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Abstract

In this paper, we consider the electromagnetic wave scattering problem from a periodic

chiral structure. The scattering problem is simplified to a two-dimensional problem, and is

discretized by a finite volume method combined with the perfectly matched layer (PML)

technique. A residual-type a posteriori error estimate of the PML finite volume method

is analyzed and the upper and lower bounds on the error are established in the H
1-norm.

The crucial part of the a posteriori error analysis is to derive the error representation

formula and use a L
2-orthogonality property of the residual which plays a similar role

as the Galerkin orthogonality. An adaptive PML finite volume method is proposed to

solve the scattering problem. The PML parameters such as the thickness of the layer and

the medium property are determined through sharp a posteriori error estimate. Finally,

numerical experiments are presented to illustrate the efficiency of the proposed method.

Mathematics subject classification: 65N08, 65L60, 65N15, 35Q60.

Key words: Finite volume method, Perfectly matched layer, A posteriori error analysis,

Chiral media.

1. Introduction

Consider a time-harmonic electromagnetic plane wave incident on a periodic chiral struc-

ture. The chiral structure is assumed to be periodic in x1 direction and invariant in x2 direction.

The medium inside the structure is chiral, and two regions with homogeneous medium are sepa-

rated by the periodic structure. From the point view of mathematical modeling, our discussion

on the scattering problem is simplified to the two-dimensional case. Recently, there has been

still a considerable interest in the study of electromagnetic wave propagation by periodic chi-

ral structure. In general, the electromagnetic wave propagation inside the chiral medium are

governed by Maxwell equations together with the Drude-Born-Fedorov constitutive equations
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in which the electric and magnetic fields are coupled. The property of the chiral media is com-

pletely characterized by the chirality admittance β, the electric permittivity ε and the magnetic

permittivity µ. On the other hand, periodic structures have generated great scientific interests

in the past several years because of important applications in integrated optics, optical lenses,

anti-reflective structures, lasers and so on.

Over the past two decades, scattering problem in chiral structures has gained a great devel-

opment in the applied mathematical community. For the physical background and the model

equations of the scattering problem inside chiral media, many literatures have discussed these

issues and we refer to [1,20,23,24,34] on periodic and non-periodic chiral structures. From the

computational aspects, lots of results and references on solving the chiral grating problem may

be found in [1, 2, 35, 36]. For other related mathematical analysis and numerical methods of

periodic achiral structures, the reader is referred to [3, 6, 15, 17, 18, 28] and references therein.

One of the difficulties for solving the scattering problem is to truncate the unbounded domain

into a bounded computational domain with some adequate approximation accuracy. A popular

and effective technique in truncating the unbounded domain is the perfectly matched layer

(PML) method proposed by Berenger [8]. The key idea of the PML technique is to surround

the computational domain by a special designed layer of finite thickness which can make the

outgoing waves decay exponentially. At this point, a variety of PML methods have been de-

veloped and studied in the literature (cf. [25, 31]). Another difficulty for solving the scattering

problem is to deal with the singularities of the solutions, an economical and effective method is

the adaptive finite element method based on the a posteriori error estimate (cf. [5,11,13,26,27]).

By using the PML technique in combination, the field of the adaptive finite element method

attracted many researchers and has become more and more active in the numerical simulation

of the scattering problem, we can refer to [7, 12, 14–16,21, 22, 32] and references therein for the

adaptive PML finite element methods and the related methods. The adaptive finite element

methods combined with DtN or PML techniques are very attractive in solving the scattering

problems, largely for this reason that DtN or PML method is applied to deal with the diffi-

culty in truncating the unbounded domain and the adaptive finite element method can very

efficiently capture the local singularities. However, to our best knowledge, there are very few

works on the adaptive DtN or PML finite volume method for solving differential equations. For

the literature, there are also some representative results on the posteriori error estimates and

the adaptive computations of the finite volume method, the reader is referred to [9, 10, 19, 33]

and references therein.

In this paper, we shall study the residual-type a posteriori error estimate of the PML finite

volume method (PML-FVM) for solving 1D chiral grating problem. As the PML finite element

method (PML-FEM) in [36], our PML finite volume method needs to surround the computa-

tional domain by a specially designed artificial layer which absorbs all waves coming from the

computational domain. Meanwhile, compared with the DtN finite element method (DtN-FEM),

our method can avoid dense blocks of the stiffness matrix generated by the computation of the

discrete DtN operator. In this work, the a posteriori error estimate, which includes the finite

volume discretization error and the PML error, is established by using similar arguments as the

a posteriori error estimate of the PML-FEM. The main difficulty of our error analysis is that

our PML-FVM is lack of the global Galerkin orthogonality in contrast to the DtN-FEM and

PML-FEM. We overcome this difficulty by using an L2-orthogonality property of the residual

which plays a similar role as the Galerkin orthogonality. The error estimate is used to design

the adaptive PML-FVM to choose elements for refinement and to determine the PML parame-
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ters and the medium property. Furthermore, the PML error decays exponentially with respect

to the distance to the boundary of the fixed domain where the PML layer is placed. Like the

adaptive PML-FEM in [15], our adaptive PML-FVM also has the ability to produce coarse

mesh size away from the fixed domain and make the total computational costs insensitive to

the thickness of the PML absorbing layer. And the lower bound, which shows the efficiency of

the a posteriori error estimate, is proved by using the bubble functions. In the last section, we

report numerical experiments to demonstrate the feasibility of our adaptive PML-FVM.

The rest of this paper is organized as follows. In Section 2, we introduce the model problem

and its variational formulation with the PML boundary condition. In Section 3, we present

the finite element discretization and the finite volume discretization for the scattering problem.

In Section 4, we analyze the residual-type a posteriori error estimate of the PML-FVM and

derive the global upper and local lower bounds of the error which lay down the basis of the

adaptive algorithm. In Section 5, we present numerical examples to show the effectiveness of

the proposed adaptive algorithm.

2. The Model Problem and the Problem Formulations

In this section, we present a mathematical model for the scattering problem, its DtN for-

mulation and its PML formulation.

2.1. The scattering problem

We consider an adaptive finite volume method for the time-harmonic Maxwell equations

(time dependence e−iωt)

∇×E− iωB = 0,

∇×H+ iωD = 0,
(2.1)

where E is the electric field, H is the magnetic field, and D and B are the electric and magnetic

displacement vectors in R3 respectively. In addition, the Drude-Born-Fedorov constitutive

equations satisfied by E,H,D and B can be stated as follows:

D = ε(x)(E+ β(x)∇×E),

B = µ(x)(H+ β(x)∇×H),
(2.2)

where x = (x1, x2, x3), and ε, µ and β denote the electric permittivity, the magnetic permeability

and the chirality admittance, respectively. After eliminating D and B, we can reduce (2.1) to

the following equations:

∇×E =
(
γ(x)

)2
β(x)E + iωµ(x)

(
γ(x)

k(x)

)2

H,

∇×H =
(
γ(x)

)2
β(x)H − iωε(x)

(
γ(x)

k(x)

)2

E,

(2.3)

where k(x) and γ(x) are defined respectively as

k(x) = ω
√
ε(x)µ(x),

(
γ(x)

)2
=

(
k(x)

)2

1−
(
k(x)β(x)

)2 .
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Through the article, it is assumed that (k(x)β(x))2 6= 1 for x ∈ R3. In addition, we assume that

the structure is L-periodic with respect to x1 and invariant with respect to x2. So it naturally

holds that

ε(x1 + nL, x3) = ε(x1, x3),

µ(x1 + nL, x3) = µ(x1, x3),

β(x1 + nL, x3) = β(x1, x3),

and E and H only depend on two variables x1 and x3. Since the medium is homogeneous away

from a region {(x1, x3) : b2 < x3 < b1}, there exists constants εj and µj such that

ε(x1, x3) = ε1, µ(x1, x3) = µ1, β(x1, x3) = 0 for x3 ≥ b1,

ε(x1, x3) = ε2, µ(x1, x3) = µ2, β(x1, x3) = 0 for x3 ≤ b2,

where εj , µj and bj are positive constants, j = 1, 2. As in [36], the following assumptions need

to be satisfied:

(1) ε(x), µ(x) and β(x) are all real valued L∞ functions, ε(x) ≥ ε0, µ(x) ≥ µ0 and β(x) ≥ 0,

where ε0 and µ0 are positive constants;

(2) d = 1− kβ ≥ d0 > 0, for some positive constant d0.

