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Abstract

We discuss and analyze the virtual element method on general polygonal meshes for
the time-dependent Poisson-Nernst-Planck (PNP) equations, which are a nonlinear coupled
system widely used in semiconductors and ion channels. After presenting the semi-discrete
scheme, the optimal H' norm error estimates are presented for the time-dependent PNP
equations, which are based on some error estimates of a virtual element energy projection.
The Gummel iteration is used to decouple and linearize the PNP equations and the error
analysis is also given for the iteration of fully discrete virtual element approximation. The
numerical experiment on different polygonal meshes verifies the theoretical convergence
results and shows the efficiency of the virtual element method.

Mathematics subject classification: 65N15, 65N30, 35K61.
Key words: Virtual element method, Error estimate, Poisson-Nernst-Planck equations,
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1. Introduction

The virtual element method (VEM) could be seen as a deformation of the classical mimetic
finite difference method, which was originally proposed in [5] as a generalization of the finite
element method (FEM). This method is applicable to general polygon/polyhedral grids even
including the multiply-connected or non-convex polygon grids, and hence has low requirements
on grid quality. The VEM, in comparison to the traditional FEM, does not require an explicit
expression of the discrete basis functions. In addition to that, it only needs to define the appro-
priate degrees of freedom to convert the discrete formulation into the matrix form. Thanks to
its applicability and simplicity, the VEM has been applied to many equations, for instance, the
second-order elliptic equation [8], the parabolic equations [1,46], hyperbolic equation [45], the
Stokes equations [4,11,17], the elasticity problems [6,24] and the plate bending problem [16], etc.
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Here, we consider the time-dependent Poisson-Nernst-Planck (PNP) equations. The classic
PNP equations are a coupled nonlinear system of partial differential equations, which consist
of the electrostatic Poisson equation and the Nernst-Planck equation. The coupled nonlinear
system was originally derived by Nernst [37] and Planck [38] and has been widely applied in
semiconductors [36,47], biological ion channels [22,43] and electrochemical systems [35,39,48].

Because of the high nonlinearity and strong coupling, it is difficult to find the analytic
solution for PNP equations. Many numerical methods were developed to find the approximate
solutions, for instance, finite volume methods [12,18], finite difference methods [23,30] and
FEMs [33,49], etc. The FEM has been applied to PNP equations for many years and it is
popular because of its flexibility and adaptability in dealing with the irregular interface. In
recent years, some work on convergence analysis of FEM has emerged. We presented some
error bounds in [51] for a piecewise finite element approximation to the steady-state PNP
equations describing the electrodiffusion of ions in a solvated biomolecular system. In [44], the
authors discussed a priori error estimates of FEM for the time-dependent PNP equations, where
the optimal error estimates are obtained in L°°(H') and L?(H') norms and the suboptimal
error estimate is obtained in the L°°(L?) norm. An optimal L? norm error estimate of the
FEM to a linearized backward Euler scheme for the time-dependent PNP equations has been
obtained in [26]. Recently, we presented a decoupling two-grid FEM for the time-dependent
PNP equations in [42]. This method costs less computational time and remains the same order
of accuracy compared with the FEM combined with the Gummel iteration. The optimal L?
error estimate for the classic nonlinear backward Euler scheme was also presented in [42] with
a generic regularity assumption of the solution. In [52], we studied the superconvergent gradient
recovery based on the finite element approximation for the strong nonlinear PNP equations.
The superconvergence results are successfully applied to improve the efficiency of the external
iteration in the computation of a practical ion channel problem. The a posteriori error estimates
and adaptive FEM for the steady-state PNP equations are studied in [29,41].

