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Abstract. We present a class of simple advection-pressure splitting numerical methods

to solve the blood flow equations in compliant arterial vessels. The schemes are inspired

by the TV flux vector splitting approach for conservative systems, proposed by Toro and

Vázquez [30]. But the reformulated TV-type splitting schemes of this paper have a wider

range of applicability, including systems of equations in non-conservative form. The

spatial differential operator is split into advection terms, which may be in conserva-

tive form, from pressure terms in conservative or non-conservative form. Additionally,

unlike the original TV scheme, the reformulated splitting of this paper fully preserves

the continuity equation as part of the pressure system. This last feature is consistent

with zero-dimensional models for blood flow that are based on neglecting the inertial

term in the momentum equation. The schemes are also well suited for systems in which

geometric and biomechanical parameters of the problem vary discontinuously. The split-

ting schemes of this paper are systematically assessed on a carefully designed suite of

test problems and compared with several existing, mainstream methods. Overall, the

proposed numerical methods perform very satisfactorily and suggest themselves as at-

tractive computational tools for modelling the dynamics of bodily fluids under realistic

conditions.

AMS subject classifications: 65M08, 76Z05

Key words: Blood flow, hyperbolic equations, finite volume method, path-conservative method, TV
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1. Introduction

This paper is concerned with a class of simple numerical methods for solving a sys-

tem of hyperbolic partial differential equations (PDEs) that govern the fluid dynamics of
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blood in compliant arterial vessels. The one-dimensional PDEs of interest depend on time

t and distance x along the vessel and, despite its apparent simplicity, they account for the

dynamics of blood inside the vessel, coupled to the simultaneous movement of the vessel

wall. Blood vessel walls are not rigid, fixed boundaries. In other words, the alluded equa-

tions constitute a simplified fluid-structure interaction (FSI) model. Single vessel segments

can be coupled to multiple segments through appropriate coupling conditions so as to form

networks of blood vessels that may realistically emulate the circulatory system of mammals.

Designing useful numerical methods to solve the equations may pose some challenges. To

start with, the hyperbolic character of the equations admits solutions with large spatial

and temporal gradients of the unknowns, including shocks, or more specifically, elastic

jumps. Moreover, the PDEs include geometrical and biomechanical parameters, which in

turn depend on distance along the vessel. Apart from the difficulty of determining such

parameters, these may exhibit large spatial gradients, including discontinuities. Such geo-

metrical and biomechanical parameters enter the equations in the form of algebraic source

terms and add new features to the PDEs, such as stationary contact discontinuities. Such

features constitute additional challenges to the algorithm designer, and the well-balanced

concept enters the task of algorithm design. Extending the basic PDEs to account for these

features and for some additional physics, such as viscoelasticity, causes the PDEs to loose

their conservation-law form, forcing the algorithm designer to consider methods for non-

conservative systems. Much progress has been made in the last few decades in the design

of numerical method for evolutionary PDEs, notably hyperbolic equations. See for example

the textbooks of Godlewski and Raviart [7], LeVeque [10] and Toro [22,23]. Such advances

have permeated into various fields of application, including computational haemodynam-

ics [4, 15]. In spite of significant progress in this field there are still plenty of challenges

to overcome, including the formulation of approaches that embrace both conservative and

non-conservative forms of the PDEs, and ability to extend the schemes to high-order of ac-

curacy in both space and time. Simplicity of the algorithms is a highly desirable property,

provided, of course, that accuracy and robustness are not sacrificed.

In this paper we present new computational algorithms to solve the cross-sectional av-

eraged blood flow equations for blood flow in arterial vessels obeying an elastic closure

condition, the tube law. Main features of the proposed schemes include (i) their ability

to admit discontinuous geometric and biomechanical parameters, (ii) their ability to treat

both the conservative and non-conservative forms of the equations and (iii) simplicity. The

schemes presented in this paper build upon two existing approaches. The first concerns

a flux vector splitting (FVS) method, along the lines of the classical FVS schemes due to

Steger and Warming [19], van Leer [32], Liou and Steffen [11], Zha and Bilgen [33],

and the more recent FVS of Toro and Vázquez [30]. An analogous, but different, splitting

scheme was proposed in [21] to discretise the equations of compressible multiphase flow;

in this approach the flux vector was split into several subsets of components, one for each

phase, in order to compute a single numerical flux for all phases and then update all phases

simultaneously. One may term this splitting approach phase splitting. As the term splitting

appears in several contexts, a word of caution is in order. First, these flux vector splitting

approaches are distinct from time-splitting methods to treat source terms, or dimensional
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splitting to treat multidimensional problems, for which the second-order Strang splitting is

well known [20]. Flux vector splitting methods split the flux vector, either term by term, or

component by component in the case of multiphase flow, to compute the full numerical flux

in a simple manner, which, once available, permits the simultaneous updating the PDEs un-

knowns in a single time step. We note that one could also re-interpret the FVS methods as

done in time splitting and dimensional splitting. But the accuracy of such approach would

be at most two, if a Strang-type scheme is deployed.

The flux vector splitting schemes of this paper build upon the FVS method of Toro

and Vázquez, called the TV splitting [30], originally proposed for the conservative Euler

equations of compressible gas dynamics. In the TV splitting, as in most FVS methods, the

flux vector is split into advection terms and pressure terms. But the TV approach differs

from previous FVS approaches in two respects. First, the pressure operator includes all

pressure terms, and second, the advection and pressure operators are used to formulate

two simpler systems of PDEs that allow the computation of the complete numerical flux

in a simple manner. In order to design TV-type methods for the blood flow equations, the

original TV splitting must be modified in various ways. The first regards the continuity

equation. In the original TV splitting this equation is entirely assigned to the advection

system. In the present paper the continuity equation is fully assigned to the pressure sys-

tem. This choice may be justified by the fact that in the construction of zero-dimensional

simplifications to the blood flow equations, in which the inertial term in the momentum

equation is neglected, the continuity equation is fully preserved, as in the present reformu-

lation of the TV splitting. Another new feature of the TV approach of this paper, respect

to the original TV scheme in [30], regards the admitted forms of the equations, namely

both conservative and non-conservative forms. The non-conservative form appears natu-

rally when admitting blood vessels of variable geometric and mechanical properties, and

when admitting viscoelastic tube laws. In this case there is no flux vector in the equations,

though there are still advection and pressure terms, to which the splitting is applied. Hence,

one may speak of Advection-Pressure Splitting, which applies to both the conservative and

non-conservative cases. The underlying framework of this paper is the Godunov-type path-

conservative scheme of Parés and Muñoz [14]. This approach, originally formulated for

purely non-conservative systems, is extended here to allow for advection terms in conser-

vative form and pressure terms in non-conservative form. Some of these ideas were suc-

cessfully implemented for the shallow water equations in Toro et al. [27] and to sediment

transport in Siviglia et al. [18].

Summing up, the numerical schemes developed in the present paper depart from the

new advection-pressure splitting approach and are applied to the blood flow equations for

flow in arterial vessels obeying an elastic tube law. The governing equations may be written

either in conservative or non-conservative form and admit the possibility of discontinuous

geometric and mechanical properties. Up to this point the schemes are of first-order of

accuracy and monotone, monotone for the scalar case, strictly speaking. Extension of the

schemes to high order of accuracy is not addressed in the present paper; this task may

be accomplished through the deployment of standard semi-discrete or fully discrete ap-

proaches. The constructed numerical schemes of this paper are systematically assessed
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on a carefully designed suite of test problems with exact solution. Moreover, the assess-

ment of the new methods includes comparison with several competitive numerical methods

to solve the same problems, which include the Godunov method with the exact Riemann

solver [8], HLL [9], HLLC [25, 29], DOT (Dumbser-Osher-Toro) [2, 3, 12], Rusanov [16]

and FORCE [26]. The rest of this paper is structured as follows. In Section 2 we review the

blood flow equations and motivate the variant of the TV splitting approach adopted here.

In Section 3 we present the new schemes for the conservative form of the equations, which

include a detailed solution of the Riemann problem for the pressure system. In Section 4

we extend the schemes to the non-conservative case in the framework of path-conservative

methods. In Section 5 we asses the performance of the proposed numerical methods via

a suite of carefully designed test problems with exact solution and through comparison with

several existing methods. Concluding remarks are found in Section 6.

