
Journal of Computational Mathematics

Vol.xx, No.x, 2023, 1–29.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2307-m2022-0233

TENSOR NEURAL NETWORK AND ITS NUMERICAL
INTEGRATION*

Yifan Wang

LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems

Science, Chinese Academy of Sciences, Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Email: wangyifan@lsec.cc.ac.cn

Pengzhan Jin

School of Mathematical Sciences, Peking University, Beijing 100871, China

Email: jpz@pku.edu.cn

Hehu Xie1)

LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems

Science, Chinese Academy of Sciences, Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Email: hhxie@lsec.cc.ac.cn

Abstract

In this paper, we introduce a type of tensor neural network. For the first time, we

propose its numerical integration scheme and prove the computational complexity to be

the polynomial scale of the dimension. Based on the tensor product structure, we de-

velop an efficient numerical integration method by using fixed quadrature points for the

functions of the tensor neural network. The corresponding machine learning method is

also introduced for solving high-dimensional problems. Some numerical examples are also

provided to validate the theoretical results and the numerical algorithm.

Mathematics subject classification: 65N30, 65N25, 65L15, 65B99.

Key words: Tensor neural network, Numerical integration, Fixed quadrature points, Ma-

chine learning, High-dimensional eigenvalue problem.

1. Introduction

Partial differential equations (PDEs) appear in many scientific and industrial applications

since they can describe physical and engineering phenomena or processes. So far, many types

of numerical methods have been developed such as the finite difference method, finite element

method, and spectral method for solving PDEs in three spatial dimensions plus the tempo-

ral dimension. But there exist many high-dimensional PDEs such as many-body Schrödinger,

Boltzmann equations, Fokker-Planck equations, and stochastic PDEs (SPDEs), which are al-

most impossible to be solved using traditional numerical methods. Recently, many numer-

ical methods have been proposed based on machine learning to solve the high-dimensional

PDEs [2, 6, 7, 14, 25, 28, 31, 37, 38]. Among these machine learning methods, neural network-

based methods attract more and more attention. Neural networks can be used to build ap-

proximations of the exact solutions of PDEs by machine learning methods. The reason is that

* Received October 19, 2022 / Revised version received January 17, 2023 / Accepted July 26, 2023 /

Published online December 4, 2023 /
1) Corresponding author

2 Y.F. WANG, P.Z. JIN AND H.H. XIE

neural networks can approximate any function given enough parameters. This type of method

provides a possible way to solve many useful high-dimensional PDEs from physics, chemistry,

biology, engineering, and so on.

Due to its universal approximation property, the fully-connected neural network (FNN) is

the most widely used architecture to build the functions for solving high-dimensional PDEs.

There are several types of FNN-based methods such as well-known the deep Ritz [7], deep

Galerkin method [37], PINN [31], and weak adversarial networks [38] for solving high-dimensio-

nal PDEs by designing different loss functions. Among these methods, the loss functions always

include computing high-dimensional integration for the functions defined by FNN. For exam-

ple, the loss functions of the deep Ritz method require computing the integrations on the

high-dimensional domain for the functions which is constructed by FNN. Direct numerical in-

tegration for the high-dimensional functions also meets the “curse of dimensionality”. Always,

the Monte-Carlo method is adopted to do the high-dimensional integration with some types

of sampling methods [7, 15]. Due to the low convergence rate of the Monte-Carlo method, the

solutions obtained by the FNN-based numerical methods are difficult to obtain high accuracy

and stable convergence process. In other words, the Monte-Carlo method decreases computa-

tional work in each forward propagation by decreasing the simulation efficiency and stability of

the FNN-based numerical methods for solving high-dimensional PDEs.

The CANDECOMP/PARAFAC (CP) tensor decomposition builds a low-rank approxima-

tion method and is a widely used way to cope with the curse of dimensionality. The CP method

decomposes a tensor as a sum of rank-one tensors which can be considered as the higher-order

extensions of the singular value decomposition (SVD) for the matrices. This means the SVD

idea can be generalized to the decomposition of the high-dimensional Hilbert space into the

tensor product of several Hilbert spaces. The tensor product decomposition has been used to

establish low-rank approximations of operators and functions [5, 13, 19, 32]. If we use the low-

rank approximation to do the numerical integration, the computational complexity can avoid

the exponential dependence on the dimension in some cases [4, 28]. Inspired by CP decom-

position, this paper focuses on a special low-rank neural networks structure and its numerical

integration. It is worth mentioning that although CP decomposition should be useful to obtain

a low-rank approximation, there is no known general result to give the relationship between

the rank (hyperparameter p in this paper) and error bounds. For more details, please refer

to [17, 23] and numerical investigations [5].

This paper aims to propose a type of tensor neural network (TNN) to build the trial func-

tions for solving high-dimensional PDEs. The TNN is a function being designed by the tensor

product operations on the neural networks or by low-rank approximations of FNNs. An im-

portant advantage is that we do not need to use Monte-Carlo method to do the integration for

the functions which is constructed by TNN. This is the main motivation to design the TNN for

high-dimensional PDEs in this paper. We will show, the computational work for the integration

of the functions by TNN is only a polynomial scale of the dimension, which means the TNN

overcomes the “curse of dimensionality” in some sense for solving high-dimensional PDEs.

An outline of the paper goes as follows. In Section 2, we introduce the way to build TNN.

The numerical integration method for the functions constructed by TNN is designed in Sec-

tion 3. Section 4 is devoted to proposing the TNN-based machine learning method for solving

the high-dimensional eigenvalue problem with the numerical integration method. Some nu-

merical examples are provided in Section 5 to show the validity and efficiency of the proposed

numerical methods in this paper. Some concluding remarks are given in the last section.

Tensor Neural Network and Its Numerical Integration 3

2. Tensor Neural Network

2.1. Architecture of tensor neural network

In this section, we introduce the TNN and its approximation property. Without loss of

generality, we first design the general TNN architecture with K-dimensional output to accom-

modate more general computational aims. Then we consider the one-dimensional output TNN

architecture which is our primary focus in this paper. Of course, it is easy to know that the

K-dimensional output TNN can also be built with K one-dimensional output TNN. The ap-

proximation property for the one-dimensional TNN, which will be given in this section, can be

directly extended to K-dimensional output TNN.

The architecture of TNN is similar to MIONet, just by setting the Banach spaces to Eu-

clidean spaces, more details about MIONet can be found in [19]. MIONet mainly discusses the

approximation of multiple-input continuous operators by low-rank neural network structures

and investigates the function approximation under C-norm. The inputs of MIONet are the vec-

tors that denote the coefficients of projections of functions in infinite-dimensional Banach spaces

onto the concerned finite-dimensional subspace. While TNN considers solving high-dimensional

PDEs and pays more attention to the high-dimensional integration and the approximation to

functions in Sobolev space by low-rank neural network structures in Hm-norm. Different from

MIONet, the inputs of TNN are coordinates in the high-dimensional Euclidean space. The

tensor product structure of TNN can lead to high precision and high efficiency in calculating

the numerical integrations in the loss function derived from the variational principle. The most

important contribution of this paper is to reveal that we can do the highly accurate and efficient

numerical integrations of TNN for solving high-dimensional PDEs with TNN. Furthermore, this

paper also shows that the Monte-Carlo or stochastic sampling process is not necessary for ma-

chine learning. More specifically, we first construct d subnetworks, where each subnetwork is

a continuous mapping from a bounded closed set Ωi ⊂ R to R
p. The i-th subnetwork can be

expressed as

Φi(xi; θi) =
(
φi,1(xi; θi), φi,2(xi; θi), · · · , φi,p(xi; θi)

)T
, i = 1, . . . , d, (2.1)

where xi denotes the one-dimensional input, θi denotes the parameters of the i-th subnetwork,

typically the weights and biases. The number of layers and neurons in each layer, the selections

of activation functions, and other hyperparameters can be different in different subnetworks. In

this paper, we simply use FNN architectures for each subnetwork. It is worth mentioning that,

in addition to FNN, other reasonable architecture can be used as long as it can approximate

any mapping from Ωi ⊂ R to R
p in some sense. The only thing to be guaranteed is that the

output dimensions of these subnetworks should be equal. After building each subnetwork, we

combine the output layers of each subnetwork to obtain TNN architecture by the following

mapping from R
d to R

K :

Ψ(x; θ) = W ·
(
Φ1(x1; θ1)⊙Φ2(x2; θ2)⊙ · · · ⊙Φd(xd; θd)

)
, (2.2)

where ⊙ is the Hadamard product (i.e. element-wise product), Ψ denotes a K-dimensional

output function which is defined as Ψ(x; θ) = (Ψ1(x; θ), · · · ,ΨK(x; θ))T , the matrix W ∈ R
K×p

and x = (x1, · · · , xd) ∈ Ω1×· · ·×Ωd. In the following part of this paper, we set Ω = Ω1×· · ·×Ωd.

