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Abstract

Consider the inverse scattering of time-harmonic acoustic waves by a mixed-type scat-

terer consisting of an inhomogeneous penetrable medium with a conductive transmission

condition and various impenetrable obstacles with different kinds of boundary conditions.

Based on the establishment of the well-posedness result of the direct problem, we intend to

develop a modified factorization method to simultaneously reconstruct both the support

of the inhomogeneous conductive medium and the shape and location of various impene-

trable obstacles by means of the far-field data for all incident plane waves at a fixed wave

number. Numerical examples are carried out to illustrate the feasibility and effectiveness

of the proposed inversion algorithms.

Mathematics subject classification: 35R30, 35Q60, 35P25, 78A46.

Key words: Inverse acoustic scattering, Modified factorization method, Numerical recon-
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1. Introduction

In this paper, we study the inverse problem of reconstructing a mixed-type scatterer from

the far-field measurements produced by all the incident plane waves at a fixed wave number.

The scatterer is supposed to be the union of an inhomogeneous medium with the conductive

transmission condition and different kinds of impenetrable obstacles. This problem occurs in

lots of application areas such as radar and sonar, medical imaging and non-destructing testing,

etc. Precisely, let an open bounded obstacle D1 denote the inhomogeneous penetrable medium

with a C2-smooth boundary ∂D1 and an open bounded obstacle D2 denote the impenetrable

obstacle with a C2-smooth boundary ∂D2. Denote by D0 := Rn\(D1∪D2) (where n = 2, 3, for

convenience, we will consider the case when n = 3) which is connected. We further assume that

D1 ∩D2 = ∅ (See Fig. 1.1 for the geometric configuration of the mixed scattering problem).

Suppose that D1 is filled with an inhomogeneous material characterized by n(x), which is

known as the refractive index satisfying that n(x) ∈ L∞(R3) with Re[n(x)] < 1 and Im[n(x)] ≥

c0 > 0 with a positive constant c0, whereas the exterior part D0 is filled with a homogeneous

material with the refractive index n(x) = 1. For simplicity, we only consider the case when

an impedance boundary condition is imposed on ∂D2. The same results can be similarly

extended to the other cases, e.g. the Dirichlet or the Neumann boundary condition on ∂D2.

Consider the incident wave field ui = eikx·d with the wave number k > 0 and the incident
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Fig. 1.1. Graphical representation of the mixed scattering problem.

direction d ∈ S2. Then scattering of time-harmonic acoustic waves by the mixed-type scatterer

can be modeled by the following Helmholtz equation with a conductive transmission boundary

condition on ∂D1 and an impedance boundary condition on ∂D2:





∆u+ k2u = 0 in D0,

∆v + k2n(x)v = 0 in D1,

u− v = 0 on ∂D1,
∂u

∂ν
−
∂v

∂ν
+ µu = 0 on ∂D1,

∂u

∂ν
+ iλu = 0 on ∂D2.

(1.1)

Here ν is the unit normal on ∂D1 directed into R
3\D1, and on ∂D2 directed into R

3\D2,

respectively, and µ is the constant conductivity parameter satisfying that Re(µ) < 0, Im(µ) ≥

µ0 > 0, λ > 0 is a positive constant, and u = ui+us denotes the total field in D0 and v = ui+vs

denotes the total field inD1 with the incident wave ui = eikx·d and the scattered fields us and vs,

respectively. Moreover, the scattered field us satisfies the Sommerfeld radiation condition

∂us

∂|x|
− ikus = O

(
1

|x|2

)
as |x| → ∞. (1.2)

It is well-known that the scattered field us has the asymptotic behavior [6]

us(x) =
eik|x|

4π|x|
u∞(x̂) +O

(
1

|x|2

)
as |x| → ∞, (1.3)

uniformly for all x̂ = x/|x|, where u∞ is known as the far-field pattern of us, which is an analytic

function defined on S2.

The well-posedness of the scattering problem (1.1)-(1.2) can be established by applying the

variational method (see also [15, 23]). In the current paper, we are interested in the inverse

problem of simultaneously reconstructing the shape and location of the inhomogeneous pene-

trable medium D1 and the impenetrable obstacle D2 from a knowledge of the far-field pattern

u∞ for all incident plane waves at a fixed frequency by using a modified factorization method.

The factorization method was first introduced by Kirsch [9] for the Dirichlet scattering prob-

lem. We also refer the readers to the monographs [3, 12] for a comprehensive account on the
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inverse scattering by obstacles with different kinds of boundary conditions. Kirsch et al. [10,11]

also extended the method to the inhomogeneous medium scattering problems or to the layered

cavity scattering problems [16, 21]. Recently, the factorization method has been applied to the

inverse problem of reconstructing an inhomogeneous medium with unknown buried objects in-

side [20,25] or recovering an impenetrable buried obstacle from an inhomogeneous background

medium [5, 14, 26]. There are also some related numerical results for the inverse scattering

of time-harmonic acoustic plane waves by mixed scatterers. In [22] the classical factorization

method of [9] has been justified in reconstructing a mixed scatterer which is the union of

a sound-soft impenetrable obstacle and an imperfect crack. A mixed inverse scattering problem

of acoustic waves by a union of an impenetrable sound-soft obstacle and an inhomogeneous

penetrable medium was studied in [13] by using the factorization method. For the special case

when an impenetrable sound-soft obstacle is buried in an inhomogeneous medium, the numeri-

cal analysis of the factorization method for the recovery of the inhomogeneous medium can be

found in [24]. For the case when D2 = ∅, the validity of the classical factorization method pro-

posed in [9] was justified in [2], which was later extended to the anisotropic medium scattering

case in [1]. However, the mathematical theory and numerical method developed in [1, 2] can

not be applied to solve our inverse problem due to the fact that the factorization of the far-field

operator is only compact. To overcome this difficulty, we shall develop a modified factorization

method for our inverse problem. In fact, we are trying to construct a sequence of perturbation

operators Fm of the far-field operator F in an appropriate way such that Fm is independent of

the refractive index n(x) of the inhomogeneous medium and the boundary conditions imposed

on the impenetrable obstacle D2. It is expected that the perturbation operators Fm can satisfy

the range identity in [12, Theorem 2.15] for each m ∈ N+. Then the far-field operator F can be

viewed as a sufficiently small perturbation of a perturbation operator Fm0
for some sufficient

large m0 ∈ N+. This further means that the noisy operator F δ is also a small perturbation

of F δ
m0

. Consequently, the inhomogeneous medium D1 and the impenetrable obstacle D2 can

be numerically reconstructed by using the spectral data of F and F δ.