2. Review of the Equations and Motivation

Here we first briefly review the classical one-dimensional equations for blood flow in

arterial vessels. We then present two forms of expressing the equations, namely the con-

servative form and the non-conservative form. The section is ended with a motivation for

the main theme of this paper, namely the flux splitting approach.

2.1. Basic one-dimensional equations

The fluid dynamics of blood inside a compliant blood vessel interacting with the dis-

placement of the vessel wall, and allowing for the transport of a generic passive scalar, can

be represented by the following non-linear, first-order system of partial differential equa-

tions (PDEs):

∂tA+ ∂x(uA) = s1 = 0,

∂t(uA) + ∂x(αAu2) +
A

ρ
∂x p = s2 = −

8µπq

ρA
,

∂t(Aη) + ∂x(Auη) = s3 = 0.

(2.1)

The first two equations are respectively mathematical statements of the physical principles

of conservation of mass and balance of momentum. The conserved quantities are cross-

sectional area A(x , t) and flow q(x , t) = A(x , t)u(x , t), where u(x , t) is the blood velocity.

The third equation models the transport of a passive scalar η(x , t) with the velocity u(x , t)

and may represent the concentration of a generic chemical species; the equation is ex-

pressed in conservation-law form with the aid of the continuity equation, producing a third

conserved quantity Aη. On the right hand side of (2.1), s1, s2 and s3 represent source terms,

generally given by algebraic (not differential) expressions. The source terms may change

due to generalisations of the equations. The independent variables x and t represent dis-

tance and time. A rigorous derivation of the non-linear model (2.1) from the Navier-Stokes

equations is carried out, for example, in [4]. In system (2.1) it is important to clearly dis-

tinguish between unknowns and parameters, as discussed below.



Splitting Schemes for Blood Flow 5

Unknowns and the tube law. The unknowns of system (2.1) are A(x , t): cross-sectional

area of the vessel at position x and time t; u(x , t): the cross-sectional area averaged velocity

of blood at a vessel cross section; p(x , t): cross-sectional area averaged pressure of blood

inside the vessel, and η(x , t) is the concentration of a generic chemical species. System

(2.1) has more unknowns than equations. Therefore, in order to close the system, an extra

equation is required, called closure condition. In haemodynamics such closure condition

is called tube law. In the model (2.1) the vessel wall is not rigid and the tube law (2.2)

couples the elastic properties of the compliant vessel wall to the fluid dynamics inside the

vessel, to account for an essential feature of blood flow, that is the displacement of the

vessel wall. The choice of tube law depends on the mechanical properties of the vessel wall

and therefore one must distinguish between arteries and veins, for example. In this paper

we assume a simple, elastic tube law for arteries, namely

p(x , t) = pex t(x , t) + pT (A; K),

pT (A; K) = K(x)

�√

√ A

A0

− 1

�

,

K(x) =

p
π

(1− ν2)

E(x)h0(x)
p

A0(x)
.

(2.2)

Here pex t(x , t) is the external pressure and pT (A; K) is the transmural pressure, the differ-

ence between internal and external pressures, that is

pT (A; K) = p(x , t)− pex t(x , t).

In the arguments of the transmural pressure pT (A; K), note the distinction between un-

knowns and parameters, A is an unknown of the equations, while K is a parameter.

Parameters of the equations. The parameters of Eqs. (2.1)-(2.2) are ρ: density of blood,

assumed to be a known constant, usually set to ρ = 1050 kg/m3; µ is blood viscosity, de-

rived under the assumption of Newtonian fluid and assumed here to be a known constant;

α is the Coriolis coefficient, assumed constant here; α is linked to the choice of velocity pro-

file for one-dimensional representation of variables [6]; A0(x) is the cross-sectional area of

the vessel at equilibrium, that is when the transmural pressures vanishes and u = 0; h0(x) is

the vessel wall thickness; E(x) is Young’s modulus of elasticity; ν is the Poisson ratio, taken

as ν = 1/2 for incompressible media; pex t(x , t) is external pressure, assumed a prescribed

function here. Note that in general the geometric and mechanical parameters A0(x), h0(x)

and E(x) vary with distance along the length of the vessel and are thus functions of x ;

pex t(x , t) may vary with both space and time. The determination of parameters is a major

issue in computational haemodynamics and hence a source of uncertainties. Just for a mo-

ment, think of the task of determining the single function h0(x), or reconstructed versions

of it, from measured data, for all vessels of the human cardiovascular system. Here we

assume that all parameters are prescribed and the task is to find the unknowns by solving

the system (2.1) of partial differential equations.
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2.2. Conservative form and eigenstructure of the equations

Eqs. (2.1) can be recast in terms of different sets of unknowns and different forms. Re-

garding the form of the equations there are essentially two choices, namely the conservation-

law form or conservative form, and the non-conservative form, as we shall explain. In

what follows we shall assume that the parameters K , E,A0,h0 are constant. This assump-

tion, even if not necessary, facilitates expressing the equations for blood flow in arteries in

conservation-law form as follows:

∂tQ+ ∂xF(Q) = S(Q), (2.3)

where Q is the vector of unknowns, the conserved variables, F(Q) is the vector of fluxes

and S(Q) is the source term vector (see [24] for more details on the derivation), all given

as follows:

Q=





q1

q2

q3



 ≡





A

Au

Aη



 ,

F(Q) =





f1
f2
f3



 ≡





Au

αAu2 + γA3/2

Aηu



 ,

S(Q) =





s1

s2

s3



 ≡







0
−8πµq

ρA
0





 .

(2.4)

The constant coefficient γ in (2.4) is given as

γ=
K

3ρ
p

A0

=
4
p
π

9

Eh0

ρA0

.

For the rest of the paper we assume the Coriolis coefficient to be chosen as α = 1. Eqs. (2.3)

can also be written in non-conservative form as

∂tQ+A(Q)∂xQ= S(Q),

where

A(Q) =
∂ F

∂Q
=





0 1 0

−u2 + c2 2u 0

−uη η u



 (2.5)

is the Jacobian matrix.

It is easily shown that the governing equations (2.3)-(2.4) are hyperbolic. The eigen-

values of the system are the eigenvalues of the Jacobian matrix (2.5), that is

λ1 = u− c, λ2 = u, λ3 = u+ c
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with the wave speed c given as

c =

√

√ A

ρ

∂ p

∂ A
=

√

√3

2
γ
p

A.

The eigenvalues are all real and distinct provided A > 0. The corresponding right eigen-

vectors are

R1 = β1





1

u− c

η



 , R2 = β2





0

0

1



 , R3 = β3





1

u+ c

η



 ,

where β1, β2 and β3 are scaling factors, often chosen to be unity.

2.3. Motivation for the splitting schemes

The flux vector splitting approach of this paper is inspired by the TV splitting of Toro and

Vázquez [30] for the Euler equations of compressible gas dynamics written in conservation-

law form. In the TV splitting the flux function is split into an advection part and a pressure

part that includes all pressure terms present in the equations. Moreover, in order to deter-

mine a numerical flux, the proposed TV splitting is invoked for formulating two systems

of differential equations, one associated with the advection part of the flux, the advection

system, and another associated with the pressure part, the pressure system. In the original

TV splitting there is still freedom for selecting the advection variables. It turns out that for

the blood flow equations of interest here, the choice that is productive differs from that for

the Euler equations. Interestingly, it is the so-called zero-dimensional models, so popular

in blood flow modelling, that provide a hint for choosing the advection operator, as we

explain in what follows.

Zero-dimensional (0D) models in cardiovascular physiology can be traced back to the

pioneering work of Otto Frank [5]. Such models are also called compartmental models or

lumped-parameter models, or simply lumped models. The concept of compartment refers

to a particular district of the body, or even a single blood vessel or segment of a vessel.

Within each compartment, haemodynamics variables are constant in space (spatial homo-

geneity) and vary only in time. Zero-dimensional models may be constructed directly from

one-dimensional models, such as system (2.1), by defining spatial integral averages in the

appropriate compartment. In this manner the one-dimensional time dependent represen-

tation becomes a system of ordinary differential equations (ODEs) in time, for quantities

that are spatially averaged in the chosen compartment.