Here θ = {θ1, · · · , θd,W} denote trainable parameters. Fig. 2.1 shows the architecture of

K-dimensional output TNN.

4 Y.F. WANG, P.Z. JIN AND H.H. XIE

Fig. 2.1. The architecture of K-dimensional output TNN. Black arrows mean linear transformation (or

affine transformation). Each ending node of blue arrows is obtained by taking the scalar multiplication

of all starting nodes of blue arrows that end in this ending node.

The one-dimensional output TNN (i.e. K = 1) is always enough for solving normal high-

dimensional PDEs. When K = 1, the matrix W appears in (2.2) degenerates to a row vector,

its members only play the role to scale the components of vectors obtained by the Hadamard

product. This effect can also be achieved by scaling the parameters of the output layers of the

concerned subnetworks. Therefore, to reduce the number of parameters, we set the matrix W

to be unity and define the one-dimensional TNN as follows:

Ψ(x; θ) =

p∑

j=1

φ1,j(x1; θ1)φ2,j(x2; θ2) · · ·φd,j(xd; θd) =

p∑

j=1

d∏

i=1

φi,j(xi; θi), (2.3)

where θ = {θ1, · · · , θd} denotes all parameters of the whole architecture. Fig. 2.2 shows the

corresponding architecture of one-dimensional output TNN. For simplicity, TNN refers to the

one-dimensional TNN hereafter in this paper.

Since there exists the isomorphism relation between Hm(Ω1 × · · · × Ωd) and the tensor

product space Hm(Ω1) ⊗ · · · ⊗ L2(Ωd), the process of approximating the function f(x) ∈
Hm(Ω1 × · · · × Ωd) with the TNN defined by (2.3) can be regarded as searching for a CP

decomposition structure to approximate f(x) in the space Hm(Ω1) ⊗ · · · ⊗ Hm(Ωd) with the

rank being not greater than p. Due to the low-rank structure, we will find that the poly-

nomial compound acting on the TNN and its derivatives can be integrated with small-scale

computational work.

Tensor Neural Network and Its Numerical Integration 5

Fig. 2.2. The architecture of one-dimensional output TNN. Black arrows mean linear transformation (or

affine transformation). Each ending node of blue arrows is obtained by taking the scalar multiplication

of all starting nodes of blue arrows that end in this ending node. The final output of TNN is derived

from the summation of all starting nodes of red arrows.

2.2. Approximation of TNN in Sobolev space

In order to show the validity of solving PDEs by TNN, we introduce the following approxi-

mation result for the functions in the space Hm(Ω1 × · · · × Ωd) under the sense of Hm-norm.

Theorem 2.1. Assume that each Ωi is a bounded open interval in R for i = 1, . . . , d,Ω = Ω1×
· · · × Ωd, and the function f(x) ∈ Hm(Ω). Then for any tolerance ε > 0, there exist a positive

integer p and the corresponding TNN defined by (2.3) such that the following approximation

property holds:

‖f(x)−Ψ(x; θ)‖Hm(Ω) < ε. (2.4)

Proof. Due to the isomorphism relation

Hm(Ω) ∼= Hm(Ω1)⊗ · · · ⊗Hm(Ωd),

for any ε > 0 there exist a positive integer p, hi,j(xi) ∈ Hm(Ωi), i = 1, . . . , d, j = 1, . . . , p, and

h(x) ∈ Hm(Ω), which is defined as follows:

h(x) =

p∑

j=1

h1,j(x1) · · ·hd,j(xd) =

p∑

j=1

d∏

i=1

hi,j(xi),

6 Y.F. WANG, P.Z. JIN AND H.H. XIE

such that the following estimate holds:

‖f(x)− h(x)‖Hm(Ω) <
ε

2
. (2.5)

Denote Mj = max
i

‖hi,j(xi)‖Hm(Ωi), j = 1, . . . , p, and set

M :=

p∑

j=1

((
d

1

)
Md−1

j +

(
d

2

)
Md−2

j + · · ·+
(

d

d−1

)
M1

j + 1

)
.

From the density results [9, Chapter 5.3.3] and Ωi is a bounded open interval in R, there exists

a h̄i,j(xi) ∈ C∞(Ω̄i) ⊂ C(Ω̄i) can approximate the one-dimensional function hi,j(xi) with

arbitrary accuracy under Hm(Ω)-norm. It is shown in [8, 26] that one-hidden layer FNN can

approximate any continuous function on a compact set as long as the activation function is not

a polynomial. This conclusion can be naturally generalized from Ω̄i → R to Ω̄i → R
p. Then

for δ = min{1, ε/(2M)}, there exist FNN structures φi(xi; θi), i = 1, . . . , d, which are defined

by (2.1), such that

‖hi,j(xi)− φi,j(xi; θi)‖Hm(Ωi) < δ, i = 1, . . . , d, j = 1, . . . , p. (2.6)

Denote ei,j(xi) = φi,j(xi; θi)− hi,j(xi), inequalities in (2.6) imply that ‖ei,j(xi)‖Hm(Ωi) < δ.

Since the property of multidimensional integrations on the tensor product domain Ω, for

any gi(xi) ∈ Hm(Ωi), i = 1, . . . , d, the following inequality holds:
∥∥∥∥∥

d∏

i=1

gi(xi)

∥∥∥∥∥
Hm(Ω)

≤
d∏

i=1

‖gi(xi)‖Hm(Ωi). (2.7)

For the sake of clarity, we give a simple proof for (2.7) as follows:

∥∥∥∥∥

d∏

i=1

gi(xi)

∥∥∥∥∥

2

Hm(Ω)

=
∑

|α|≤m

∥∥∥∥∥D
α

(
d∏

i=1

gi(xi)

)∥∥∥∥∥

2

L2(Ω)

=
∑

α1+···+αd≤m

∥∥∥∥∥

d∏

i=1

∂αigi(xi)

∂xαi

i

∥∥∥∥∥

2

L2(Ωi)

=
∑

α1+···+αd≤m

d∏

i=1

∥∥∥∥
∂αigi(xi)

∂xαi

i

∥∥∥∥
2

L2(Ωi)

≤
d∏

i=1

 ∑

αi≤m

∥∥∥∥
∂αigi(xi)

∂xαi

i

∥∥∥∥
2

L2(Ωi)

=

d∏

i=1

‖gi(xi)‖2Hm(Ωi)
.

Then from the property of binomial multiplication and inequality (2.7), we can build a TNN

Ψ(x; θ) by (2.3) such that the following inequalities hold:

‖h(x)−Ψ(x; θ)‖Hm(Ω)

=

∥∥∥∥∥

p∑

j=1

d∏

i=1

hi,j(xi)−
p∑

j=1

d∏

i=1

(
hi,j(xi) + ei,j(xi)

)
∥∥∥∥∥
Hm(Ω)

≤
p∑

j=1

∥∥∥∥∥

d∏

i=1

hi,j(xi)−
d∏

i=1

(
hi,j(xi) + ei,j(xi)

)
∥∥∥∥∥
Hm(Ω)

≤
p∑

j=1

((
d

1

)
Md−1

j δ1 +

(
d

2

)
Md−2

j δ2 + · · ·
(
d

d

)
M0

j δ
d

)

Tensor Neural Network and Its Numerical Integration 7

≤
p∑

j=1

((
d

1

)
Md−1

j +

(
d

2

)
Md−2

j + · · ·+
(

d

d−1

)
M1

j + 1

)
δ

≤ Mδ <
ε

2
. (2.8)

Therefore, from (2.5), (2.8) and triangle inequality, we have following estimates:

‖f(x)−Ψ(x; θ)‖Hm(Ω) ≤ ‖f(x)− h(x)‖Hm(Ω) + ‖h(x)−Ψ(x; θ)‖Hm(Ω) <
ε

2
+

ε

2
= ε.

This is the desired result (2.4) and the proof is complete. �

Theorem 2.1 gives the approximation property of TNN, it shows that TNN can approximate

any Hm(Ω) function under Hm(Ω)-norm. It has to be pointed out that, since TNN has a tensor

structure, each sub-network has only one-dimensional input. In the proof of Theorem 2.1, we

only need the approximation property of FNNs with one-dimensional input. Compared with

that of the FNNs with the d-dimensional input, the analysis of that with one-dimensional

input is always easier. Here we cite a few instructive conclusions. In [16], it is shown that

linear finite element basis can be represented by the FNN with one-dimensioanl input and the

activation function being defined by the rectified linear unit (ReLU). In [27], it is proved that

the monomial xn, n ∈ N can be represented exactly by the FNN with the rectified power unit

(ReQU) acting as the activation function.