Some other qualitative methods such as the linear sampling method or the reciprocity gap

functional method have been developed for the inverse scattering associated with the inhomo-

geneous background [4, 17, 18]. We remark that the factorization method could give a rigorous

characterization of the support of the target, which implies that it is the most rigorously justi-

fied technique within the class of qualitative methods in inverse scattering. So we would like to

derive a modified factorization method as an analytical as well as a numerical tool for solving our

inverse problem. Many other non-iterative techniques for inverse medium scattering problems

are also developed, including point source methods [19] and the iteration method [8, 27].

The remaining part of this paper is organized as follows. In Section 2, we provide the

well-posedness result of the direct scattering problem (1.1)-(1.2) and some properties of the

data-to-pattern operator. Section 3 is devoted to the justification of a modified factorization

method for simultaneously recovering the inhomogeneous conductive medium and the shape

and location of the impenetrable obstacle. Numerical examples are provided to illustrate the

efficiency of the developed inversion algorithms in Section 4.

2. Properties of the Data-to-pattern Operator G

In this section we provide some important properties for the data-to-pattern operator G

defined in the following (2.3). We begin with the statement of the well-posedness result of
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the scattering problem (1.1)-(1.2) (for a proof we refer the reader to [15, 23]). Noting that the

incident field ui satisfies the Helmholtz equation ∆ui+k2ui = 0 in R3, thus the scattering field

denoted by (u, v) := (us, vs) satisfies the following boundary value problem:




∆u+ k2u = 0 in D0,

∆v + k2n(x)v = −qf in D1,

u− v = 0 on ∂D1,
∂u

∂ν
−
∂v

∂ν
+ µu = −g on ∂D1,

∂u

∂ν
+ iλu = −h on ∂D2,

lim
r→∞

r
(∂u
∂r

− iku
)
= 0, r = |x|,

(2.1)

where f = ui in D1, g = µui on ∂D1, h = ∂ui/∂ν + iλui on ∂D2 and q := k2[n(x)− 1] in D1.

We now state the well-posedness results for problem (2.1).

Theorem 2.1. For any f ∈ L2(D1), g ∈ H−1/2(∂D1) and h ∈ H−1/2(∂D2), there exists

a unique solution (u, v) ∈ H1(BR\(D1 ∪D2))×H1(D1) to problem (2.1) satisfying that

‖u‖H1(BR\(D1∪D2))
+ ‖v‖H1(D1)

≤ C
(
‖f‖L2(D1)

+ ‖g‖
H−

1

2 (∂D1)
+ ‖h‖

H−
1

2 (∂D2)

)
, (2.2)

where C is a positive constant depending on R. Here BR is a large ball with the radius R large

enough such that D1 ∪D2 ⊂ BR.

Based on Theorem 2.1, we introduce the data-to-pattern operator G : Y → L2(S2) by

G(f, g, h)T = u∞, (2.3)

where

Y := L2(D1)×H− 1

2 (∂D1)×H− 1

2 (∂D2),

and u∞ is the far-field pattern of the solution u to the problem (2.1) with the given data

(f, g, h)T ∈ Y . For the solution operator G, we have following lemma.

Lemma 2.1. G is compact and has dense range in L2(S2).

Proof. It is obvious that the compactness of the operator G can easily derived from the

interior regularity results of elliptic equations [7]. In order to prove the denseness of the range

of G in L2(S2), it suffices to prove that the L2-adjoint operator G∗ of G is injective.

Let (u, v) be a solution of the problem (1.1)-(1.2) corresponding to the incident field

ui(y) =

∫

S2

e−ikd·yϕ(d)ds(d), y ∈ R
3, ϕ ∈ L2(S2). (2.4)

Assume that (w, p) is a solution of the problem (2.1) with the data (f, g, h)T . It then follows

from the Green’s Representation theorem that

w∞(d) =

∫

∂D1

[
w(y)

∂e−ikd·y

∂ν(y)
−
∂w

∂ν
(y)e−ikd·y

]
ds(y)

+

∫

∂D2

[
w(y)

∂e−ikd·y

∂ν(y)
−
∂w

∂ν
(y)e−ikd·y

]
ds(y).
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Hence, it is deduced from the definition of the operator G that for ϕ ∈ L2(S2), we have

〈
G(f, g, h)T , ϕ

〉
L2(S2)

=

∫

S2

w∞(d) · ϕ(d)ds(d)

=

∫

∂D1

[
w(y)

∂ui

∂ν
(y)−

∂w

∂ν
(y)ui(y)

]
ds(y)

+

∫

∂D2

[
w(y)

∂ui

∂ν
(y)−

∂w

∂ν
(y)ui(y)

]
ds(y). (2.5)

Then by using the transmission boundary conditions on ∂D1 and the impedance boundary

condition on ∂D2 and the fact that both us and w satisfy the Sommerfeld radiation condition,

we have

〈
G(f, g, h)T , ϕ

〉
L2(S2)

=

∫

∂D1

[
w(y)

∂u

∂ν
(y)−

∂w

∂ν
(y)u(y)

]
ds(y)

+

∫

∂D2

[
w(y)

∂u

∂ν
(y)−

∂w

∂ν
(y)u(y)

]
ds(y)

=

∫

D1

qvfdy +

∫

∂D1

guds+

∫

∂D2

huds

=
〈
(f, g, h)T , G∗ϕ

〉
L2(S2)

.