In what follows we discuss a subsystem of PDEs contained in Eqs. (2.1) and (2.3)-(2.4)

that is relevant to motivate the advection-pressure splitting proposed in this paper. Such

subsystem actually arises from the construction of zero-dimensional (0D) models for blood

flow. For details see [4,6], for example.

Conventionally zero-dimensional models depart [4,6] from the following subsystem of

PDEs contained in Eqs. (2.1) and (2.3)-(2.4), namely
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∂tA+ ∂x(uA) = s1 = 0,

∂t(uA) +
A

ρ
∂x p = s2 = −

8µπq

ρA
.

(2.6)

These equations result from (2.3)-(2.4) by neglecting the term αAu2 in the momentum

equation. Spatial integral averaging of (2.6), assuming further simplifications of the tube

law, results in a system of ODEs. This is achieved by first assuming a generic vessel segment

[x1, x2] of length ∆s = x2 − x1 and defining integral averages

Q̂(t) =
1

∆s

∫ x2

x1

q(x , t)d x ,

p̂(t) =
1

∆s

∫ x2

x1

p(x , t)d x ,

Â(t) =
1

∆s

∫ x2

x1

A(x , t)d x .

(2.7)

Then, it is assumed that (i) variations in the elasticity coefficient K(x) in the tube law

(2.2) are small and can thus be replaced by an averaged, constant K; (ii) variations of

cross-sectional area A(x , t) around the equilibrium cross-sectional area A0(x) are small;

(iii) A0(x) is constant and denoted by A0. After performing integration in (2.6), with def-

initions (2.7) one obtains a system of ODEs in time for the averaged cross-sectional area

Â(t) and averaged cross-sectional flow Q̂(t) , namely

∆s
d

d t
Â(t) +Q(x2, t)−Q(x1, t) = 0,

ρ
∆s

A0

d

d t
Q̂(t) +ρΩ

∆s

A2
0

Q̂(t) + p(x2, t)− p(x1, t) = 0, Ω=
8µπ

ρA0

.

(2.8)

All the assumptions made in deriving (2.8) are actually standard in realistic applications

[4]. It is worth mentioning some recent work in which the strong assumptions alluded to

are considerably relaxed [6,17].

The community concerned with 0D models have analysed the consequences of neglect-

ing the term αAu2 in the momentum equation of (2.1), or (2.3)-(2.4). In the dimensional

analysis of Ghitti et al. [6], comparison was made of the size of the inertial term with that

of the pressure term, in the full momentum equation in (2.3)-(2.4). The inertial term will

be significantly smaller than the pressure term if F r = u2/c2 is small, where F r is a Froude

number. Ghitti et al. [6] tested this condition on data from two well-known arterial vessel

networks and concluded that F r is small for a useful range of flow conditions in blood

flow dynamics. For flow conditions outside this range one must return to the full equations

(2.3)-(2.4).

From the point of view of the present paper, the discussion above has two implications:

(i) the subsystem (2.6) has physical validity for non-trivial flow conditions and naturally

furnishes a vector that results in the sought pressure system in the framework of the TV
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splitting of [30], (ii) the limitations of (2.6) can be remedied by restoring the neglected

inertial term, which in turn gives a vector that naturally results in the sought advection

system. In other words, the steps leading to the derivation of zero-dimensional models

have lead us to the formulation of a TV-type flux vector splitting scheme for the blood flow

equations. Moreover, out of many possible choices for the sought advection and pressure

subsystems, the one emerging from this discussion is shown to be successful here. We note

also that such approach has recently been shown to be successful for the shallow water

equations [27] and for a model for sediment transport [18].

3. Flux Vector Splitting for the Conservative Form

For the conservative form (2.3)-(2.4) of the equations, we adopt the conservative nu-

merical scheme

Qn+1
i = Qn

i −
∆t

∆x

�

Fi+1/2 − Fi−1/2

�

+∆tSi, (3.1)

where the numerical flux Fi+1/2 and the numerical source Si must be specified in order to

fully define scheme (3.1). The computation of the numerical flux Fi+1/2 is motivated by

the discussion in the previous section. We split the flux vector into an advection part and

a pressure part, as detailed below.

3.1. Advection-pressure splitting

We depart from the 1D augmented equations for blood flow in arteries, written in

conservation-law form (2.3)-(2.4). The TV splitting has two parts. First, we split the flux

vector as

F(Q) =A (Q) +P (Q) (3.2)

with

Q=





A

Au

Aη



 , A (Q) =





0

Au2

Aηu



 , P (Q) =





Au

γA3/2

0



 . (3.3)

Here we have assumed the Coriolis coefficient to be unity, α = 1 in Eqs. (2.3)-(2.4). A (Q)
is called the advection flux and P (Q) is called the pressure flux. Second, we make use of

the two fluxesA (Q) and P (Q) to formulate two distinct systems of PDEs, namely

Advection system: ∂tQ+ ∂xA (Q) = 0,

Pressure system: ∂tQ+ ∂xP (Q) = 0.
(3.4)

The aim of the second step is to exploit each sub-system so as to obtain corresponding

numerical fluxesAi+1/2, the advection numerical flux, and Pi+1/2, the pressure numerical

flux. The complete numerical flux for the full system (2.3)-(2.4) will be given as

Fi+1/2 =Ai+1/2 +Pi+1/2, (3.5)

which will then used in the conservative scheme (3.1). We note that the source terms may,

in principle, be assigned to any of the systems in (3.4).
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Remarks:

1. We note that the above flux splitting (3.2)-(3.3) differs from the original TV splitting

[30], as remarked earlier in Section 2.3. Here, we assign the continuity equation

fully to pressure system in (3.4).

2. The present version is consistent with approximations to the full equations in which

the inertial term is neglected, leading to an approximation that coincides with the

pressure system in (3.4).

3. This splitting is also consistent with zero-dimensional approximation to the blood

flow equations, in which one effectively replaces the pressure system of PDEs in (3.4)

by a system of ordinary differential equations (2.8) in time, by integrating the system

in space, in a control volume, see Section 2.3.

4. As a matter of fact the pressure PDE system in (3.4) could well be proposed as a PDE

system to model flow under very subcritical conditions, that is for F r small, instead

of the simplified, integrated ODE system (2.8). In addition to blood, the model may

also be useful for other physiological fluids, such as lymph.

The numerical strategy to determine the advection and pressure numerical fluxes in

(3.5) relies on first solving the Riemann problem for the pressure system in (3.4). The

solution of this system will fully determine the pressure numerical flux Pi+1/2 and will

also provide advection information for determining the advection numerical fluxAi+1/2 in

(3.5). In other words, we only need to solve the Riemann problem for the pressure system

in (3.4). This is carried out in the next section.

3.2. The pressure system

As the pressure system arising from the TV-type splitting applied to the blood flow

equations is new in the literature, we perform here a fairly detailed analysis, starting from

some mathematical properties of the equations. The governing equations of the pressure

system are

∂tQ+ ∂xP (Q) = 0 (3.6)

with definitions

Q=





A

Au

Aη



 , P (Q) =





Au

γA3/2

0



 . (3.7)

Source terms have been ignored, as they are not relevant to the subject of this section. The

eigenvalues of system (3.6)-(3.7) are all real and distinct and given as

λ1 = −c, λ2 = 0, λ3 = c.
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The corresponding linearly independent right eigenvectors are

R1 =





1

−c

0



 , R2 =





0

0

1



 , R3 =





1

c

0



 .

The scaling factors have been set to unity. The pressure system is therefore hyperbolic.

Note the subsonic (or subcritical) character of system (3.6)-(3.7), that is

λ1 = −c < λ2 = 0< λ3 = c.

It is straightforward to show that the λ2-field is linearly degenerate, while the λ1-field and

the λ3-fields are genuinely non-linear, for all states A, for the tube law (2.2) in use here.

3.2.1. Exact solution of the Riemann problem

The Riemann problem at the interface x = x i+1/2, is defined as follows:

PDEs: ∂tQ+ ∂xP (Q) = 0,

ICs: Q(x , 0) =

¨

QL ≡ Qn
i
, if x < x i+1/2,

QR ≡ Qn
i+1

, if x > x i+1/2.

(3.8)

Fig. 1 shows the structure of the solution, where the subsonic character of the system is put

in evidence by the two wave families associated with the eigenvalues λ1 = −c and λ3 = c,

see Eq. (3.13) regarding the solution in the star region and related remarks. Note that

the unknown star state Q∗ in the star region coincides with the Godunov state needed for

intercell flux evaluation [23].