2.3. Approximation in Ht,ℓ
mix

(Ω) by TNN

Although there is no general result to give the relationship between the hyperparameter p

and error bounds, there are still some estimations of traditional methods that can be used.

For example, the sparse grid method and hyperbolic cross approximation method have become

widely-used numerical tools for high-dimensional problems [34, 35]. These two methods also

assume that the approximation function has a similar tensor-product form, while each one-

dimensional function is defined on the linear space with fixed basis. The conclusions about the

cardinal of subspaces for the sparse grid method and hyperbolic cross approximation method

can be extended to the analysis of the hyperparameter p of TNN.

For clarity, we focus on the periodic setting with Id = I × I × · · · × I = [0, 2π]d and the

approximations property of TNN to the functions in the linear space which is defined with

Fourier basis. Note that similar approximation results of TNN can be extended to the non-

periodic functions.

First, for each variable xi ∈ [0, 2π], let us define the one-dimensional Fourier basis {ϕki(xi):=

eikixi/
√
2π, ki ∈ Z} and classify functions via the decay of their Fourier coefficients. For exam-

ple, the isotropic Sobolev spaces on I can be defined as follows [1]:

Hs(I) :=

{
u(xi) =

∑

ki∈Z

ckiϕki(xi) : ‖u‖Hs(I) =

(
∑

ki∈Z

(1 + |ki|)2s · |cki |2
) 1

2

< ∞
}
. (2.9)

Further, denote multi-index k = (k1, · · · , kd) ∈ Z
d and x = (x1, · · · , xd) ∈ Id. Then the

d-dimensional Fourier basis can be built with the tensor product as

ϕk(x) :=

d∏

i=1

ϕk1
(xi) = (2π)−

d
2 eik·x. (2.10)

8 Y.F. WANG, P.Z. JIN AND H.H. XIE

We denote

λmix(k) :=

d∏

i=1

(1 + |ki|), λiso(k) := 1 +

d∑

i=1

|ki|. (2.11)

Now, for −∞ < t, ℓ < ∞, we define the space Ht,ℓ
mix(I

d) as follows (cf. [10, 21]):

Ht,ℓ
mix(I

d):=

{
u(x)=

∑

k∈Zd

ckϕk(x) : ‖u‖Ht,ℓ
mix

(Id)=

(
∑

k∈Zd

λmix(k)
2t·λiso(k)

2ℓ·|ck|2
) 1

2

< ∞
}
. (2.12)

Then the standard isotropic Sobolev spaces [1] and the Sobolev space of dominating mixed

smoothness [33] can be written as

Hs(Id):=H0,s
mix(I

d)=

{
u(x)=

∑

k∈Zd

ckϕk(x) : ‖u‖Hs
mix

(Id)=
(
λiso(k)

2s · |ck|2
) 1

2<∞
}
, (2.13)

and

Ht
mix(I

d) := Ht,0
mix(I

d)

=

{
u(x) =

∑

k∈Zd

ckϕk(x) : ‖u‖Ht,0
mix

(Id) =

(
∑

k∈Zd

λmix(k)
2t · |ck|2

) 1

2

< ∞
}
, (2.14)

respectively. Note that the parameter ℓ governs the isotropic smoothness, whereas t governs

the mixed smoothness. The space Ht,ℓ
mix(I

d) gives a quite flexible framework for the study of

problems in Sobolev spaces. See [10, 11, 21] for more information on the space Ht,ℓ
mix(I

d).

Second, for K ∈ N and T ∈ (−∞, 1], define the following general sparse grid space to

approximate functions in space Ht,ℓ
mix(I

d) according to the frequency k:

VK,T := span
{
ϕk(x) : k ∈ Z

d, λmix(k) · λiso(k)
−T ≤ K1−T

}
. (2.15)

The corresponding multi-index set of frequency k is

DK,T :=
{
k = (k1, · · · , kd) : λmix(k) · λiso(k)

−T ≤ K1−T
}
. (2.16)

Obviously, the degree of freedom of space |VK,T | and the cardinal of the set |DK,T | are equiva-

lent. By [22,39], the degree of freedom of space VK,T with respect to the parameter K and T is

|VT,K | =

O(K + 1), 0 < T < 1,

O
(
(K + 1) · log(K + 1)d−1

)
, T = 0,

O
(
(K + 1)

T−1

T/d−1

)
, T < 0,

O
(
(K + 1)d

)
, T = −∞.

(2.17)

In this case of 0 < T < 1, the degree of freedom of the space VK,T as well as the cardinal of

the set DK,T are independent of dimension d. The following lemma gives the approximation

property of the space VK,T .

Lemma 2.1. Let f ∈ Ht,ℓ
mix

(Id), fK,T be the best approximation in VK,T with respect to Hm-

norm. Furthermore denote by p the actual number of degrees of freedom of VK,T as well as the

cardinal of set DK,T . Consider the case T ∈ (0, (m− ℓ)/t]. Then, there holds

‖f − fK,T ‖Hm(Id) ≤ C(d) · p−(ℓ−m+t) · ‖u‖
H

t,ℓ
mix

(Id), (2.18)

where C(d) ≤ c · d2 · 0.97515d and the constant c is independent of d.

Tensor Neural Network and Its Numerical Integration 9

Lemma 2.1 was introduced in [10], where more general cases are considered. Note that in

Lemma 2.1, the best approximation uK,T has the following form:

fK,T =
∑

k∈DK,T

ckϕk(x) =
∑

k∈DK,T

ck

d∏

i=1

ϕki(xi), (2.19)

which is similar to the structure of TNN (2.3). Analogically, the hyperparameter p in TNN is

equivalent to the cardinal of set DK,T and each one-dimensional Fourier basis ϕki(xi) is equiv-

alent to φi,j(xi) in (2.3). That is why we denote p in Lemma 2.1 as the cardinal of set DK,T .

In order to obtain a comprehensive error estimate for TNN, the problem we left behind

is whether an one-dimensional Fourier basis function can be approximated by an FNN with

one-dimensional input. Fortunately, the Fourier basis function

ϕki(xi) =
1√
2π

e−ikixi

can be represented by the FNN with one-dimensional input, one hidden layer and activation

function σ(x) = sin(x). The reason is based on the following property:

e−ikixi = cos(kixi)− i sin(kixi) = sin
(π
2
− kixi

)
− i sin(kixi).

Thus, we can immediately obtain the following comprehensive error estimate for TNN.

Theorem 2.2. Assume function f(x) ∈ Ht,ℓ
mix

(Id), t > 0 and m > ℓ. Then there exists a TNN

Ψ(x; θ) defined by (2.3) such that the following approximation property holds:

‖f(x)−Ψ(x; θ)‖Hm(Id) ≤ C(d) · p−(ℓ−m+t) · ‖u‖
H

t,ℓ
mix

(Id), (2.20)

where C(d) ≤ c·d2 ·0.97515d and c is independent of d. And each subnetwork of TNN is an FNN

which is built by using sin(x) as the action function and one hidden layer with 2p neurons, see

Fig. 2.2.

The TNN-based machine learning method in this paper will adaptively select p rank-one

functions by training process. From the approximation result in Theorem 2.2, when the tar-

get function belongs to Ht,ℓ
mix(Ω), there exists a TNN with p ∼ O(ε−(m−ℓ−t)) such that the

accuracy is ε.

Note that our analysis is based on the special activation function sin(x) and space Ht,ℓ
mix(Ω).

General approximation results in the Hm(Ω)-norm for the functions in Barron space by the

FNNs with d-dimensional input and general activation functions are discussed in [36].

3. Quadrature Scheme for TNN

In this section, we focus on the numerical integration of the polynomial composite function

of TNN and its derivatives. Our main theorem shows that the application of TNN can bring

a significant reduction of the computational complexity for the related numerical integration.

For convenience, we first introduce the following sets of multiple indices:

B :=

{
β = (β1, · · · , βd) ∈ N

d
0

∣∣∣ |β| :=
d∑

i=1

βi ≤ m

}
,

A :=

α = (αβ)β∈B ∈ N

|B|
0

∣∣∣ |α| :=
∑

β∈B

αβ ≤ k

 ,

10 Y.F. WANG, P.Z. JIN AND H.H. XIE

where N0 denotes the set of all non-negative integers, m and k are two positive integers, |B|
and |A| denote the cardinal numbers of B and A, respectively.

