk −G(x∗)
)
dk
∥∥

‖dk‖
→ 0, whenever ‖gk‖ → 0. (3.61)

Assumption 3.10. The sequence {δk} satisfies (3.38). Assume that gk 6= 0 for all k ≥ 1. The

sequence {ηk} satisfies ηk ≥ ηk+1 and

lim
k→∞

ηk
‖gk‖

= 0. (3.62)

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 15

Inspired by [13, Theorem 4.3], we can prove the following result.

Lemma 3.6. Suppose Assumptions 3.1 and 3.7-3.10 hold. Further suppose (3.9) and (3.10)

hold, and τ ≤ κ/κ. Then the iterations generated by Algorithm 2.1 are eventually very success-

ful, and σk converges to zero as k goes to infinity.

Proof. By Assumption 3.9, we know that xk → x∗ and therefore ‖gk‖ → 0. Under the

conditions of Assumptions 3.1, 3.7 and 3.8, similar to the proof of Lemma 3.4, we can prove

that σk ≤ a3σ̄ for all sufficiently large k. Since dk = −(Bk + σkI)
−1g̃k, by Assumption 3.8,

(κ+ a3σ̄)
−1‖g̃k‖ ≤ ‖dk‖ ≤ κ−1‖g̃k‖ (3.63)

for k large enough.

For any σ > 0, from Assumption 3.8 we can deduce that

g̃k(Bk + σI)−1g̃k ≥
1

κ+ σ
‖g̃k‖

2 ≥
τ

κ+ σ
‖g̃k‖

2 ≥ τ‖g̃k‖
∥∥(Bk + σ)−1g̃k

∥∥. (3.64)

Thus, after steps 3-5 of Algorithm 2.1, the value of σk remains the same.

By (3.8)-(3.10), taking into account (Bk + σkI)dk = −g̃k, we have

rk = [fδk(xk)− fδk(xk + dk) + tζk]− c2[fδk(xk)−mk(dk) + tζk]

≥ [f(xk)− f(xk + dk)]− c2[fδk(xk)−mk(dk)]

= −

(
g⊤k dk +

1

2
d⊤k G(ωk)dk

)
+ c2

(
g̃⊤k dk +

1

2
d⊤k (Bk + σkI)dk

)

= (g̃k − gk)
⊤dk +

1

2
d⊤k
(
Bk −G(ωk)

)
dk −

1− c2
2

g̃⊤k dk +
1

2
σk‖dk‖

2

≥ ‖dk‖

(
−ηk −

1

2

∥∥(Bk −G(ωk)
)
dk
∥∥+ τ(1 − c2)

2
‖g̃k‖+

1

2
σk‖dk‖

)
, (3.65)

where ωk ∈ (xk, xk+dk), and the last inequality is due to (3.64). It follows from Assumptions 3.7

and 3.9 that
∥∥(Bk −G(ωk)

)
dk
∥∥ ≤

∥∥(Bk −G(x∗)
)
dk
∥∥+

∥∥(G(xk)−G(x∗)
)
dk
∥∥

+
∥∥(G(xk)−G(ωk)

)
dk
∥∥ = o(‖dk‖). (3.66)

From (3.62) and (3.63), it follows that ηk = o(‖gk‖) = o(‖dk‖). By (3.63), (3.65) and (3.66),

we have rk ≥ 0 for all sufficiently large k, that is, all iterations are eventually very successful.

By the first assertion, from (3.64) and step 8 of Algorithm 2.1, it follows that σk → 0. �

Now we establish the superlinear convergence rate of our method.

Theorem 3.6. Suppose the same assumptions hold as in Lemma 3.6. Then the sequence {xk}

converges superlinearly to x∗.

Proof. By (3.61), taking into account xk → x∗ and (3.59), we have
∥∥(G(xk)−Bk

)
dk
∥∥ = o(‖dk‖).

It follows from Assumptions 3.7 and 3.8 that ‖G(xk) − Bk‖ ≤ M + κ for sufficiently large k.

By Lemma 3.6, we know that σk → 0 and ηk = o(‖dk‖). Using this, we can deduce that

‖xk+1 − x∗‖ = ‖xk + dk − x∗‖

16 H.Z. RUAN AND W.H. YANG

=
∥∥xk −G(xk)

−1gk − x∗ +G(xk)
−1gk − (Bk + σkI)

−1g̃k
∥∥

≤
∥∥xk −G(xk)

−1gk − x∗
∥∥+

∥∥G(xk)
−1(gk − g̃k)

∥∥

+
∥∥G(xk)

−1g̃k −B−1
k g̃k

∥∥+
∥∥B−1

k g̃k − (Bk + σkI)
−1g̃k

∥∥

≤ O
(
‖xk − x∗‖2

)
+ ηk

∥∥G(xk)
−1
∥∥

+
∥∥G(xk)

−1
(
G(xk)−Bk

)(
I + σkB

−1
k

)
dk
∥∥+

∥∥σkB
−1
k dk

∥∥

≤ O
(
‖xk − x∗‖2

)
+ o(‖dk‖)

+
∥∥G(xk)

−1
(
G(xk)−Bk

)
σkB

−1
k dk

∥∥+
∥∥G(xk)

−1
(
G(xk)−Bk

)
dk
∥∥

= O
(
‖xk − x∗‖2

)
+ o(‖dk‖). (3.67)

From the above inequality and using dk = xk+1 − xk, we have ‖dk‖ = O(‖xk − x∗‖), which

together with (3.67) implies

‖xk+1 − x∗‖ = o
(
‖xk − x∗‖

)
.

The proof is complete. �

3.3. Convergence rate analysis when {δk} and {ηk} are bounded

In this subsection, we discuss the case that {δk} and {ηk} are uniformly bounded, i.e. there

exist nonnegative constants ǫf , ǫg such that

δk ≤ ǫf , ηk ≤ ǫg, ∀k. (3.68)

Recall that c̄ is defined by (3.11). The following result follows directly from Lemma 3.4 and

(3.68).

