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Abstract

This paper investigates a semilinear stochastic fractional Rayleigh-Stokes equation fea-
turing a Riemann-Liouville fractional derivative of order € (0,1) in time and a fractional
time-integral noise. The study begins with an examination of the solution’s existence,
uniqueness, and regularity. The spatial discretization is then carried out using a finite
element method, and the error estimate is analyzed. A convolution quadrature method
generated by the backward Euler method is employed for the time discretization resulting
in a fully discrete scheme. The error estimate for the fully discrete solution is considered
based on the regularity of the solution, and a strong convergence rate is established. The
paper concludes with numerical tests to validate the theoretical findings.
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1. Introduction

We investigate the following semilinear stochastic fractional order Rayleigh-Stokes problem:

u(t, ) + (1+ 0} %) Au(t, @) = f(u(t,z)) + 9, "W (), te(0,T], =€D, (1.1a)
u(t,z) =0, te(0,T), ze€dD, (1.1b)
u(0, z) = uo, x €D, (1.1c)

where 0 < a < 1,0 <y <1land T > 0is a fixed time. Here, A = —A denotes the negative
Laplace operator with its domain D(A) = H2(D)NH} (D) and D C R?,d < 3, is an open convex
polygonal domain with a boundary dD. The operator d; 7 denotes the Riemann-Liouville time-
fractional integral operator defined by

1 4ol
o / (t — 5)\(s) ds,

where T'(+) is the usual Gamma function. The operator 9} ~® := 9;0; “ denotes the Riemann-
Liouville time-fractional derivative, where 9; = 9/9¢. In the model (1.1), the function f : R - R
satisfies the global Lipschitz condition:

oy Te(t) =

[f&) = f(s)| < Llt—s|, Vt,seR, L>0. (1.2)
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The noise {W(t)}¢>0 is an L?*(D)-valued Wiener process with a covariance operator Q
with respect to a normal filtration {F;}¢>0 on a probability space (Q, F,P, {F;}i>0), W(t) :=
dW (t)/dt is its formal derivative. The initial data ug is an Fp-measurable random variable with
values in L?(D).

The stochastic Rayleigh-Stokes problem is a model used to describe the dynamic behavior
of non-Newtonian fluids, where the time-fractional derivative 8,51_a is utilized to capture fluid
elasticity (as noted in [1,4, 5] and related references). The numerical approximation of linear
time-fractional stochastic evolution equations has been extensively studied, with several works
including [7,9,10,13,14,17]. Jin et al. [10] analyzed the strong and weak convergence of a nu-
merical scheme for subdiffusion equations with fractionally integrated Gaussian noise, which
was created using the Galerkin finite element method for the spatial aspect and convolution
quadrature for the fractional derivative. In [17], the focus was on a stochastic subdiffusion
problem driven by integrated space-time white noise, with the L1 scheme and Lubich’s first
order convolution quadrature formula being used to approximate the time-fractional derivative
and time-fractional integral, respectively. The study established a strong convergence rate.

The numerical analysis of semilinear time-fractional stochastic equations has been explored
in recent works such as [3,11]. Kang et al. [11] investigated a stochastic space and time-fractional
subdiffusion problem that included a fractionally integrated additive noise and a globally Lips-
chitz term f(u). The authors regularized the problem and derived error estimates based on the
properties of the Mittag-Leffler functions. More recently, in [3], the authors studied a stochas-
tic time-fractional Allen-Cahn model perturbed by a fractionally integrated Gaussian noise.
The Galerkin finite element method was used for the spatial approximation, and a convolution
quadrature was used to approximate both the fractional derivative and integral. By utilizing
the temporal Holder continuity property of the solution, strong convergence rates for the error
were derived. In both [3,11], conditions on « and v were imposed for the well-posedness of the
stochastic time-fractional models.

In this study, the solution is represented in an integral form and global existence and unique-
ness of solution are discussed. The regularity of the solution in both space and time is estab-
lished. The main objective of this work is to prove a strong convergence rate in L%(); L?(D))
for the fully discrete scheme using a semigroup type approach. The spatial discretization is
performed using a Galerkin finite element method, while the noise is approximated by an L2-
projection. Under the condition —«(2 —7)/2+~v > —1/2, where r is defined in (4.6), we derive
error estimates for the semidiscrete scheme. The fully discrete scheme is then obtained by
applying a convolution quadrature generated by the backward Euler method for the fractional
derivative and integral. By exploiting the solution regularity and the globally Lipschitz prop-
erty of the source term f given in (1.2), the error estimate is analyzed and a strong convergence
rate for the fully discrete scheme is proved.

The paper is structured as follows. In Section 2, we introduce notations and recall some
properties of Wiener processes. In Section 3, the representation of the solution is discussed
along with its existence, uniqueness, and regularity. Section 4 deals with the spatial discretiza-
tion and the error analysis of the resulting semi-discrete scheme. In Section 5, error estimates
for the fully discrete scheme are established. Finally, in Section 6, numerical experiments are
conducted to validate the theoretical results.