Therefore, the adjoint operator G∗ can be characterized as

G∗ϕ = (qv|D1
, u|∂D1

, u|∂D2
)T . (2.6)

Let G∗ϕ = 0, which leads to that v = 0 in D1 and u = 0 on ∂D1 ∪ ∂D2. This together with

the transmission conditions on ∂D1 further gives that u = v = 0 on ∂D1 and u = ∂u/∂ν = 0

on ∂D1. It then follows from the Holmgren’s uniqueness theorem that u = ui + us = 0 in

R3\D2. Since ui does not satisfy the radiation condition, one thus obtains that ui = 0 in

R3\D2. This allows us to employ [6, Theorem 3.19] to deduce that ϕ = 0, which shows the

injectivity of the operator G∗. This completes the proof of the lemma. �

Theorem 2.2. For z ∈ R3, define φz(x̂) = e−ikx̂·z for x̂ ∈ S2. Then we have

z ∈ (D1 ∪D2) ⇐⇒ φz(x̂) ∈ R(G),

where R(G) denotes the range of G.

Proof. Let us first assume that z ∈ (D1 ∪D2). Then we can choose a small ball Bǫ(z) with

center at z and the radius ǫ > 0 satisfying that Bǫ(z) ⊆ (D1 ∪D2). Choose a cut-off function

χ ∈ C∞(R3) with χ(t) = 1 for |t| ≥ ǫ and χ(t) = 0 for |t| ≤ ǫ/2 and define

wz(x) = χ(|x− z|)Φ(x, z), x ∈ R
3.

It is easily seen that wz(x) ∈ C∞(R3), which satisfies that wz = Φ(·, z) for |x− z| ≥ ǫ. A direct

computation yields

∆wz + k2nwz = Φ∆χ+ χ∆Φ+ 2∇χ∇Φ+ k2nχΦ =: −qf (0) in D1,

and

µwz |∂D1
=: −g(0),

(
∂wz

∂ν
+ iλwz

)
|∂D2

=: −h(0).
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It can be checked that f (0) ∈ L2(D1), g
(0) ∈ H−1/2(∂D1) and h

(0) ∈ H−1/2(∂D2). Clearly, wz

is a solution of (2.1) with the data (f (0), g(0), h(0)). Thus, G(f (0), g(0), h(0))T = w∞
z = φz , that

is φz ∈ R(G).

Now let z /∈ (D1∪D2). We assume that there exists (f̃ , g̃, h̃)T ∈ Y such that G(f̃ , g̃, h̃)T = φz
and we let w̃ be a solution to the problem (2.1) with the data (f̃ , g̃, h̃). Thus one has w̃∞ =

G(f̃ , g̃, h̃)T = φz. With the aid of Rellich’s lemma and the unique continuation principle, we

immediately have that w̃(x) = Φ(x, z) for x ∈ R3\(D1∪D2∪{z}). However, ‖w̃‖H1(B(z)) < +∞

and ‖Φ(·, z)‖H1(B(z)) tends to +∞, where B(z) is a sufficiently small ball centered at z. This

leads to a contradiction. The theorem is thus proved. �

3. A Modified Factorization Method for the Simultaneous

Reconstruction

In this section we focus on the simultaneous reconstruction of the location and shape of the

inhomogeneous media and the impenetrable obstacle. We begin with introducing the far-field

operator F : L2(S2) → L2(S2) defined by

(Fg)(x̂) =

∫

S2

u∞(x̂; d)g(d)ds(d), g ∈ L2(S2), (3.1)

where u∞ is the far-field pattern of the scattered field u of the problem (2.1) associated with the

incident wave ui = eikx·d. Obviously, Fg is the far-field pattern corresponding to the incident

field of the Herglotz wave function

vg(x) =

∫

S2

eikx·dg(d)ds(d), x ∈ R
3. (3.2)

Define the incident operator H : L2(S2) → Y by H = (H1, H2, H3)
T with

H1g(x) =

∫

S2

eikx·dg(d)ds(d), x ∈ D1, (3.3)

H2g(x) = µ

∫

S2

eikx·dg(d)ds(d), x ∈ ∂D1, (3.4)

H3g(x) =

∫

S2

(
∂

∂ν
+ iλ

)
eikx·dg(d)ds(d), x ∈ ∂D2. (3.5)

It then follows from the superposition principle and the definition of the operator G that

F = GH . In order to derive the factorization of the far-field operator F , we next introduce the

operators VD1D1
, VD1∂Di

, S̃∂DjD1
, S∂Di∂Dj

, K̃∂DjD1
,K∂Di∂Dj

,K
′

∂Di∂Dj
, T∂Di∂Dj

, i, j = 1, 2,

defined by

(VD1D1
ϕ)(x) =

∫

D1

Φ(x, y)ϕ(y)dy, x ∈ D1,

(VD1∂Di
ϕ)(x) =

∫

D1

Φ(x, y)ϕ(y)dy, x ∈ ∂Di,

(
S̃∂DjD1

ϕ
)
(x) =

∫

∂Dj

Φ(x, y)ϕ(y)ds(y), x ∈ D1,

(S∂Di∂Dj
ϕ)(x) =

∫

∂Di

Φ(x, y)ϕ(y)ds(y), x ∈ ∂Dj ,
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(
K̃∂DjD1

ϕ
)
(x) =

∫

∂Dj

∂Φ(x, y)

∂νy
ϕ(y)ds(y), x ∈ D1,

(K∂Di∂Dj
ϕ)(x) =

∫

∂Di

∂Φ(x, y)

∂νy
ϕ(y)ds(y), x ∈ ∂Dj,

(
K

′

∂Di∂Dj
ϕ
)
(x) =

∂

∂νx

∫

∂Di

Φ(x, y)ϕ(y)ds(y), x ∈ ∂Dj,

(T∂Di∂Dj
ϕ)(x) =

∂

∂νx

∫

∂Di

∂Φ(x, y)

∂νy
ϕ(y)ds(y), x ∈ ∂Dj.