Figure 1: Structure of the solution of the Riemann problem (3.8) for the pressure system, in local
coordinates, still called x and t, arising from the TV-type splitting. The structure of the wave system
is symmetric, with a stationary contact discontinuity associated with the eigenvalue λ2 = 0.
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To solve the Riemann problem exactly we first proceed to study wave relations for each

of the non-linear characteristic fields. See [23] for background on the methodology. We

assume two types of non-linear waves, namely rarefaction waves and shock waves. We

start from rarefaction waves.

Rarefaction waves. First, assume an isolated left-facing rarefaction wave associated with

the eigenvalue λ1 = −c, connecting the data state QL on the left to the unknown state Q∗L
on the right. The generalised Riemann invariants [23] state that across the wave structure

the following relations apply:
dA

1
=

dq

−c
=

d(Aη)

0
.

There follows

q+ CA5/4 = constant, Aη= constant (3.9)

with

C =
4

5

√

√3

2
γ.

Analogously, the generalised Riemann invariants across a right-facing rarefaction are

dA

1
=

dq

c
=

d(Aη)

0
,

which give

q− CA5/4 = constant, Aη = constant. (3.10)

Application of (3.9) to connect QL on the left with Q∗L gives

q∗ + CA5/4
∗ = qL + CA

5/4
L , (3.11)

while application of (3.10) to connect QR on the right with Q∗R in the middle gives

q∗ − CA5/4
∗ = qR − CA

5/4
R . (3.12)

We note that exact integration leading (3.11) and (3.12) is possible for the tube law (2.2)

used for arteries. For veins the situation is more complicated and integration must be

performed numerically.

Remark: the contact discontinuity. Conventional eigenvector analysis of the λ2-charac-

teristic field reveals that all A, u and q are constant across the stationary contact disconti-

nuity, unlike the passive scalar η that changes (discontinuously). That is

A∗L = A∗R = A∗, u∗L = u∗R = u∗, η∗L =
ALηL

A∗
6= η∗R =

ARηR

A∗
. (3.13)

Relations (3.13) justify the use of A∗ in Eqs. (3.11)-(3.12).
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In readiness for assembling the equations for the complete solution of the Riemann

problem, from (3.11) we write

q∗ = qL − fL(A∗; AL), fL = C
�

A5/4
∗ − A

5/4
L

�

. (3.14)

Analogously, from (3.12) we write

q∗ = qR + fR(A∗; AR), fR = C
�

A5/4
∗ − A

5/4
R

�

. (3.15)

The two-rarefaction approximation. Under the a-priori assumption that both non-linear

waves are rarefaction waves, direct application of (3.14)-(3.15) gives the exact solution in

the star region

A∗ =
�

1

2

�

A
5/4
L + A

5/4
R

�

− 1

2C
(qR − qL)

�4/5

,

q∗ =
1

2
(qL + qR)−

1

2
C
�

A
5/4
R − A

5/4
L

�

,

η∗L =
ALηL

A∗
, η∗R =

ARηR

A∗
.

(3.16)

If both non-linear waves happen to be rarefaction waves, then solution (3.16) is the exact

solution. Otherwise it turns out to be a good approximation to the solution of the Riemann

problem, also in the presence of shock waves (elastic jumps).

Shock waves. First we assume an isolated left-facing shock wave of speed SL associated

with the eigenvalue λ1 = −c connecting the data state QL on the left to Q∗ on the right,

behind the shock. Direct application of the Rankine-Hugoniot conditions gives

SL(A∗ − AL) = q∗ − qL,

SL(q∗ − qL) = γ
�

A3/2
∗ − A

3/2
L

�

,

SL(A∗η∗ − ALηL) = 0.

(3.17)

Manipulation of the first two equations gives

SL = ±





γ
�

A3/2
∗ − A

3/2
L

�

(A∗ − AL)





1/2

. (3.18)

The correct choice of sign in (3.18) is yet to be made. From the first equation in (3.17) we

may write

q∗ = qL + SL(A∗ − AL).

Here we have chosen the negative sign on the grounds of the entropy condition

λ1(QL) > SL > λ1(Q∗),
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which implies

SL < 0 and A∗ > AL.

In readiness for assembling the equations for the complete solution of the Riemann problem

we write

q∗ = qL − fL(A∗; AL), fL =
�

γ
�

A∗ − AL

��

A3/2
∗ − A

3/2
L

��1/2
.

Analogous treatment of a right-facing shock wave of speed SR associated to λ3 = c gives

q∗ = qR + fR(A∗; AR), fR =
�

γ
�

A∗ − AR

��

A3/2
∗ − A

3/2
R

��1/2
.

Collecting all results we obtain a single, non-linear algebraic equation for A∗, namely

f (A) = fL + fR +∆q = 0 with ∆q = qR − qL, (3.19)

where

fL(A) =

(

C
�

A5/4 − A
5/4
L

�

, if A≤ AL,
�

γ
�

A− AL

��

A3/2 − A
3/2
L

��1/2
, if A> AL,

fR(A) =

(

C
�

A5/4 − A
5/4
R

�

, if A≤ AR,
�

γ
�

A− AR

��

A3/2 − A
3/2
R

�
�1/2

, if A> AR.

Iterative solution for A
∗
. The nonlinear equation (3.19) is conveniently solved with an

iterative Newton-Raphson method

A(k+1) = A(k)− f (A(k))

f ′(A(k))
for k = 0,1, . . . , kmax. (3.20)

The iterative process (3.20) is stopped whenever the change ∆A in A is smaller than a pre-

scribed, small positive tolerance TOL, that is when

∆A≡ |A
(k+1)− A(k)|

(A(k+1)+ A(k))/2
< TOL. (3.21)

Typically one chooses TOL = 10−6 for single-precision calculations. As a guess value A(0)

in (3.20) we use the two-rarefaction approximation (3.16). Inaccurate guess values for A(0)

may cause the Newton-Raphson method to fail. Once the cross-sectional area A = A∗ has

been found, the flow q∗ is computed as

q∗ =
1

2
(qL + qR) +

1

2

�

fR(A∗)− fL(A∗)
�

.

Then, the velocity in the Star Region follows as u∗ = q∗/A∗. The solution for the pas-

sive scalar is η∗L = ALηL/A∗ and η∗R = ARηR/A∗. This follows from (3.16) for rarefaction

waves and from (3.17) for shock waves. Note that across rarefaction waves η(x , t) de-

creases smoothly; this follows from (3.9) and (3.10). Across a shock wave η(x , t) decreases

discontinuously.
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3.3. Numerical fluxes

We have all the information required to compute the numerical fluxes in (3.5). First, for

the pressure system we have two reliable choices for computing the pressure flux; the first

choice is the non-iterative two-rarefaction solution (3.16). Numerous tests confirm that

this approximation can be used with confidence in practice. Obviously, the second choice

is the exact, iterative solution of (3.19), which has been presented in full detail here, as

a reference solution. For the advection flux in (3.5) we simply use the advection information

provided by the solution of the Riemann problem for the pressure system. Therefore, the

TV-type split numerical fluxes are

Pi+1/2 =







q∗

γA3/2
∗

0





 , Ai+1/2 =





























0

q∗uL

q∗ηL





 , if q∗ ≥ 0,







0

q∗uR

q∗ηR





 , if q∗ < 0.

The sought full numerical flux is then given by (3.5), which can be used in the conservative

formula (3.1) to update the complete system in one time step, in the full domain.

In the next section we deal with the case in which the equations are expressed in non-

conservative form.

4. The Non-Conservative Case

For extensions of the equations for blood flow to tackle realistic applications, the gov-

erning equations cannot longer be written in conservation-law form, even if derived from

physical conservation principles. This difficulty is also present in other fields of applications,

notably in the simulation of compressible multiphase flows and sediment transport.