Throughout the paper, we use ¢ and C' to denote generic constants that may change from
one occurrence to another, but are always independent of the mesh size h and time step size 7.
Additionally, we simplify the notation by writing u(¢) instead of u(¢, x).
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2. Preliminaries

This section presents the notations and key characteristics of Wiener processes, which are
essential for the subsequent sections.

Let H := L?(D) be the Hilbert space of square integrable functions with (-,-) the usual
L2(D)-inner product and induced norm || - ||. For s > 0, we define the space H® := H*(D) and
its induced norm || - || . by

. { CH S (w6, < oo}, folle = [[A%0] = (zx;w,quf) |
j=1

j=1

where {(\;j,¢;)}524 are the Dirichlet eigenpairs of A. The {#;}52, form an orthonormal basis
in H. So, we have H° = H, H' = H}(D), and H?> = H?(D) N H((D), see [16].

Let L(H) denote the space of linear and bounded operators form H into H and let Q € L(H)
be a self-adjoint and positive definite operator. The eigenvalues and eigenfunctions of the
operator Q are {(n;,e;)}52; with {e;}32; being an orthonormal basis of H. The trace of @ is

oo
Tr(Q) == > nj.
j=1
The stochastic process W (t) is assumed to be a Wiener process expressed as
=1
W(t) = n; Bi(t)e;,
j=1

where f3;(t) are independent real-valued Brownian motions. When the series of Tr(Q) converges,
Q is referred to as trace class and W is considered an H-valued Wiener process. On the other
hand, if Tr(Q) is not finite, such as in the case of Q@ = I, W does not take values from H, and
is referred to as a cylindrical Wiener process. The rate of decrease in n; as 7; — 0 indicates
the regularity of W (¢), a faster decrease implies a smoother noise.

Let £ be the space of Hilbert-Schmidt operators defined by

LY = {1/} € L(H) : Z H1/1Q%ej||2 < oo},
j=1

equipped with the norm
o , 3
1
biles = ( 3ol
j=1

This definition is independent of the choice of the orthonormal basis in H. For p > 2, we denote
by LP(2; H) the space of H-valued p-times integrable random variables with norm

-(/ |v<w>|€qdp<w>)‘l’,

where E stands for the expected value. Similarly, the space L?(Q; V) is defined for an arbitrary
Banach space V.

B =

HUHLP(Q;H) = (EHUH%)
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We shall use some properties of the Ito-type integrals fot Y(s)dW (s). Given {¥(t)}iepo,m
a predictable and £9-valued stochastic process with

1l e ;L2 0,1529)) < 00, P =2,

we have )

’/0T1/)(s)dW(s) /OT ||1/J(S)||igds, (2.1)

which is known as It6’s isometry [8, Proposition 4.5]. The Burkholder inequality is given
by [12, Proposition 2.12]

=E
L2(Q:H)

H / " (s

< Cpllllr;L2(0,7529))- (2.2)
Lr(;H)

For our analysis, we shall make the following assumptions.

Assumption 2.1. The noise {W(t)}+>0 is an L*(D)-valued Wiener process on a probability
space (U, F, P, {Fi}i>0) with a self-adjoint and positive definite operator Q € L(H) such that

||A%||£U < oo for some fB€10,1].
Assumption 2.2. The initial data ug belongs to L*(Q, H") for some v € [0,2].

Remark 2.1. Our results in this paper remain valid when A = —A is replaced by a second
order self-adjoint, positive definite elliptic operator. However, we prefer to take a standard
setting as above to highlight the key ideas in this work.

3. Existence of Solutions and Regularity

This section begins by deriving the solution representation and then utilizes it to analyse
the existence, uniqueness, and regularity of the solution.

3.1. Solution representation

We recall that the mild solution to problem (1.1) is a predictable stochastic process
w: [0,T] x Q — H satisfying the following integral equation:

u(t) = Ep(t)up + /0 Eo(t — s)f(u(s)) ds + /o E,(t —s)dW(s). (3.1)

The solution operator E,,(t), m > 0, is defined by

1 _m9(2) 1
Ep(t) = — st =m I 0N+ A)de,
0= [ e
where
()= —>
g 14 2l-a’

The contour of integration is

. . i
Tps = {Ce®0 ¢ = 0} U{oe™ :[wl < p), pe (Fm), 6>0,

oriented with an increasing imaginary part.
The smoothness of E,, is given in the following lemma.
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Lemma 3.1 (cf. [4, Theorem 2.1]). The operator E,,(t) satisfies

a(p—q)
2

0 B (t)0|| 1y, < ct™

m—{
v ol o,
where L =0 and 0 < ¢g<p<2o0rf>0and0<p,qg<2.

Note that by (1.2), we have

1) < 1f (@) = FO + O] < CA+ [Jul)- (3.2)

Now, consider the model (1.1) when ugp = 0 and f = 0, whose mild solution is the stochastic
convolution

W@@)AnﬁﬁsMW@L t>0.