We note that the first assumption is a technical one and the second assumption is a essential

one needed for the following numerical analysis. In fact, the second assumption is relatively

reasonable since β is generally small.

Next some notation is introduced for proposing the weak formulation of the problem. Let

(EI,HI) be the incoming plane waves that are incident upon the grating surface from the top

EI = s̃eiq̃.x, HI = p̃eiq̃.x, s̃ =
p̃× q̃

ωε1
, q̃ · q̃ = ω2ε1µ1, p̃ · q̃ = 0,

where the incident wave vector q̃ takes the form

q̃ = (α, 0,−β1)T = ω
√
ε1µ1(sinθ, 0,−cosθ)T,

and 0 ≤ θ < π is the incidence angle. The grating diffraction theory motivates to look for

quasi-periodic solutions, i.e. solutions (E,H) such that (Eα, Hα) = e−iαx1(E,H) are L-periodic

in x1. Under the radiation condition imposed on the scattering problem, it is known that the

electromagnetic fields (E,H) is composed of bounded outgoing plane wave, plus the incident

wave (EI,HI) above the structure.

2.2. The DtN formulation

Thanks to the periodic structure, we restrict our discussion to the bounded domain (see

Fig. 2.1)

Ω = {(x1, x3) : 0 < x1 < L, b2 < x3 < b1},

along with the artificial boundaries Γj = {(x1, x3) : 0 < x1 < L, x3 = bj}, j = 1, 2.
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For any quasi-periodic function f ∈ H1/2(Γj), T
(j) is the Dirichlet-to-Neumann(DtN) oper-

ator defined by

T (j)f(x1) =
∑

n∈Z

iβn
j f

(n)ei(αn+α)x1 , 0 < x1 < L, j = 1, 2, (2.4)

where αn = 2πn/L, β0
1 = β and the Fourier coefficient f (n) and the coefficient βn

j are respec-

tively given by

f (n) =
1

L

∫ L

0

f(x)e−i(αn+α)x1dx1, (2.5)

βn
j =





(
k2j − (αn + α)2

) 1
2 , if k2j ≥ (αn + α)2,

i
(
(αn + α)2 − k2j

) 1
2 , if k2j < (αn + α)2.

(2.6)

Let E = (e1, e2, e)
T, H = (h1,h2, h)

T. One can straightforwardly verify that e1, e2,h1 and h2

can be expressed in terms of e and h. Then we obtain two coupled equations for e and h.

Following the procedure described in [36], the scattering problem is finally reduced to solving

the following problem:

−∇ ·
(
1

µ
∇e
)
− γ2

µ
e+ iω∇ · (β∇h)− iωγ2βh = 0 in Ω,

−∇ ·
(
1

ε
∇h
)
− γ2

ε
h− iω∇ · (β∇e) + iωγ2βe = 0 in Ω,

∂e

∂n
− T (1)e = −2iβ1s̃3e

iαx1−iβ1b1 on Γ1,

∂h

∂n
− T (1)h = −2iβ1p̃3e

iαx1−iβ1b1 on Γ1,

∂e

∂n
− T (2)e = 0,

∂h

∂n
− T (2)h = 0 on Γ2.

(2.7)

Define the following space which includes all the quasi-periodic functions:

X(Ω) =
{
f ∈ H1(Ω) : f(0, x3) = e−iαLf(L, x3)

}
.

Fig. 2.1. The grating problem geometry in one period L.
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Let u = (e, h)T, v = (p, q)T and w = (ϕ, ψ)T. By integration by parts, we can easily derive the

weak formulation of the scattering problem (2.7): Giving an incident plane wave

eI = s̃3e
iαx1−iβ1x3 , hI = p̃3e

iαx1−iβ1x3 ,

find u ∈ (X(Ω))2 such that

A(u, v) = 〈fI, v〉, ∀ v ∈
(
X(Ω)

)2
, (2.8)

where the sesquilinear form A on (X(Ω))2 × (X(Ω))2 is defined as

A(u, v) =

∫

Ω

(
1

µ
∇e · ∇p− γ2

µ
ep− iωβ∇h · ∇p− iωγ2βhp

)
dx

+

∫

Ω

(
1

ε
∇h · ∇q − γ2

ε
hq + iωβ∇e · ∇q + iωγ2βeq

)
dx

−
2∑

j=1

1

µj

∫

Γj

(T (j)e)pdx1 −
2∑

j=1

1

εj

∫

Γj

(T (j)h)qdx1, (2.9)

and

〈fI, v〉 = − 1

µ1

∫

Γ1

2iβ1eIpdx1 −
1

ε1

∫

Γ1

2iβ1hIqdx1. (2.10)

In [36], the uniqueness and existence of weak solutions to (2.8) was established for all but

possibly a discrete set of frequencies ω. Here we simply assume that the variational problem

(2.8) has unique solutions in (X(Ω))2. Then the following inf-sup condition:

sup
06=v∈(X(Ω))2

|A(w, v)|
‖v‖(H1(Ω))2

≥ γ‖w‖(H1(Ω))2 , ∀w ∈
(
X(Ω)

)2
(2.11)

with a constant γ > 0, based on the general theory of Babuška and Aziz [4], implies the estimate

‖u‖(H1(Ω))2 ≤ C0

(
‖eI‖L2(Γ1) + ‖hI‖L2(Γ1)

)
. (2.12)

2.3. The PML formulation

Now we turn to the description of absorbing PML layers. We surround the computational

domain Ω with two PML layers ΩPML
j of thickness δj , j = 1, 2, where

ΩPML
1 = {(x1, x3) : 0 < x1 < L, b1 < x3 < b1 + δ1},

ΩPML
2 = {(x1, x3) : 0 < x1 < L, b2 − δ2 < x3 < b2}.

Let s(x3) = s1(x3) + is2(x3) be model medium property satisfying

s1, s2 ∈ C(R), s1 ≥ 1, s2 ≥ 0, and s(x3) = 1, b2 ≤ x3 ≤ b1. (2.13)

As stated in [15], compared with the original PML condition which sets s1 ≡ 1 in the PML

domain, a variable s1 chosen here can attenuate both the outgoing and evanescent waves. The

advantage of this extension makes our following discussed method insensitive to the distance of

the PML region from the structure.
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According to the general idea developed for designing PML absorbing layers, we introduce

the PML differential operators

L1 := ∇ ·
(
1

µ
A∇
)
+
γ2

µ
s(x3),

L2 := ∇ ·
(
1

ε
A∇
)
+
γ2

ε
s(x3),

L3 := −iω∇ · (β∇) + iωγ2β,

where

A =

(
A11 0

0 A22

)
=



s(x3) 0

0
1

s(x3)


 .