In this paper, the main purpose is to provide the a priori error analysis for the virtual element
discretization of the time-dependent PNP equations. First, we design a suitable virtual element
discretization scheme for the equations. Compared with the finite element discretization for
PNP equations, it can be used on very general polygonal meshes, so the requirements for mesh
quality are lower. It could be more suitable for PNP practical problems with extremely irregular
interfaces, for example ion channel problems. Then, we present the a priori error analysis for
the VEM. We focus mainly on the error estimates for the semi-discrete system. The suboptimal
L? norm and the optimal H! norm error estimates with k-th (k > 1) order virtual element are
presented for semi-discrete virtual element approximations. After that, a fully discrete virtual
element scheme is given for the PNP equations. Considering the coupling and nonlinearity of
the fully discrete system, the Gummel iteration is applied to decouple and linearize it. This
iteration is a commonly used decoupling method for solving PNP equations, see e.g. [13,28,34].
Here we introduce the Gummel iteration of the fully discrete virtual element approximation
and present the error analysis for it. The suboptimal L? norm error estimates are obtained for
the Gummel iteration of the VEM for PNP equations.

From a mathematical point of view, the PNP equations consist of a linear elliptic (Poisson)
equation and two nonlinear parabolic (NP) equations. We follow the frame of convergence
analysis in [32] to present the error estimate for the elliptic equation. Some arguments in [44]
are used in the analysis of the nonlinear parabolic equation. Compared with these relevant
work, we have some own characteristics in the analysis. For example, although our scheme was



Error Analysis of Virtual Element Methods for the Time-dependent Poisson-Nernst-Planck Equations 3

motivated by our work [32] in which a VEM is provided for steady-state PNP equations, the
frame of most of the analysis is quite different, since the NP equation considered in this paper
is a parabolic equation, while it is an elliptic one in [32]. The error results are also different in
two aspects. Firstly, in [32], since the L? norm error estimates of concentrations is difficult to
obtain, the H' norm error estimates depend on the L? norm error estimates. In this paper, we
present the suboptimal L? error estimates of concentrations, then the optimal error estimates in
the H' norm are obtained. Secondly, the error estimates in [32] require a regularity assumption
of the virtual element solution, i.e. ¢; € W1°°(£), which is not easy to prove. In this paper,
to avoid using this assumption, we show the boundness of the L? projection, see Lemma 3.2.
Based on the result, the optimal error estimates of the virtual element approximation in the
H' norm are obtained without the regularity assumption of the discrete solution. In addition,
although we follow the definition of the FEM energy projection in [44] to define the VEM energy
projection, the detailed proof of the existence and uniqueness of the VEM energy projection
is given in this paper, while the existence or uniqueness of the FEM energy projection is not
discussed in [44]. The proof is not trivial, in which some detailed discussions of the nonlinear
form need to be given, see Lemmas 3.4-3.5.

Recently, we note that a fully coupled and energy-stable VEM was proposed and analyzed
for the coupled PNP and Navier-Stokes equations in [21], (the preprint of which was submitted
to arXiv at a similar time as ours, see [20,50]). The existence and uniqueness of the virtual
element approximation are presented and the optimal error estimates are derived for fully
discrete scheme in the L? and H' norms, respectively. However, this error analysis is based on
an assumption of the initial value of the original solution, which requires the initial data is less
than a fixed constant (generally much smaller than one), see [21, Theorem 5.2, Eq. (5.55)]. Tt
is usually difficult to satisfy this condition for the practical PNP equations. This assumption
is not needed in the error analysis of this paper.

The rest of this paper is organised as follows. In Section 2, we introduce the time-dependent
PNP equations and present the corresponding weak form. The virtual element space and the
corresponding semi-discrete virtual element approximation are also discussed in this section.
In Section 3, the convergence analysis in the L? and H! norms for the semi-discrete scheme is
derived. Section 4 introduces the Gummel iteration of the fully discrete scheme and presents the
convergence analysis of the iteration in the L? norm. To confirm the efficiency of the proposed
methods and verify the accuracy of the theoretical analysis, a numerical example is given in
Section 5. Finally, some conclusions are made in Section 6.