Using the bound
—65)

475 B, (o] < et~ =52 o

from Lemma 3.1 and Burkholder’s inequality (2.2), we derive the following estimates: For p > 2,

IWa®)ll Loy = H/ Ey(t—s)A™ dW(s)

Lr(Q;H)

t
Sﬂm@%@(/@@”ﬂgﬁ%%)HA_Ww
0

a( —B)

_ 1) 8=t
< C(a, 8,7, p)t AT e
As a result, we prove an important smoothness property of W4 (¢) in the next lemma.

Lemma 3.2. Let § € [0,1] and 0 be defined by

2l =B 4, (3.3)

Then, 6 > 1/2, and for 0 < t1 < ty and any p > 2, we have
[Wal(ta) = Walt)llLrosm) < c(te — )m‘“{e_"_ﬁo’l}HA_ ||£0, (3.4)
where eg > 0 if 6 = 3/2 and eg = 0 otherwise.
Proof. The difference W4 (t2) — Wa(t1) for t1 < ta may written as
t1
Wats) — Wa(t) = / (B, (ts — 5) — By (tr — ))dW(s)
0
ta
+/ E (ty — 5)dW(s) =: I + L.
ty

We first consider the case when 1/2 < 6 < 3/2. For this case, we follow the proof in [10,
Theorem A.2] to get

|mm®mwa&@ﬂam@wW@

LP(QH)
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(/ ATE(t - s)dt) AT AW (s)

LP(Q;H)

YAt ! (t— s)ATT AW (s) dt

/ LP(QH)
‘/‘ ( (4 Byt - | 4% ) ds)an
<[ %Wm—mwfw

<o [ Tam A gy

< elty — )|

For 3/2 < 6, we obtain by using arguments from [3],

t 2
11l 2o ) H/ L (ta — 8) — By (t1 — 5))dW ()
Lr(Q;H)
ts . 2

= ‘ / (/ AT E (= s)dt) A7 dW(s)

0 t1 Lp(QH)

121 to 2
< c/ (/ (t— 3)02dt) dsHAi HLO

0 t

2

t1 ta 3
< c/ (t1 — 5)29_4 (/ dt) dSHA_HLO (9 > —)
0 t1 2

< etd? Bty — 1) ||A*HL0

For 6 = 3/2, we see that

t1 to
wn;mﬁ>3g/<ms>“%</ u@fﬁ>dﬂAHU
0 (31
< el (t2 — 1) AT
2

Finally, for the second term I, we have
2 t2 1-5
|l < | 1477 By (t2 — 8)A™ ||7yds
t1

t
<e [t sptas] 4

t1
= ety — ) THATT g < olts — 0)2TH 3| AT |y,

which completes the proof of (3.4). O

3.2. Existence and regularity of solutions

In this subsection, we discuss existence, uniqueness and regularity of the solution to problem
(1.1). To start, we recall a Gronwall-type inequality, which will be a common tool in our analysis,
see [6].
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Lemma 3.3. Assume that o is a nonnegative function in L*(0,T), which satisfies

p(t) < C(t) + b/o (t—s) “p(s)ds, te(0,T],

where ((t) > 0,0 >0, and 0 < a < 1. Then there exists a constant Cr such that

<p(t)§§(t)+CT/0 (t— 5)=C(s)ds, te (0,T].

The well-posedness of problem (1.1) is discussed in the next theorem. Note that the proof
is established without assigning conditions on « and ~.

Theorem 3.1. Let ug € L*(Q; H), |AP=D/2| .0 < oo with § € [0,1], and f satisfies (1.2).
Then problem (1.1) has a unique mild solution u € C([0,T]; L?(2; H)).

Proof. For A\ > 0, let X denote the space C([0,T]; L>(Q; H)) equipped with the norm

0] = sup Elle™o(t)|?,
0<t<T

which is equivalent to the standard norm of C([0,T]; L?(Q2; H)) for a fixed parameter A\ > 0.
Define the nonlinear operator S : Xy — X, by

Sult) = Bolt)uo+ [ Falt = )7 (0(s)) ds
+ /t Ev(t — S)dW(S) =: 11 + IQ + Ig. (35)
0

Then, u € X satisfies (3.1) if and only if u is a fixed point of S.
If v € Xy, then by Lemma 3.1,

ElleML|* = E|le ™ Eo(t)uo||* < CaE[[Juol?] < oo.
For I5, we have by (3.2) and Lemma 3.1,
t t
EHG_)\t12||2 < / EHe_)‘tEo(t —s)f(v(s)) ||2ds < Ca/ (14 E[[v]?) ds < .
0 0
Similarly, for I3,

t
ElleML|> <E U e ™A™ B, (t — S)ABZlHiOdS}
0 2

t
<o (B[ [l o ]
0 2

< O 2= A5 |, < oo,

showing that S(v)(t) € X for all A > 0.
Next we show that S is a contraction. If vy, vy € X, then by (1.2) and Lemma 3.1,

B|e ™ (S(01)(t) ~ S(w2)(1) |

< ([ e Bate - 5)(16) — 7 0ato) )
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< ([ P (1 (un(6) - F(uals) s

t
<c. < [ e unts) - v2<s>|ids>
0

1— 672)\15 9

< CaTﬂvl(t) — v2(t)[[x-
The map S : X, — X, is a contraction for large A. The Banach fixed point theorem implies
that S has a unique fixed point u € X, which is also the unique solution of (3.1). O

Regularity properties of the mild solution of (1.1) are obtained in the following theorem.