4.1. The framework

Here we tailor the TV-type splitting approach to solve systems of balance laws written

in the form

∂tQ+ ∂xA (Q) +M (Q)∂xQ= S(Q). (4.1)

This system has a conservative part ∂xA (Q), a non-conservative partM (Q)∂xQ and the

source term S(Q). As written, the advection term is expressed in conservative form with flux

functionA (Q). Indeed, there is always the option of expressing the conservative advection

term in non-conservative form via the chain rule, namely

∂xA (Q) =
∂A
∂Q

∂xQ=B(Q)∂xQ.
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B(Q) is the Jacobian matrix ofA (Q). Then, the full system (4.1) could be written in fully

non-conservative form as

∂tQ+A(Q)∂xQ= S(Q) with A(Q) =B(Q) +M (Q).

In this section we apply the TV-type splitting framework to the mixed form (4.1) and write

two separate systems, as already done for the conservative case, namely

∂tQ+ ∂xA (Q) = 0 : Conservative system for advection,

∂tQ+M (Q)∂xQ= S(Q) : Non-conservative system for pressure.
(4.2)

In (4.2) we have allocated the source term S(Q) to the pressure system. However, there

may be cases in which it is more convenient to allocate it to the advection system. In fact,

this is an issue worth-investigating further.

4.2. Path-conservative approach

To tackle the non-conservative term in the mixed-formulation equations (4.1) we follow

the path-conservative approach [1,13,31]. These schemes depend on the choice of a path

ψ in phase space. In this framework we propose the mixed conservative/non-conservative

simultaneous update numerical formula

Qn+1
i = Qn

i −
∆t

∆x

�

Ai+1/2 −Ai−1/2

�

− ∆t

∆x

�

D+
i−1/2

+D−
i+1/2

�

+∆tSi −∆tHn
i , (4.3)

where

1. Ai+1/2 is the numerical flux for the conservative part.

2. D±
i+1/2

are the fluctuations in the path-conservative scheme for the non-conservative

part.

3. Si is the numerical source.

4. Hn
i

arises in schemes of accuracy greater than one and is defined as

Hn
i =

1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

A
�

Pi(x , t)
�

∂xPi(x , t) d xd t.

Pi(x , t) is a polynomial representation of the solution in cell Ii , which results from

a spatial reconstruction procedure. In the first-order case of interest here, the recon-

struction reduces to piece-wise constant cell averages. Hence, for first-order methods

∂xPi(x , t) = 0 and therefore Hn
i
= 0 in (4.3). Nonetheless we keep Hn

i
in the general

path-conservative scheme (4.3) for the convenience of readers who might want to

extend the method to high-order of accuracy.
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The fluctuations D−
i+1/2

and D+
i+1/2

, accounting for the absence of a flux function in

the pressure system in (4.2), with coefficient matrix M (Q), are expected to satisfy the

consistency condition

D−
i+1/2

(Q, . . . ,Q) = 0, D+
i+1/2

(Q, . . . ,Q) = 0

and the compatibility condition

D−
i+1/2

+D+
i+1/2

=

∫ 1

0

M
�

Q
�

ψ(s;Qn
i ,Qn

i+1)
�� ∂

∂ s
ψ
�

s;Qn
i ,Qn

i+1

�

ds.

The path function ψ(s;Qn
i
,Qn

i+1
), with s ∈ [0,1], joins Qn

i
to Qn

i+1
and

ψ
�

0;Qn
i ,Qn

i+1

�

= Qn
i , ψ
�

1;Qn
i ,Qn

i+1

�

= Qn
i+1.

While many choices for the pathψ(s;Qn
i
,Qn

i+1
) are available, here we assume the canonical

path

ψ
�

s;Qn
i ,Qn

i+1

�

= Qn
i + s
�

Qn
i+1 −Qn

i

�

. (4.4)

In analogy to conservative methods, which require an intercell numerical flux Fi+1/2 to be

determined, path-conservative methods are defined once the pathψ(s;Qn
i
,Qn

i+1
) is specified

and the fluctuations D−
i+1/2

, D+
i+1/2

are determined.

The whole point of the TV splitting approach is its ability to provide simplified and

effective schemes for computing the needed items in the numerical update formula (4.3),

that is the fluctuations D±
i+1/2

and the numerical fluxAi+1/2, as we shall see. There is also

evidence, even if partial, that the TV splitting approach is advantageous in dealing with

source terms, notably, of the discontinuous type. In this paper we implement the TV-type

advection-pressure splitting in the framework of a convenient path-conservative scheme,

which is presented next.

4.3. The Parés-Muñoz-Godunov scheme

Parés and Muñoz [14] proposed a Godunov-type, path-conservative method that results

from the following definitions for the fluctuations:

D−
i+1/2

=

∫ 1

0

M
�

ψ
�

s;Qn
i ,Qi+1/2(0)
�� ∂

∂ s
ψ
�

s,Qn
i ,Qi+1/2(0)
�

ds,

D+
i+1/2

=

∫ 1

0

M
�

ψ
�

s;Qi+1/2(0),Q
n
i+1

�� ∂

∂ s
ψ
�

s,Qi+1/2(0),Q
n
i+1

�

ds.

(4.5)

Here Qi+1/2(x/t) denotes the solution of the Riemann problem

∂tQ+M (Q)∂xQ= 0,

Q(x , 0) =

¨

Qn
i
, if x < x i+1/2,

Qn
i+1

, if x > x i+1/2

(4.6)
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in local coordinates. Qi+1/2(0) is the Godunov state, the determination of which requires

solving the Riemann problem (4.6) to find Qi+1/2(x/t) and a solution sampling procedure

to determine Qi+1/2(0).

A major undertaking here is to find a Riemann solver for (4.6), as for the non-conserva-

tive case there are less choices available than for the conservative case. The scheme just

described will be denoted as the PMG scheme, for Parés, Muñoz and Godunov.

Implementing the PMG scheme. On the assumption that the Godunov state Qi+1/2(0)

is known, the implementation of the scheme proceeds as follows. Assuming the canonical

paths (4.4) in (4.5) we have

ψ
�

s;Qn
i
,Qi+1/2(0)
�

= Qn
i
+ s
�

Qi+1/2(0)−Qn
i

�

,

ψ
�

s;Qi+1/2(0),Q
n
i+1

�

= Qi+1/2(0) + s
�

Qn
i+1 −Qi+1/2(0)
�

.
(4.7)

Then, from (4.5) and (4.7) we have

D−
i+1/2

= M̂−
i+1/2

�

Qi+1/2(0)−Qn
i

�

,

D+
i+1/2

= M̂+
i+1/2

�

Qn
i+1
−Qi+1/2(0)
�

.
(4.8)

Here M̂−
i+1/2

and M̂+
i+1/2

are numerical approximations to respective integrals in (4.5), that

is

M̂−
i+1/2
≈
∫ 1

0

M
�

ψ
�

s;Qn
i
,Qi+1/2(0)
��

ds,

M̂+
i+1/2
≈
∫ 1

0

M
�

ψ
�

s;Qi+1/2(0),Q
n
i+1

��

ds.

(4.9)

Using a Gaussian-Legendre rule to evaluate the integrals in (4.9) numerically we obtain

M̂−
i+1/2

=

G
∑

j=1

ω jM
�

ψ
�

s j;Qn
i ,Qi+1/2(0)
��

,

M̂+
i+1/2

=

G
∑

j=1

ω jM
�

ψ
�

s j;Qi+1/2(0),Q
n
i+1

��

.

(4.10)

For the integration points and weights, recommended choices are

s1 =
1

2
−
p

15

10
, s2 =

1

2
, s3 =

1

2
+

p
15

10
, ω1 =

5

18
, ω2 =

8

18
, ω3 =

5

18
.

The scheme, as formulated, is rather general. The specificity of the problem of interest

will enter in resolving the pending task, namely finding a Riemann solver to determine the

Godunov state Qi+1/2(0) for use in (4.8) and (4.10).
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Remark: there appears to be little reported experience on practical implementations of

this kind of Godunov-type path-conservative methods. A recent application to the mod-

elling of sediment transport in rivers is found in [18].

4.4. A non-conservative system from discontinuous parameters

A genuinely non-conservative system for blood flow results from a discontinuous stiff-

ness coefficient K in (2.2). The system is written in the mixed form

∂tQ+ ∂xA (Q) +M (Q)∂xQ= S(Q) (4.11)

with

Q=





A

Au

K



 , S(Q) =







0

s2 −
A

ρ
∂x pex t

0





 ,

A (Q) =





0

Au2

0



 , M (Q) =







0 1 0
A

ρ

∂ p

∂ A
0

A

ρ

∂ p

∂ K
0 0 0





 .