2. Continuous and Discrete Problems

In this section, we introduce the time-dependent PNP equations and discuss the semi-
discrete virtual element discretization.

2.1. Time-dependent Poisson-Nernst-Planck equations

Let © C R? be a bounded polygonal domain and 9 be the Lipschitz continuous boundary
of 2. We consider the following time-dependent PNP equations (cf. [26,44]):

pi— V- (VP +¢'p'Ve)=F' in Q for te(0,7T], i=1,2,

2
A= gp'=f in Q for te(0,7]
=1
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with the homogeneous Dirichlet boundary conditions

{¢0 on 90 for te (0,T), (2.2)

pi=0 on 9Q for te (0,T],

where p',i = 1,2, denotes the concentration of the i-th ionic species, pi = dp'/dt, ¢ represents
the electrostatic potential, the constant ¢ corresponds to the charge of the species 7, f and F*
are the reaction source terms, p'(-,0) := p}, (-, 0) := ¢o, f(-,0) := fo, and F(-,0) := F{ denote
the initial data.

For any u, v, %, ut,u® € H}(2), define

a(u,v) = (Vu, Vo), bi(u,v,v) = (¢'uVey, Vo), blu',u?, v) ( Zq ) (2.3)
The weak formulation of (2.1)-(2.2) is given as: Find p' € L*(0,T; H}(Q?)),i = 1,2, and ¢ €

L2(0,T; H}(Q2)) such that

{(pt( ),v) +a(pi(t),v) + b (p(t), d(t),v) = (F(t),v), Yve H(Q), i=1,2,

a(¢(t),w) +b(p' (1), P (1), w) = (f(t),w), Vw € Hy(Q).

The existence and uniqueness of the solution for (2.4) have been shown in [25] for
Fy=R(p',p*) =r(p',p*) (1 - p'p?)

with a Lipschitzian function r : R2 — Ry. In this case, system (2.1)-(2.2) describes the

(2.4)

transport of mobile carriers in a semiconductor device, R(p!,p?) is the net recombination rate
and p! and p? represent the densities of mobile holes and electrons, respectively (see [25]).

In the rest of the paper, we follow the standard notations for Sobolev spaces WP () with
Il |ls,p.0 and | - |5 p,0 denote the norm and the seminorm (cf. [2,15]), respectively. For p = 2,
the notations H*(Q) = W*2(Q) and H}(Q) = {v € H*(Q) : v|apq = 0}. For simplicity, denote
by |- lls = I ey 1 llo = I 2y and [ loe = [ [l o= y- We adopt (-, ) to denote the
standard L?-inner product.

2.2. The VEM semi-discrete scheme

In this subsection, we present local and global virtual element space and outline the semi-
discrete virtual element formulation of (2.4). Some lemmas useful in the sequel are also intro-
duced here. Let {75} be a family of decompositions of  into elements E with hgp = diam(FE)
and h = max{hp : £ € T}. On each element F, we suppose a”(-,-),b¥(-,-,-) and BE( ,yt)

are the restrictions of the corresponding forms defined in (2.3) on E. Following [3,5], we make
the following assumption for the mesh 7y,.

Assumption 2.1. Every element E is star-shaped with respect to a ball of radius greater
than vhg and the distance between any two wvertices of E is greater than or equal to chg,
where v and ¢ are uniform positive constants.