The PML equations in the PML region (cf. [36]) can be written as

L1(ê − eI) = 0 in ΩPML
1 , L1(ê) = 0 in ΩPML

2 ,

L2(ĥ− hI) = 0 in ΩPML
1 , L2(ĥ) = 0 in ΩPML

2 .

Introduce the differential operator

L =

( L1 L3

−L3 L2

)
,

and D = {(x1, x3) : 0 < x1 < L, b2 − δ2 < x3 < b1 + δ1}. By using the assumption (2.13), we

can formulate the desired PML model to be numerically solved in this paper

Lû = −g in D (2.14)

with a quasi-periodic boundary condition in x1 direction

û(0, x3) = e−iαLû(L, x3), b2 − δ2 ≤ x3 ≤ b1 + δ1,

and the Dirichlet condition

û = uI on ΓPML
1 = {(x1, x3) : 0 < x1 < L, x3 = b1 + δ1},

û = 0 on ΓPML
2 = {(x1, x3) : 0 < x1 < L, x3 = b2 − δ2},

where û = (ê, ĥ)T, uI = (eI, hI)
T and the function g is defined as

g =

{
−LuI in ΩPML

1 ,

0, otherwise.

Introduce the spaces

X(G) =
{
f ∈ H1(G) : f(0, x3) = e−iαLf(L, x3)

}
, ∀G ⊂ D,

X0(D) =
{
f ∈ X(D) : f = 0 on ΓPML

1

⋃
ΓPML
2

}
.

Now we consider the weak formulation of (2.14) which reads: Find û ∈ (X(D))2 such that

û = uI on ΓPML
1 , û = 0 on ΓPML

2 , and

AD(û, v) =

∫

D

g · vdx, ∀ v ∈
(
X0(D)

)2
, (2.15)
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where for G ⊆ D, the sesquilinear form AG on (X(G))2 × (X(G))2 is defined as

AG(û, v) =

∫

G

(
1

µ
A∇ê · ∇p− γ2

µ
s(x3)êp− iωβ∇ĥ · ∇p− iωγ2βĥp

)
dx

+

∫

G

(
1

ε
A∇ĥ · ∇q − γ2

ε
s(x3)ĥq + iωβ∇ê · ∇q + iωγ2βêq

)
dx. (2.16)

For the PML model, we introduce the following DtN operator T (j,PML) in [15]:

T (j,PML)f(x1) =
∑

n∈Z

iβn
j coth

(
− iβn

j σj
)
f (n)ei(αn+α)x1 , 0 < x1 < L, j = 1, 2

for any quasi-periodic function f , where coth(ν) = (eν + e−ν)/(eν − e−ν) and

σ1 =

∫ b1+δ1

b1

s(ν)dν, σ2 =

∫ b2

b2−δ2

s(ν)dν. (2.17)

Similar to the argument in [36], we arrive at the equivalent formulation of (2.15) in the do-

main Ω: Find û ∈ (X(Ω))2 such that

APML(û, v) = 〈f̃I, v〉, ∀ v ∈
(
X(Ω)

)2
, (2.18)

where the sesquilinear form A on (X(Ω))2 × (X(Ω))2 is defined as

APML(û, v) =

∫

Ω

(
1

µ
∇ê · ∇p− γ2

µ
êp− iωβ∇ĥ · ∇p− iωγ2βĥp

)
dx

+

∫

Ω

(
1

ε
∇ĥ · ∇q − γ2

ε
ĥq + iωβ∇ê · ∇q + iωγ2βêq

)
dx

−
2∑

j=1

1

µj

∫

Γj

(
T (j,PML)ê

)
pdx1 −

2∑

j=1

1

εj

∫

Γj

(
T (j,PML)ĥ

)
qdx1, (2.19)

and

〈f̃I, v〉 = − 1

µ1

∫

Γ1

iβ1
(
1 + coth(−iβ1σ1)

)
eIpdx1

− 1

ε1

∫

Γ1

iβ1
(
1 + coth(−iβ1σ1)

)
hIqdx1.

We remark that the relation of the two variational equations (2.15) and (2.18) and the well-

posedness of their solutions are studied in [36]. Throughout this paper, we assume that the

variational problem (2.15) has a unique solution.

3. The Discrete Problem

In this section, we develop the PML finite element approximation and the PML finite volume

approximation of the PML problem (2.15). In addition, we will give the a posteriori error

estimate which plays an important role for the adaptive PML finite volume method.
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3.1. Finite element approximation

Let Mh be a regular triangulation of the domain D. It is required that any triangle T ∈ Mh

must be completely included in Ω,ΩPML
1 , or ΩPML

2 . To deal with the quasi-periodic boundary

conditions, we further assume that if (0, z) is a node on the left boundary, then (L, z) must be

a node on the right boundary, and vice versa. Let Uh be space of the conforming linear finite

element over Mh, i.e.

Uh :=
{
ϕh ∈ X(D) : ϕh|T ∈ P1(T ), ∀T ∈ Mh,

ϕh(0, x3) = e−iαLϕh(L, x3), b2 − δ2 < x3 < b1 + δ1
}
,

where P1(T ) is the space of all piecewise linear polynomials. Denote by U0
h = Uh ∩ X0(D),

and the operator Ih: (C(D))2 → (Uh)
2 is chosen as the standard finite element interpolation

operator.

The PML finite element approximation to (2.15) reads as follows: Find ûh=(êh, ĥh)
T∈(Uh)

2

such that ûh = IhuI on ΓPML
1 , ûh = 0 on ΓPML

2 , and

AD(ûh, vh) =

∫

D

g · vhdx, ∀ vh ∈
(
U0
h

)2
. (3.1)

In this work, the existence and uniqueness of the discrete problem (3.1) for sufficiently small h

can be proved by using the inf-sup condition satisfied by the continuous problem (2.15), the

argument of Schatz [29] and the general theory in [4]. Throughout this paper, we assume that

the discrete problem (3.1) has a unique solution.

3.2. Finite volume approximation

Let M∗
h be a dual partition in D related to Mh, and its elements are closed polygons called

the control volumes. Let TQ be the barycenter of the element T ∈ Mh. We connect TQ with line

segments to the midpoints of the edges of T and divide the element T into three quadrilaterals

TP , where P ∈ N (K) and N (K) is the set of vertices of T . For each node P of Mh, the

corresponding control volume T ∗
P is constructed by the union of the subregions TP sharing the

node P . In the same way as [9], we finally obtain a collection of control volumes covering the

domain D, which is called the dual partition M∗
h. The test function space Vh corresponding to

M∗
h is taken as the piecewise constant function space, i.e.

Vh :=
{
ψh ∈ L2(D) : ψh|T∗

P
is constant for P ∈ N I ,

and ψh|T∗

P
= 0 for P ∈ N j , j = 1, 2

}
,

where N I and N j respectively denote the sets of all vertices on the interior domain of D and

the quasic-periodic boundaries and the sets of all vertices on ΓPML
j , j = 1, 2. For wh ∈ (Uh)

2,

let I∗
h be the interpolation projection operator of wh onto the test space (Vh)

2

I∗
hwh =

∑

P∈N I

wh(P )χP (x),

where χP is the characteristic function of the control volume T ∗
P .