Theorem 3.2. Let Assumptions 2.1 and 2.2 be valid. Then, the following regularity result for
the solution u of (1.1) holds

a(q v)

HUHLz(Q fa) S ct™ )

where 0 < v < ¢ <2, C depends on a,q,v and T, and —a(q+1—5)/2 4+~ > —1/2.

Proof. Considering (3.1) and using (3.2) and Lemma 3.1, we obtain for ¢ € [0, 2],

t
1w 20510y < 1B (Eu0] 2,0y + / |42 Eo(t = 5)f (u(5)) | 2 . 11,85
/HA2E (t —s)dW (s

) 2y,

<C

iy + € [ = 09 g

t ~ - 3
el i)}

0
where the last inequality holds since —a(q+1—8)/2+~v > —1/2. O

Further regularity results of the mild solution are presented in the following theorem.

Theorem 3.3. Let Assumptions 2.1 and 2.2 be fulfilled. Then, the mild solution of problem
(1.1) satisfies

() = u(s)l| 2y < eft — )02 (3.6)

for0 < s<t<T, where 0 is given in (3.3).
Proof. In view of (3.1), we get for h > 0,
u(t+h) —u(t) = {(Eo(t + k) — Eo(t))uo}
t+h
+ {/ Eo(t+h—s)f(u(s))ds
t

+/O (Eo(t 4+ h—s) — Eo(t — s))f(u(s))ds}
+Wat+h)—Walt) =1 + I+ Is.
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For v € (0, 2], we apply Lemma 3.1 with £ = 1 so that

— t+h /
11|l 200y = E)(s)uods
t

L2(Q;H)
t+h v av

< c/ S7_1d8HUOHL2(Q;H") <ct? th.
t

For I, a use of (1.2) and Lemma 3.1 with £ = 0 gives

t+h
12|l 220y < H Eo(S)f(u(t—i—h—s))dg
t

L2(QH)

" H /Ot Eo(s)(f (u(t+h —s)) = f(u(t —s)))ds

L2(H)
t+h
<c [ Il b= )]l pagonds
t
t
do [ e+ b =) = ut = 9l aomds
0

t
<ch+ c/ lu(t + h) —u(s)|l L2 (o;m)ds.
0
The bound of the last term follows by Lemma 3.2. For the last term, we have

sl 2oy < chm™mto=3=c01}| 4% 2o

Thus, the desired estimate is obtained by using Gronwall’s inequality. 0

4. The Semidiscrete Problem

This section focuses on the spatial semidiscrete approximation of problem (1.1) and its
error analysis using a piecewise linear Galerkin finite element method (FEM). The procedure
begins with a description of the FEM method. The domain D is divided into d-simplexes
through a shape-regular and quasi-uniform partition represented by 7, where h represents the
maximum mesh size. The space V}, C H! consists of all continuous piecewise linear functions
on Ty, and P, represents the orthogonal L2-projection from H to Vj,. Then the FEM seeks to
find an approximate solution uy(t) € Vj, such that

upp(t) + (140" *) Apun(t) = Puf (un(t)) + 0, "PaW (1), te€ (0,T], un(0) = Pyug, (4.1)
where Ay, : V;, — V}j, denotes the discrete Laplacian

(AhwaX) = (vwavX)a VQ/J,X € Vh-
As in Eq. (3.1), the semidiscrete solution uy, can be represented by
t t
uh(t) = Eoyh(t)PhuO + / Eoﬁh(t - S)th(uh(s))ds + / E%h(t - S)Pde(S), t> 0, (42)
0 0

where the operator E,, 5, (t) : Vi, = V}, is the discrete analogues of E,,(t), m > 0, defined by

Enn(t) = L/F eth_mM(g(z)I—i—Ah)_ldz.

21 z
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Since Ay, is selfadjoint and positive definite uniformly in A, the estimates in Lemma 3.2 and
Theorem 3.2 still hold for Ay, also uniformly in h.
Now, we introduce the operator

meh(t) = Em,h(t>Ph - Em(t), m 2 0.

The estimate of F,, ,(t) plays an important role in the error analysis. Using [4, Remark 3.2]
and Lemma 3.1, one can deduce that for v € H”,

a(2—r—v)
2

|43 Fyn(t)o]| < b2 7t o]l 0, (4.3)

where 0 < s <1,0<r <2 withr+s<2andwv € |0,2].
Let e(t) = up(t) — u(t) denote the error at time ¢. An error estimate for the semidiscrete
problem (4.1) is established in the following theorem.