Next, let us begin with defining the virtual element space. For any integer £ > 0, denote by
Py (D) the space of polynomial functions with the total degree up to k living on D. Following [8],
for every element E € T, we introduce a local space

QME ={ve HY(E) :v|pp € C°(OE), v|. € Pr(e), Ve C OE, Av € Pr(E)}.
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The projection operator IIY : QQ(E) — Pi(E) is given by

(VY vp —vn), Vq) , =0, / (ITY vp —vp)ds =0, Vq€Pp(E). (2.5)
oE

Then we define the following local virtual space:
QL(E) = {vn € QN(E) : (vh —TYvp,q) , =0, Vq € (Pr/Pr_z(E))},

where P, /Py_2(FE) denotes the polynomials in Py (E) which are L?(E) orthogonal to Py,_»(E).
For v;, € Q¥ (E), we define the following local degrees of freedom (cf. [3]):

(D1) The values of vy, at the vertices of E.
(D2) For k > 1, the edge moments fe UpPk—2ds, pr—2 € Pr_o(e), on each edge e of E.
(D3) For k > 1, the internal moments [, vppr—2d, pr—2 € Pr_o(E).
Finally, we can define the global virtual element space as follows:

Qh={ve Hy() :vlp € Qi(E), YE € Th}.

Let now I19 : Q% (E) — Py (E) be the L? projection operator defined by
(vh —IMvn,q) , =0, Vq€Py(E).

Then the following approximation properties can be obtained (cf. [8]):

HHQU—UHWESChSE_m|U|s,E7 m,s €N, m<s<k+1, VveH(E), (2.6)
HHgvayE < Cl|v|lm,E» meN, m<k+1, Yo e H™(E). (2.7)
It is shown in [19] that under Assumption 2.1 for the mesh 7y, for any element E € Tj, there
is a virtual triangulation 7g of E such that Tg is uniformly shape regular and quasi-uniform.
Then, from the inverse estimate and (2.7), there holds
< Clvllo,00,, Vv € L®(E), (2.8)
0.8, Var € Pr(E), (2.9)

ITTolly o

lgxllo.co.2 < Chi"lla]

where we have used the element area |E| < Ch%, (see [32, Section 2.3]).

Assume vy € Qﬁ is the interpolant of v, which shares the value of the degrees of freedom
with v. According to [10,14], v satisfies

v —vrll,e < Chlp|vllker,e,  Yove HYY(E). (2.10)
And for any v € H¥(E) there exists a v, € Py (E) such that [5]:

v —vello.g + hel|Vo — Vog|o.r < ChE||Vollk. e (2.11)
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For any up, vp, ¥n, uj,, ui on each element E, we construct the local forms
m (un, vn) = /E M09uy] - [190,]d + SE (I — 1) un, (I —T19)w) ,
aF (up, vn) = [E M\ Var] - [, Vrlde + SZ((I— T Yun, (I — I o),
bE (un, o, v1) = [E G un] [M0] - [0 Fon]da, i = 1,2,
Bk o) = - [ [, (zq)
=

(Fg,v)E:/ Fllvpdr, i=1,2,
E

[Hgflvh]dx,

(fn,v)E :/ ST vpda,
E
where the symmetric bilinear forms SEZ(-,-) and SE(-,-) : QF(E) x Q¥(E) — R satisfy
ar(vn,vn)E < Sh(vh,vn) < ag(vn,vn)p,  Yon € QE(E) with T, =0,
Braf (v, o) < SE(up,vn) < Boa® (vn,vn), Von € QF(E) with TIVwy, =0, (2.12)
respectively, for four positive constants o, as, 81 and 2. Moreover, define the discrete forms
h(un, vn) Zah Un,vn),  bin(Un, ¥n,vn) : sz p(uns ¥nsvp), =12, (2.13)

E
n(un,vn) E my (un,vn), b (up, uf,v E by, (up, ujy, vn),

(fnrvn) = Z(fh,vh)E, (Fion) = (Fh,vh)E, i=1,2.