By the boundedness of the trace operator, we deduce that the operators

VD1D1
: L2(D1) → H2(D1), VD1∂Di

: L2(D1) → H
3

2 (∂Di),

S̃∂DjD1
: H− 1

2 (∂Dj) → H1(D1), S∂Di∂Dj
: H− 1

2 (∂Di) → H
1

2 (∂Dj),

K̃∂DjD1
: H

1

2 (∂Dj) → H1(D1), K∂Di∂Dj
: H

1

2 (∂Di) → H
1

2 (∂Dj),

K
′

∂Di∂Dj
: H− 1

2 (∂Di) → H− 1

2 (∂Dj), T∂Di∂Dj
: H

1

2 (∂Di) → H− 1

2 (∂Dj)

are all bounded. Based on these operators, we have the following factorization theorem.

Theorem 3.1. F has the following factorization form:

F = GM∗G∗, (3.6)

where M : Y ∗ → Y is defined by

M=




q−1I−VD1D1
−µS̃∂D1D1

−K̃∂D2D1
+iλS̃∂D2D1

−µVD1∂D1
−|µ|2S∂D1∂D1

+µI −µK∂D2∂D1
+iλµS∂D2∂D1

−
∂VD1∂D2

∂ν
−iλVD1∂D2

−µK
′

∂D1∂D2
−iλµS∂D1∂D2

A33


 (3.7)

with A33 := −T∂D2∂D2
+ iλK

′

∂D2∂D2
− iλK∂D2∂D2

− λ2S∂D2∂D2
− iλI.

Proof. By the definition of the incident operatorH , one can deduce that the adjoint incident

operator H∗ : Y ∗ → L2(S2) has the form

(H∗ϕ)(d) =

∫

D1

e−iky·dϕ1(y)dy + µ

∫

∂D1

e−iky·dϕ2(y)ds(y)

+

∫

∂D2

(
∂

∂ν
− iλ

)
e−iky·dϕ3(y)ds(y), (3.8)

which is the far-field pattern of the function W defined by

W (x) =

∫

D1

Φ(x, y)ϕ1(y)dy + µ

∫

∂D1

Φ(x, y)ϕ2(y)ds(y)

+

∫

∂D2

(
∂

∂ν
− iλ

)
Φ(x, y)ϕ3(y)ds(y), x ∈ R

3\D2. (3.9)

It is easily found that W solves problem (2.1) with the following data:

f = q−1ϕ1 −VD1D1
ϕ1 − µS̃∂D1D1

ϕ2 − K̃∂D2D1
ϕ3 + iλS̃∂D2D1

ϕ3,

g = −µVD1∂D1
ϕ1 − |µ|2S∂D1∂D1

ϕ2 + µϕ2 − µK∂D2∂D1
ϕ3 + iλµS∂D2∂D1

ϕ3,

h = −
∂VD1∂D2

∂ν
ϕ1 − iλVD1∂D2

ϕ1 − µK
′

∂D1∂D2
ϕ2 − iλµS∂D1∂D2

ϕ2 +A33ϕ3,
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where A33 is defined above. Therefore,

H∗ϕ =W∞ = G(f, g, h)T = GMϕ.

Thus, H = M∗G∗. Recalling F = GH yields that F = GM∗G∗. This completes the proof of

the theorem. �

In what follows, we first decompose the middle operator M into M =M1 +M2 as follows:

M =



q−1I 0 0

0 −|µ|2Si
∂D1∂D1

0

0 0 −T i
∂D2∂D2




+




−VD1D1
−µS̃∂D1D1

−K̃∂D2D1
+iλS̃∂D2D1

−µVD1∂D1
−|µ|2(S∂D1∂D1

−Si
∂D1∂D1

)+µI −µK∂D2∂D1
+iλµS∂D2∂D1

−
∂VD1∂D2

∂ν
−iλVD1∂D2

−µK
′

∂D1∂D2
−iλµS∂D1∂D2

A1
33




=:M1 +M2, (3.10)

where

A1
33 := −

(
T∂D2∂D2

− T i
∂D2∂D2

)
+ iλK

′

∂D2∂D2
− iλK∂D2∂D2

− λ2S∂D2∂D2
− iλI,

Si
∂D1∂D1

and T i
∂D2∂D2

are the single-layer and the derivative of the double-layer boundary

operators corresponding to the wave number k = i, respectively.

Then by direct calculations we have the following theorem.

Theorem 3.2. Suppose that k2 is not a Dirichlet eigenvalue of −∆ in D2. Then the opera-

tor M defined in Theorem 3.1 is invertible and M−1 =M−1
1 +M3, where

M−1
1 =



qI 0 0

0 −|µ|2Si,−1
∂D1∂D1

0

0 0 −T i,−1
∂D2∂D2


 , (3.11)

and the operator M3 = −M−1
1 M2M

−1 is compact.

Proof. Obviously, M can be decomposed into (3.10). Then we can derive that M1 is

invertible on Y . The compactness ofM2 follows from the compact embedding theorem and the

compactness of the ingredient operators inM2. This ensures thatM =M1+M2 is a Fredholm-

type operator. Now we let Mϕ = 0 for ϕ = (ϕ1, ϕ2, ϕ3)
T ∈ Y ∗. Based on Theorem 3.1, it can

be concluded that w(x) defined by (3.9) is the solution to problem (2.1) with the boundary data

(f, g, h) = (0, 0, 0)T . Then the uniqueness of problem (2.1) leads to that W (x) = 0 in R3\D2.

Since ∆W + k2W = −ϕ1 in D1, we have that ϕ1 = 0. In addition, ϕ2 = 0 can be derived by

using the jump relations of the derivative of the single layer boundary operator defined on ∂D1.

Moreover, it can be verified thatW (x)=0 in D2 due to the assumption that k2 is not a Dirichlet

eigenvalue of −∆ in D2, whereas ϕ3 = 0 follows again from the jump relations of the derivative

of the single layer boundary operator on ∂D2. This proves the fact that the operator M is

invertible, and a direct calculation yields that M−1 =M−1
1 −M−1

1 M2M
−1 :=M1+M3, where

M3 is compact. This ends the proof of the theorem. �
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From Theorem 3.2 we can easily observe that the middle operator M in the factorization

of the far-field operator F can not be decomposed into a coercive part for the case when

Re[n(x)] < 1 since

〈Siϕ, ϕ〉∂Dl
≥ Cl‖ϕ‖

2

H−
1

2 (∂Dl)
, −〈T iϕ, ϕ〉∂Dl

≥ Cl‖ϕ‖
2

H
1

2 (∂Dl)
, l = 1, 2.