Now we formulate the finite volume scheme for the PML problem (2.14). The corresponding

variational formulation is derived by multiplying (2.14) by I∗
hvh, integrating by parts over

each T ∗
P and summing over all P ∈ N I

ÃD

(
û, I∗

hvh
)
= −

∫

D

g · I∗
hvhdx, ∀ vh ∈ (Uh)

2, (3.2)
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where vh = (ph, qh)
T, n is the outer-normal vector of the associated domain, and

ÃD

(
û, I∗

hvh
)
=
∑

P∈N I

ph(P )

(∫

∂T∗

P

(
1

µ
A∇ê · n− iωβ∇ĥ · n

)
ds

+

∫

T∗

P

(
γ2

µ
s(x3)ê + iωγ2βĥ

)
dx

)

+
∑

P∈N I

qh(P )

(∫

∂T∗

P

(
1

ε
A∇ĥ · n+ iωβ∇ê · n

)
ds

+

∫

T∗

P

(
γ2

ε
s(x3)ĥ− iωγ2βê

)
dx

)
.

The PML finite volume approximation to (3.2) reads as follows: Find ũh = (ẽh, h̃h)
T ∈ (Uh)

2

such that ũh = IhuI on ΓPML
1 , ũh = 0 on ΓPML

2 , and

ÃD

(
ũh, I∗

hvh
)
= −

∫

D

g · I∗
hvhdx, ∀ vh ∈ (Uh)

2. (3.3)

We must point out that, to the best of our knowledge, no relevant results on the well-posedness

and the priori error estimate have been derived for (3.3). Here our interest is focused on the

a posteriori and convergence analysis for the adaptive PML finite volume method. Thus, in the

following it is assumed that the discrete problem (3.3) has a unique solution.

3.3. The a posteriori error estimate

We begin with introducing some notation to define the error indicators. For any T ∈ Mh,

denote by hT its diameter, we define the element residual

RT := Lũh|T + g|T .

Let Bh be the set of all the sides that do not lie on ΓPML
1 and ΓPML

2 . For any F ∈ Bh, hF stands

for its length. Given an interior edge F ∈ Bh which is the common edge of T1 and T2 ∈ Mh,

we define the jump residual across F as

J
(1)
F =

(
1

µ
A∇ẽh − iωβ∇h̃h

) ∣∣∣
T1

· n1 +

(
1

µ
A∇ẽh − iωβ∇h̃h

) ∣∣∣
T2

· n2,

J
(2)
F =

(
1

ε
A∇h̃h + iωβ∇ẽh

) ∣∣∣
T1

· n1 +

(
1

ε
A∇h̃h + iωβ∇ẽh

) ∣∣∣
T2

· n2,

(3.4)

where nj denotes the unit outward normal vector to the boundary of Tj, j = 1, 2. Define

Γ1 = {(x1, x3) : x1 = 0, b2 − δ2 < x3 < b1 + δ1},
Γ2 = {(x1, x3) : x1 = L, b2 − δ2 < x3 < b1 + δ1}.

If F = Γ1

⋂
∂T for some element T ∈ Mh, F

′ is a corresponding edge on Γ2 which also belongs

to some element T ′, the jump residuals across F and F ′ are defined by

J
(1)
F =

(
1

µ
A11

∂ẽh
∂x1

− iωβ
∂h̃h
∂x1

) ∣∣∣∣
T1

− e−iαL

(
1

µ
A11

∂ẽh
∂x1

− iωβ
∂h̃h
∂x1

) ∣∣∣∣
T ′

1

, (3.5a)
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J
(2)
F =

(
1

ε
A11

∂h̃h
∂x1

+ iωβ
∂ẽh
∂x1

) ∣∣∣∣
T1

− e−iαL

(
1

ε
A11

∂h̃h
∂x1

+ iωβ
∂ẽh
∂x1

) ∣∣∣∣
T ′

1

, (3.5b)

J
(1)
F ′ = eiαL

(
1

µ
A11

∂ẽh
∂x1

− iωβ
∂h̃h
∂x1

) ∣∣∣∣
T1

−
(
1

µ
A11

∂ẽh
∂x1

− iωβ
∂h̃h
∂x1

)∣∣∣∣
T ′

1

, (3.5c)

J
(2)
F ′ = eiαL

(
1

ε
A11

∂h̃h
∂x1

+ iωβ
∂ẽh
∂x1

)∣∣∣∣
T1

−
(
1

ε
A11

∂h̃h
∂x1

+ iωβ
∂ẽh
∂x1

)∣∣∣∣
T ′

1

. (3.5d)

The local error indicator ηT for any T ∈ Mh is defined as follows:

ηT = max
x∈T̃

w(x3)



hT ‖RT ‖(L2(T ))2 +

(
1

2

∑

F⊂∂T

hF ‖JF ‖2(L2(F ))2

) 1
2



 , (3.6)

where JF = (J
(1)
F ,J

(2)
F )T, T̃ is the union of all the elements in Mh with nonempty intersection

with T , and

w(x3) =

{
1, if x ∈ Ω,

|s(x3)|e−Rj(x3), if x ∈ ΩPML
j

with Rj(x3) being defined below, j = 1, 2.

We now state the main result, which lays a theoretical foundation for the following mesh

adaptive strategy.

Theorem 3.1. Assume that u and ũh are the solutions of (2.8) and (3.3), respectively. Then

there exists a positive constant C, depending only on the minimum angle of the mesh Mh such

that the following a posteriori error estimate holds:

‖u− ũh‖(H1(Ω))2 ≤ C

(
(1 + C1 + C2)

(
∑

T∈Mh

η2T

) 1
2

+ ĈM1 ‖ũh − uI‖(L2(Γ1))2

+ ĈM2 ‖ũh‖(L2(Γ2))2
+ ĈM3 ‖uI − IhuI‖(L2(ΓPML

1
))2

)
,

where the constants Mj,M3, Cj and Ĉ are defined in the following Lemmas 4.4, 4.9, and 4.10,

respectively, j = 1, 2.

It must be said that the error estimate can be viewed as a extension of the related work

for solving the grating problem(cf. [15]). As the corresponding constants used in [15], Mj,

j = 1, 2, and M3 decays exponentially with the PML parameters σR
j and σI

j , where σ
R
j and σI

j

is respectively the real and imaginary parts of σj defined in (2.17). In particular, the exponential

decay factors e−Rj(x3) in the PML region ΩPML
j allows us to take thicker PML layers, and the

result is that the thicker PML layers allow a smaller PML medium property so as to ensure

numerical stability.

4. The a Posteriori Error Analysis

In the section, we derive the a posteriori error estimate in Theorem 3.1 and the local lower

bound in Theorem 4.1. We start with the following lemma (cf. [15]).
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Lemma 4.1. For any f ∈ X(Ω), there holds

‖f‖
H

1
2 (Γj)

≤ Ĉ‖f‖H1(Ω)

with Ĉ =
√
1 + (b1 − b2)−1. Here if f(x1, bj) =

∑
n∈Z f

(n)(bj)e
i(αn+α)x1 on Γj,

‖f‖
H

1
2 (Γj)

=

(
L
∑

n∈Z

(
1 + |αn + α|2

) 1
2 |f (n)(bj)|2

) 1
2

, j = 1, 2.

Let Ih : X(D) → Uh be the Scott-Zhang interpolation operator. Both the operators Ih
and I∗

h keep the quasi-periodic boundary conditions and enjoy the following properties (see,

e.g. [30, 33]).

Lemma 4.2. For any f ∈ X(D), there exists a function fh = Ihf ∈ Uh such that

‖f − fh‖L2(T ) ≤ ChT ‖∇f‖L2(T̃ ),

‖f − fh‖L2(F ) ≤ Ch
1
2

F ‖∇f‖L2(F̃ ),

‖fh − I∗
hfh‖L2(T ) ≤ ChT ‖∇fh‖L2(T ),

‖∇fh‖L2(T ) ≤ C‖∇f‖L2(T̃ ),

where T̃ and F̃ are the union of all the elements in Mh with nonempty intersection with T and

F , respectively.