Theorem 4.1. Let Assumptions 2.1 and 2.2 be valid. Let u and up, be the solutions of (1.1)
and (4.1), respectively. Then, there is a constant ¢ = c¢(«,v,T) such that

lle(t)|L2(q,r2) + bl Ve(t)| L2, 12)

<ch? .+ ch!tho HA*HN, t e (0,7, (4.4)

where 1 is defined by (4.6) and —«(2 —1r)/2 +~v > —1/2.
Proof. From (3.1) and (4.2), we can represent the error as follows:
t
e(t) = Fo,n(t)uo +/ Eon(t — s)Pu[f(un(s)) — f(u(s))]ds
0

t

¢
—|—/ Fon(t—s)f(u(s))ds +/ Fyn(t—s)dW(s), t>0. (4.5)
0 0
Set w = a(2 — v)/2. Then using the bounds (4.3) for the operators F,,, we find that
le(®)llL2@.L2) < ch*t“|luoll L2 v (o)

C/o [ Eo.n(t = 5)Pu[f (un(s)) — f(u(s))] ||L2(Q,L2)d5

+/tHFo,h(t—S) f(u(s )||L2(Q 12)ds + ( [/ 15 HLOdSDZ

< che +c/ le( ||ds+ch2/ ) () |y

S VA K P N

0

The last inequality holds with
(=14 2a—2y)/a+e if y—a<-1/2
r =g, if y—a=-1/2, (4.6)
0, it y—a>-1/2.

The desired estimate follows now by applying Lemma 3.3. The estimate for ||Ve(¢)|| is derived
by similar arguments, which completes the proof. O



Numerical Methods for Approximating Stochastic Semilinear Time-fractional Rayleigh-Stokes Equations 11

Remark 4.1. For 8 € (1,2], the error has a convergence rate O(h?~"), where 7 is given by

(-1-a(B-3)—2y)/a+e if a(B—-3)/2+7<-1/2,
r=1c¢, if a(f—-3)/2+~y=-1/2,
0, if a(8-3)/2+y>-1/2.

This can be obtained using (4.3) with s =0 and v = 8 — 1 to bound fot FE, n(t — s)dW (s).

5. Completely Discrete Scheme

This section is devoted to the analysis of a fully discrete scheme. The proposed scheme in-
volves using a convolution quadrature generated by the backward Euler method to approximate
the temporal fractional derivative and fractional integral.

Let 0 = tp < t; < --- < ty = T be a uniform partition of the time interval [0,7] and
tn =n7,n=0,..., N, where a time step size 7 = T/N. Assume ¢° = 0 and

g" =71 P,AWF, AWF =W (t) — W(tg_1), k=1,...,N.

Applying the convolution quadrature, the fully discrete scheme reads: Find u}, n =1,2,..., N,
such that
Orup + (L+0) ) Apup = Puf (up ™) +077g",  uf) = Phuo, (5.1)

where 0% for v = 1,1 — a and v = —« are approximations of the Riemann-Liouville derivative
and integral operators, respectively, at time t,, and

ol =717" Z an'/_jvj. (5.2)

j=0
)

The quadrature weights a; " are determined from the power series expansion (with 6(¢) =1-¢)

j=0
Hence, the numerical scheme (5.1) may written as

7! (uz - uzfl) + Apup + 771 Z afll__ja)Ahu{L
§=0
= fu(up ™)+l >, (5.3)
§=0

where f, = P, f. We define operators R; and @); such that
SR =REQ). R(Q) =1+¢(r718(C) + (r2718() 7 + 1) Ap) Y, (5.4)
j=0
Qi =Q), Q) =1+¢(r718(C) + (12718 T + 1) An) (O, (5.5)
j=0

Then, using (5.3) we obtain

up = up + TZRn—(j—l)fh (U{;l) + TZQn—(j—l)gj; n>1, (5.6)
=1

j=1
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which may expressed as
n-l ti+1 ; nol! ti+1
W=+ Ra /t fa(ul)dt+ 3 Qn_j/t PodW (1), (5.7)
§=0 4 j=0 j

Here, a} is the discrete solution to the homogeneous problem in (5.3).
For the error analysis, we shall use a generalized variant of the standard discrete Gronwall’s
inequality, see [2] for p = 2.

Lemma 5.1. Let 0 < o < 1,p and N be integers, 7 > 0 and t, = nt for 0 < n < N.

Let (yn)N_, be a mon-negative sequence. Assume that there exist m,---,m, € [0,1) and
S1,°+,8p,b >0 such that
p n—1
yn <O sty 0Ty iy, 1<n < N. (5.8)
j=1 j=1
Then there exists a constant C = C(n1,- -+ ,np, a, b, tn) such that
P
yn <CY sit,™, 1<n<N.
j=1

The operators R; and @); satisfy the following smoothing properties and error estimates
(deduced from [15, Theorem 2.1]).