(4.12)

Note that in this 3×3 model system there is no passive scalar equation. Instead, there is an

equation for the parameter K following the approach proposed by Toro and Siviglia [28].

In order to solve system (4.11)-(4.12) numerically we shall use the scheme (4.3). This

requires a numerical flux for advection part and fluctuations for the non-conservative pres-

sure term. We do not address here, the task of devising general numerical schemes for the

source terms, by exploiting the present splitting schemes. It turns out that the solution of

the Riemann problem for the pressure system provides all the required items, namely the

fluctuations and the numerical flux.

The pressure system from the TV splitting. The pressure system determines the fluc-

tuations D±
i+1/2

, but will also provide sufficient information to compute the numerical flux

Ai+1/2 for the advection term. We therefore study the pressure system in some detail.

Consider the homogeneous version of the pressure system (4.11), namely

∂tQ+M (Q)∂xQ= 0

with definitions (4.12). The eigenvalues of the matrixM (Q) are

λ1 = −c, λ2 = 0, λ3 = c, (4.13)

where c is the wave speed

c =

√

√ A

ρ

∂ p

∂ A
.
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The corresponding right eigenvectors are

R1 =





1

−c

0



 , R2 =





D

0

−c2



 , R3 =





1

c

0



 (4.14)

with

D =
A

ρ

∂ p

∂ K
.

The scaling factors in the eigenvectors (4.14) have been assumed to be unity. Note the

subsonic character of the pressure system, that is

λ1 = −c < λ2 = 0< λ3 = c.

The Riemann problem for the pressure system is

PDEs: ∂tQ+M (Q)∂xQ= 0, −∞< x <∞, t > 0,

ICs: Q(x , 0) =

¨

QL, if x < x i+1/2,

QR, if x > x i+1/2.

(4.15)

The initial data are the constant states QL and QR. The structure of the solution is identical

to that depicted in Fig. 1, though the solution is different, as we shall see. There are

three wave families corresponding to the three eigenvalues (4.13). The sought Godunov

state is precisely the star state, and hence no sampling is required to determine the sought

information to compute the fluctuations. Note that the star state includes Q∗L and Q∗R. The

presentation of the exact Riemann solver for the pressure system (4.15) is omitted here. For

background, the reader is referred to [23]. A detail to be noted. Although the equations are

written in non-conservative form due to the jump in the coefficient of elasticity K , across the

non-linear outer waves K is constant; therefore the Rankine-Hugoniot conditions are still

applicable for the case of elastic jumps. See Section 3.2 for the conservative case and [23]

for general background on solving Riemann problems.

Approximate Riemann solver. In what follows we seek an approximate solution based

on the assumption that the two outer waves associated with λ1 = −c and λ3 = c are

rarefaction waves. For algebraic convenience, in the tube law (2.2) we set

√

√ A

A0

=

�

A

A0

�m

with m =
1

2
.

Across the λ1 and λ3 fields, the generalized Riemann invariants yield

q∗ + TLA
(m+2)/2
∗L = qL + TLA

(m+2)/2
L , K∗L = KL,

q∗ − TRA
(m+2)/2
∗R = qR − TRA

(m+2)/2
R

, K∗R = KR
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with

TL =
2

m+ 2

√

√

√mKL

ρAm
0

, TR =
2

m+ 2

√

√

√mKR

ρAm
0

.

Across the λ2-field we have

dq = 0, DdK + c2dA= 0 → dp(A; K) = 0.

Therefore, the flow q and the pressure p(A; K) are constant in the star region, that is

q∗ : constant, p∗(A; K) : constant.

Algebraic manipulations yield

q∗L = q∗R = q∗ : constant,

A∗L = A0

§

KR

KL

��

A∗R
A0

�m

− 1

�

+ 1

ª1/m

.

There are three unknowns to be determined, namely q∗, A∗L and A∗R, which satisfy the

following three equations:

q∗ + TLA
(m+2)/2
∗L = qL + TLA

(m+2)/2
L ,

q∗ − TRA
(m+2)/2
∗R = qR − TRA

(m+2)/2
R ,

A∗L = A0

§

KR

KL

��

A∗R
A0

�m

− 1

�

+ 1

ª1/m

.

(4.16)

From the first and second equations in (4.16) we obtain

A∗L =
�

− TR

TL

A
(m+2)/2
∗R +

1

TL

�

qL − qR + TLA
(m+2)/2
L

+ TRA
(m+2)/2
R

�
�2/(m+2)

. (4.17)

Combining (4.17) with the third equation in (4.16) we obtain a single algebraic equation

for A∗R, namely

f (A∗R) = A0

§

KR

KL

��

A∗R
A0

�m

− 1

�

+ 1

ª1/m

−
�

− TR

TL

A
(m+2)/2
∗R + Z

�2/(m+2)

= 0,

Z =
1

TL

�

qL − qR + TLA
(m+2)/2
L

+ TRA
(m+2)/2
R

�

.

(4.18)

The non-linear algebraic equation (4.18) may be solved iteratively via a Newton-Raphson

method, see (3.20)- (3.21). Having found A∗R we compute A∗L from (4.17), while q∗ follows

from (4.16) as

q∗ =
1

2

�

qL + qR + TRA
(m+2)/2
∗R − TLA

(m+2)/2
∗L + TLA

(m+2)/2
L − TRA

(m+2)/2
R

�

.

The full solution in the star region is known, resulting in two star vectors, namely

Q∗L = [A∗L,q∗, KL]
T , Q∗R = [A∗R,q∗, KR]

T .
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4.5. Fluctuations and advection numerical flux

To compute the fluctuations we adopt the Parés-Muñoz-Godunov scheme (PMG) of Sec-

tion 4.3. By defining the two Godunov states

Q−
i+1/2

(0) = Q∗L, Q+
i+1/2

(0) = Q∗R

the PMG scheme computes the fluctuations as

D−
i+1/2

= M̂−
i+1/2

�

Q−
i+1/2

(0)−Qn
i

�

,

D+
i+1/2

= M̂+
i+1/2

�

Qn
i+1 −Q+

i+1/2
(0)
�

with

M̂−
i+1/2

=

G
∑

j=1

ω jM
�

ψ
�

s j;Qn
i
,Q−

i+1/2
(0)
��

,

M̂+
i+1/2

=

G
∑

j=1

ω jM
�

ψ
�

s j;Q+
i+1/2

(0),Qn
i+1

��

.

In computing the advection flux we shall directly utilise the available value q∗ from the

pressure system, so that

Ai+1/2 =





0

q∗uK

0



 , uK =

¨

uL, if q∗ ≥ 0,

uR, if q∗ < 0.

Therefore, all the required items for the TV scheme (4.3) to solve system (4.11) are deter-

mined, namely the numerical fluxAi+1/2 for the advection part in conservative form, and

the fluctuations D−
i+1/2

and D+
i+1/2

for the non-conservative part.

Two classes of TV schemes are available. The first one, denoted as TV+PMG+Ex.RS,

uses the TV splitting in the PMG path-conservative framework, along with the exact Rie-

mann solver for the pressure system to find the Godunov state, fluctuations and the advec-

tion numerical flux. The second TV scheme is denoted as TV+PMG+Ap.RS, in which the

exact Riemann solver is replaced by the approximate Riemann solver just described.

5. Test Problems and Numerical Results

In this section we design test problems and assess the performance of the TV-type

splitting numerical methods presented in this paper, both for the conservative and non-

conservative cases. Numerical results are compared with the exact solution and with the

results from other competitive numerical methods in the literature.

5.1. The Conservative case

Here we specify test problems for the conservative form of the governing equations and

assess the performance of the proposed TV-type splitting schemes.



Splitting Schemes for Blood Flow 23

5.1.1. Test problems

For the conservative case we select three test problems. The tests have been chosen so

as to represent the main features of the admissible solutions of the blood flow equations,

namely smooth solutions, large spatial gradients and discontinuous solutions in the form of

elastic jumps and contact discontinuities. Initial data for all three test problems are given

in Table 1, while parameter values for such tests are given in Table 2, for arteries. The

initial conditions are given in terms of the physical variables A, u and η. Columns 2-4 give

the initial data to the left of x0, while columns 2-7 give respective values on the right hand

side of x0. The output time Tout at which results are displayed is given in column 7.