Lemma 3.7. Suppose Assumptions 3.1-3.3 hold. Further assume (3.36) holds for the parameter

t, sequences {δk} and {ζk}. If there exists k̄ such that

‖gk‖ > (1/c̄+ 1)ǫg, ∀k ≥ k̄, (3.69)

then there exists ǩ ≥ k̄ such that for all k ≥ ǩ,

σk ≤ a3σ̄,

where σ̄ is defined in (3.13).

Before proceeding more, we introduce the notations

θ1 :=
(κ+ a3σ̄)

c1τ
, θ2 :=

2− c1 − c2
1− c2

,

eg := max
{
(1/c̄+ 1)ǫg,

√
(1 + 4θ1θ2)ǫf + ǫg

}
. (3.70)

Lemma 3.8. Suppose Assumptions 3.1-3.3 hold, (3.36) holds for t, {δk} and {ζk}. Further

suppose for some k > 0,

‖gk‖ ≥ eg, (3.71)

and σk ≤ a3σ̄. Then, if k ∈ S, we have

f(xk)− f(xk + dk) ≥
1

2θ1
ǫf .

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 17

Proof. By σk ≤ a3σ̄, we have

‖g̃k‖ = ‖(Bk + σkI)dk‖ ≤ (κ+ a3σ̄)‖dk‖.

Since k ∈ S, by (2.5), (3.36) and (3.68), we can deduce that

f(xk)− f(xk + dk) ≥ fδk(xk)− fδk(xk + dk)− 2δk

≥ c1
(
mk(0)−mk(dk)

)
− (1− c1)tζk − 2δk

≥
c1τ

2
‖g̃k‖ ‖dk‖ −

(
2 + 2

1− c1
1− c2

)
δk

≥
c1τ

2(κ+ a3σ̄)
‖g̃k‖

2 −

(
2 + 2

1− c1
1− c2

)
ǫf . (3.72)

From (3.68) and (3.71), it follows that

‖g̃k‖ ≥ ‖gk‖ − ǫg ≥
√

(1 + 4θ1θ2)ǫf . (3.73)

Combining (3.72) and (3.73) yields the assertion. �

Next we establish the main result of this subsection.

Theorem 3.7. Under the assumptions of Lemma 3.8, the sequence of iterates {xk} generated

by Algorithm 2.1 infinitely visits the critical region C1, defined as

C1 = {x : ‖g(x)‖ ≤ eg}, (3.74)

where eg is defined by (3.70).

Proof. We prove the assertion by contradiction. Assume that there exists k̄ such that

‖gk‖ > eg, ∀k > k̄.

First, we prove |S| = ∞. If not, by the procedures of Algorithm 2.1, we can deduce that

σk → ∞ as k → ∞. Let k̂ be the largest integer in S. Then there exists k̃ > max{k̄, k̂} such

that σk̃ ≥ σ̄. Note that

‖gk̃‖ ≥ eg ≥ (1/c̄+ 1)ηk̃.

By Lemma 3.3, we can see that k̃ ∈ S, giving a contradiction.

By Lemma 3.7, we know that there exists ǩ ≥ k̄ such that

σk ≤ a3σ̄, ∀k ≥ ǩ.

For any k ∈ S satisfying k ≥ ǩ, using Lemma 3.8, we can obtain

f(xk)− f(xk + dk) ≥
1

2θ1
ǫf .

Assume that ki0−1 < ǩ ≤ ki0 for some i0. Then xǩ = xki0
. Using the above inequality, we have

f(xki0
)− f(x∗) ≥ f(xki0

)− f(xki0+j
)

=

j−1∑

t=0

[
f(xki0+t

)− f(xki0+t+1
)
]
≥

j

2θ1
ǫf .

Letting j → ∞ in the above inequality, we can derive a contradiction. �

18 H.Z. RUAN AND W.H. YANG

4. Practical Implementation

In this section, we provide several techniques to make our method more efficient.

4.1. Subspace implementation

Inspired by [37], we use subspace techniques to reduce the amount of computation. Subspace

techniques play an important role in the development of numerical methods for large-scale

nonlinear optimization. We refer to [41] for a detailed discussion on these techniques.

From the Algorithm 2.1, we know that Bk is updated only if k ∈ S. Note that xki+1
= xki+1

for all i. To obtain Bki+1
, we compute ski

and ỹki
as follows:

ski
= xki+1

− xki
, ỹki

= g̃ki+1
− g̃ki

. (4.1)

Let Gi be the subspace generated by the following formula:

Gi := span{g̃k1
, · · · , g̃ki

}. (4.2)

Let Zi := [z1, · · · , zli] be the orthonormal basis of Gi, where li is the dimension of Gi. It is easy

to see that ZT
i Zi = Ili . Let

ĝi := ZT
i g̃ki

∈ R
li , Bi := ZT

i Bki
Zi ∈ R

li×li . (4.3)

The proof of the following result is similar to that of [37], and therefore we omit it.

Lemma 4.1. Suppose B0 = δI for some δ > 0. Then problem (2.4) is equivalent to the

following problem:

min
d̄∈Rli

m̄i(d̄) = fδki (xki
) + ĝ⊤i d̄+

1

2
d̄⊤Bid̄+

1

2
σki

‖d̄‖2 (4.4)

in the sense that if dki
is a solution of (2.4), then d̄i = Z⊤

i dki
is a solution of (4.4), if d̄i is

a solution of (4.4), then dki
= Zid̄i ∈ Gi must be a solution of (2.4).

The cost of updating Bi is significantly less than that of updating Bki
when i is much smaller

than n. Given Zi,Bi and ĝi, after d̄i is obtained, we have a convenient way of computing Zi+1,

Bi+1 and ĝi+1. Now we give a detailed description. Let zi+1 be a unit vector in G⊥
i , which

satisfies

φi+1zi+1 = g̃ki+1
− Ziui, (4.5)

where

φi+1 =
∥∥(I − ZiZ

T
i

)
g̃ki+1

∥∥, ui = ZT
i g̃ki+1

.