Lemma 5.2. For any § € [0, 1], we have

8 _af . 8 —efi g
HAff Qn” Scetpyi HAﬁ (Eyn(ta) = Q")PhH <ett, i :
Case v = 0 gives the estimate for R, .
To estimate the fully discrete error, we first write the error as

u(tn) —up = (w(tn) — un(ta)) + (un(ta) — up),

where the estimate of the semidiscrete error term (u(t,) —up(t,)) is given in Theorem 4.1. We
split up(t,) — ujy as follows:

+ZO /t " (Bon(tn — O (un(t)) — Bues f(ud) )t
£ [ Bt =0 - Quo) Pad ),
Jj=0""%

Estimates of the terms on the right hand side are established in the coming lemmas.
Lemma 5.3 ([4, Remark 4.3]). We have forn > 1,

| Eo(tn)uo — ]| < e(rtn "+ 226" Jugll g, 0<v < 2. (5.9)
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Lemma 5.4. For 0 < § <1, there holds

i: /,Hl (Byn(tn —t) = Qu—j) PadW (t)

=07t

< ety A .

L2(H)
where 0 = —a(1 — B)/2 4~ and

oc+1/2, if o<1/2,
pi=1<1—c¢, if o=1/2,

1, if o>1/2.
Proof. We have
noloeti
> / (Byp(tn —t) — Qnj) PhdW (t)
j=0 "1
n—1

= / (E%h(tn —t) = Eyn(tn — tj))Pde(t)

n-l oty
+ Z/t (E%h(tn — tj) — Qn_j)Pde(t) =11 + L.

7=0 3J

Then, by using Holder’s inequality and the smoothness of E, (1),

n—l ety
TS / (Bt — t) — B p(tn — 1)) PadW(t
i=07ts

2t

n—2

tit+1
<3 [ Nt =)= ot~ ) AW O

+ [T A0 = By () AW O
KASPN LI 2 81
<[ AT Bt~ 9 47
=0t tj
+ [ 1T B Ol 147 et

T 1= B-1
s [ AT B g A7 [y

It follows that

no2 et (i
H11||2L2(Q;H) < Z/t / (tn 75)2(7 a0-B) 1)d5dtHA7H£0
J=0""%

e e e
0 0

< / " et S| A% 1%
T

L A IEs
0 0

13
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This implies that [|11]|7 o, ) < chHA(ﬁ’l)/QH%g, where

et i o< 1/2,
pPi=Q 27 i o =1/2,
22t i o> 1/2,

and 0 = —a(1 — 5)/2 + 7.
For I, we use the second inequality in Lemma 5.2 to get

n—1
1B <7 3014 (Bynltn — 15) = Queg) [0 14T g
§=0
n—1 519
<er’ Z AT (I
<cp HA*HCU,

which completes the proof. O

Lemma 5.5. The following holds:

—1 rtin 4
) I OO ACRO) B AT T

n—1

S CTmin{l,G_%} + 07'1_6 + cT Z Huh(t])
7=0

*UiHL%Q;H)'

Proof. We split the integrand as follows:

Eon(tn = t) fa(un(t)) = Ru—j fiu(u})
= (Bon(tn —t) — Eop(tn —t5)) fn(un(t))
+ Eon(tn — t5) (fa(un(t)) — fa(un(t;)))
+ Eon(tn = t7) (fa (un(ty) = fu(uf))

4
+ (Bo(ta — ;) = Ruzj) fu(uf) = > I
k=1

Now, using Lemma 3.1, we obtain

11| L2 (0 1y

tn
n—1

n—1 tit1 —
Z/ H11||L2(QH Z/ ||Il||L2(Q‘H)dt+/
j=0 Yt

t

Q

n—

IN

ti+1
7 bt = 0 0)] gt

7=0

+/ | Eon(tn —t) fa(un(t )HLZ(Q;H)dt
tn—1
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tn
+/ | Eo,n () fr (un( ))HL2(Q;H)dt

tnl

tj+1 t‘n, tn
/ / 1dsdt+c/ dt+c/ dt
t t tn—1 t

n n—1

ti+1

<cZ/ 1dt—|—c7'
t

< c/ T(ty —t) 7t +cr < er'™E,
0

For the second term I, we use Lemma 3.1, (1.2) and (3.6) to obtain

S Wl < 3 [ o =) (h0000) = )

nloeti
se / 172 (un(®)) = Ja (an () | 2 gy B
j=07ti
noletin
SCZ/ lun(t) — un(t;)l 2o dt
j=0 7t
n—1 tit1
< CZ/ (t t )mln{l Gii}tTildt
§=0 7t
n—1
S CZ in{lﬁfé / tT*ldt
7=0 t;
n—1 o .
S c min{l,@— } ( T+1 o th)
7=0

< Ct:T min{1,0—

To bound I3, we use Lemma 3.1 and (1.2) so that

tjl

Z/ 15| p2 0yt < Z/ [ Bo,n(tn — ) (f(un(ts)) = fa(@h) || pa oy @t

tjt+1 .
< CZ/ H“h(tj) - “M’N(Q;H)dt
j=0 "t
n—1 )
< CZTHuh(tﬂ'> - uiLHLZ(Q;H)'
§=0

For the last term, we use Lemmas 3.1 and 5.2 to get

t1+1

tit+1 .
Z/ 114 2y dt < Z/ [ (Bon(tn = 13) = Bog) (k) | 2 2
n—1

<c2/tj . det§CTZTt;ij

J=0
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n
=cT g th_l <erlTe
i=1

Altogether give the desired estimate. O
Now, we are ready to provide the final bound for the fully discrete error.