For example, if d = 2 and m = 1, the set B,

B =
{
(0, 0), (1, 0), (0, 1)

}
, (3.1)

has 3 terms. Then A is a triple-index set. If k = 2, the set A can be described as follows:

A=
{
(0,0,0), (1,0,0), (0,1,0), (0,0,1), (2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,1,1)

}
. (3.2)

Each index in A corresponds to a member of B. For example, we can simply take the order for

the members in the set B as that of (3.1). Then the member α = (1, 1, 0) ∈ A indicates that

α(0,0) = 1, α(1,0) = 1 and α(0,1) = 0, the member α = (2, 0, 0) ∈ A indicates α(0,0) = 2, α(1,0) = 0

and α(0,1) = 0.

In this paper, we focus on the high-dimensional cases where m ≪ d and k ≪ d. Simple

calculation leads to the following equations:

|B| =
m∑

j=0

(
j+d−1

j

)
, |A| =

k∑

j=0

(
j+|B|−1

j

)
.

By further estimation, we know that the scales of magnitudes of |B| and |A| are O((d +m)m)

and O(((d +m)m + k)k), respectively.

Here and after, the parameter θ in (2.3) will be omitted for brevity without confusion. The

activation function of TNN needs to be smooth enough such that Ψ(x) has partial derivatives up

to order m. Here, we assume F (x) includes the k-degree complete polynomial of d-dimensional

TNN and its partial derivatives up to order m that can be expressed as follows:

F (x) =
∑

α∈A

Aα(x)
∏

β∈B

(
∂|β|Ψ(x)

∂xβ1

1 · · ·∂xβd

d

)αβ

, (3.3)

where the coefficient Aα(x) is given by the following expansion such that the rank of Aα(x) is

not greater than q in the tensor product space L2(Ω1)⊗ · · · ⊗ L2(Ωd):

Aα(x) =

q∑

ℓ=1

B1,ℓ,α(x1)B2,ℓ,α(x2) · · ·Bd,ℓ,α(xd). (3.4)

Here Bi,ℓ,α(xi) denotes the one-dimensional function in L2(Ωi) for i = 1, . . . , d and ℓ = 1, . . . , q.

When using neural networks to solve PDEs, we always need to do the high-dimensional inte-

gration
∫
Ω F (x)dx. If Ψ(x) is an FNN,

∫
Ω F (x)dx can only be treated as a direct d-dimensional

numerical integration, which requires an exponential scale of computational work according to

the dimension d. In practical applications, it is well known that the high-dimensional FNN

functions can only be integrated by the Monte-Carlo method with low accuracy. Different from

FNN, we will show that the high-dimensional integration
∫
Ω
F (x)dx for the TNN can be imple-

mented by the normal numerical quadrature with the polynomial scale of computational work

with respect to the dimension d. This means that the TNN can cope with the curse of dimen-

sionality in some sense. The key idea to reduce the computational complexity of the numerical

integration
∫
Ω
F (x)dx is that we can decompose the TNN function F (x) into a tensor product

structure.

Tensor Neural Network and Its Numerical Integration 11

To implement the decomposition, for each α = (α1, · · · , α|B|) ∈ A, we give the following

definition:

Bα :=
{
β = (β1, · · · , βd) ∈ B

∣∣ αβ ≥ 1
}
.

For example, when the sets B and A are defined by (3.1) and (3.2), respectively, the set Bα

corresponding to the member α = (1, 1, 0) ∈ A in (3.2) can be described as follows:

Bα = {(0, 0), (1, 0)}.

By the definition of the index set A, we can deduce that |Bα| ≤ k for any α ∈ A.

Since Ψ(x) has the TNN structure (2.3), the compound can be further decomposed as

∏

β∈Bα

(
∂|β|Ψ(x)

∂xβ1

1 · · ·∂xβd

d

)αβ

=
∏

β∈Bα

∂|β|
p∑

j=1

φ1,j(x1) · · ·φd,j(xd)

∂xβ1

1 · · ·∂xβd

d

αβ

=
∏

β∈Bα

(
p∑

j=1

∂β1φ1,j(x1)

∂xβ1

1

· · · ∂
βdφd,j(xd)

∂xβd

d

)αβ

=
∏

β∈Bα

∑

1≤j1,··· ,jαβ
≤p

(
∂β1φ1,j1(x1)

∂xβ1

1

· · ·
∂β1φ1,jαβ

(x1)

∂xβ1

1

)
· · ·
(
∂βdφd,j1(xd)

∂xβd

d

· · ·
∂βdφd,jαβ

(xd)

∂xβd

d

)

=
∏

β∈Bα

∑

1≤j1,··· ,jαβ
≤p

(
αβ∏

ℓ=1

∂β1φ1,jℓ(x1)

∂xβ1

1

)
· · ·
(

αβ∏

ℓ=1

∂βdφd,jℓ(xd)

∂xβd

d

)

=
∑

β∈Bα,ℓ=1,...,αβ ,
1≤jβ,ℓ≤p

(
∏

β∈Bα

αβ∏

ℓ=1

∂β1φ1,jβ,ℓ
(x1)

∂xβ1

1

)
· · ·
(
∏

β∈Bα

αβ∏

ℓ=1

∂βdφd,jβ,ℓ
(xd)

∂xβd

d

)
. (3.5)

With the help of expansion (3.5), we can give the following expansion for F (x):

F (x) =
∑

α∈A

(
q∑

ℓ=1

B1,ℓ,α(x1) · · ·Bd,ℓ,α(xd)

)

×
∑

β∈Bα,ℓ=1,...,αβ ,
1≤jβ,ℓ≤p

(
∏

β∈Bα

αβ∏

ℓ=1

∂β1φ1,jβ,ℓ
(x1)

∂xβ1

1

)
· · ·
(
∏

β∈Bα

αβ∏

ℓ=1

∂βdφd,jβ,ℓ
(xd)

∂xβd

d

)

=
∑

α∈A

q∑

ℓ=1

∑

β∈Bα,ℓ=1,...,αβ,
1≤jβ,ℓ≤p

(
B1,ℓ,α(x1)

∏

β∈Bα

αβ∏

ℓ=1

∂β1φ1,jβ,ℓ
(x1)

∂xβ1

1

)

· · ·
(
Bd,ℓ,α(xd)

∏

β∈Bα

αβ∏

ℓ=1

∂βdφd,jβ,ℓ
(xd)

∂xβd

d

)
. (3.6)

Based on the decomposition (3.6), we have the following splitting scheme for the integration∫
Ω F (x)dx:

12 Y.F. WANG, P.Z. JIN AND H.H. XIE

∫

Ω

F (x)dx =
∑

α∈A

q∑

ℓ=1

∑

β∈Bα,ℓ=1,...,αβ ,
1≤jβ,ℓ≤p

∫

Ω1

B1,ℓ,α(x1)

∏

β∈Bα

αβ∏

ℓ=1

∂β1φ1,jβ,ℓ
(x1)

∂xβ1

1

 dx1

· · ·
∫

Ωd

Bd,ℓ,α(xd)

∏

β∈Bα

αβ∏

ℓ=1

∂βdφd,jβ,ℓ
(xd)

∂xβd

d

 dxn. (3.7)

Now, we introduce the detailed numerical integration method for the TNN function F (x). With-

out loss of generality, for i = 1, . . . , d, we choose Ni Gauss points {x(ni)
i }Ni

ni=1 and the correspon-

ding weights {w(ni)
i }Ni

ni=1 for the i-th dimensional domain Ωi, and denote N = max{N1, · · · , Nd}
and N = min{N1, · · · , Nd}. Introducing the index n = (n1, · · · , nd) ∈ N := {1, . . . , N1}× · · ·×
{1, . . . , Nd}, then the Gauss points and their corresponding weights for the integration (3.7)

can be expressed as follows:

{x(n)}n∈N =
{{

x
(n1)
1

}N1

n1=1
,
{
x
(n2)
2

}N2

n2=1
, · · · ,

{
x
(nd)
d

}Nd

nd=1

}
,

{w(n)}n∈N =
{{

w
(n1)
1

}N1

n1=1
×
{
w

(n2)
2

}N2

n2=1
× · · · ,×

{
w

(nd)
d

}Nd

nd=1

}
.