E

Then the semi-discrete virtual element formulation corresponding to (2.4) reads as: Find pj, €
L0, T, QF) with pﬁl,t € L*0,7,QF),i=1,2 and ¢, € L*(0,T,QF) such that

{mh(pﬁl,t,vh)—i-ah(pz,vh)+bi7h(pz,th,vh):(Ffb,vh), VU}LEQZ for a.e. t in (0,7), (2.14)

ah(qﬁh,wh)—i—l;h(p,ll,pi,wh):(fh,wh), Vw,eQf  for ae. t in (0,7)

with the initial condition p (0) := p270,i = 1,2 and ¢,,(0) := ¢n,0 given by the interpolation of
pb,i = 1,2 and ¢y, respectively.
We employ the backward Euler scheme for the approximation of time derivative. Let

p;'l’" =pi(tn), n=0,1,....N, t,=nr, 7=T/N.
The fully discrete form corresponding to (2.14) reads as find pﬁz’", #F € QF such that
pi, pzn 1 )
mp <%7 'Uh) +ap, (p;{n, Uh)
+bi,h(p7};{na¢’}?avh) = (F]i,navh)a V’Uh € QZ for n = 13"'5Na (215)

ah((b;zlawh)+6h(p]17,,napi7nawh) = (f}?awh)a Vwp GQ;CL for T'L:l,...,N,
0 i 0 _
Pp Ph.os Qbh ¢h,0-
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The wellposedness of (2.15) can be proved by a similar approach shown in [21], since the PNP
equations considered in this paper is part of the equations in [21].

Next, we shall introduce some lemmas which are used in the error analysis for the virtual
element solution. From [8], the bilinear form af (-, -) satisfies the following stability property
and consistency property.

Lemma 2.1 ([8], Stability). There exist two positive constants Cy and Cy independent of h
and E such that

C’OaE(vh,vh) < af(vh,vh) < C’laE(vh,vh), Yoy € QZ(E) (2.16)
From (2.16), it is easy to obtain

af(uh,vh) S CHvuh||07E||V’Uh||07E, Vuh,vh € QE, (217)
E
h

ay (un,un) = C||Vusll§ g- (2.18)
Lemma 2.2 (K-Consistency). For any q € Pr(E) and vy, € QF(E) such that
al(q,vn) — aP(q,vp) = 0. (2.19)

Proof. Tt is easy to get the result from the definitions of I/ and TI9_ . O

From [46], the bilinear m#(-,-) satisfies the following consistency property and stability
property.

Lemma 2.3 ([46], K-Consistency). For all x € Py(E) and vy, € Q¥ (E), there holds
my, (X, vn) = (X, vn) B- (2.20)
(Stability) There exits two positive constants Cy and C* independent of h and E such that
Cu(vn,vn)e < mE (v, vn) < C*(vn,vn)e, Yun € QF(E). (2.21)
From the stability conditions, it is easy to get the continuity of my,

mh(uh,vh) < C||uh||0||vh||0, Yup, v, € QZ(E) (2.22)

The following lemma will be used to estimate the difference between the continuous form
and the discrete bilinear form, see the proof of Lemmas 3.5 and 3.7.

Lemma 2.4 ([8]). For any u,v € H'(E), if k € L™(E) and X\ € [L>(E)]?, then we have the
estimate
|(Au, Vo) g — (AIT_yu, 11}, Vo) |
< [Pa =R, Qg g Vo = TRy Vo g
+ H/\ Vo — T (A vv)Ho,EHu - HgfluHO,E
+ Cxllu = I _yul|y 5| Vo = TR_, Vo] 4. (2.23)

It is easy to get Lemmas 2.5 and 2.6 by following the arguments in the proof [32, Lemma 2.7
and Theorem 3.1, Eq. (3.5)], respectively.
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Lemma 2.5. Suppose w € WETL(E) and wy, € QF(E). For any u € L=(E) N H*(E) and
up, € QF(E), there holds

by (u,w,v) = by (un, why o) < C(Rp(|wllesr,e + ullk,g) + |Vwn — Vwllo.s

+ "HQth"07m7E||uh — u||07E)||VUh||07E, Yoy € QZ(E)

Lemma 2.6. Suppose v, and u}, € Q¥ (E), i =1,2. There holds

i=1 i=1

2 2
‘l;h(u,ll,ui,vh) — E(ul’UQ’Uh)‘ <C <hk+1 Z ||UZ||k|'Uh|1 4+ Z Huﬁl — UiHO|Uh||O> .