4.1. Error representation formulae

For any v ∈ (X(Ω))2, we extend v to ΩPML
j as follows:

ṽ =
∑

n∈Z

ζ
n

j (x3)

ζ
n

j (bj)
v(n)ei(αn+α)x1 in ΩPML

j , j = 1, 2,

where the definition of ζnj (x3) can be found in [15], v(n) is the Fourier coefficient of the vector

function as defined above, and

v(x1, bj) =
∑

n∈Z

v(n)ei(αn+α)x1 .

It can be readily seen that ṽ = v on Γj and Lṽ = 0 in ΩPML
j , j = 1, 2.

The following lemma can be proved in a fashion similar to that of [15, Lemma 4.1].

Lemma 4.3. For any v, w ∈ (X(Ω))2, there holds

∫

Γj

T (j,PML)ϕpdx1 = −
∫

Γj

ϕ
∂p̃

∂nj
dx1,

∫

Γj

T (j,PML)ψqdx1 = −
∫

Γj

ψ
∂q̃

∂nj
dx1,

where nj is unit outer normal to ΩPML

j , j = 1, 2.
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Whenever there is no confusion, ṽ is written as v in ΩPML
j , j = 1, 2. Besides, we use the

following notations:

△
n
j=

∣∣k2j − (αn + α)2
∣∣ 12 , Uj =

{
n : k2j > (αn + α)2

}
,

△
−
j = min

{
△

n
j : n ∈ Uj

}
, △

+
j = min

{
△

n
j : n /∈ Uj

}
, j = 1, 2.

The following lemmas(cf. [15]) is important in the subsequent analysis.

Lemma 4.4. For any ϕ, ψ ∈ X(Ω), there holds

∫

Γj

(
T (j) − T (j,PML)

)
ϕψdx1 ≤ Mj‖ϕ‖L2(Γj)‖ψ‖L2(Γj),

where

Mj = max

(
2 △

−
j

e2σ
I
j
△

−

j − 1
,

2 △
+
j

e2σ
R
j
△

+

j − 1

)

and σR
j , σ

I
j are the real and imaginary parts of σj defined in (2.17), j = 1, 2.

Lemma 4.5. For any v ∈ (X(Ω))2, which is extended to be a vector function in (X(D))2 as

shown above, there holds

A(u − ũh, v) =

∫

D

gvdx− AD(ũh, v) +
1

µ1

∫

Γ1

(
T (1) − T (1,PML)

)
(ẽh − eI)pdx1

+
1

µ2

∫

Γ2

(
T (2) − T (2,PML)

)
ẽhpdx1 +

1

ε1

∫

Γ1

(
T (1) − T (1,PML)

)
(h̃h − hI)qdx1

+
1

ε2

∫

Γ2

(
T (2) − T (2,PML)

)
h̃hqdx1 −

1

µ1

∫

ΓPML

1

(eI − IheI)
1

s(x3)

∂p

∂x3
dx1

− 1

ε1

∫

ΓPML

1

(hI − IhhI)
1

s(x3)

∂q

∂x3
dx1. (4.1)

Proof. From (2.8), (2.18) and the definition of the sesquilinear form A and APML, we know

that

A(u− û, v) = 〈fI, v〉 − 〈f̃I, v〉+APML(û, v)−A(û, v)

=
1

µ1

∫

Γ1

(
T (1) − T (1,PML)

)
(ê− eI)pdx1 +

1

µ2

∫

Γ2

(
T (2) − T (2,PML)

)
êpdx1

+
1

ε1

∫

Γ1

(
T (1) − T (1,PML)

)
(ĥ− hI)qdx1 +

1

ε2

∫

Γ2

(
T (2) − T (2,PML)

)
ĥqdx1, (4.2)

where we have used

∂uI
∂n

− T (1)uI = −2iβ1uI,

∂uI
∂n

− T (1,PML)uI = −iβ1
(
1 + coth(−iβ1σ1)

)
uI

on Γ1 to derive the last equality. It follows from (4.2) that

A(u− ũh, v) = A(u − û, v) +APML(û− ũh, v)
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−
2∑

j=1

1

µj

∫

Γj

(
T (j) − T (j,PML)

)
(ê− ẽh)pdx1

−
2∑

j=1

1

εj

∫

Γj

(
T (j) − T (j,PML)

)
(ĥ− h̃h)qdx1

= APML(û− ũh, v) +
1

µ1

∫

Γ1

(
T (1) − T (1,PML)

)
(ẽh − eI)pdx1

+
1

ε1

∫

Γ1

(
T (1) − T (1,PML)

)
(h̃h − hI)qdx1

+
1

µ2

∫

Γ2

(
T (2) − T (2,PML)

)
ẽhpdx1 +

1

ε2

∫

Γ2

(
T (2) − T (2,PML)

)
h̃hqdx1 (4.3)

Using Lemma 4.3 yields

APML(û− ũh, v) = AΩ(û− ũh, v)−
2∑

j=1

1

µj

∫

Γj

T (j,PML)(ê− ẽh)pdx1 (4.4)

−
2∑

j=1

1

εj

∫

Γj

T (j,PML)(ĥ− h̃h)qdx1

= AΩ(û− ũh, v) +

2∑

j=1

1

µj

∫

Γj

(ê − ẽh)
∂p

∂n
dx1 +

2∑

j=1

1

εj

∫

Γj

(ĥ− h̃h)
∂q

∂n
dx1.

From the Green formula and Lv = 0 in ΩPML
j , j = 1, 2, we obtain that

AΩPML
j

(û− ũh, v) =

∫

ΩPML
j

(û− ũh) · Lvdx +
1

µj

∫

∂ΩPML
j

(ê − ẽh)A∇p · nds

+
1

εj

∫

∂ΩPML
j

(
ĥ− h̃h

)
A∇q · nds

=
1

µj

(∫

Γj

(ê− ẽh)
∂p

∂n
ds+

∫

ΓPML
j

(ê− ẽh)
1

s(x3)

∂p

∂n
ds

)

+
1

εj

(∫

Γj

(
ĥ− h̃h

) ∂q
∂n

ds+

∫

ΓPML
j

(
ĥ− h̃h

) 1

s(x3)

∂q

∂n
ds

)
,

which together with (4.4) and (2.15) implies that

APML(û− ũh, v) =

∫

D

gvdx−AD(ũh, v)−
1

µ1

∫

ΓPML
1

(ê− ẽh)
1

s(x3)

∂p

∂n
ds

− 1

ε1

∫

ΓPML
1

(
ĥ− h̃h

) 1

s(x3)

∂q

∂n
ds,

where we additionally employed û = ũh = 0 on ΓPML
2 . Then the proof is completed by plugging

the above equality to (4.3). �

4.2. L2-orthogonality and estimates for the residual

The following lemma will play a similar role as Galerkin orthogonality property for the

classic finite element method and is important in deriving the a posteriori error analysis.
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Lemma 4.6. For the interior residual RT and the jump residual Je, there holds

∑

T∈Mh

(∫

T

RT · I∗
hvhdx−

∑

F⊂∂T

1

2

∫

F

JF · I∗
hvhds

)
= 0, ∀ vh ∈ (Uh)

2. (4.5)

Proof. For each control volume T ∗
P ∈ M∗

h, the following vector equations are derived from

(3.3) by taking I∗
hvh = (1, 0)T and (0, 1)T:

∫

∂T∗

P




1

µ
A∇ẽh · n− iωβ∇h̃h · n

1

ε
A∇h̃h · n+ iωβ∇ẽh · n


 ds+

∫

T∗

P




γ2

µ
s(x3)ẽh + iωγ2βh̃h

γ2

ε
s(x3)h̃h − iωγ2βẽh


 dx = −

∫

T∗

P

gdx.