Hence, the classical factorization method proposed by Kirsch [12] can not be applied directly.

In order to derive a suitable factorization of the far-field operator F , we first rewrite it in the

form

F = H∗M−1H. (3.12)

Then we intend to introduce a series of perturbation operators Fm of F in the sense that

limm→∞ ‖Fm − F‖L2(S2) = 0. It will be shown that for any m ∈ N, Fm has a suitable factor-

ization satisfying the range identity [12, Theorem 2.15]. Therefore, the mixed-type scatterer

can be recovered approximately from a knowledge of the far-field data F . Before going further,

we can easily obtain the fact that R(H∗) = R(G) since H∗ = GM and M is invertible. This

together with Theorem 2.2 yields the following result.

Theorem 3.3. It holds that

z ∈ (D1 ∪D2) ⇐⇒ φz(x̂) ∈ R(H∗). (3.13)

To derive a suitable modified factorization of the far-field operator, we introduce the follow-

ing auxiliary operators:

H̃D1
: L2(S2) → H

1

2 (∂Ω1),

H̃D2
: L2(S2) → H

1

2 (∂Ω2),

defined by

(
H̃D1

g
)
(x) =

∫

S2

eikx·dg(d)ds(d), x ∈ ∂Ω1, (3.14)

(
H̃D2

g
)
(x) =

∫

S2

eikx·dg(d)ds(d), x ∈ ∂Ω2, (3.15)

Clearly, H̃Dl
, l = 1, 2, is bounded and well-defined. Here the open and bounded domains Ωl

with C2-boundaries ∂Ωl, l = 1, 2, satisfy that D1 ⊂ Ω1, D2 ⊂ Ω2 and Ω1∩Ω2 = ∅, see Fig. 3.1.

Hence, we can define the perturbation operators

FD1

m = F − ρ(3)m H̃∗
D2
S−1
∂Ω2

H̃D2
, (3.16)

FD2

m = F +
(
ρ(1)m + ρ(2)m

)
H̃∗

D1
S−1
∂Ω1

H̃D1
, (3.17)

where S∂Ωl
, l = 1, 2, are the single-layer operators on ∂Ωl with respect to the wave number

k = i, and ρ
(l̃)
m , l̃ = 1, 2, 3, are positive numbers satisfying that ρ

(l̃)
m → 0 as m → ∞. This

ensures that ∥∥FDl
m − F

∥∥
L2(S2)

→ 0 as m → ∞, l = 1, 2.
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Fig. 3.1. Graphical representation of domains.

Theorem 3.4. The operators FD1

m and FD2

m have the following factorizations:

FD1

m = H̃
∗

D1
MD1

H̃D1
, H̃D1

=
(
H1, H2, H̃D2

)T
, (3.18)

FD2

m = H̃
∗

D2
MD2

H̃D2
, H̃D2

=
(
H̃D1

, H̃D1
, H3

)T
(3.19)

with the middle operators

MD1
: L2(D1)×H− 1

2 (∂D1)×H
1

2 (∂Ω2) → L2(D1)×H
1

2 (∂D1)×H− 1

2 (∂Ω2),

MD2
: H

1

2 (∂Ω1)×H
1

2 (∂Ω1)×H− 1

2 (∂D2) → H− 1

2 (∂Ω1)×H− 1

2 (∂Ω1)×H
1

2 (∂D2).

Here MD1
and MD2

are given by

MD1
=



qI 0 0

0 −|µ|2Si,−1
∂D1∂D1

0

0 0 −ρ
(3)
m S−1

∂Ω2


+M2

D1
, (3.20)

MD2
=



ρ
(1)
m S−1

∂Ω1
0 0

0 ρ
(2)
m S−1

∂Ω1
0

0 0 −T i,−1
∂D2∂D2


+M2

D2
(3.21)

with the compact operators M2
D1

and M2
D2

, and

Re(−MD1
) = CD1

+QD1
, Re(MD2

) = CD2
+QD2

with the positive coercive operators CD1
, CD2

and the compact operators QD1
, QD2

.

Proof. First, we define a compact operator L3 : H1/2(∂Ω2) → H−1/2(∂D2) by

L3h3 =

(
∂w3

∂ν
+ iλw3

) ∣∣∣∣
∂D2

,

where w3 satisfies the following boundary value problem:

{
∆w3 + k2w3 = 0 in Ω2,

w3 = h3 on ∂Ω2
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with h3 ∈ H1/2(∂Ω2). This leads to that H3 = L3H̃D2
, which allows us to obtain

H =



H1

H2

H3


 =



I 0 0

0 I 0

0 0 L3






H1

H2

H̃D2


 =: LD1

H̃D1
. (3.22)

Therefore, with the aid of (3.12), (3.22) and Theorem 3.2, we derive that

FD1

m = F − ρ(3)m H̃∗
D2
S−1
∂Ω2

H̃D2
= H̃

∗

D1

[
L

∗
D1
M−1

LD1
+ J (1)

m

]
H̃D1

= H̃
∗

D1







qI 0 0

0 −|µ|2Si,−1
∂D1∂D1

0

0 0 −ρ
(3)
m S−1

∂Ω2




+


L∗

D1



0 0 0

0 0 0

0 0 −T i,−1
∂D2∂D2


LD1

+L
∗
D1
M3LD1





 H̃D1

=: H̃
∗

D1

(
M1

D1
+M2

D1

)
H̃D1

=: H̃
∗

D1
MD1

H̃D1
,

where J
(1)
m is defined as

J (1)
m :=



0 0 0

0 0 0

0 0 −ρ
(3)
m S−1

∂Ω2


 ,

whence (3.20) follows.