(3.8)

Then from (3.3) and (3.4), the numerical integration
∫
Ω
F (x)dx can be computed as follows:

∫

Ω

F (x)dx≈
∑

n∈N

w(n)
∑

α∈A

(
q∑

ℓ=1

B1,ℓ,α

(
x
(n1)
1

)
· · ·Bd,ℓ,α

(
x
(nd)
d

)
)
∏

β∈Bα

(
∂|β|Ψ(x(n))

∂xβ1

1 · · · ∂xβd

d

)αβ

. (3.9)

Fortunately, with the help of expansions (3.5) and (3.7), we can give the following splitting

numerical integration scheme for
∫
Ω
F (x)dx:

∫

Ω

F (x)dx≈
∑

α∈A

q∑

ℓ=1

∑

β∈Bα,ℓ=1,...,αβ ,
1≤jβ,ℓ≤p

(
N1∑

n1=1

w
(n1)
1 B1,ℓ,α(x

(n1)
1)

∏

β∈Bα

αβ∏

ℓ=1

∂β1φ1,jβ,ℓ
(x

(n1)
1)

∂xβ1

1

)

· · ·
(

Nd∑

nd=1

w
(nd)
d Bd,ℓ,α(x

(nd)
d)

∏

β∈Bα

αβ∏

ℓ=1

∂βdφd,jβ,ℓ
(x

(nd)
d)

∂xβd

d

)
. (3.10)

The quadrature scheme (3.10) decomposes the high-dimensional integration
∫
Ω
F (x)dx into

a series of one-dimensional integration, which is the main contribution of this paper. Due to the

simplicity of the one-dimensional integration, the scheme (3.10) can reduce the computational

work of the high-dimensional integration for the d-dimensional function F (x) to the polynomial

scale of dimension d. Theorem 3.1 gives the corresponding result.

Theorem 3.1. Assume that the function F (x) is defined as (3.3), where the coefficient Aα(x)

has the expansion (3.4). Employ Gauss quadrature points and corresponding weights (3.8) to

F (x) on the d-dimensional tensor product domain Ω. If the function Ψ(x) involved in the

function F (x) has TNN form (2.3), the efficient quadrature scheme (3.10) is equivalent to

(3.9) and has 2N-th order accuracy. Let T1 denote the computational complexity for the one-

dimensional function evaluation operations. The computational complexity can be bounded by

O(dqT1k
2pk((d +m)m + k)kN), which is the polynomial scale of the dimension d.

Proof. First, we point out that the number of jβ,ℓ in the last summation of (3.5) is no more

than k. This result can be easily proved by the following inequality:
∑

β∈Bα

αβ = |α| ≤ k.

Tensor Neural Network and Its Numerical Integration 13

Then, by direct calculation, the computational complexity of (3.10) can be bounded by

O(dqT1 k2pk((d +m)m + k)kN). Since the one-dimensional integration with Ni Gauss points

has 2Ni-th order accuracy and the equivalence of (3.10) and (3.9), both quadrature schemes

(3.10) and (3.9) have the 2N -th order accuracy. The proof is complete. �

Remark 3.1. Theorem 3.1 considers using one-dimensional Gauss points to compute d-dimen-

sional integrations. Other types of one-dimensional quadrature schemes can also be employed to

do the d-dimensional integration and have similar results. In numerical examples, we decompose

each Ωi into subintervals with mesh size h and choose Ni one-dimensional Gauss points in each

subinterval. Then the deduced d-dimensional quadrature scheme has accuracy O(h2N/(2N)!),

where the included constant depends on the smoothness of F (x).

If Ψ(x) does not have the tensor form, for example, Ψ(x) is a d-dimensional FNN and use

the same quadrature scheme (3.10), the computational complexity is O((dqT1 + kTd)((d+m)m

+k)kNd), where Td denotes the complexity of the d-dimensional function evaluation operations.

4. Solving High-Dimensional Eigenvalue Problem by TNN

This section is devoted to discussing the applications of TNNs to the numerical solution of

the high-dimensional second order elliptic eigenvalue problems. For simplicity, we are concerned

with the following model problem:
{
−∆u+ vu = λu in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω = Ω1 × · · · × Ωd, each Ωi = (ai, bi), i = 1, . . . , d is a bounded interval in R, v ∈ L2(Ω)

is a potential function. We assume that the rank of v is finite in the tensor product space

L2(Ω1)⊗ · · · ⊗L2(Ωd). The potential function v often occurs in quantum mechanics problems.

In this paper, we consider the following cases:

zero function

v(x) = 0 in Ω, (4.2)

harmonic oscillator

v(x) =

d∑

i=1

x2
i in Ω, (4.3)

coupled oscillator

v(x) =

d∑

i=1

x2
i −

d−1∑

i=1

xixi+1, (4.4)

and the Coulomb potential for Schrödinger equation.

In quantum mechanics, the eigenvalue problem (4.1) with the potential function (4.2) is the

Schrödinger equation with infinite potential well. The eigenvalue problem with the potential

(4.3) comes from the truncation of the Schrödinger equation with the harmonic oscillator po-

tential which is defined in the whole space. The more complicated eigenvalue problem with

the potential (4.4) describes the system of chains of d coupled harmonic oscillators which is

described in detail in [3].

There is a well-known variational principle or minimum theorem of the eigenvalue problem

(4.1) for the smallest eigenpair (λ, u)

14 Y.F. WANG, P.Z. JIN AND H.H. XIE

λ = min
w∈H1

0
(Ω)

R(w) = min
w∈H1

0
(Ω)

∫

Ω

|∇w|2dx+

∫

Ω

vw2dx
∫

Ω

w2dx

, (4.5)

where R(w) denotes the Rayleigh quotient for the function w ∈ H1
0 (Ω).

In order to solve the eigenvalue problem (4.1), we build a TNN structure Ψ(x; θ) which

is defined by (2.3), and denote the set of all possible values of θ as Θ. In order to avoid

the penalty on boundary conditions, we simply use the method in [12] to treat the Dirichlet

boundary condition. This method is firstly proposed in [24, 25]. For i = 1, . . . , d, the i-th

subnetwork φi(xi; θi) is defined as follows:

φi(xi; θi) := (xi − ai)(bi − xi)φ̂i(xi; θi)

=
(
(xi − ai)(bi − xi)φ̂i,1(xi; θi), · · · , (xi − ai)(bi − xi)φ̂i,p(xi; θi)

)T
,

where φ̂i(xi; θi) is an FNN from R to R
p with sufficient smooth activation functions, such that

Ψ(x; θ) ∈ H1
0 (Ω).

The trial function set V is modeled by the TNN structure Ψ(x; θ) where parameters θ

take all the possible values and it is obvious that V ⊂ H1
0 (Ω). The solution and the param-

eters (λ∗,Ψ(x; θ∗)) of the following optimization problem are approximations to the smallest

eigenpair:

λ∗= min
Ψ(x;θ)∈V

R
(
Ψ(x; θ)

)
=min

θ∈Θ

∫

Ω

|∇Ψ(x; θ)|2dx+

∫

Ω

v(x)Ψ2(x; θ)dx
∫

Ω

Ψ2(x; θ)dx

=R
(
Ψ(x; θ∗)

)
. (4.6)

Note that all integrands of the numerator and the denominator of (4.6) have the form (3.3).

With the help of Theorem 3.1, we can implement these numerical integrations by the scheme

(3.10) with the computational work being bounded by the polynomial scale of dimension d. We

choose Gauss points and their corresponding weights which are defined by (3.8) to compute

these integrations, and define the loss function as follows:

L(θ) :=

∑
n∈N w(n)|∇Ψ(x(n); θ)|2 +∑n∈N w(n)v(x(n))Ψ2(x(n); θ)∑

n∈N w(n)Ψ2(x(n); θ)
. (4.7)

In this paper, the gradient descent (GD) method is adopted to minimize the loss function L(θ).

The GD scheme can be described as follows:

θ(k+1) = θ(k) − η∇L(θ(k)), (4.8)

where θ(k) denotes the parameters after the k-th GD step, η is the learning rate (step size).

Different from the general FNN-based machine learning method, we use the fixed quadra-

ture points {x(n)}n∈N to do the numerical integration in this paper. Using the fixed quadrature

points for FNN, the computational work for the numerical integration will depend exponentially

on the dimension d. In order to avoid the “curse of dimensionality”, in the numerical imple-

mentation for solving high-dimensional PDEs by FNN-based method, the stochastic gradient

descent (SGD) method [20] with Monte-Carlo integration are always used [7]. The application

of random sampling quadrature points always leads to low accuracy and instability convergence

for the FNN method.