Theorem 5.1. Let Assumptions 2.1 and 2.2 hold, and u and u}} be the solutions of (1.1) and
(5.1), respectively. Then,

[ultsn) - UZHLZ(Q;H) < Chlw*’”t;a@;w +ortd

+CTmin{9 ,1—e} _’_CT;Ltmax{"' 3,0}

)

where 1 is given by (4.6) and € > 0 is a small real number.

Proof. The estimate follows by using the results in previous lemmas and a discrete Gronwall’s
inequality. U

6. Numerical Experiments

In this section, we validate our theoretical results through the examination of one-dimensi-
onal numerical examples. The parameter 7 is defined as T/N, and the interval D = (0,1) is
divided into M equal parts with size h = 1/M. We consider Eq. (1.1) with f(u) = vu? +1
and the following initial data:

(a) uo(x) =0,
(b) wo = wX0,1/2)(®) + (1 — 2)x(1/2,1(®), uo € L2 H'), 0<6<1/2,

where xg is a characteristic function of the set S.
To implement the stochastic process

=308 (t)e;(a)

where (; represents the Brownian motions, we set n; = j~™ for m > 0 and assume that the
operator () possesses the same eigenfunctions as the operator A, meaning e; = ﬂsin(jmc).
Then,

PhW(ﬁk)

]

L k
PyW (tx) — PoW (tg—1) Z Aﬂ
TI] e]

T T

where L is appropriately chosen to satisfy the desired convergence and Aﬂj]-“ =/7N(0,1) with
N being the standard normal distribution.
Hence, the approximation of 9, 'YPhW(tk) using the backward Euler convolution quadrature
is given by
L k
A
o, P W (ty,) NTVZa( V)Zn] ej(z 6 .
k=1
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In all numerical experiments, we set L = M. We start by examining the results in the
temporal direction. We have fixed M = 100 and a final time of 7" = 0.01, and the reference
solution is obtained using a much finer temporal mesh of N = 3200. Table 6.1 displays the
errors for cases (a) and (b) with different values of «,~, and m, which are calculated based
on the average of 100 trajectories. The “Rate” refers to the empirical convergence rate, with
the theoretical estimate included in brackets. The level of noise regularity is represented by m,
with m = 0 signifying 8 = 1/2 and m = 1 corresponding to 8 = 1. According to Theorem 5.1,
the temporal convergence is

[ utn) < epmin{= 2yt g -}

- uZHLP(Q;H)
The numerical results align closely with the theoretical predictions.

For the assessment of the spatial convergence rate, we set N = 500 and the final time
T = 0.1. The numerical results for cases (a) and (b) with v = 0.2 and different values of m
and « are presented in Table 6.2. For m = 0 and m = 1, our theoretical estimate predicts
that the error will behave as O(h'™#) for a = 0.3 and o = 0.5, and as O(h!HF-(-1+2a=27)/a)
when a = 0.9. The computed errors are slightly higher than our theoretical estimates. For
m = 2 (8 = 3/2), the numerical computations show a convergence rate of order O(h?), which
is consistent with the observation in Remark 4.1.

Table 6.1: Temporal convergence rates for cases (a) and (b) with different values of « and v at 7" = 0.01,
M = 100 and 100 trajectories.