Second, we define the compact operators

L1 : H
1

2 (∂Ω1) → L2(D1) by L1h = w|D1
,

L2 : H
1

2 (∂Ω1) → H
1

2 (∂D1) by L2h = µw|∂D1
,

where w satisfies the following boundary value problem:

{
∆w + k2w = 0 in Ω1,

w = h on ∂Ω1

with h ∈ H1/2(∂Ω1).

It is easily seen that H1 = L1H̃D1
and H2 = L2H̃D1

, and

H =



H1

H2

H3


 =



L1 0 0

0 L2 0

0 0 I






H̃D1

H̃D1

H3


 =: LD2

H̃D2
.

Therefore, we conclude that

FD2

m = F + ρ(1)m H̃∗
D1
S−1
∂Ω1

H̃D1
+ ρ(2)m H̃∗

D1
S−1
∂Ω1

H̃D1

= H̃
∗

D2

[
L

∗
D2
M−1

LD2
+ J (2)

m

]
H̃D2

= H̃
∗

D2







ρ
(1)
m S−1

∂Ω1
0 0

0 ρ
(2)
m S−1

∂Ω1
0

0 0 −T i,−1
∂D2∂D2






12 F.L. QU, Y.H. WANG, Z. GAO AND Y.L. CUI

+


L∗

D2



qI 0 0

0 −|µ|2Si,−1
∂D1∂D1

0

0 0 0


LD2

+L
∗
D2
M3LD2





 H̃D2

=: H̃
∗

D2

(
M1

D2
+M2

D2

)
H̃D2

=: H̃
∗

D2
MD2

H̃D2
,

where J
(2)
m is defined by

J (2)
m :=



ρ
(1)
m S−1

∂Ω1
0 0

0 ρ
(2)
m S−1

∂Ω1

0 0 0


 ,

whence (3.21) follows.

The decomposition of Re(−MD1
) and Re(MD2

) follows directly from (3.20), (3.21), the

coercive properties of Si
∂D1∂D1

,−T i
∂D2∂D2

, S−1
∂Ω1

, S−1
∂Ω2

and the fact that Re(q) < 0. The proof

of the theorem is now completed. �

Theorem 3.5. H̃
∗

D1
and H̃

∗

D2
are compact and have dense range in L2(S2).

Proof. It is obvious that H̃
∗

D1
and H̃

∗

D2
are compact since they have continuous kernels.

Moreover, based on Theorem 3.4, we know that H∗ = H̃
∗

D1
L

∗
D1

= H̃
∗

D2
L

∗
D2

, this indicates

that R(H∗) ⊂ R(H̃
∗

D1
) and R(H∗) ⊂ R(H̃

∗

D2
). In addition, since H∗ = GM and M is known

to be invertible, one has G = H∗M−1, which implies that R(G) ⊂ R(H∗). So, we derive that

R(G) ⊂ R(H̃
∗

D1
) and R(G) ⊂ R(H̃

∗

D2
). Then by Lemma 2.1, we conclude that H̃

∗

D1
and H̃

∗

D2

have dense range in L2(S2). The proof of the theorem is complete. �

Theorem 3.6. It holds that

(i) Im〈MD1
ϕ, ϕ〉 ≥ 0 for all ϕ ∈ L2(D1)×H−1/2(∂D1)×H1/2(∂Ω2), and Im〈MD2

ϕ, ϕ〉 ≥ 0

for all ϕ ∈ H1/2(∂Ω1)×H1/2(∂Ω1)×H−1/2(∂D2).

(ii) Im〈MD1
ϕ, ϕ〉 > 0 for all ϕ ∈ R(H̃D1

) with ϕ 6= 0, and Im〈MD2
ϕ, ϕ〉 > 0 for all

ϕ ∈ R(H̃D2
) with ϕ 6= 0.

Proof. (i) For any ϕ ∈ L2(D1) ×H−1/2(∂D1) × H1/2(∂Ω2), define ψ = (M−1)∗LD1
ϕ, we

have

Im〈MD1
ϕ, ϕ〉 = Im

〈
L

∗
D1
M−1

LD1
ϕ, ϕ

〉
= Im

〈
M−1

LD1
ϕ,LD1

ϕ
〉

= Im
〈
LD1

ϕ, (M−1)∗LD1
ϕ
〉
= Im〈M∗ψ, ψ〉 = Im〈ψ,Mψ〉.

To prove Im〈MD1
ϕ, ϕ〉 ≥ 0, we first prove that Im〈Mψ,ψ〉 ≤ 0. Define a function W (x)

by (3.9) with ϕ replaced by ψ = (ψ1, ψ2, ψ3)
T ∈ Y . Then by similar arguments as that in

Theorem 3.1, we obtain that

〈Mψ,ψ〉 =
(
q−1ψ1, ψ1

)
D1

− (W−, ψ1)D1
+ µ〈ψ2, ψ2〉∂D1

− µ〈W+, ψ2〉∂D1

−

〈
∂W+

∂ν
, ψ3

〉

∂D2

− iλ〈W+, ψ3〉∂D2

=: I1 + I2 + I3 + I4 + I5 + I6.
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It is easily verified that

Im(I1) =

∫

D1

Im(q−1)|ψ1|
2dx,

Im(I3) = Im(µ)

∫

∂D1

|ψ2|
2ds.

Clearly, Im(I1) = 0 if Im[n(x)] = 0, Im(I1) ≤ 0 if Im[n(x)] ≥ c0 > 0 and Im(I3) ≤ 0 since

Im(µ) ≥ µ0 > 0. Applying Green’s theorem, the jump relations, the transmission conditions

on ∂D1 and the asymptotic relationships yields that

I2 = −(W−, ψ1)D1
=

∫

D1

W−

(
∆W− + k2W−

)
dx

=

〈
W−,

∂W−

∂ν

〉

∂D1

−

∫

D1

(
|∇W |2 − k2|W |2

)
dx,

I4 = −µ〈W,ψ2〉∂D1
=

∫

∂D1

W+
∂W+

∂ν
ds−

∫

∂D1

W−
∂W−

∂ν
ds

=

∫

∂BR

W
∂W

∂ν
ds−

〈
W+,

∂W+

∂ν

〉

∂D2

−

〈
W−,

∂W−

∂ν

〉

∂D1

−

∫

BR\(D1∪D2)

(
|∇W |2 − k2|W |2

)
dx,

I5 = −

〈
∂W+

∂ν
, ψ3

〉

∂D2

=

∫

∂D2

∂W+

∂ν
W−ds−

∫

∂D2

∂W+

∂ν
W+ds

=

∫

D2

(
|∇W |2 − k2|W |2

)
dx+ 〈iλψ3,W+〉∂D2

− 〈iλψ3, ψ3〉∂D2
−

〈
∂W+

∂ν
,W+

〉

∂D2

,

I6 = 〈W+, iλψ3〉∂D2
.