We consider the following two cases:

1. If φi+1 > 0, we set Zi+1 = [Zi, zi+1]. By (4.5), we have

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 19

ĝi+1 := ZT
i+1g̃ki+1

=

[
ZT
i g̃ki+1

zTi+1g̃ki+1

]
=

[
ui

φi+1

]
,

ŝi := ZT
i+1ski

=

[
ZT
i ski

zTi+1ski

]
=

[
d̄i
0

]
,

ŷi := ZT
i+1ỹki

=

[
cZT

i (g̃ki+1
− g̃ki

)

zTi+1(g̃ki+1
− g̃ki

)

]
=

[
ui − ĝi
φi+1

]
,

B̂i := ZT
i+1Bki

Zi+1 =

[
Bi 0

0 δ

]
.

(4.6)

2. If φi+1 = 0, set Zi+1 = Zi. Then we have

ĝi+1 := ZT
i g̃ki+1

= ui,

ŝi := ZT
i ski

= d̄i,

ŷi = ZT
i (g̃ki+1

− g̃ki
) = ui − ĝi,

B̂i = ZT
i Bki

Zi = Bi.

(4.7)

Since ski
∈ Gi ⊂ Gi+1, it follows that Zi+1Z

⊤
i+1ski

= ski
. From (4.6) and (4.7), we can

deduce that

Bi+1 = ZT
i+1Bki+1

Zi+1 = B̂i +
ŷiŷ

⊤
i

ŷ⊤i ŝi
−

B̂iŝiŝ
⊤
i B̂i

ŝ⊤i B̂iŝi
.

Note that the dimension of Gi will become very large during the process of iteration. To

overcome this difficulty, we restart the updating procedure every ̟ steps. That is, for all j ≥ 0,

we set

Zj̟+1 =

[
g̃kj̟+1

‖g̃kj̟+1
‖

]
, Bj̟+1 = δ > 0.

The subspace implementation can reduce the amount of computation significantly in early

iterations, especially when n is very large. So we use this technique for some large scale

problems.

4.2. Adjustment for σk and termination criterion

To improve the performance of our algorithm, we use a strategy to adjust the regularized

parameter σk. Now we describe it. When ρk < c1 and the iteration k is unsuccessful, we use

the following formula to adjust σk:

σk+1 =





a3σk, ρk ≤ 0,
a3(c1 − ρk) + a2ρk

c1
σk, 0 < ρk < c1.

When ρk ≥ c2 and the iteration k is very successful, we adjust σk by

σk+1 =






a0(ρk − c2) + a1(1 − ρk)

1− c2
σk, c2 ≤ ρk < 1,

a0σk, ρk ≥ 1.

We terminate the algorithm as soon as ‖g̃k‖ ≤ tol, where tol is a user-specified parameter.

When error sequences δk, ηk are uniformly bounded by ǫf and ǫg, tol can not be too small

20 H.Z. RUAN AND W.H. YANG

compared to ǫf , ǫg. For more discussions on termination criteria for optimization with inexact

first-order information, readers are referred to [3, 15, 26].

5. Numerical Experiments

In this section, we present numerical results to illustrate the efficiency of methods proposed

in this paper. In all of our tests, we set the parameters in Algorithm 2.1 as follows: σ0 = 1,

τ = 0.01, c1 = 0.2, c2 = 0.5, a0 = 0.3, a1 = 0.5, a2 = 3, a3 = 5. All numerical experiments were

implemented in MATLAB R2020b on a laptop running macOS Monterey with an Intel Core

i5-4260U Processor. In what follows, fδk(xk) is denoted as f̃k. In summary, the six tested

methods are:

IGD: The inexact gradient descent method with the iterative scheme xk+1 = xk − αkg̃k.

The stepsize αk is chosen to satisfy the following approximate line search condition:

fδk(xk + αkdk) ≤ fδk(xk) + αkg̃
T
k dk + ζk,

where {ζk} is the positive sequence defined in (2.6) and dk is set as dk = −g̃k.

CGM: The gradient method proposed in [21].

FGM: The fast gradient method proposed in [21].

BFGSe: The BFGS method with errors proposed in [40], which incorporates the Armijo-

Wolfe line search and lengthening procedure.

adaQN: The adaptive regularized quasi-Newton method given by Algorithm 2.1.

adaQNsub: The adaptive regularized quasi-Newton method with the subspace technique

given by Algorithm 2.1.

In our numerical experiments, we consider three types of problems, which are described in

detail later. For all numerical experiments, we randomly generate 50 instances and record the

averaged numerical performance of these instances. For the stopping criterion, we terminate all

algorithms when ‖g̃k‖ < tol, or the algorithm reaches the maximum iteration number max iter.

For each methods, we use the parameters that give the best performance of the algorithm.

Numerical results are shown in several tables and figures.

5.1. The case of quadratic function

We first consider the simple quadratic function

f(x) = x⊤Dx,

where x ∈ R
n and D ∈ R

n×n is the diagonal matrix. Such a problem is consider in [40]. We

inject uniformly distributed errors in the evaluations of function and gradient. Let

Xf ∼ U(−ǫf , ǫf), Xg ∼ Bn(0, ǫg), (5.1)

where U(−a, a) denotes the uniform distribution from −a to a, and Bn(0, b) denotes the uniform

distribution on the n dimensional ball centered at 0 with radius b. We consider four different

types of errors to test the performance of the proposed methods

fk − f̃k =
Xf

k2
, gk − g̃k =

Xg

k
, ζk =

ǫf
k2

, (5.2)

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 21

fk − f̃k = Xf‖gk‖
2, gk − g̃k = Xggk, ζk = ǫf‖gk‖

2, (5.3)

fk − f̃k =
Xf

k2
‖gk‖

2, gk − g̃k =
Xg

k
gk, ζk =

ǫf
k2

‖gk‖
2, (5.4)

fk − f̃k = Xf , gk − g̃k = Xg, ζk = ǫf , (5.5)

where Xf , Xg are defined in (5.1). The parameters ǫf , ǫg are separately set as ǫf = 10−5 and

ǫg = 10−5. By generating errors and ζk in this way, we have ζk ≥ δk.

Three examples are tested.

1) We set n = 5 as the dimension of the quadratic problem and the diagonal matrix is set

as D = diag(0.001, 0.01, 0.1, 1, 10).