3. Error Estimates for Semi-discrete Case

In this section, we present the a priori error analysis for the semi-discrete system (2.14). The
main results are the optimal H' norm error estimates, see Theorem 3.2 in Section 3.3, which
are based on some error estimates of the energy projection (see Lemmas 3.7-3.9) in Section 3.2,
the L? norm error estimate in Theorem 3.1 in Section 3.1 and Lemma 3.10 in Section 3.3. The
existence and uniqueness of the energy projection solution are presented in Lemma 3.6, which
needs to apply the discrete inf-sup condition (see Lemma 3.5). Next, we first deduce the error
estimate in the L? norm. Then we give some error estimates of an energy projection. After
that, we show the error estimates in the H' norm.

3.1. Error estimates for semi-discrete case in the L? norm

In this subsection, we present the a priori error estimates in the L? norm for the semi-
discrete system (2.14). First, following the arguments in [32, Theorem 3.1], it is easy to give
the error bound of ¢(t) — ¢p(t) in the H! norm as follows.

Lemma 3.1 (cf. [32]). Let (¢,p') and (¢n,pl) be the solutions of (2.4) and (2.14), respec-
tively. Then for all t € (0,T], the following estimation holds:

2 2
lo(t) = én(®)lx < C<h’“ (IIfIIk + > o'l + ||¢|k+1> +> [Ivh piHO>.

i=1 i=1
The following lemma shall be used to present the error estimate in the L? norm.

Lemma 3.2. Suppose (¢,p') and (¢n,pl) are the solutions of (2.4) and (2.14), respectively,
and ¢ € L>(0,T; HETH(Q) N Whe(Q)), p' and f € L°(0,T; H*(Q)). If the decomposition Ty,

is quasi-uniform, then there holds

2
5V 0n o, < CRT" D [IP" = Pilly +C-

i=1
Proof. From (2.9), we get
Hngvd)hH0,00,E < }’H2V¢h - Hgv(’bHO,oo,E + ||H2v¢HO,oo,E
< Ch' [V — V||, , + O
< Chig'[Vé = Venllos +C.
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Since 7T}, is quasi-uniform, we have h < Chg for any E € Tp,. Then from Lemma 3.1, we get

[TV ¢y, < Ch7Y|Vo—Vepllo+C

<Ch! <h’c + Z (0" p};HO> +C
i=1

2
<O Y [ —rh +

i=1

HOooE

This completes the proof of this lemma. O
Next, we derive error estimates for p’ in the L? norm. Assume
p e L®(0,T; H*H(Q)NL>®(Q)), p, € L®(0,T; H1(Q)), i=1,2,
¢ € L>=(0,T; H*TH(Q) n Whth(Q)). (3.1)

We also suppose
feL>=(0,T;H*Q)), F'e L>(0,T;H"(Q)). (3.2)

Theorem 3.1. Suppose the decomposition Ty, is quasi-uniform. Let (¢,p') and (¢n,pl) be the
solutions of (2.4) and (2.14), respectively, and set pﬁho := (p§)1, the interpolant function of the
initial value of ply in Q%. Assume (3.1) and (3.2) holds, then for t € (0,T)], there holds

2
> Ikt = p' 0, < Cn*.
i=1
Proof. Decompose the error as follows:
ph(t) = p'(t) = (ph(8) — TRp' (1)) + (3P () — (1)) =2 v'(t) + 0'(2),
which are then estimated separately. For the second term g'(t), it is easy to get

an Moz =Y [TRp*(£) = ' ()| < CHHH P! (8) 41 (3.3)
E

Now, we proceed the estimate for v*(t). For any v, € QF, an application of (2.4) together with
(2.14) yields