Therefore, we have

Im(I2 + I4 + I5 + I6) = Im

(∫

∂BR

W
∂W

∂ν
ds

)
− λ

∫

∂D2

|ψ3|
2
ds.

Combining the above analysis leads to that

Im〈Mψ,ψ〉 = Im

(∫

∂BR

W
∂W

∂ν
ds

)
+ Im(q−1)

∫

D1

|ψ1|
2dx

+ Im(µ)

∫

∂D1

|ψ2|
2ds− λ

∫

∂D2

|ψ3|
2ds

= −k lim
R→∞

∫

∂BR

|W |2ds+ Im(q−1)

∫

D1

|ψ1|
2dx

+ Im(µ)

∫

∂D1

|ψ2|
2ds− λ

∫

∂D2

|ψ3|
2ds

= −
k

|γ|2

∫

S2

|W∞|2ds+ Im(q−1)

∫

D1

|ψ1|
2dx

+ Im(µ)

∫

∂D1

|ψ2|
2ds− λ

∫

∂D2

|ψ3|
2ds ≤ 0, (3.23)
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where γ = eikR/4πR. Hence, we have

Im〈MD1
ϕ, ϕ〉 ≥ 0. (3.24)

Similarly, it can be deduced that

Im〈MD2
ϕ, ϕ〉 ≥ 0. (3.25)

(ii) Recalling H∗ = GM implies G = H∗M−1, which further gives G∗ = (M−1)∗H . This in

combination with the fact that H = LD1
H̃D1

yields that G∗ = (M−1)∗LD1
H̃D1

. For any

ϕ ∈ R(H̃D1
), one has that

ψ = (M−1)∗LD1
ϕ ∈ R(G∗).

Therefore, to obtain strictly positive property of the operator Im(MD1
), it is sufficient to prove

that

Im〈ψ,Mψ〉 > 0 for all ψ ∈ R(G∗) with ψ 6= 0. (3.26)

Let Im〈ψ,Mψ〉 = 0 for some ψ ∈ R(G∗). Since Im[n(x)] ≥ c0 > 0, Im(µ) ≥ µ0 > 0 and

λ > 0, it then follows from (3.23) that ψ = (ψ1, ψ2, ψ3) = 0. The strictly positive property of

the operator Im(MD2
) can be similarly obtained. The theorem is thus completely proved. �

Theorem 3.7. For z ∈ R3, define φz ∈ L2(S2) by φz(x̂) = e−ikx̂·z, x̂ ∈ S2. Assume that

Re[n(x)] < 1. We have the following results:

(i) For any point z /∈ Ω2, then z ∈ D1 ⇐⇒ φz ∈ R(H̃
∗

D1
).

(ii) For any point z /∈ Ω1, then z ∈ D2 ⇐⇒ φz ∈ R(H̃
∗

D2
).

Proof. (i) Let z ∈ D1, it is found from Theorem 2.2 that φz ∈ R(H∗). Since H∗ = H̃
∗

D1
L

∗
D1

,

we have R(H∗) ⊆ R(H̃
∗

D1
). Thus, φz ∈ R(H̃

∗

D1
).

Now assume z /∈ D1 and let φz ∈ R(H̃
∗

D1
), which means that there exists ϕz such that

H̃
∗

D1
ϕz = φz . Then by Rellich’s Lemma and the unique continuation principle, we derive

∫

D1

Φ(x, y)ϕz
1dy + µ

∫

∂D1

Φ(x, y)ϕz
2ds+

∫

∂Ω2

(
∂

∂ν
− iλ

)
Φ(x, y)ϕz

3ds(y) = Φ(x, z)

for x ∈ R3\(D1 ∪Ω2 ∪ {z}). However, the left hand is continuous at x = z(z /∈ Ω2 and z /∈ D1)

but the right hand is singular at x = z, which yields a contradiction.

(ii) By applying the similar arguments as that in the proof of (i), one can derive that

∫

∂Ω1

Φ(x, y)ϕz
1dy + µ

∫

∂Ω1

Φ(x, y)ϕz
2ds+

∫

∂D2

(
∂

∂ν
− iλ

)
Φ(x, y)ϕz

3ds(y) = Φ(x, z)

for x ∈ R3\(Ω1 ∪D2 ∪ {z}). Similarly, we arrive at a singularity contradiction. This ends the

proof the theorem. �

Finally, Theorems 3.3-3.7 in conjunction with the range identity [12, Theorem 2.15] and

Picard’s range criterion implies the main result of this section.

Theorem 3.8. For z ∈ R3, define φz ∈ L2(S2) by φz(x̂) = e−ikx̂·z, x̂ ∈ S2. Assume that

Re[n(x)] < 1. Then
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(i) For any point z /∈ Ω2, we have that

z ∈ D1 ⇐⇒ φz ∈ R
((
FD1

m,#

) 1

2

)

⇐⇒ WD1

m (z) =




∞∑

j=1

∣∣(φz , ϕ(m)
j

)
L2(S2)

∣∣2

λ
(m)
j



−1

> 0

with m ∈ N, where {λ
(m)
j , ϕ

(m)
j } is the eigensystem of the self-adjoint operator

FD1

m,# :=
∣∣Re

(
FD1

m

)∣∣+
∣∣Im

(
FD1

m

)∣∣.