2) We set n = 300 to show the performance of our method with subspace techniques and

the diagonal matrix is set as D = diag(0.01, 0.02, . . . , 3).

3) To test the performance of these methods for large-scale problems, we set n = 2000 and

the diagonal matrix is set as D = diag(1.001, 1.0012, . . . , 1.0012000).

We set the initial point x0 = (1, 1, · · · , 1) ∈ R
n and max iter = 5000 for all methods.

When errors and ζk satisfies (5.2) and (5.3), we set tol = 10−4; when errors and ζk satisfies

(5.4) and (5.5), we set tol = 10−9 when n = 5 and n = 300, and set tol = 10−6 when n = 2000.

The results are presented in Table 5.1. In all tables, the terms “its”, “time”, “f” and “nrmG”

denote the total number of iterations, the CPU time that the algorithms spent to reach the

stopping criterions, the final objective value, and the final norm of the gradient, respectively.

From Table 5.1, we can see that the adaQNsub method performs best. When the dimension

becomes large, the adaQN and BFGSe method require more running time. The reason for

this is that the computation cost of updating the quasi-Newton matrix increases rapidly as n

increases.

Table 5.1: Numerical results of quadratic function with different kinds of dimension numbers and errors.

n = 5

Solver
Errors satisfying (5.2) Errors satisfying (5.3)

its time f nrmG its time f nrmG

IGD 5000 0.125 4.47E-05 1.22E-03 5000 0.147 4.47E-05 1.22E-03

CGM 5000 0.064 2.40E-04 9.79E-04 5000 0.051 2.40E-04 9.79E-04

FGM 1168 0.040 2.57E-07 9.80E-05 5000 0.053 2.49E-08 9.94E-06

BFGSe 25 0.015 8.74E-10 4.90E-05 35 0.011 2.41E-19 8.79E-10

adaQN 26 0.009 3.93E-08 1.15E-05 31 0.007 5.12E-21 2.63E-10

adaQNsub 26 0.008 3.76E-08 2.49E-05 50 0.007 2.35E-20 1.69E-10

Solver
Errors satisfying (5.4) Errors satisfying (5.5)

its time f nrmG its time f nrmG

IGD 5000 0.160 4.47E-05 1.22E-03 5000 0.230 6.65E-05 4.07E-03

CGM 5000 0.064 2.40E-04 9.79E-04 5000 0.074 2.49E-04 9.83E-04

FGM 5000 0.064 2.49E-08 9.94E-06 1164 0.035 -4.44E-06 9.95E-05

BFGSe 36 0.010 2.93E-20 6.43E-10 5001 0.557 6.96E-04 3.40E-03

adaQN 31 0.002 5.08E-21 2.62E-10 26 0.003 -2.07E-06 3.25E-05

adaQNsub 50 0.003 2.32E-20 1.70E-10 26 0.003 -1.87E-06 5.35E-05

22 H.Z. RUAN AND W.H. YANG

Table 5.1: Numerical results of quadratic function with different kinds of dimension numbers and errors

(cont’d).

n = 300

Solver
Errors satisfying (5.2) Errors satisfying (5.3)

its time f nrmG its time f nrmG

IGD 731 0.110 1.59E-07 9.61E-05 2273 0.849 1.01E-17 7.62E-10

CGM 1853 0.134 2.50E-07 9.99E-05 5000 0.778 3.75E-15 1.23E-08

FGM 510 0.058 2.01E-07 9.42E-05 2816 0.407 1.01E-17 7.39E-10

BFGSe 81 0.169 2.33E-09 8.65E-05 121 0.254 1.33E-19 7.28E-10

adaQN 96 0.171 1.65E-09 7.25E-05 141 0.226 1.49E-18 9.17E-10

adaQNsub 103 0.041 1.43E-08 5.92E-05 242 0.126 3.97E-19 3.80E-10

Solver
Errors satisfying (5.4) Errors satisfying (5.5)

its time f nrmG its time f nrmG

IGD 2273 0.845 1.01E-17 7.62E-10 5000 0.492 6.37E-06 0.0047

CGM 5000 0.880 3.75E-15 1.23E-08 1858 0.129 -4.43E-06 9.99E-05

FGM 2816 0.567 1.01E-17 7.39E-10 519 0.047 -6.11E-06 6.19E-05

BFGSe 121 0.269 1.33E-19 7.28E-10 557 0.969 2.58E-06 9.92E-05

adaQN 149 0.263 9.77E-20 7.22E-10 120 0.187 -8.75E-06 7.21E-05

adaQNsub 242 0.114 1.55E-18 6.26E-10 139 0.035 6.50E-06 9.85E-05

n = 2000

Solver
Errors satisfying (5.2) Errors satisfying (5.3)

its time f nrmG its time f nrmG

IGD 81 0.754 7.76E-10 8.15E-05 103 4.789 2.71E-14 8.94E-07

CGM 62 0.354 -5.26E-11 9.72E-05 134 2.013 2.14E-13 9.38E-07

FGM 112 0.762 1.75E-09 9.18E-05 175 2.656 1.95E-13 9.02E-07

BFGSe 38 10.524 7.66E-09 9.63E-05 42 11.683 4.50E-14 7.35E-07

adaQN 28 3.894 -3.77E-09 9.54E-05 35 5.946 1.99E-14 5.98E-07

adaQNsub 35 0.257 -1.24E-09 5.18E-05 32 1.339 3.54E-14 8.26E-07

Solver
Errors satisfying (5.4) Errors satisfying (5.5)

its time f nrmG its time f nrmG

IGD 103 6.362 2.71E-14 8.94E-07 61 0.656 5.72E-08 5.49E-05

CGM 134 2.260 2.14E-13 9.38E-07 62 0.385 9.36E-07 9.70E-05

FGM 175 2.758 1.95E-13 9.02E-07 113 0.671 7.07E-07 8.77E-05

BFGSe 42 13.070 4.50E-14 7.35E-07 54 14.639 -5.11E-07 8.82E-05

adaQN 35 6.219 1.98E-14 5.96E-07 30 4.225 -2.49E-07 9.83E-05

adaQNsub 32 1.373 3.53E-14 8.25E-07 31 0.262 8.57E-07 5.83E-05

In Fig. 5.1, we plot the norm of gradients versus iteration numbers of all six methods with

different dimensions and different errors. We can see that adaQN, adaQNsub and BFGSe

usually converge linearly with a good rate. In some cases, we can observe the superlinear

convergence rate of these three methods when errors are relatively small enough.