S (m (v (0, 00) + af (v (1), vn)

E
(mu, (pfl,t(t), vn) + an (p}, (), vn)) — Z mF (%ngi(t)7 'Uh> — Z af (Ip"(t), vp)
E E
+a(p'(t), vn) — a(p'(t), Uh)
= ((F5(t), vn) = bin (Ph(t), o0 th I pi(t),vn) — > aff (TIRp'(£), vn)

E
+ a(pi(t),vh) — ((Fi(t),vh) — (pt(t) v ) - b-( (1), ,vh))
(Fi(t) = F'(t),vn) + Y ((pi(t), vn) , — mf (0P} (2), v ))

+ Z (aE (pi (t)a vh) - af (ngl (t)v Uh)) + (bz (pi (t)a d)(t)a vh) - bi,h (p;z (t)v ¢h (t)v Uh))

2H1+H2+H3+H4. (34)
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The first term can be estimated as follows:
Hy = (Fi(t) = F'(t),vn) = 3 (I0F() = Fi(8),0n) < CH | F s ffonllo:— (35)
E

The second term can be bounded by the consistency property (2.20)

HQZZ((pi(t)avh) — my, (TP (t), vn))

—Z (P5(t), vn) , — (I2pE(2), vn))
= CZ Hpt IR pi(t H01E||Uh|\o,E
< C’hk+1||pt ()] g1 llonllo- (3.6)

From Lemma 2.2, we can express the third term a(p’(t),vn) — an(II0p*(t), vp) as

Hy =Y (a®(p'(t),on) — af (0 (t), vn))
= (@® (' (1), vn) — a” (TRp*(£), vn))

< CRH 5 (1)1 Fon o (3.7)
For the fourth term, from Lemmas 2.5, 3.1 and 3.2, we have
Hy = bi(p'( Uh) = bin (Ph(t), én(t), vn)
t),vn) — b (Ph(t), Sn(t), vn))

Z
E
<> (hk +96(t) = Von(t)lo.e + [TV 6n]l, o, sllP @) = POl ) IVoRllo.5
E

2 2 2
(hk + 3 i) = @)+ (Z [ () — pi(t)\!()) ) IVunllo- (3.8)
i=1 i=1
Setting v, = vi(t) in (3.4) and using (3.5)-(3.8), we get

D (mi (vi (), 0" (1) + af (v'(1), 0' (1))

E

< O (D)o +c<hk F Y a0 =l + 17 (X i - o) )llwwno,

i=1

IN
Q

where

1 o =D _ IV (Ollo.p, VUt Ho—ZHW Mo,z
E

for simplicity. Then, using (2.18), we infer that

5 ot @)1 + Col P 3

< O (1) +c<hk + 3 b = 0, + (Z i)~ o)l >|w ol

§C<h2k (Z ®lo) + (o) ;nvi(tn%)+;°||W<t>||%.
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Hence,

%Mi(t)ﬂgéC(h%nL(ZM ||0) <Z|u ||0> ZHU ||0> (3.9)

Next, following the arguments in [44] we shall show h=t||v(¢)||o < C by induction. First, from
(2.10) and (3.3) we have

R0 O)lo = 2> [[pho = TPl 5
B

(npho il + 160 ||0E) < ey, <

Then, assume h~!|[vi(t)|o < C holds for ¢ € [0,To], Ty < T. From (3.9), we get

d
pri U Ho<0h2k+CZHU )5

i=1

Integrating the above from 0 to ¢, the following inequality holds:

t 2
[o' 113 < [0*(0)[If + Ch** + C/O >l () l3ds.
i=1

Summing up for the index i, we get

2

2
IECIE T |\2+ch2k+c/2|\v () 2ds.
=1

By using Gronwall’s inequality, we deduce that

2
P EROI Z 0)[[§ + Cn**.
i=1

N~}

That is ) )
Dol Ollo <D I (0)llo + CR®.
i=1 i=1
From (2.10), the term 2?21 [[v1(0)]|o can be estimated as follows:
2 2 . . . .
> IOl = Z [ph0 = 112851y < 3= (lpho = pbllo + 1ot = 1w )
=1 i=1
< Z (1eb)r = wolly + CA M poliss) < CRF o -
Hence, we get if the assumption A=t |[vi(t)lo < C holds for t € [0, Tp], Tp < T holds, then