Tensor Neural Network and Its Numerical Integration 15

Fortunately, based on TNN structure in the loss function (4.7), Theorem 3.1 shows that

the numerical integration does not encounter “curse of dimensionality” since the computational

work can be bounded by the polynomial scale of dimension d. This is the reason we can use GD

method to solve the optimization problem (4.6) instead of SGD in this paper. That is to say,

using all quadrature points to implement the integration and the GD step (4.8) in TNN-based

machine learning are reasonable. With the help of the high accuracy of the tensor product with

Gauss points and Theorem 2.1, the high accuracy of the TNN-based method can be guaranteed.

Although in this paper, we simply choose a fixed rank p in our numerical examples, it is

worth mentioning that, by adding columns to the weight matrices of the output layer in each

subnetwork, we can transfer weights from the old TNN to the new one to improve the rank

p. We can stop this process when the accuracy improvement is small enough. Choosing the

rank p by the computable posterior error estimation and the corresponding transfer learning

framework will be presented in our future work.

Remark 4.1. In this section, we are mainly talking about solving high-dimensional eigenvalue

problems by TNN. It is worth mentioning that the TNN structure can be applied naturally to

solve PDEs with different types of loss functions. We will do a preliminary test in our numerical

examples.

5. Numerical Examples

In this section, we provide several examples to validate the efficiency and accuracy of the

TNN-based machine learning method proposed in this paper. The first two examples are used

to demonstrate the high accuracy of the TNN method for high-dimensional problems. We will

explore the effect of the vital hyperparameter p on the accuracy in the third example where

the ground state energy may not be exactly represented by a finite-rank CP decomposition.

The fourth example for the ground state of a helium atom which comes from the real physical

problem is used to give an illuminating way to deal with the problem that does not satisfy the

assumption (3.4). Note that in the fourth example, the potential cannot be exactly expressed

as a CP decomposition of finite rank, this makes the loss function no longer satisfy the assump-

tion (3.4). In the last example, we solve a boundary value problem with Neumann boundary

condition to show the efficiency of TNN for solving high-dimensional PDEs.

In order to show the convergence behavior and accuracy of eigenfunction approximations

by TNN, we define the L2(Ω) projection operator P : H1
0 (Ω) → span{Ψ(x; θ∗)} as follows:

〈Pu, v〉L2 = 〈u, v〉L2 :=

∫

Ω

uvdx, ∀ v ∈ span{Ψ(x; θ∗)}, u ∈ H1
0 (Ω).

And we define the H1(Ω) projection operator Q : H1
0 (Ω) → span{Ψ(x; θ∗)} as follows:

〈Qu, v〉H1 = 〈u, v〉H1 :=

∫

Ω

∇u · ∇vdx, ∀ v ∈ span{Ψ(x; θ∗)}, u ∈ H1
0 (Ω).

Then we define the following errors for the approximated eigenvalue λ∗ and eigenfunction

Ψ(x; θ∗):

eλ :=
|λ∗ − λ|

|λ| , eL2 :=
‖u− Pu‖L2(Ω)

‖u‖L2(Ω)
, eH1 :=

|u−Qu|H1(Ω)

|u|H1(Ω)

16 Y.F. WANG, P.Z. JIN AND H.H. XIE

in all eigenvalue examples. As for Neumann boundary value problem, we define the following

errors for the approximated solution Ψ(x; θ∗):

êL2 :=
‖u−Ψ(x; θ∗)‖L2(Ω)

‖f‖L2(Ω)
, êH1 :=

|u−Ψ(x; θ∗)|H1(Ω)

|f |H1(Ω)
.

Here ‖ · ‖L2 and | · |H1 denote L2(Ω)-norm and H1(Ω)-seminorm, respectively. These relative

errors are often used to test numerical methods for eigenvalue problems and PDEs. We use the

quadrature scheme (3.10) to compute eL2 and eH1 with the same Gauss points and weights as

computing the loss functions if the rank of the exact solution u(x) is finite in the tensor product

space L2(Ω1) ⊗ · · · ⊗ L2(Ωd), otherwise we only report eλ. With the help of Theorem 3.1 and

Gauss quadrature points, the high efficiency and accuracy for computing eL2 and eH1 can be

guaranteed.

In implementation, we train the networks by Adam optimizer [20] and use automatic differ-

entiation for derivatives in PyTorch. In this chapter, all examples is using sine function sin(x)

as the activation function.

5.1. Laplace eigenvalue problem

In the first example, the potential function is defined as (4.2) with the computational domain

Ω = [0, 1]d. Then the exact smallest eigenvalue and eigenfunction are

λ = dπ2, u(x) =

d∏

i=1

sin(πxi).

First, we test high-dimensional cases with d = 5, 10, 20. Quadrature scheme for TNN is obtained

by decomposing each Ωi, i = 1, . . . , d, into 10 equal subintervals and choosing 16 Gauss points

on each subinterval. The Adam optimizer is employed with a learning rate of 0.003 to train

a TNN with p = 10. Each subnetwork of TNN is an FNN with two hidden layers and each

hidden layer has 50 hidden neurons, see Fig. 2.2. Fig. 5.1 shows the relative errors eλ, eL2 and

eH1 versus the number of epochs. The final relative errors after 100000 epochs are reported in

Table 5.1 for different dimensional cases. We can find that the TNN method has almost the

same convergence behaviors for different dimensions.

Then we test ultra-high-dimensional cases with d=128, 256, 512. Although the usual problem

does not have such a high dimension, it is important to point out that since the TNN structure

(2.3) includes the compound of d terms, in ultra-high-dimensional cases, numerical instability

may occur. To improve the numerical stability, we do a suitable scale for each dimension of

TNN at the initialization step. In implementation, we decompose each Ωi, i = 1, . . . , d, into

10 equal subintervals and choose 16 Gauss points on each subinterval. The Adam optimizer is

employed with a learning rate 0.003 to train a smaller-scale TNN with p = 10. Each subnetwork

in of the TNN is an FNN with two hidden layers and each hidden layer has 20 hidden neurons.

We use the Adam optimizer in the first 100000 steps and then the L-BFGS in the subsequent

10000 steps to produce the final results. The final results are shown in Fig. 5.2 and Table 5.2. In

ultra-high-dimensional cases, the TNN method still has almost the same convergence behaviors

for different dimensions, and the final results are not much worse than that in high-dimensional

cases. All relative errors are on a convincing order of magnitude.

Tensor Neural Network and Its Numerical Integration 17

Table 5.1: Errors of Laplace eigenvalue problem for d = 5, 10, 20.

d eλ eL2 eH1

5 4.838e-09 1.977e-05 7.231e-05

10 7.916e-09 8.941e-05 1.261e-04

20 6.354e-09 6.872e-05 1.052e-04

Table 5.2: Errors of Laplace eigenvalue problem for d = 128, 256, 512.

d eλ eL2 eH1

128 5.462e-08 4.676e-04 5.223e-04

256 1.980e-08 3.962e-04 4.205e-04

512 1.560e-08 4.956e-04 5.111e-04

Fig. 5.1. Relative errors during the training process for Laplace eigenvalue problem, d = 5, 10, and 20.

The left column shows the relative errors of eigenvalue approximations, the middle column shows the

relative L2(Ω) errors and the right column shows the relative H1(Ω) errors of eigenfunction approxi-

mations.

18 Y.F. WANG, P.Z. JIN AND H.H. XIE

Fig. 5.2. Relative errors during the training process for Laplace eigenvalue problem, d = 128, 256

and 512. The left column shows the relative errors of eigenvalue approximations, the middle column

shows the relative L2(Ω) errors and the right column shows the relative H1(Ω) errors of eigenfunction

approximations.

5.2. Eigenvalue problem with harmonic oscillator

In the second example, the potential function is defined as (4.3). Then the exact smallest

eigenvalue and eigenfunction are

λ = d, u(x) =

d∏

i=1

e−
x2
i
2 .

As the first example in Section 5.1, high-dimensional cases with d = 5, 10, 20 and ultra-high-

dimensional cases with d = 128, 256, 512 are tested, respectively. We truncate the computational

domain from R
d to [−5, 5]d, use 100 equal subintervals and 16 Gauss points quadrature scheme

for all cases. The Adam optimizer is employed to train TNN of the same size as the first

example but with a learning rate of 0.01 and 0.003 for high-dimensional cases and ultra-high-

dimensional cases, respectively. For high-dimensional cases, the Adam optimizer is used 100000

Tensor Neural Network and Its Numerical Integration 19

steps. For ultra-high-dimensional cases, we use the Adam optimizer in the first 50000 steps and

then the L-BFGS in the subsequent 10000 steps to produce the final results. Numerical results

for d = 5, 10, 20 are shown in Fig. 5.3 and Table 5.3 and that for d = 128, 256, 512 are shown

in Fig. 5.4 and Table 5.4. Since we truncate the computational domain, it is reasonable that

the final relative errors are a little worse than the examples of the Laplace eigenvalue problem.