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 23

(a) n = 5, errors are (5.2) (b) n = 300, errors are (5.2) (c) n = 2000, errors are (5.2)

(d) n = 5, errors are (5.3) (e) n = 300, errors are (5.3) (f) n = 2000, errors are (5.3)

(g) n = 5, errors are (5.4) (h) n = 300, errors are (5.4) (i) n = 2000, errors are (5.4)

(j) n = 5, errors are (5.5) (k) n = 300, errors are (5.5) (l) n = 2000, errors are (5.5)

Fig. 5.1. Gradient norm of the proposed methods.

5.2. The case of unconstrained test problems

We select 18 unconstrained problems considered in [1], which are listed in Table 5.2. For

these problems, we calculate the function values accurately and calculate the approximated

gradients by finite differences

[g̃k]i =
f(x+ hkei)− f(x)

hk
, i = 1, . . . , n,

24 H.Z. RUAN AND W.H. YANG

where hk > 0. When function f is twice continuously differentiable and ‖∇2f(x)‖ is bounded

for all x ∈ R
n, we have g̃k → gk as hk → 0. When hk is small enough, it holds that ‖g̃k− gk‖ ∼

O(hk‖∇
2f(x)‖). We set ζk = max{10−6/k, 10−8} and hk = Xf , whereXf is defined in (5.1) and

ǫf = 10−8. The initial point is given in [1]. We set n = 150, tol = 10−6 and max iter = 10000

for all methods. The results are presented in Table 5.3. To test the performance of these

Table 5.2: Unconstrained optimization test functions.

Problem Problem Problem

Extended Freudenstein and Roth Extended Rosenbrock BDEXP

Perturbed quadratic Raydan 1 NONDIA

Raydan 2 ARWHEAD NONSCOMP

DQDRTIC EG2 QUARTC

LIARWHD POWER COSINE

ENGVAL1 EDENSCH BDQRATIC

Table 5.3: Numerical results of different kinds of unconstrained test functions when dimension is 150.

Solver
Extended Freudenstein and Roth function Extended Rosenbrock function

its time f nrmG its time f nrmG

IGD 2879 2.672 3673.82 0 10001 3.828 2.04E-10 4.60E-04

CGM 2849 2.600 3673.88 0 10001 3.609 8.13E-06 1.16E-01

FGM 2158 1.937 3673.82 0 10001 3.467 5.04E-07 6.63E-04

BFGSe 327 1.126 3673.82 0 8713 30.704 8.80E-11 8.11E-07

adaQN 380 0.166 3673.82 0 463 0.499 1.31E-12 3.51E-07

adaQNsub 171 0.574 3673.82 0 550 0.268 2.70E-11 7.52E-07

Solver
Perturbed Quadratic function Raydan 1 function

its time f nrmG its time f nrmG

IGD 10001 2.477 1.23E-11 1.73E-04 2616 1.527 1132.50 0

CGM 3440 0.862 1.97E-13 9.01E-07 4160 2.340 1132.51 0

FGM 5052 1.420 9.81E-14 8.95E-07 986 0.556 1132.50 0

BFGSe 187 0.253 3.13E-16 8.89E-07 59 0.159 1132.50 0

adaQN 471 0.437 2.90E-14 6.71E-07 302 0.345 1132.50 0

adaQNsub 5699 1.589 6.72E-14 8.70E-07 110 0.088 1132.50 0

Solver
Raydan 2 function ARWHEAD function

its time f nrmG its time f nrmG

IGD 855 0.374 150 0 402 0.147 2.31E-10 0

CGM 377 0.163 150 0 1345 0.424 3.09E-12 0

FGM 353 0.143 150 0 744 0.226 0 9.82E-07

BFGSe 29 0.166 150 0 46 0.109 4.93E-14 0

adaQN 15 0.013 150 0 19 0.022 1.97E-14 4.50E-07

adaQNsub 8 0.005 150 0 15 0.010 0 3.24E-07

Solver
DQDRTIC function EG2 function

its time f nrmG its time f nrmG

IGD 8985 3.710 5.89E-13 7.19E-07 10001 7.055 -148.92 0.02

CGM 10001 4.380 2.32E-11 1.11E-05 10001 6.893 -148.60 0.17

FGM 9071 3.693 5.98E-14 4.78E-07 1298 0.901 -148.93 0

BFGSe 61 0.240 3.67E-14 4.08E-07 1321 15.768 -149.50 0

adaQN 77 0.094 2.95E-13 5.85E-07 48 0.093 -149.00 0

adaQNsub 101 0.049 5.09E-14 9.82E-07 309 0.378 -149.00 0

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 25

Table 5.3: Numerical results of different kinds of unconstrained test functions when dimension is 150

(cont’d).