Numerical results will be shown for all the methods displayed in Table 3, including

upwind and a centred method. The TV-type methods of this paper are assessed for two

versions, namely that in conjunction with the exact Riemann solver (TV+Ex.RS) and that

with an approximate Riemann solver (TV+Ap.RS). These are schemes 1 and 2 in Table 3.

Table 1: Initial data for three test problems for the augmented blood flow equations in conservation-law
form. The 9-th column describes the wave pattern that emerges from the exact solution, where R stands
for rarefaction, C stands for contact discontinuity and S stands for shock.

Test AL uL ηL AR uR ηR Tout Wave pattern

1 3.50e-04 0.00 1.00 3.00e-04 0.00 0.00 0.05 RCS

2 10.00e-04 0.00 1.00 1.00e-04 0.00 0.00 0.04 R(sonic)CS

3 3.14e-04 -0.50 1.00 3.14e-04 0.50 0.00 0.05 RCR

Table 2: Parameters for tests 1 to 3 in Table 1 for arteries. Here x0 denotes position of the initial
discontinuity, h0 is vessel wall thickness, A0 is equilibrium cross-sectional area, E is Young’s modulus, ν
is Poisson ratio and ρ is blood density. The units of measure are respectively s, m, K g and Pa.

Domain length x0 α h0 A0 E ν ρ

0.50 0.25 1.00 5.00e-04 3.14e-04 3.00e-05 0.50 1000

Table 3: Numerical schemes to be assessed by comparing their approximate solutions to the exact
solution. The Acronym of column 2 will be used to identify the scheme in the figures displaying
numerical results.

Scheme Acronym Description Note

1 TV+Ex.RS TV Split. with Ex. Riem. Solv. for Press. Syst. Upwind

2 TV+Ap.RS TV Split. with App. Riem. Solv. for Press. Syst. Upwind

3 God+Ex.RS Godunov method with exact Riem. Solv. Upwind

4 DOT Godunov with Dumbser-Osher-Toro Riem. Solv. Upwind

5 HLLC Godunov method with HLLC Riem. Solv. Upwind

6 HLL Godunov method with HLL Riem. Solv. Upwind

7 Rusanov Rusanov method Upwind

8 FORCE FORCE method Centred
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For comparison, six additional competitive methods are also included in the assessment of

the new schemes. The Godunov method [8] used in conjunction with the exact Riemann

solver is fully described in [23]. The DOT (Dumbser-Osher-Toro) method is described in

[2, 3]. The schemes HLL [9], HLLC [25, 29], Rusanov [16] and FORCE [26] are all fully

described in [23].

5.1.2. Numerical results

Computed results compared with the exact solution are shown in Figs. 2-7. Each figure

displays results from four schemes, for a single test problem, for the cross-sectional area A,

velocity u and passive scalar η.

Results from Test 1. Results are shown in Figs. 2 and 3. In Fig. 2 the two top frames

show results from the TV-type splitting scheme of this paper in conjunction with the exact

Riemann solver (TV+Ex.RS) and with the two-rarefaction approximate Riemann solver

(TV+Ap.RS). The two bottom frames show results from the Godunov method in conjunction

with the exact Riemann solver and from the DOT scheme. All approximations are accurate

and very similar amongst themselves for the rarefaction wave, the contact and the shock

wave. Fig. 3 shows numerical results from four methods (symbol) compared to the exact

solution (line), namely HLLC, HLL, Rusanov and FORCE. All four numerical schemes give

comparable results for the rarefaction wave and the shock wave, but differ significantly for

the contact discontinuity. HLLC gives the best result, while the remaining schemes exhibit

excessive numerical dissipation for the contact discontinuity. Recall that HLLC, HLL, and

Rusanov are upwind schemes, while FORCE is a centred scheme. The TV-type schemes of

Fig. 2 compare very well with the HLLC results of Fig. 3.

Results from Test 2. Results are shown in Figs. 4 and 5. In Fig. 4 the two top frames

show results from the TV-type splitting scheme of this paper, in conjunction with the ex-

act Riemann solver (TV+Ex.RS) and with the two-rarefaction approximate Riemann solver

(TV+Ap.RS). The two bottom frames show results from the Godunov method in conjunc-

tion with the exact Riemann solver and from the DOT scheme. All approximations are

accurate and very similar amongst themselves for the rarefaction wave, the contact and

the shock wave. Note that the strong left rarefaction is transcritical, which is evident from

the well-known entropy glitch computed by the Godunov method with the exact Riemann

solver [23]. The DOT scheme exhibits an analogous behaviour at the critical point. The TV

schemes do not show an entropy glitch at the critical point but exhibit more numerical dif-

fusion than the other two schemes for the rarefaction wave. The resolution of the shock and

the contact discontinuity is similar in all four schemes. Fig. 5 shows numerical results from

four methods (symbol) compared to the exact solution (line), namely HLLC, HLL, Rusanov

and FORCE. Surprisingly, the results from HLLC and HLL are very similar. One would have

expected a difference in the resolution of the contact discontinuity. As expected, the results

from Rusanov and FORCE are very similar and exhibit more numerical diffusion than HLLC

and HLL. The results from the TV-type schemes of Fig. 4 compare very well with those from

HLLC in Fig. 5.
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Results from Test 3. Results are shown in Figs. 6 and 7. In Fig. 6 the two top frames

show results from the TV-type splitting scheme of this paper in conjunction with the exact

Riemann solver (TV+Ex.RS) and with the two-rarefaction approximate Riemann solver

(TV+Ap.RS). The two bottom frames show results from the Godunov method in conjunction

with the exact Riemann solver and from the DOT scheme. The main challenge for this

test problem is the sharp resolution of the stationary contact discontinuity. Results from

all schemes are comparable. The DOT schemes shows slight over and undershoots at the

contact discontinuity. Fig. 7 shows numerical results from four methods (symbol) compared

to the exact solution (line), namely HLLC, HLL, Rusanov and FORCE. All four numerical

schemes give comparable results for the rarefaction waves. But for the contact discontinuity

HLLC is the only scheme that gives a perfect resolution, while the remaining schemes exhibit

excessive numerical dissipation. The results from the TV-type schemes of Fig. 6 compare

very well with those of HLLC in Fig. 7.

5.2. The Non-Conservative case

In this section we assess the performance of the TV-type splitting schemes of this pa-

per through two test problems for which the equations are written in non-conservative

form. We compare results with the exact solution and with three other competitive path-

conservative methods. Table 4 shows all four methods assessed. Details for the 4th method

(DOT non-conservative well balanced) are found in [12].

Table 4: Path-conservative schemes for solving non-conservative systems.

Scheme Name Description Note

1 TV+PMG+Ex.RS TV Split. +PMG+Ex. RS. for Press. Syst. Upwind

2 PMG+Ex.RS Páres-Muñoz-Godunov and Ex. Riem. Solv. Upwind

3 DOT+NC Dumbser-Osher-Toro (DOT) non-conservative Upwind

4 DOT+NC+WB DOT non-conservative and well-balanced Upwind

5.2.1. Test problems and parameters

We have selected two test problems with exact solution. Table 5 gives the initial conditions

for A,u and K . The 8th column shows the output time, while the last column describes

the wave pattern in the exact solution. Table 6 gives the values of parameters for each

Table 5: Initial data for non-conservative test problems 1 and 2, for the augmented equations for blood
flow with discontinuous parameters. Data for AL and AR depend on p̂ and data for KL and KR, respectively.
Here p̂ = 7999.32 Pa and Kre f is given in Table 6.

Test AL uL KL AR uR KR Tout Wave Patt.

1 AL(p̂; KL) 0.0 Kre f AR(p̂; KR) 0.0 10Kre f 0.005 Stationary

2 0.7A0 1.0 Kre f A0 0.0 10Kre f 0.007 SCS
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Table 6: Parameters for tests for non-conservative problems in Table 5. SI units of measure are used:
s, m, K g and Pa.