There should exist some room for improving the accuracy.

Table 5.3: Errors of the harmonic oscillator problem for d = 5, 10, 20.

d eλ eL2 eH1

5 4.241e-07 3.626e-04 8.431e-04

10 2.446e-07 2.709e-04 6.889e-04

20 7.225e-07 1.361e-03 1.555e-03

Fig. 5.3. Relative errors during the training process for the harmonic oscillator problem, d = 5, 10, 20.

The left column shows the relative errors of eigenvalue, the middle column shows the relative L2 errors

and the right column shows the relative H1 errors of eigenfunction approximations.

20 Y.F. WANG, P.Z. JIN AND H.H. XIE

Table 5.4: Errors of the harmonic oscillator problem for d = 128, 256, 512.

d eλ eL2 eH1

128 6.188e-07 2.979e-04 7.884e-04

256 1.080e-06 4.195e-04 1.181e-03

512 1.570e-06 5.570e-04 1.532e-03

Fig. 5.4. Relative errors during the training process for the harmonic oscillator problem, d = 128,

256, 512. The left column shows the relative errors of eigenvalue approximations, the middle column

shows the relative L2 errors and the right column shows the relative H1 errors of eigenfunction approx-

imations.

5.3. Eigenvalue problem with coupled harmonic oscillator

In the third example, the potential function is defined as (4.4). Similar to the derivation

in [3], the exact smallest eigenvalue is

λ0 =

d∑

i=1

√
1− cos

(
iπ

d+ 1

)
,

Tensor Neural Network and Its Numerical Integration 21

and the exact eigenfunction has Gaussian form. In this example, we test the case of d = 4.

Then the exact eigenfunction is

u(x1, x2, x3, x4)

= exp

[
− 1

2

(
ω1a

2 + ω2b
2 + ω3a

2 + ω4b
2
)(
x2
1 + x2

3

)

− 1

2

(
ω1b

2+ω2a
2 + ω3b

2 + ω4a
2
)(
x2
2 + x2

4

)

− ab(−ω1 − ω2 + ω3 + ω4)(x1x2 + x3x4)

− ab(ω1 − ω2 + ω3 − ω4)(x1x4 + x2x3)

−
(
− ω1a

2 + ω2b
2 + ω3a

2 − ω4b
2
)
x1x3

−
(
− ω1b

2 + ω2a
2 + ω3b

2 − ω4a
2
)
x2x4

]
,

where

a =

√
5−

√
5

2
√
5

, b =

√
5 +

√
5

2
√
5

,

ω1 =

√
5 +

√
5

2
, ω2 =

√
3 +

√
5

2
,

ω3 =

√
5−

√
5

2
, ω4 =

√
3−

√
5

2
.

To demonstrate the efficiency of the proposed method, we take hyperparameter p from 1 to 30.

Each dimension of the TNN is an FNN with two hidden layers and each hidden layer has 50

hidden neurons. We train the TNN to investigate the dependence of the convergence behavior on

the hyperparameter p. All the cases are trained by the Adam optimizer with the same learning

rate of 0.001 and epochs of 500000. The computational domain is truncated to [−5, 5]d. And

we decompose the interval [−5, 5] in each dimensional into 100 equal subintervals and choose

16 Gauss points on each subinterval. The relative errors eλ during the training process for

different p are shown in Figs. 5.5 and 5.6 demonstrates how the final error changes as p increases.

From Figs. 5.5 and 5.6, we can find that the proposed method converges at an impressive

accuracy.

5.4. Ground state of helium atom

In the fourth example, we consider the Schrödinger equation of the helium atom whose

potential cannot be exactly expressed as a CP decomposition of finite rank. The wave function of

the helium atom with the fixed nucleus in Euclidean coordinates Ψ(x1, y1, z1, x2, y2, z2) satisfies

the following eigenvalue problem:

−1

2
∆Ψ − 2Ψ

r1
− 2Ψ

r2
+

Ψ

r12
= EΨ, (5.1)

where

r21 = x2
1 + y21 + z21 , r22 = x2

2 + y22 + z22 ,

r212 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2.

22 Y.F. WANG, P.Z. JIN AND H.H. XIE

Fig. 5.5. Relative errors during the training process for the coupled harmonic oscillator. The rank p

increases from 1 to 30.

Tensor Neural Network and Its Numerical Integration 23

Fig. 5.5. Relative errors during the training process for the coupled harmonic oscillator. The rank p

increases from 1 to 30 (cont’d).

24 Y.F. WANG, P.Z. JIN AND H.H. XIE

Fig. 5.6. Relative errors eλ versus hyperparameter p for the coupled harmonic oscillator (d = 4).

Since the potential term 1/r12 in (5.1) can not be expressed as a CP decomposition of finite rank

in either Euclidean or spherical coordinates, it is impossible to give the analytical expressions for

exact energy E and wave function Ψ and it is also difficult to perform the TNN-based machine

learning directly on this potential. Fortunately, Hylleraas [18] chose the three independent

variables r1, r2, θ, with θ being the angle between r1 and r2, to determine the form and the

size of a triangle that is composed of the nucleus and two electrons. The coordinates {r1, r2, θ}
are enough to describe the wave function for the ground state of the helium atom and the

corresponding wave function Ψ(r1, r1, θ) satisfies the following eigenvalue problem:

−
2∑

i=1

1

2r2i

∂

∂ri

(
r2i

∂Ψ

∂ri

)
−
(

2∑

i=1

1

2ri

)
·
[

1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)]
−

2∑

i=1

2

ri
Ψ+

1

r12
Ψ = EΨ.

The volume of this coordinate is r21r
2
2 sin θ. The potential 1/r12 is expanded as functions on the

sphere in θ:

1

r12
=

∞∑

ℓ=0

rℓ<
rℓ+1
>

Pℓ(cos θ), (5.2)

where r> = max{r1, r2} and r< = min{r1, r2}, Pℓ denotes Legendre polynomial of order ℓ.

In the implementation, we truncate the expression (5.2) into 20 terms and the computational

domain from [0,+∞)2×[0, π] to [0, 5]2×[0, π]. The benchmark energy for the helium atom is set

to be −2.903724377 which is taken from [30], at the level of Born-Oppenheimer nonrelativistic

ground state energy. The TNN is set to be p = 20. Each subnetwork for the variable r1, r2 or θ,

respectively, is an FNN with two hidden layers and each hidden layer has 50 hidden neurons. The

boundary condition is guaranteed by multiplying the subnetwork in the ri direction with e−ri .

We train the TNN epochs with a learning rate of 1e-04 in the first 100000 epochs and with

a learning rate of 1e-05 in the subsequent 50000 steps to produce the final result. The final

energy obtained by the TNN method is−2.903781124 and the relative energy error is 1.9542e-05.

Fig. 5.7 shows the radial distribution of electrons for helium atoms. From Fig. 5.7, we know

that the TNN method can give good simulations of the real electron distribution.

5.5. Boundary value problem with Neumann boundary condition

In the last example, different from the eigenvalue problems discussed in the above sub-

sections, we tentatively test the performance of TNN for high-dimensional boundary value

Tensor Neural Network and Its Numerical Integration 25

Fig. 5.7. Radial distribution of electrons for helium atom.

problems. For this aim, we consider the following boundary value problem with the Neumann

boundary condition:

−∆u+ π2u = 2π2
d∑

i=1

cos(πxi), x ∈ [0, 1]d,

∂u

∂n
= 0, x ∈ ∂[0, 1]d.

Then the exact solution is

u(x) =

d∑

i=1

cos(πxi). (5.3)

We use the same loss function as [7] and test cases with d = 5, 10, 20, respectively. For all

cases, each subnetwork of TNN is an FNN with two hidden layers and each hidden layer has

50 hidden neurons. Referring to the optimization tips in [29], we use the Adam optimizer in

the first 100000 steps and then the L-BFGS in the subsequent 50000 steps to produce the final

result. The corresponding numerical results for p = 2d are reported in Fig. 5.8 and Table 5.5.

The final relative errors have almost the same order of magnitude for different dimensions.