Using the integration by parts, we easily obtain the following vector formulas:

∫

T∗

P



−∇ ·

(
1

µ
A∇ẽh

)
+ iω∇ ·

(
β∇h̃h

)

−∇ ·
(
1

ε
A∇h̃h

)
− iω∇ ·

(
β∇ẽh

)


 dx

=
∑

T∈Mh

∫

∂(T∗

P
∩T )



− 1

µ
A∇ẽh · n+ iωβ∇h̃h · n

−1

ε
A∇h̃h · n− iωβ∇ẽh · n


 ds

=

∫

∂T∗

P



− 1

µ
A∇ẽh · n+ iωβ∇h̃h · n

−1

ε
A∇h̃h · n− iωβ∇ẽh · n


 ds−

∑

T∈Mh

∑

F⊂∂T

1

2

∫

F∩T∗

P

(
J
(1)
F

J
(2)
F

)
ds.

It follows from the above two vector equations that
∫

T∗

P

(Lũh + g)dx−
∑

T∈Mh

∑

F⊂∂T

1

2

∫

F∩T∗

P

JF ds = 0. (4.6)

Then the proof is completed by doing dot product of (4.6) and I∗
hvh, taking the sum over all

T ∗
P ∈ M∗

h and using the quasi-periodicity of the vector function vh. �

The two lemmas below establish robust estimates for the interior residual and jump residual.

Lemma 4.7. There exists a constant C > 0 that is independent of h such that the estimate

∑

T∈Mh

∫

T

RT ·
(
v − I∗

hvh
)
dx ≤ C

∑

T∈Mh

hT ‖RT‖(L2(T ))2‖∇v‖(L2(T̃ ))2

holds true for the interior residual RT and v ∈ (X(D))2.

Proof. By triangle inequality and Lemma 4.2, we get

‖v − I∗
hvh‖(L2(T ))2 ≤ ‖v − vh‖(L2(T ))2 + ‖vh − I∗

hvh‖(L2(T ))2

≤ ‖p− ph‖L2(T ) + ‖ph − I∗
hph‖L2(T )

+ ‖q − qh‖L2(T ) + ‖qh − I∗
hqh‖L2(T )

≤ ChT
(
‖∇p‖L2(T̃ ) + ‖∇q‖L2(T̃ )

)
,
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where vh = Ihv. We have from the Cauchy-Schwarz inequality and the above inequality that

∑

T∈Mh

∫

T

RT ·
(
v − I∗

hvh
)
dx ≤ C

∑

T∈Mh

hT ‖RT ‖(L2(T ))2
(
‖∇p‖L2(T̃ ) + ‖∇q‖L2(T̃ )

)
,

which completes the proof. �

Lemma 4.8. There exists a constant C > 0 that is independent of h such that the estimate

∑

T∈Mh

∑

F⊂∂T

1

2

∫

F

JF ·
(
v − I∗

hvh
)
ds

≤ C
∑

T∈Mh

∑

F⊂∂T

h
1
2

F ‖JF ‖(L2(F ))2‖∇v‖(L2(T̃ ))2

holds true for the jump residual J
(j)
F and v ∈ (X(D))2, j = 1, 2.

Proof. First, it follows from Lemma 4.2 and the fact that I∗
hvh denotes a piecewise constant

vector function that

h−1
F ‖p− I∗

hph‖2L2(F ) ≤ C
(
h−2
F ‖p− I∗

hph‖2L2(F̃ )
+ ‖∇p‖2

L2(F̃ )

)

≤ C
(
h−2
F ‖p− ph‖2L2(F̃ )

+ h−2
F ‖ph − I∗

hph‖2L2(F̃ )
+ ‖∇p‖2

L2(F̃ )

)

≤ C‖∇p‖2
L2(T̃ )

,

where to derive the first inequality, we use the trace inequality

‖f‖2L2(F ) ≤ C
(
h−1
F ‖f‖2L2(T ) + hF ‖∇f‖2L2(T )

)
, ∀ f ∈ H1(T ), F ⊂ ∂T, T ∈ Mh,

similarly, there holds

h−1
F ‖q − I∗

hqh‖2L2(F ) ≤ C‖∇q‖2
L2(T̃ )

,

where vh = Ihv.
Then, using the above inequality and the Cauchy-Schwarz inequality leads to

∑

T∈Mh

∑

F⊂∂T

1

2

∫

F

JF ·
(
v − I∗

hvh
)
ds

=
∑

T∈Mh

∑

F⊂∂T

1

2

∫

F

(
J
(1)
F

(
p− I∗

hph
)
+ J

(2)
F

(
q − I∗

hqh
))
ds

≤ C
∑

T∈Mh

∑

F⊂∂T

h
1
2

F

(
‖J(1)

F ‖L2(F )‖∇p‖L2(T̃ ) +
∥∥J(2)

F

∥∥
L2(F )

‖∇q‖L2(T̃ )

)
,

which completes the proof. �

4.3. Proof of Theorem 3.1

As in [15], R1(x3) and R2(x3) are defined by

R1(x3) = min

{
△

−
1

∫ x3

b1

s2(t)dt,△
+
1

∫ x3

b1

s1(t)dt

}
, x3 ≥ b1,

R2(x3) = min

{
△

−
2

∫ b2

x3

s2(t)dt,△
+
2

∫ b2

x3

s1(t)dt

}
, x3 ≤ b2.
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The following two lemmas are concerned with the estimates for the extension, and can be

respectively proven in the similar way as [15, Lemmas 4.3, 4.4] are done.

Lemma 4.9. For any v ∈ (X(Ω))2, which is extended to be a vector function in (X(D))2 as

shown above, there holds

∥∥s−1eRj(x3)∇v
∥∥
(L2(ΩPML

j
))2

≤ Cj‖v‖(H1(Ω))2 ,

where

Cj = Ĉmax


 2kjδ

1
2

j

1− e−2△−

j
σI
j

,
2
(
1 + 2δj(△

+
j +kj)

) 1
2

1− e−2△+

j
σR
j


 , j = 1, 2.

Lemma 4.10. For any v ∈ (X(Ω))2, which is extended to be a vector function in (X(D))2 as

shown above, there holds

∥∥∥∥s
−1 ∂v

∂x3

∥∥∥∥
(L2(ΓPML

1
))2

≤ ĈM3‖v‖(H1(Ω))2 ,

where

M3 = max

(
2 △

−
1 e−△

−

1
σI
1

1− e−2△−

1
σI
1

,
2 △

+
1 e−△

+

1
σR
1

1− e−2△+

1
σR
1

)
.

Now we are in the position to prove Theorem 3.1.

Proof. Denote by

J
1 :=

∫

D

gvdx, J
2 := −AD(ũh, v),

J
3 :=

1

µ1

∫

Γ1

(
T (1) − T (1,PML)

)
(ẽh − eI)pdx1, J

4 :=
1

µ2

∫

Γ2

(
T (2) − T (2,PML)

)
ẽhpdx1,

J
5 :=

1

ε1

∫

Γ1

(
T (1) − T (1,PML)

)
(h̃h − hI)qdx1, J

6 :=
1

ε2

∫

Γ2

(
T (2) − T (2,PML)

)
h̃hqdx1,

J
7 := − 1

µ1

∫

ΓPML
1

(eI − IheI)
1

s(x3)

∂p

∂x3
dx1, J

8 := − 1

ε1

∫

ΓPML
1

(hI − IhhI)
1

s(x3)

∂q

∂x3
dx1.