Solver
LIARWHD function POWER function

its time f nrmG its time f nrmG

IGD 10001 1.443 3.85E-11 1.48E-04 10001 2.317 2.60E-11 2.46E-04

CGM 10001 1.396 4.49E-12 2.79E-06 10001 2.328 2.61E-12 5.08E-06

FGM 8317 1.146 3.50E-13 9.11E-07 10001 2.447 3.21E-12 4.65E-06

BFGSe 210 0.420 4.86E-13 6.95E-07 176 0.211 2.04E-13 3.04E-07

adaQN 54 0.040 3.49E-13 8.56E-07 471 0.371 5.95E-14 4.45E-07

adaQNsub 22 0.013 1.17E-12 3.89E-07 10001 1.570 1.11E-11 9.27E-05

Solver
ENGVAL1 function EDENSCH function

its time f nrmG its time f nrmG

IGD 533 0.237 164.59 0 2070 7.637 298.26 0

CGM 653 0.276 164.59 0 2292 8.411 298.26 0

FGM 533 0.230 164.59 0 1376 5.139 298.26 0

BFGSe 165 0.311 164.59 0 273 4.012 298.26 0

adaQN 255 0.286 164.59 0 366 1.671 298.26 0

adaQNsub 124 0.061 164.59 0 40 0.169 298.26 0

Solver
BDEXP function NONDIA function

its time f nrmG its time f nrmG

IGD 10001 11.069 2.33E-02 1.64E-02 10001 2.051 2.39E-03 4.47E-02

CGM 10001 11.013 3.73E-02 2.55E-02 10001 1.959 2.67E-03 1.63E-02

FGM 10001 11.240 8.76E-06 8.46E-06 10001 1.943 7.77E-08 2.10E-04

BFGSe 4 0.090 8.08E-19 6.28E-19 1271 2.128 7.25E-10 8.12E-07

adaQN 24 0.057 4.86E-07 5.09E-07 1589 2.458 9.25E-10 8.95E-07

adaQNsub 24 0.051 4.86E-07 5.09E-07 239 0.152 1.03E-09 9.68E-07

Solver
NONSCOMP function QUARTC function

its time f nrmG its time f nrmG

IGD 10001 2.822 5.09 3.12E-03 10001 28.365 2.34E-04 2.16E-03

CGM 10001 2.707 7.59 8.02E-02 10001 28.249 5.25E-04 3.96E-03

FGM 10001 2.911 3.63E-06 1.27E-05 774 2.218 8.35E-09 9.98E-07

BFGSe 1118 4.744 7.07E-08 9.44E-07 2 0.021 2.27E-21 3.76E-16

adaQN 850 0.765 2.11E-07 9.44E-07 2 0.024 8.02E-26 1.88E-19

adaQNsub 10001 1.643 1.80E-06 8.91E-04 2 0.022 8.55E-25 1.05E-18

Solver
COSINE function BDQRTIC function

its time f nrmG its time f nrmG

IGD 121 0.130 -149 0 992 0.750 626.25 0

CGM 226 0.211 -149 0 234 0.178 626.25 0

FGM 275 0.302 -149 0 585 0.433 626.25 0

BFGSe 327 1.763 -149 0 204 6.491 626.25 0

adaQN 389 0.683 -149 0 603 0.799 626.25 0

adaQNsub 123 0.142 -149 0 107 0.661 626.25 0

methods for large-scale problems, we choose 12 unconstrained problems from Table 5.2 and set

n = 1000 for all methods. The results are presented in Table 5.4. Among all kinds of problems,

we can see that the adaQN method performs best when n is small, and the adaQNsub method

performs best when n is large. The FGM method performs better than CGM and IGD, which

can be observed from Tables 5.3 and 5.4.

26 H.Z. RUAN AND W.H. YANG

Table 5.4: Numerical results of different kinds of unconstrained test functions when dimension is 1000.

Solver
Extended Freudenstein and Roth function Raydan 1 function

its time f nrmG its time f nrmG

IGD 2227 24.264 24492.23 0 583 10.764 50050.02 0

CGM 1932 20.221 24499.66 0 497 9.013 50050.20 0

FGM 930 9.756 24492.72 0 335 6.492 50050.00 0

BFGSe 857 63.266 24492.13 0 223 22.116 50050.00 0

adaQN 396 15.488 24492.14 0 336 14.682 50050.00 0

adaQNsub 119 1.294 24492.22 0 152 2.882 50050.01 0

Solver
Raydan 2 function ARWHEAD function

its time f nrmG its time f nrmG

IGD 833 11.317 1000.00 0 888 4.849 1.33E-10 0

CGM 1688 23.126 1000.00 0 3785 20.252 2.25E-11 0

FGM 324 4.369 1000.00 0 604 3.250 8.67E-09 0

BFGSe 18 2.893 1000.00 0 4431 274.041 1.76E-13 0

adaQN 8 0.226 1000.00 0 18 0.387 2.22E-13 0

adaQNsub 8 0.107 1000.00 0 19 0.111 0 0

Solver
DQDRTIC function EG2 function

its time f nrmG its time f nrmG

IGD 3918 27.387 3.77E-12 5.99E-07 3378 66.839 -998.28 0

CGM 7861 53.082 6.81E-13 9.92E-07 10001 198.785 -998.28 0.11

FGM 10001 67.022 2.88E-11 5.24E-05 3126 61.713 -998.93 0

BFGSe 2173 193.712 3.63E-14 7.47E-07 2162 137.327 -999.00 0

adaQN 90 3.264 1.07E-13 4.96E-07 2474 126.345 -998.94 0

adaQNsub 199 1.426 8.78E-13 9.04E-07 1848 37.508 -998.95 0

Solver
LIARWHD function POWER function

its time f nrmG its time f nrmG

IGD 10001 29.261 1.99E-04 3.53E-02 10001 45.842 1.21E-11 8.40E-04

CGM 10001 29.134 12.87 7.32 10001 44.031 5.05E-12 8.09E-05

FGM 10001 29.444 3.59E-05 1.20E-02 10001 42.873 6.15E-12 1.07E-04

BFGSe 10001 559.816 3.91E-04 5.35E-02 2352 139.066 1.14E-11 8.24E-08

adaQN 94 2.944 1.11E-12 6.47E-07 3571 89.343 1.80E-10 8.20E-08

adaQNsub 125 0.401 5.24E-14 7.10E-07 10001 25.043 3.65E-09 3.61E-05

Solver
ENGVAL1 function EDENSCH function

its time f nrmG its time f nrmG

IGD 293 2.470 1108.19 0 5443 15.150 298.26 0

CGM 5386 38.998 1108.19 0 10001 35.427 298.27 3.99E-02

FGM 976 6.973 1108.19 0 4647 16.705 298.26 0

BFGSe 857 57.209 1108.19 0 1019 19.437 298.26 0

adaQN 1034 32.555 1108.19 0 374 1.568 298.26 0

adaQNsub 38 0.311 1108.19 0 155 0.554 298.26 0

Solver
COSINE function QUARTC function

its time f nrmG its time f nrmG

IGD 138 3.352 -999 0 10001 491.460 1.56E-03 5.58E-03

CGM 345 8.043 -999 0 10001 502.839 9.70E-03 2.20E-02

FGM 127 3.224 -999 0 2176 113.345 1.57E-08 1.00E-06

BFGSe 132 15.635 -999 0 2 0.211 2.22E-20 1.30E-15

adaQN 453 21.709 -999 0 2 0.084 2.70E-23 8.69E-18

adaQNsub 123 3.346 -999 0 2 0.078 1.78E-24 1.03E-18

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 27

5.3. The case of numerical integration optimization

We use the optimization problem proposed in [12] as the test problem. Let x and t be

vectors in R
n. Define

h1(t) := exp

(
−

n∑

i=1

ti
i

)
, h2(t, x) := cos

(
n∑

i=1

ti
xi

)
.