From (5.3), the exact solution can be represented as CP-decomposition with rank d. We

can at least claim that the rank of the exact solution is no more than d. For the case d = 10,

we take hyperparameter p from 1 to 20 and train the TNN with a learning rate of 0.01. Fig. 5.9

shows the final relative errors êL2 and êH1 after 100000 epochs versus p. From Fig. 5.9, we can

find an interesting phenomenon that the explicit CP representation (5.3) may not describe the

effect of low-rank approximation properly. From (5.3), it looks like the real rank of the exact

solution is p = 10, but there is no significant error reduction from p = 5 to p = 20.

Table 5.5: Errors of the Neumann boundary value problem for d = 5, 10, 20.

d eL2 eH1

5 4.791e-05 6.079e-04

10 4.520e-05 5.778e-04

20 5.122e-05 6.586e-04

26 Y.F. WANG, P.Z. JIN AND H.H. XIE

Fig. 5.8. Relative errors during the training process for the Neumann boundary problem for d =

5, 10, 20. The top row shows the relative L2 errors and the bottom one shows the relative H1 errors of

the approximate solution.

Fig. 5.9. Relative errors versus hyperparameter p for Neumann boundary value problem (d = 10).

The left subfigure shows the relative L2 errors and the right one shows the relative H1 errors of the

approximate solution.

6. Conclusions

In this paper, we present the TNN and corresponding machine-learning methods for solving

high-dimensional PDEs. Different from the well-known FNN-based machine learning methods,

TNN has a tensor product form and its numerical integration can use the fixed quadrature points

in each dimension. Benefiting from the tensor product structure, we can design an efficient

integration scheme for the functions defined by TNN. These properties lead to TNN-based

machine learning that can do the direct inner product computation with the polynomial scale

of work for the dimension. We believe that the ability of direct inner production computation

will bring more applications in solving high-dimensional PDEs.

Tensor Neural Network and Its Numerical Integration 27

Based on the ideas of CP decomposition for tensor product Hilbert space and representing

the trial functions by deep neural networks, we introduce the TNN structure, its corresponding

approximation property, and an efficient numerical integration scheme. The theoretical results,

algorithms, and numerical investigations show that this type of structure has the following

advantages:

1. With the help of the straightforward tensor product representation way, we can integrate

this type of function separately in the one-dimensional interval. This is the reason that

the TNN can overcome the exponential dependence of the computational work for high-

dimensional integrations on the dimension.

2. Instead of randomly sampling data points, the training process uses fixed quadrature

points. This means that the TNN method can avoid the random sampling process to

produce the GD direction in each step and then has better stability.

Besides the above observations, there should exist some interesting topics that need to be

addressed in future work:

1. The choice of the subnetwork structure, the activation function, and the more important

hyperparameter p.

2. When the computing domain is not tensor-product type, further strategies are demanded

to maintain the high efficiency and accuracy of the numerical integration.

3. Since the TNN uses fixed quadrature points, we should design more efficient numerical

methods to solve the included optimization problems in the machine learning process.

In addition, more applications to other types of problems should be investigated in the

future.

Acknowledgements. This work was supported in part by the National Key Research and

Development Program of China (Grant No. 2019YFA0709601), by the National Center for

Mathematics and Interdisciplinary Science, CAS.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, 1975.

[2] M. Baymani, S. Effati, H. Niazmand, and A. Kerayechian, Artificial neural network method for

solving the Navier-Stokes equations, Neural Comput. Applic., 26:4 (2015), 765–763.

[3] A. Beygi, S.P. Klevansky, and C.M. Bender, Coupled oscillator systems having partial PT sym-

metry, Phys. Rev. A, 91:6 (2015), 062101.

[4] G. Beylkin and M.J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Natl.

Acad. Sci. USA, 99:16 (2002), 10246–10251.

[5] G. Beylkin and M.J. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM

J. Sci. Comput., 26:6 (2005), 2133–2159.

[6] W. E, Machine learning and computational mathematics, Commun. Comput. Phys., 28:5 (2020),

1639–1670.

[7] W. E and B. Yu, The deep Ritz method: A deep-learning based numerical algorithm for solving

variational problems, Commun. Math. Stat., 6 (2018), 1–12.

[8] S.W. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer., 3 (1994),

145–202.

28 Y.F. WANG, P.Z. JIN AND H.H. XIE

[9] L.C. Evans, Partial Differential Equations, AMS, 2010.

[10] M. Griebel and J. Hamaekers, Sparse grids for the Schrödinger equation, ESAIM Math. Model.

Numer. Anal., 41 (2007), 215–247.

[11] M. Griebel and S. Knapek, Optimized tensor-product approximation spaces, Constr. Approx., 16

(2000), 525–540.

[12] Y. Gu, C. Wang, and H. Yang, Structure probing neural network deflation, J. Comput. Phys.,

434 (2021), 110231.

[13] W. Hackbusch and B.N. Khoromskij, Tensor-product approximation to operators and functions

in high dimensions, J. Complexity, 23:4-6 (2007), 697–714.

[14] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations using deep

learning, arXiv:1707.02568v1, 2017.

[15] J. Han, L. Zhang, and W. E, Solving many-electron Schrödinger equation using deep neural

networks, J. Comput. Phys., 399 (2019), 108929.

[16] J. He, L. Li, J. Xu, and C. Zheng, ReLU deep neural networks and linear finite elements, J. Com-

put. Math., 38:3 (2020), 502–527.

[17] D. Hong, T.G. Kolda, and J.A. Duersch, Generalized canonical polyadic tensor decomposition,

SIAM Rev., 62:1 (2020), 133–163.

[18] E.A. Hylleraas, Über den Grundzustand des Heliumatoms, Z. Physik, 48 (1928), 469–494.

[19] P. Jin, S. Meng, and L. Lu, MIONet: Learning multiple-input operators via tensor product,

arXiv:2202.06137, 2022.

[20] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980, 2014.

[21] S. Knapek, Hyperbolic Cross Approximation of Integral Operators with Smooth Kernel, Technical

Report 665, SFB 256, University of Bonn, 2000.

[22] S. Knapek, Approximation und Kompression mit Tensorprodukt-Multiskalenräumen, Dissertation,

Universität Bonn, 2000.

[23] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev., 51:3 (2009),

455–500.

[24] I.E. Lagaris, A.C. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary and

partial differential equations, IEEE Trans. Neural Netw., 9:5 (1998), 987–1000.

[25] I.E. Lagaris, A.C. Likas, and G.D. Papageorgiou, Neural-network methods for boundary value

problems with irregular boundaries, IEEE Trans. Neural Netw., 11:5 (2000), 1041–1049.

[26] M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a non-

polynomial activation function can approximate any function, Neural Netw., 6:6 (1993), 861–867.

[27] B. Li, S. Tang, and H. Yu, Better approximations of high dimensional smooth functions by deep

neural networks with rectified power units, Commun. Comput. Phys., 27 (2020), 379–411.

[28] M.S. Litsarev and I.V. Oseledets, Fast low-rank approximations of multidimensional integrals in

ion-atomic collisions modelling, Numer. Linear Algebra Appl., 22:6 (2015), 1147–1160.

[29] L. Lyu, Z. Zhang, M. Chen, and J. Chen, MIM: A deep mixed residual method for solving high-

order partial differential equations, J. Comput. Phys., 452 (2022), 110930.

[30] H. Nakashima and H. Nakatsuji, Solving the Schrödinger equation for helium atom and its iso-

electronic ions with the free iterative complement interaction (ICI) method, J. Chem. Phys., 127

(2007), 224104.

[31] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Physics informed deep learning (Part I): Data-

driven solutions of nonlinear partial differential equations, arXiv:1711.10561, 2017.

[32] M.J. Reynolds, A. Doostan, and G. Beylkin, Randomized alternating least squares for canonical

tensor decompositions: Application to a PDE with random data, SIAM J. Sci. Comput., 38:5

(2016), A2634–A2664.

[33] H.J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces, Wiley, 1987.

[34] J. Shen and H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional

elliptic problems, SIAM J. Sci. Comput., 32:6 (2010), 3228–3250.

Tensor Neural Network and Its Numerical Integration 29

[35] J. Shen and H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional

elliptic equations II. Unbounded domains, SIAM J. Sci. Comput., 34:2 (2012), A1141–A1164.

[36] J.W. Siegel and J. Xu, Approximation rates for neural networks with general activation functions,

Neural Netw., 128 (2020), 313–321.

[37] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential

equations, J. Comput. Phys., 375 (2018), 1339–1364.

[38] Y. Zang, G. Bao, X. Ye, and H. Zhou, Weak adversarial networks for high-dimensional partial

differential equations, J. Comput. Phys., 411 (2020), 109409.

[39] D. Zung, The approximation of classes of periodic functions of many variables, Russian Math.

Surveys, 38 (1983), 117–118.