(ii) For any point z /∈ Ω1, we have that

z ∈ D2 ⇐⇒ φz ∈ R
((
FD2

m,#

) 1

2

)

⇐⇒ WD2

m (z) =




∞∑

j=1

∣∣(φz, ϕ(m)
j

)
L2(S2)

∣∣2

λ
(m)
j



−1

> 0,

with m ∈ N, where {λ
(m)
j , ϕ

(m)
j } is the eigensystem of the self-adjoint operator

FD2

m,# :=
∣∣Re

(
FD2

m

)∣∣+
∣∣Im

(
FD2

m

)∣∣.

4. Numerical Examples

In this section we give some numerical examples of the digital simultaneous imaging of the

inhomogeneous medium D1 and the obstacleD2 in R2 for verifying the validity and applicability

of the developed factorization method for our inverse problem. We use the limited incident

directions d = dj ∈ S, which are equidistantly distributed on the unit circle S, and the limited

observation directions x̂ = x̂j ∈ S with j = 1, 2, . . . ,m. Moreover, the finite data is used to

discretize the far-field operator. Therefore, one can obtain the matrix

Fm =
(
u∞(x̂p, dp)

)
∈ C

m×m

represented by the measurement data. So, the indicator function Wm(z) is defined by the finite

sum

Wm(z) =

[
m∑

p=1

1

λp

∣∣∣∣
m∑

q=1

φz,qϕp,q

∣∣∣∣
2
]−1

for z ∈ R
2, (4.1)

where {λp;ϕp}mp=1 is the characteristic system of the matrix

Fm,# = |Re(Fm)|+ |Im(Fm)|,

and {φz,q}mq=1 is the discretization of the test function φz and {ϕp,q}mq=1 is the discretization of

the eigenvector ϕp.

In each example, we will also show the results of the reconstruction with partially noisy

data. In fact, we have added artificial noise to make the results more realistic. We choose

a noise level δ and a noise matrix X and define the following noisy far-field operator:

F δ
m := Fm + δ

X

‖X‖2
‖Fm‖2,

(
F δ
m

)
#
:=

∣∣Re
(
F δ
m

)∣∣+
∣∣Im

(
F δ
m

)∣∣. (4.2)
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Accordingly, the indicator function Wm(z) can be directly calculated from the characteristic

system of the perturbation matrix (F δ
m)# for simultaneously reconstruct the shape and location

of the medium D1 and the impenetrable obstacle D2.

In all numerical examples, we focus on determining the boundary and position of both the

inhomogeneous medium D1 and the impenetrable obstacle D2 in the two-dimensional case. For

a more concise representation, we take k21 = k2n(x) to indicate that the material in the medium

D1 is homogeneous, which is different from the background medium in the R2\(D1 ∪D2). The

numerical shape expressions of all tested curves are given in the Table 4.1. In all numerical

examples, we set the same fixed parameters: k = 5, k1 = 2+8i, µ = −1+7i, λ = 8 andM = 64.

Table 4.1: Parametrization of the Graph.

Graph type Parametrization

Circle shaped x(t) = R(cos t,sin t), t ∈ [0, 2π], R > 0

Ellipse shaped x(t) =(5 cos t,4 sin t), t ∈ [0, 2π]

Apple shaped x(t) = [(0.5 + 0.4 cos t+ 0.1 sin 2t)/(1 + 0.7 cos t)](cos t, sin t), t ∈ [0, 2π]

Rounded triangle x(t) = (2 + 0.3 cos 3t)(cos t, sin t), t ∈ [0, 2π]

Peanut shaped x(t) =
√

cos2 t+ 0.25 sin2 t(cos t, sin t), t ∈ [0, 2π]

Example 4.1. In this example, we consider the simultaneous reconstruction of a penetrable

circle shaped medium and an impenetrable ellipse shaped obstacle from the far-field data with-

out noise, with 2% noise and with 5% noise respectively. See Fig. 4.1.

Example 4.2. In this example, we consider the simultaneous reconstruction of a penetrable

circle shaped medium and an impenetrable peanut shaped obstacle from the far-field data

without noise, with 2% noise and with 5% noise respectively. See Fig. 4.2.

Example 4.3. In this example, we consider the simultaneous reconstruction of a penetrable

circle shaped medium and an impenetrable rounded triangle obstacle from the far-field data

without noise, with 2% noise and with 5% noise respectively. See Fig. 4.3.

Example 4.4. We now consider the simultaneous reconstruction of a penetrable circle shaped

medium and an impenetrable apple shaped obstacle from the far-field data without noise, with

2% noise and with 5% noise respectively. See Fig. 4.4.

Example 4.5. Finally, we consider the simultaneous reconstruction of a penetrable peanut

shaped medium and an impenetrable apple shaped obstacle from the far-field data without

noise, with 2% noise and with 5% noise respectively. See Fig. 4.5.

As can be seen from the above five examples and other cases that have been carried out

but not given here that the shapes and positions of the mixed type scatterer of a penetrable

medium D1 and an impenetrable obstacle D2 can be numerically reconstructed by means of the

spectral data of the far-field operator. This proves the validity and applicability of the modified

factorization method proposed in the current paper. In future, we plan to extend our results

to more challenging problems of the electromagnetic scattering and the other related scattering

problems.
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(a) Physical representation (b) No noise

(c) 2% noise (d) 5% noise

Fig. 4.1. Reconstruction of circle shaped and ellipse shaped.

(a) Physical representation (b) No noise

(c) 2% noise (d) 5% noise

Fig. 4.2. Reconstruction of circle shaped and peanut shaped.
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(a) Physical representation (b) No noise

(c) 2% noise (d) 5% noise

Fig. 4.3. Reconstruction of circle shaped and rounded triangle.

(a) Physical representation (b) No noise

(c) 2% noise (d) 5% noise

Fig. 4.4. Reconstruction of circle shaped and apple shaped.
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(a) Physical representation (b) No noise

(c) 2% noise (d) 5% noise

Fig. 4.5. Reconstruction of peanut shaped and a apple shaped.
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