It follows from the error representation formula (4.1) that

A(u − ũh, v) :=

8∑

i=1

J
i.

Using integration by parts, (3.4)-(3.6) and Lemma 4.6, we obtain

J
1 + J

2 =
∑

T∈Mh

(∫

T

RT · vdx

−
∑

F⊂∂T

∫

F

(
1

µ
A∇ẽh · np+ 1

ε
A∇h̃h · nq − iωβ∇h̃h · np+ iωβ∇ẽh · nq

)
ds

)

=
∑

T∈Mh

(∫

T

RT · (v − I∗
hvh)dx−

∑

F⊂∂T

1

2

∫

F

(
J
(1)
F (p− I∗

hph) + J
(2)
F (q − I∗

hqh)
)
ds

)
.
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From Lemmas 4.7, 4.8, (3.6) and Lemma 4.9, we have

|J1 + J
2| ≤ C

∑

T∈Mh

ηT ‖w−1∇v‖(L2(T̃ ))2

≤ C(1 + C1 + C2)

(
∑

T∈Mh

η2T

) 1
2

‖v‖(H1(Ω))2 . (4.7)

Next, we estimate the term J3. Employing Lemma 4.4 yields

J
3 ≤ M1‖ẽh − eI‖L2(Γ1)‖p‖L2(Γ1),

similarly, there holds

J
4 ≤ M2‖ẽh‖L2(Γ2)‖p‖L2(Γ2),

J
5 ≤ M1

∥∥h̃h − hI
∥∥
L2(Γ1)

‖q‖L2(Γ1),

J
6 ≤ M2

∥∥h̃h
∥∥
L2(Γ2)

‖q‖L2(Γ2).

Combining the above four inequality with Lemma 4.1 gives
∣∣∣∣∣

6∑

i=3

J
i

∣∣∣∣∣ ≤ Ĉ
(
M1‖ũh − uI‖(L2(Γ1))2 +M2‖ũh‖(L2(Γ2))2

)
‖v‖(H1(Ω))2 . (4.8)

It remains to estimate the term J7 and J8. Applying Lemmas 4.1 and 4.10, we have

|J7 + J
8| ≤ C

(
‖eI − IheI‖L2(ΓPML

1
)

∥∥∥∥s
−1 ∂p

∂x3

∥∥∥∥
L2(ΓPML

1
)

+ ‖hI − IhhI‖L2(ΓPML
1

)

∥∥∥∥s
−1 ∂q

∂x3

∥∥∥∥
L2(ΓPML

1
)

)

≤ ĈM3‖uI − IhuI‖(L2(ΓPML
1

))2‖v‖(H1(Ω))2 . (4.9)

Finally, the proof of Theorem 3.1 follows by combining (4.7)-(4.9) and the inf-sup condi-

tion (2.11). �

4.4. Local lower bound

In this subsection, we establish a posteriori lower bound for û − ũh in the H1 norm. To

obtain the local lower bound, we need to use the arguments similar to those in [19] with the

aid of the bubble functions.

To proceed, we introduce some notations. Let Ra
T be the integral mean of RT on T , and Ja

F

be the integral mean of JF on F, i = 1, 2.

Theorem 4.1. There exist constants C3, C4 and C5, depending on the minimum angle of Mh

and the maximum value of w(x3) such that for any T ∈ Mh, there holds

η2T ≤ C3‖û− ũh‖2(H1(T∗))2 + C4

∑

T⊂T∗

h2T
∥∥RT −Ra

T

∥∥2
(L2(T ))2

+ C5

∑

F⊂∂T

hF
∥∥JF − Ja

F

∥∥2
(L2(F ))2

,

where T ∗ consists of all elements sharing at least one common side with T .
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Proof. In the following, the proof is divided into three steps.

Step 1: Interior residual. Let bT = 27λ1λ2λ3 be the bubble function, which is supported in

T and satisfies

∥∥bTRa
T

∥∥
(L2(T ))2

+ hT
∥∥∇
(
bTR

a
T

)∥∥
(L2(T ))2

≤ C
∥∥Ra

T

∥∥
(L2(T ))2

. (4.10)

Using (2.15), integration by parts, the Cauchy-Schwarz inequality and (4.10), we have

C
∥∥Ra

T

∥∥2
(L2(T ))2

≤
(
Ra

T , bTR
a
T

)
=
(
RT , bTR

a
T

)
−
(
RT −Ra

T , bTR
a
T

)

= −AT

(
ũh, bTR

a
T

)
+
(
g, bTR

a
T

)
−
(
RT −Ra

T , bTR
a
T

)

= AT

(
û− ũh, bTR

a
T

)
−
(
RT −Ra

T , bTR
a
T

)

≤ C
(
‖∇(û−ũh)‖(L2(T ))2

∥∥∇
(
bTR

a
T

)∥∥
(L2(T ))2

+‖û−ũh‖(L2(T ))2
∥∥bTRa

T

∥∥
(L2(T ))2

+
∥∥RT −Ra

T

∥∥
(L2(T ))2

∥∥bTRa
T

∥∥
(L2(T ))2

)

≤ C
(
h−1
T ‖û− ũh‖(H1(T ))2 +

∥∥RT −Ra
T

∥∥
(L2(T ))2

) ∥∥Ra
T

∥∥
(L2(T ))2

,

which implies that

∥∥Ra
T

∥∥
(L2(T ))2

≤ C
(
h−1
T ‖û− ũh‖(H1(T ))2 +

∥∥RT −Ra
T

∥∥
(L2(T ))2

)
.

It follows from the triangle inequality and the above estimate that

h2T ‖RT ‖2(L2(T ))2 ≤ h2T
∥∥Ra

T

∥∥2
(L2(T ))2

+ h2T
∥∥RT −Ra

T

∥∥2
(L2(T ))2

≤ C
(
‖û− ũh‖2(H1(T ))2 + h2T

∥∥RT −Ra
T

∥∥2
(L2(T ))2

)
. (4.11)

Step 2: Jump residual. For any interior side F = ∂T1
⋂
∂T2, let bF = 4λ1λ2 be an edge

bubble function, which is supported in wF = T1 ∪ T2 and satisfies

h
− 1

2

F

∥∥bFJa
F

∥∥
(L2(Ti))2

+ h
1
2

F

∥∥∇
(
bFJ

a
F

)∥∥
(L2(Ti))2

≤ C
∥∥Ja

F

∥∥
(L2(F ))2

, i = 1, 2. (4.12)

From (2.15), integration by parts, the Cauchy-Schwarz inequality and (4.12), we obtain

C
∥∥Ja

F

∥∥2
(L2(F ))2

≤
(
Ja
F , bFJ

a
F

)
=
(
JF , bFJ

a
F

)
−
(
JF − Ja

F , bFJ
a
F

)

=−
∫

wF

RT · bFJa
F dx−AwF

(
ũh, bFJ

a
F

)
+
(
g, bFJ

a
F

)
−
(
JF − Ja

F , bFJ
a
F

)

=−
∫

wF

RT · bFJa
F dx+AwF

(
û−ũh, bFJa

F

)
−
(
JF−Ja

F , bFJ
a
F

)

≤C
(
‖RT‖(L2(wF ))2

∥∥bFJa
F

∥∥
(L2(wF ))2

+‖∇(û−ũh)‖(L2(wF ))2
∥∥∇(bFJ

a
F )
∥∥
(L2(wF ))2

+ ‖û−ũh‖(L2(wF ))2
∥∥bFJa

F

∥∥
(L2(we))2

+
∥∥JF−Ja

F

∥∥
(L2(F ))2

∥∥bFJa
F

∥∥
(L2(F ))2

)