Parameter Units Test 1 Test 2

A0,ref m2 3.1353e-04 3.1353e-04

Kref Pa 58725 58725

A0 m2 A0,ref A0,ref

pe Pa 0.00 0.00

m − 0.50 0.50

n − 0.00 0.00

l m 0.20 0.20

x0 m 0.10 0.06

ρ
kg

m3 1000 1000

test problem. The test problems chosen here are very demanding. First, the flow variables

have discontinuous initial conditions (Riemann problems). In addition, the parameter K is

variable; moreover, it changes discontinuously across the position x0. The single parameter

K accounts for the variation of other parameters, see Eq. (2.2). Even very sophisticated

non-conservative methods are known to fail for this kind of problems.

5.2.2. Numerical results

Fig. 8 shows results for Test 1 (non-conservative) from four path-conservative methods

(symbol) shown in Table 4, compared to the exact solution (line). The top two frames

show results from the PMG approach. The left frame shows results from the TV-type split-

ting of this paper with the PMG approach in conjunction with the exact Riemann solver

for the pressure system (TV+PMG+Ex.RS). The right frame shows results from PMG for

the full system (no splitting) in conjunction with the exact Riemann solver for the full sys-

tem (PMG+Ex.RS). The two bottom frames show results from the non-conservative version

of the DOT scheme in non-well balanced form (DOT+NC) and with the non-conservative

well-balanced version (DT+NC+WB). The results from our new TV-type splitting scheme

are very satisfactory. The discontinuous stationary middle wave (contact discontinuity) is

captured perfectly, as a true discontinuity and without spurious oscillations. Two of the

other path-conservative methods also perform very satisfactorily. Note however that even

the sophisticated DOT path-conservative method fails, unless the well-balanced property

is incorporated into the scheme, in which case the results match those of the new scheme.

To our knowledge, the scheme PMG+Ex.RS (Páres-Muñoz-Godunov and exact Riemann

solver) is new and represents the analogue of the Godunov scheme with exact Riemann

solver for the conservative case. The contact discontinuity is preserved as a true disconti-

nuity with no spurious oscillations.

Fig. 9 shows results for Test 2 (non-conservative) from four path-conservative methods

(symbol) shown in Table 4, compared with the exact solution (line). The top two frames

show results from the PMG approach. The left frame shows results from the TV-type split-
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Figure 2: Test 1. Conservative case. Numerical solution from four conservative methods (symbol)
compared to the exact solution (line). The top two frames show results from the TV-type splitting
scheme of this paper in conjunction with the exact Riemann solver (TV+Ex.RS) and an approximate
Riemann solver (TV+Ap.RS). The two bottom frames show results from the Godunov method used in
conjunction with the exact Riemann solver and from the DOT scheme. M = 50 cells, Cc f l = 0.9. Initial
data is given in Table 1 and parameters are given in Table 2.
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Figure 3: Test 1. Conservative case. Numerical solution from four conservative methods (symbol)
compared to the exact solution (line). The top two frames show results from the HLLC and HLL
schemes. The two bottom frames show results from the Rusanov and the FORCE scheme. M = 50
cells, Cc f l = 0.9. Initial data is given in Table 1 and parameters are given in Table 2.
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Figure 4: Test 2. Conservative case. Numerical solution from four conservative methods (symbol)
compared to the exact solution (line). The top two frames show results from the TV-type splitting
scheme of this paper in conjunction with the exact Riemann solver (TV+Ex.RS) and an approximate
Riemann solver (TV+Ap.RS). The two bottom frames show results from the Godunov method used in
conjunction with the exact Riemann solver and from the DOT scheme. M = 50 cells, Cc f l = 0.9. Initial
data is given in Table 1 and parameters are given in Table 2.
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Figure 5: Test 2. Conservative case. Numerical solution from four conservative methods (symbol)
compared to the exact solution (line). Top frames show results from the HLLC and HLL schemes. The
two bottom frames show results from the Rusanov and the FORCE scheme. M = 50 cells, Cc f l = 0.9.
Initial data is given in Table 1 and parameters are given in Table 2.
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Figure 6: Test 3. Conservative case. Numerical solution from four conservative methods (symbol)
compared to the exact solution (line). Top frames show results from the TV-type splitting scheme
of this paper in conjunction with the exact Riemann solver (TV+Ex.RS) and an approximate Riemann
solver (TV+Ap.RS). The two bottom frames show results from the Godunov method used in conjunction
with the exact Riemann solver and from the DOT scheme. M = 50 cells, Cc f l = 0.9. Initial data is given
in Table 1 and parameters are given in Table 2.
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Figure 7: Test 3. Conservative case. Numerical solution from four conservative methods (symbol)
compared to the exact solution (line). Top frames show results from the HLLC and HLL schemes. The
two bottom frames show results from the Rusanov and the FORCE scheme. M = 50 cells, Cc f l = 0.9.
Initial data is given in Table 1 and parameters are given in Table 2.
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Figure 8: Test 1. Non-conservative case. Numerical solution from four path-conservative methods (sym-
bol) compared to the exact solution (line). The top two frames show results from the TV-type splitting
of this paper with the PMG approach in conjunction with the exact Riemann solver (TV+PMG+Ex.RS)
and PMG for the full system in conjunction with the exact Riemann solver (PMG+Ex.RS). The two
bottom frames show results from the non-conservative versions of the DOT scheme in non-well balanced
form (DOT+NC) and in well-balanced form (DT+NC+WB). M = 50 cells, Cc f l = 0.9. Initial data is
given in Table 5 and parameters are given in Table 6.
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Figure 9: Test 2. Non-conservative case. Numerical solution from four path-conservative methods (sym-
bol) compared to the exact solution (line). The top two frames show results from the TV-type splitting
of this paper with the PMG approach in conjunction with the exact Riemann solver (TV+PMG+Ex.RS)
and PMG for the full system in conjunction with the exact Riemann solver (PMG+Ex.RS). The two
bottom frames show results from the non-conservative versions of the DOT scheme in non-well balanced
form (DOT+NC) and in well-balanced (DT+NC+WB). M = 50 cells, Cc f l = 0.9. Initial data is given in
Table 5 and parameters are given in Table 6.
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ting of this paper with the PMG approach in conjunction with the exact Riemann solver for

the pressure system (TV+PMG+Ex.RS). The right frame shows results from PMG for the

full system (no splitting) in conjunction with the exact Riemann solver for the full system

(PMG+Ex.RS). The two bottom frames show results from the non-conservative version of

the DOT scheme in non-well balanced form (DOT+NC) and from the non-conservative well-

balanced version (DT+NC+WB). The performance of the new methods shown on the top

frames are indeed very satisfactory. They compare very well with those of the sophisticated

DOT path-conservative scheme in well-balanced mode (DT+NC+WB). Note however that

even the DOT path-conservative scheme fails for this test, unless the well-balanced prop-

erty is incorporated into the scheme. Of course the outer (left and right) discontinuities are

smeared very visibly, which is consistent with first-order mode of all the schemes presented.

Note that, apart from DOT+NC, all schemes capture the contact discontinuity with infinite

resolution and without spurious oscillations.

6. Concluding Remarks

We have presented a class of very simple advection-pressure splitting numerical meth-

ods for solving the equations for blood flow in compliant arterial vessels. The schemes

are inspired by the TV flux vector splitting approach for conservative systems proposed by

Toro and Vázquez [30] for the compressible Euler equation, but differ from the original

scheme in various ways. First, in the present version the continuity equation is fully as-

signed to the pressure system. This feature is consistent with zero-dimensional models that

are based on neglecting the inertial term in the momentum equation, followed by spatial

integration. Moreover, the reformulated TV schemes have a wider range of applicability,

including systems of equations in non-conservative form, for which there may not be a full

flux vector but advection terms with non-conservative products. The TV-type scheme of this

paper splits advection terms, which may be in conservative form, from pressure terms in

conservative or non-conservative form. The advection-pressure splitting schemes are then

implemented in the framework of the Godunov-type path-conservative approach of Parés

and Muñoz [14] and are systematically assessed on a suite of carefully designed test prob-

lems with exact solution. Moreover, in order to gain a fuller understanding of the potential

of the new methods of this paper, they have also been compared against several existing,

competitive main-stream methods available in the literature. Overall, we conclude that

the proposed numerical methods suggest themselves as attractive computational tools for

modelling physiological flows under realistic conditions. Future developments may include

extension of the schemes to high-order of accuracy, application to blood flow in compliant

venous vessels and to networks composed of both arterial and venous blood vessels to sim-

ulate the full human circulatory system.
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