The objective function f is given by

f(x) =

∫

t∈Ω

(
h2(t, x) − h1(t)

)2
dt, (5.6)

where Ω = {t : 0 ≤ ti ≤ 1, i = 1, . . . n}. By (5.6), for j = 1, . . . , n, we have

(
g(x)

)
j
=

(
∂f

∂x

)

j

=

∫

t∈Ω

2
(
h2(t, x)− h1(t)

)
sin

(
n∑

i=1

ti
xi

)
tj
x2
j

dt. (5.7)

Given x ∈ R
n, we can calculate f(x) and g(x) separately by numerical integrations using the

Simpsons rule (see [9]) with uniform mesh. In practice, f(x) and g(x) can be computed to any

desired accuracy by successively decreasing the step size in Simpsons rule. Thus for each k, we

can get an approximated pair (f̃k, g̃k). For details of the computational procedure, readers are

referred to [12].

For numerical comparison, we set ηk = ω‖g̃k‖, where ω > 0 is independent of k. Then (2.1)

and (2.2) can be rewritten as

|fk − f̃k| ≤ δk, (5.8)

‖gk − g̃k‖ ≤ ω‖g̃k‖, ∀k. (5.9)

At the k-th iteration, we compute a pair (f̃k, g̃k) which satisfies (5.8) and (5.9), and use it as

an approximation of (fk, gk). In the implementation of our method, we set δk = max{10−7,

10−4/k2} and ζk = δk for all k ≥ 1.

Since we use the Simpsons rule to calculate the values in (5.6) and (5.7), the computational

cost increases rapidly as the dimension n increases. Thus, we only report the numerical results

of all methods with n varying from 2 to 5.

We do not take the adaQNsub method into consideration because the dimension of the

numerical integration problem is too small. The initial point is x0 = (1, 1, · · · , 1) ∈ R
n. We set

tol = 10−6 and max iter = 5000 for all methods. The results are presented in Table 5.5. We

can see that the adaQN method performs best in all cases. From Table 5.5, we can see that the

BFGSe method needs less iterations but takes more time to converge compared to first-order

methods. The reason is that the Armijo-Wolfe line search in this method is time-consuming.

We further demonstrate the convergence behaviors of the five methods with different dimen-

sions and different errors in Figs. 5.2 and 5.3. The function value is defined as f(xk)− f(x∗).

From Figs. 5.2 and 5.3, we can see that BFGSe and adaQN methods require less iterations to

converge compared to first-order methods.

28 H.Z. RUAN AND W.H. YANG

(a) n = 2 (b) n = 2

(c) n = 3 (d) n = 3

(e) n = 4 (f) n = 4

(g) n = 5 (h) n = 5

Fig. 5.2. Convergence results when ω = 10−3.

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 29

(a) n = 2 (b) n = 2

(c) n = 3 (d) n = 3

(e) n = 4 (f) n = 4

(g) n = 5 (h) n = 5

Fig. 5.3. Convergence results when ω = 10−4.

30 H.Z. RUAN AND W.H. YANG

Table 5.5: Numerical results of numerical integration optimization.

Solver
n = 2 n = 3 n = 4 n = 5

its time its time its time its time

IGD 231 0.0785 295 1.3354 295 15.8623 563 364.5628

CGM 231 0.0410 295 0.7266 295 9.0680 563 194.4044

ω = 10−3 FGM 165 0.0339 227 0.5431 160 4.7415 219 75.1692

BFGSe 21 0.0697 32 2.0583 30 12.8350 34 93.1020

adaQN 14 0.0193 23 0.0935 33 1.4617 45 15.8936

IGD 232 0.0726 384 2.2285 294 17.4680 563 467.1695

CGM 232 0.0600 384 1.3092 294 10.3846 563 259.6112

ω = 10−4 FGM 86 0.0211 265 0.8592 160 5.5432 219 109.5669

BFGSe 12 0.0201 22 1.5277 30 14.7075 42 103.9503

adaQN 14 0.0177 23 0.1303 33 1.3158 46 21.1601

6. Conclusions

In this paper, we propose an adaptive regularized quasi-Newton method for solving un-

constrained problems under the condition that function and gradient evaluations are inexact.

Our method uses a trust-region-like framework to monitor the acceptance of trial steps. The

advantage of this strategy is that we can save the computational cost of the line search. Under

some mild conditions, we prove the global convergence of our method and establish the con-

vergence rate of our method. Numerical experiments demonstrate the efficiency of the method.

The numerical comparisons illustrate that our proposed method is promising. The regularized

quasi-Newton method is a suitable method which can handle inexact first-order information of

the problem.

Acknowledgments. This work was supported by the National Natural Science Foundation of

China (Grant No. NSFC-11971118).

References

[1] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10 (2008),

147–161.

[2] S. Bellavia, G. Gurioli, B. Morini, and P. Toint, Trust-region algorithms: Probabilistic complexity

and intrinsic noise with applications to subsampling techniques, EURO J. Comput. Optim., 10

(2022), 100043.

[3] A.S. Berahas, R.H. Byrd, and J. Nocedal, Derivative-free optimization of noisy functions via

quasi-Newton methods, SIAM J. Optim., 29 (2019), 965–993.

[4] A.S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, Linear interpolation gives better

gradients than Gaussian smoothing in derivative-free optimization, arXiv:1905.13043, 2019.