≤ C
(
h

1
2

F ‖RT‖(L2(wF ))2 + h
− 1

2

F ‖û− ũh‖(H1(wF ))2

+ h
1
2

F

∥∥JF − Ja
F

∥∥
(L2(F ))2

)
‖Ja

F ‖(L2(F ))2 ,

which implies that

∥∥Ja
F

∥∥
(L2(F ))2

≤ C
(
h

1
2

F ‖RT ‖(L2(wF ))2 + h
− 1

2

F ‖û− ũh‖(H1(wF ))2 + h
1
2

F

∥∥JF − Ja
F

∥∥
(L2(F ))2

)
.
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Combining the above estimate and the triangle inequality, we obtain

h
1
2

F ‖JF ‖(L2(F ))2 ≤ h
1
2

F

∥∥Ja
F

∥∥
(L2(F ))2

+ h
1
2

F

∥∥JF − Ja
F

∥∥
(L2(F ))2

≤ C
(
hT ‖RT‖L2(wF ) + ‖û− ũh‖(H1(wF ))2 + h

1
2

F

∥∥JF − Ja
F

∥∥
(L2(F ))2

)
. (4.13)

For any side F = Γleft ∩ ∂T1, there is a corresponding side F ′ on Γright which belongs to

some element T2, and vice versa. We can use the similar argument as above to prove (4.13) for

F ⊂ Γleft or Γright.

Step 3: Local lower bound. Therefore, by (4.11) and (4.13), we have

η2T =


max

x∈T̃
w(x3)



hT ‖RT ‖(L2(T ))2 +

(
1

2

∑

F⊂∂T

hF ‖JF ‖2(L2(F ))2

) 1
2








2

≤ C3‖û− ũh‖2(H1(T∗))2 + C4

∑

T⊂T∗

h2T
∥∥RT −Ra

T

∥∥2
(L2(T ))2

+ C5

∑

F⊂∂T

hF
∥∥JF − Ja

F

∥∥2
(L2(F ))2

.

This completes the proof. �

5. Numerical Experiments

In this section, two numerical examples(cf. [36]) are presented to validate our theoretical

findings and the effectiveness of our adaptive PML finite volume method. The implementation

of the adaptive finite volume algorithm is based on the PDE toolbox of MATLAB. We note that

the a posteriori error estimate from Theorem 3.1 is used to determine the PML parameters.

Using similar implementation as [15, Section 6], we choose the PML medium property s(x3) as

the power function, and choose the thickness δ = δ1 = δ2 of the PML layers and the medium

parameters σj satisfying MjL
1/2 ≤ 10−8 such that the PML error is negligible compared with

the finite volume discretization error, j = 1, 2. Once the PML region and the medium are

fixed, the adaptive finite volume strategy is designed to modify the mesh. Our adaptive PML

finite volume algorithm, which is similar to the adaptive PML finite element algorithm in [15],

is omitted in this paper.

Example 5.1. We consider a chiral grating with two sharp angles (see Fig. 5.1). Assume that

the plane waves

eI = 0.8eiαx1−iβ1x3 , hI = 0.6eiαx1−iβ1x3

is incidence on the structure with L=1, b1=0.5 and b2=−0.5, where θ=π/6 and ω = 2.5. The

other parameters are chosen as ε1 = ε4 = 1, ε2 = 2.56, ε3 = 4.84, β2 = 0.2 and β3 = 0.1. The

thickness of the PML is set to be δ = 1. In Fig. 5.2(a), the grating efficiency of the reflected and

transmitted waves as well as the total grating efficiency are displayed as a function of the number

of nodal points (DoFs) of adaptive refined meshes. It is clear that the efficiencies are convergence

for our adaptive PML finite volume algorithm. The adaptively refined mesh and the amplitude

of the numerical solutions of the electric field and magnetic field are illustrated in Figs. 5.3(a)

and 5.4 when the mesh has 11358 DoFs. It can be seen that although there is a difference in
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Fig. 5.1. Geometry of the domain for Example 5.1.

Fig. 5.2. Grating efficiency versus DoFs (a) and log-log plot of the a posteriori error estimates with

respect to DoFs (b) for Example 5.1.

(a) (b)

Fig. 5.3. (a): An adaptively refined mesh with 11358 DoFs for Example 5.1, (b): An adaptively refined

mesh with 12256 DoFs for Example 5.2.



22 Z.F. WANG AND M.H. LIU

Fig. 5.4. The surface plot of the amplitude of the electric field (a) and the magnetic field (b) on the

mesh in Fig. 5.3(a) for Example 5.1.

Fig. 5.5. Robustness of the transmission efficiency for the component h (a) and quasi-optimality of the

posteriori error estimates (b) with respect to the thickness of PML layers for Example 5.1.

the meshes, the surface plots of the amplitude of the associated solutions for our adaptive PML

finite volume method is completely similar to that of the PML finite element method(cf. [36]).

Fig. 5.2(b) shows the log-log plot of the a posteriori error estimates ǫh = (
∑

T∈Mh
η2T )

1/2 with

respect to DoFs which indicates that the mesh and the associated numerical complexity for our

adaptive method are quasi-optimal: ǫh = O(DoFs−1/2) is valid asymptotically. Here we mention

that our adaptive method meets the the principle that the finite volume discretization error ǫh
is not contaminated by the truncation error of the exponentially decaying factor Mj, j = 1, 2, 3,

in Theorem 3.1. Fig. 5.5 shows the curves of the transmission efficiency for the component

h versus DoFs and the curves of logǫh versus logDoFs for the thickness δ = 0.5, 1, 2 of PML

layers. It clearly demonstrates that our adaptive method is robust with respect to the choice of

the thickness of PML layers: the transmission efficiency for h are convergence and insensitive

to the thickness δ, and the meshes and the associated numerical complexity are quasi-optimal

for the different choice of δ.

Example 5.2. This example concerns a chiral grating whose surface has corners, as seen in

Fig. 5.6. The parameters are taken as follows: ε1 = 1, ε2 = 2.25, ε3 = 1, β2 = 0.1, and L = 2.

The incident plane waves are eI = eiαx1−iβ1x3 , hI = 0 with ω = π and θ = π/4. We set

δ = 1.2. Fig. 5.7(a) shows the reflection efficiency, the transmission efficiency, and the total

grating efficiency as a function of DoFs. The mesh with 12256 DoFs and the amplitude of the

electric field and magnetic field are presented in Figs. 5.3(b) and 5.8, respectively. Just like
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Fig. 5.6. Geometry of the domain for Example 5.2.

Fig. 5.7. Grating efficiency versus DoFs (a) and log-log plot of the a posteriori error estimates with

respect to DoFs (b) for Example 5.2.

Fig. 5.8. The surface plot of the amplitude of the electric field (a) and the magnetic field (b) on the

mesh in Fig. 5.3(b) for Example 5.2.

Example 5.1, it is observed that the a posteriori error has the ability to catch the singularities

of the solution to the problem (2.7) by using the local grid refinement. Fig. 5.7(b) displays

the log-log plot between the a posteriori error estimates ǫh and DoFs, and it can be seen that

ǫh = O(DoFs−1/2) is valid asymptotically. Fig. 5.9 shows the curves of the reflection efficiency

for the component e versus DoFs and the logǫh- logDoFs curves for the thickness δ = 0.6, 1.2, 2

of PML layers, which further indicates that our adaptive method works effectively and is robust

with respect to the choice of the thickness δ.
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Fig. 5.9. Robustness of the reflection efficiency for the component e (a) and quasi-optimality of the

posteriori error estimates (b) with respect to the thickness of PML layers for Example 5.2.
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