5y m a | case/N 20 40 80 160 320 Rate
0.3 (a) 4.86e-4 | 3.36e-4 | 2.27e-4 | 1.51e-4 | 1.06e-4 0.55 (0.525)
(b) 7.05e-4 | 4.21e-4 | 2.60e-4 | 1.65e-4 | 1.11e-4 0.66 (0.525)
m=2010.5 (a) 1.91e-3 | 1.32e-3 | 9.32e-4 | 6.49e-4 | 4.41e-4 0.53 (0.475)
(b) 2.19e-3 | 1.42e-3 | 9.69e-4 | 6.64e-4 | 4.46e-4 0.57 (0.475)
0.9 (a) 9.44e-3 | 7.09e-3 | 5.15e-3 | 3.65e-3 | 2.45e-3 | 0.49 (0.375)
(b) 9.44e-3 | 7.10e-3 | 5.15e-3 | 3.65e-3 | 2.45e-3 0.49 (0.375)
v=0.1 0.3 (a) 3.5le-4 | 2.31e-4 | 1.48e-4 | 9.49e-5 | 6.64e-5 0.60 (0.60)
(b) 6.20e-4 | 3.43e-4 | 1.94e-4 | 1.15e-4 | 7.42e-5 0.76 (0.60)
m=110.5 (a) 1.04e-3 | 6.87e-4 | 4.60e-4 | 3.14e-4 | 2.04e-4 0.59 (0.60)
(b) 1.48e-3 | 8.64e-4 | 5.31le-4 | 3.43e-4 | 2.15e-4 0.70 (0.60)
0.9 (a) 2.74e-3 | 1.84e-3 | 1.20e-3 | 7.77e-4 | 4.80e-4 0.63(0.60)
(b) 2.77e-3 | 1.85e-3 | 1.20e-3 | 7.78e-4 | 4.81e-04 0.63 (0.60)
0.3 (a) 7.73e-5 | 4.51e-5 | 2.55e-5 | 1.51e-5 | 8.27e-6 0.81 (0.925)
(b) 4.94e-4 | 2.45e-4 | 1.21e-4 | 5.94e-5 | 2.80e-5 1.03 (0.925)
m =201 0.5 (a) 1.60e-4 | 9.51e-5 | 5.38e-5 | 3.10e-5 | 1.75e-5 | 0.80 (0.875)
(b) 1.10e-3 | 5.47e-4 | 2.71le-4 | 1.32e-4 | 6.26e-5 1.03 (0.875)
0.9 (a) 4.27e-4 | 2.57e-4 | 1.51e-4 | 8.88e-5 | 5.10e-5 0.77 (0.775)
(b) 6.66e-4 | 3.61e-4 | 1.96e-4 | 1.07e-4 | 5.81e-5 | 0.88 (0.775)
v=0.5 0.3 (a) 7.46e-5 | 4.32e-5 | 2.44e-5 | 1.45e-5 | 7.83e-6 | 0.81 (= 1.00)
(b) 4.93e-4 | 2.44e-4 | 1.21e-4 | 5.92e-5 | 2.79e-5 | 1.04 (= 1.00)
m=110.5 (a) 1.50e-4 | 8.70e-5 | 4.81e-5 | 2.74e-5 | 1.49e-5 | 0.83 (= 1.00)
(b) 1.10e-3 | 5.45e-4 | 2.70e-4 | 1.32e-4 | 6.19e-5 | 1.04 (= 1.00)
0.9 (a) 2.85e-4 | 1.61e-4 | 8.75¢-5 | 4.80e-5 | 2.61le-5 | 0.86 (= 1.00)
(b) 5.86e-4 | 3.0le-4 | 1.53e-4 | 7.69e-5 | 3.81e-5 | 0.99 (=~ 1.00)
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Table 6.2: Spatial convergence rates for v = 0.2 with different values of o, at T' = 0.1, N = 500 and

100 trajectories.

(1]
2]
3]
[4]

[5]

[6]
[7]
8]

[9]

m a case/M 20 40 80 160 320 Rate

0.3 (a) 5.91e-4 2.11e-4 | 7.45e-5 2.51e-5 7.26e-6 1.62 (1.50)

(b) 6.01e-4 2.13e-4 | 7.48e-5 2.51e-5 7.27e-6 1.62 (1.50)

m=0 | 0.5 (a) 9.92e-4 3.58e-4 1.26e-4 | 4.26e-5 1.24e-5 1.62 (1.50)
(b) 1.00e-3 | 3594 | 1.27e-4 | 4.27e-5 | 1.2de-5 | 1.62 (1.50)

0.9 (a) 3.93e-3 1.60e-3 6.11e-4 | 2.16e-4 | 6.45e-5 1.54 (1.06)

(b) 3.94e-3 1.60e-3 6.11e-4 | 2.16e-4 | 6.45e-5 1.54 (1.06)

0.3 (a) 2.60e-4 | 7.24e-5 | 1.97e-5 | 5.12e-6 | 1.16e-6 | 1.99 (2.00)

(b) 2.82e-4 7.75e-5 2.08e-5 5.40e-6 1.24e-6 1.99 (2.00)

m=1 0.5 (a) 4.13e-4 1.17e-4 3.20e5 8.38e-6 1.91e-6 1.98 (2.00)
(b) 4.34e-4 1.22e-4 | 3.31e-5 8.64e-6 1.98e-6 1.98 (2.00)

0.9 (a) 1.26e-3 | 4.02e-4 | 1.20e-4 | 3.36e-5 | 8.02e-6 | 1.88 (1.56)

(b) 1.28e-3 | 4.06e-4 1.21e-4 | 3.38e-5 8.06e-6 1.88 (1.56)

0.3 (a) 1.75e-4 | 4.47e-5 | 1.12e-5 | 2.72e-6 | 5.94e-7 | 2.08 (2.00)

(b) 2.08e-4 | 5.26e-5 | 1.32e-5 | 3.23e-6 | 7.35e-7 | 2.05 (2.00)

m=2 | 0.5 (a) 2.61e-4 6.67e-5 1.68e-5 | 4.09e-6 8.93e-7 | 2.07 (2.00)
(b) 2.94e-4 7.49e-5 1.88e-5 | 4.60e-6 1.03e-6 2.06 (2.00)

0.9 (a) 5.75e-4 1.55e-4 | 4.04e-5 1.00e-5 2.21e-6 2.04 (2.00)

(b) 6.22e-4 1.66e-4 | 4.30e-5 1.06e-5 2.35e-6 2.05 (2.00)
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