[5] A.S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, A theoretical and empirical comparison

of gradient approximations in derivative-free optimization, Found. Comput. Math., 22 (2022),

507–560.

[6] A.S. Berahas, L. Cao, and K. Scheinberg, Global convergence rate analysis of a generic line search

algorithm with noise, SIAM J. Optim., 31 (2021), 1489–1518.

Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 31

[7] L. Bogolubsky, P. Dvurechenskii, A. Gasnikov, G. Gusev, Y. Nesterov, A.M. Raigorodskii,

A. Tikhonov, and M. Zhukovskii, Learning supervised pagerank with gradientbased and gradient-

free optimization methods, Adv. Neural Inf. Process. Syst., (2016), 4914–4922.

[8] R. Bollapragada, R. Byrd, and J. Nocedal, Adaptive sampling strategies for stochastic optimiza-

tion, SIAM J. Optim., 28 (2018), 3312–3343.

[9] R.L. Burden, J.D. Faires, and A.M. Burden, Numerical Analysis, Cengage learning, 2015.

[10] R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 7 (1998), 1–49.

[11] R.G. Carter, On the global convergence of trust region algorithms using inexact gradient infor-

mation, SIAM J. Numer. Anal., 28 (1991), 251–265.

[12] R.G. Carter, Numerical experience with a class of algorithms for nonlinear optimization using

inexact function and gradient information, SIAM J. Sci. Comput., 14 (1993), 368–388.

[13] C. Cartis, N.I. Gould, and P.L. Toint, Adaptive cubic regularisation methods for unconstrained

optimization. Part I: Motivation, convergence and numerical results, Math. Program., 127 (2011),

245–295.

[14] R. Chen, M. Menickelly, and K. Scheinberg, Stochastic optimization using a trust-region method

and random models, Math. Program., 169 (2018), 447–487.

[15] A.R. Conn, K. Scheinberg, and L.N. Vicente, Introduction to Derivative-Free Optimization, SIAM,

2009.

[16] F.E. Curtis and K. Scheinberg, Adaptive stochastic optimization: A framework for analyzing

stochastic optimization algorithms, IEEE Signal Process. Mag., 37 (2020), 32–42.

[17] A. d’Aspremont, Smooth optimization with approximate gradient, SIAM J. Optim., 19 (2008),

1171–1183.

[18] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal, Convex proximal bundle methods in depth:

A unified analysis for inexact oracles, Math. Program., 148 (2014), 241–277.

[19] J.E. Dennis and J.J. Moré, A characterization of superlinear convergence and its application to

quasi-Newton methods, Math. Comp., 28 (1974), 549–560.

[20] O. Devolder, Exactness, Inexactness and Stochasticity in First-Order Methods for Large-Scale

Convex Optimization, PhD Thesis, Université catholique de Louvain, Brussels, 2013.

[21] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex optimization

with inexact oracle, Math. Program., 146 (2014), 37–75.

[22] P. Dvurechensky and A. Gasnikov, Stochastic intermediate gradient method for convex problems

with stochastic inexact oracle, J. Optim. Theory Appl., 171 (2016), 121–145.

[23] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, Computing forward-difference intervals

for numerical optimization, SIAM J. Sci. Statist. Comput., 4 (1983), 310–321.

[24] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, SIAM, 2019.

[25] J. Hu, A. Milzarek, Z. Wen, and Y. Yuan, Adaptive quadratically regularized Newton method for

Riemannian optimization, SIAM J. Matrix Anal. Appl., 39 (2018), 1181–1207.

[26] C.T. Kelley, Implicit Filtering, SIAM, 2011.

[27] C. Kelley and E. Sachs, Truncated Newton methods for optimization with inaccurate functions

and gradients, J. Optim. Theory Appl., 116 (2003), 83–98.

[28] J. Larson, M. Menickelly, and S.M. Wild, Derivative-free optimization methods, Acta Numer., 28

(2019), 287–404.

[29] J.J. Moré and S.M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J. Optim.,

20 (2009), 172–191.

[30] J.J. Moré and S.M. Wild, Estimating computational noise, SIAM J. Sci. Comput., 33 (2011),

1292–1314.

[31] J.J. Moré and S.M. Wild, Estimating derivatives of noisy simulations, ACM Trans. Math. Softw.,

38 (2012), 1–21.

[32] I. Necoara, A. Patrascu, and F. Glineur, Complexity of first-order inexact Lagrangian and penalty

methods for conic convex programming, Optim. Methods Softw., 34 (2019), 305–335.

32 H.Z. RUAN AND W.H. YANG

[33] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, Found.

Comput. Math., 17 (2017), 527–566.

[34] B. T. Polyak, Gradient methods for the minimisation of functionals, USSR Computational Math-

ematics and Mathematical Physics, 3 (1963), 864–878.

[35] J. Rasch and A. Chambolle, Inexact first-order primal-dual algorithms, Comput. Optim. Appl.,

76 (2020), 381–430.

[36] T. Sun, I. Necoara, and Q. Tran-Dinh, Composite convex optimization with global and local

inexact oracles, Comput. Optim. Appl., 76 (2020), 69–124.

[37] Z. Wang and Y. Yuan, A subspace implementation of quasi-Newton trust region methods for

unconstrained optimization, Numer. Math., 104 (2006), 241–269.

[38] Z. Wen, A. Milzarek, M. Ulbrich, and H. Zhang, Adaptive regularized self-consistent field iteration

with exact Hessian for electronic structure calculation, SIAM J. Sci. Comput., 35 (2013), A1299–

A1324.

[39] X. Wu, Z. Wen, and W. Bao, A regularized Newton method for computing ground states of

Bose-Einstein condensates, J. Sci. Comput., 73 (2017), 303–329.

[40] Y. Xie, R.H. Byrd, and J. Nocedal, Analysis of the BFGS method with errors, SIAM J. Optim.,

30 (2020), 182-209.

[41] Y. Yuan, A review on subspace methods for nonlinear optimization, in: Proceedings of the Inter-

national Congress of Mathematics, (2014), 807–827.