ZHU t)lo < ChE, te0,Tp]. (3.10)
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It yields
R i(t)|lo < CRF L <O, k>1, te[0,Tyl.

Since h~|v¥(t)||o is a continuous function with respect to t € [0, T], from the uniform continuity
with time, there is a constant § > 0 such that h=1||vi()[|o < C holds for ¢ € [0,Tp + 4]. Since
[0,77] is a finite interval, we have

R (t)]lo < C, t€[0,T).

Thus, from (3.10), we have
2 .
S Ivi o < CRE, t e 0,T). (3.11)
i=1
Combining the estimates for v*(t) and o'(t), we get

Z 125, (6) = ' )|y < D (I’ Ollo + [0 ()llo) < CR*.

i=1
We complete the proof. O

As mentioned in Introduction, the optimal L? norm error estimates of the finite element
approximation were obtained for time-dependent PNP equations in [26,42], in which a special
energy projection is used. Since this energy projection is a coupled nonlinear one, the existence
and uniqueness of it are not easy to show. Similar difficulties need be dealt with in the error
analysis for the VEM, if a similar special energy projection is applied. In order to present
a complete a priori error analysis for the VEM, we use the L? projection instead of the coupled
energy projection, a suboptimal L? norm error estimate is presented as a tradeoff.

3.2. Error estimates of the energy projection

In this subsection, we deduce the error estimates of the energy projection, which shall be
used in the a priori error estimates in the H! norm for the semi-discrete system (2.14) in the next
subsection. Define the energy projection Ry, : H}(2) — QF satisfying: For any u, ¢ € HZ(Q),

an(Rpu, va) + bin(Ruu, ¢, vn) = a(u, vy) + bi(u, ¢,v), Vo, € Qf, (3.12)

where a(-,-),b;(-,-,) and an(-,),bin(-,-,-) are defined in (2.3) and (2.13), respectively. In
order to present the existence and uniqueness of the solution of (3.12), we need to show some
lemmas, see Lemmas 3.3-3.5. First the error estimate of the L? projection in the L> norm on
arbitrary polygon element F is presented as follows, which shall be used in Lemma 3.5 later.

Lemma 3.3. If w € WF>(E) N H*(E), then there holds
109w = wlly o < OB (llloo + lliss ).

Proof. Let Ij, : H'(E) — S"(E) be a piecewise polynomial interpolant, where S"(E) is the
k-th degree finite element space defined on the element E. From (2.9), we have

Hng - Ihw”o,oo,E = C’h;lHﬂgw - Itho,E
< Chi (|[Mw — wHoyE + |lw — Iywlo,E)

< Chipllwllesr,e-
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Then
100wl < 050 = Bl 0 =
< Ch (lwllesr,e + l1wllk,oo,2),
which finishes the proof of this lemma. =

For any u,w,v € H}(Q), set
Bi(u,w,v) = alu,v) + b;(u, w,v),
where a(-,-),b;(-,,-) are defined as (2.3).
Lemma 3.4. Suppose w € W2>(Q). There exists a positive constants Cg such that

Bi s Wy
sup (u, w,v)

> Cpllully, i=1,2, Vue H;(Q). (3.13)
vEHE () vl1

Proof. Consider the following problem:

(3.14)

Lu= -V - (Vu+¢Vwu)=f in Q,
u=20 on 0N.

If w € W2°°(9), then there exists a unique solution to (3.14) and there holds (cf. [40, Chap-
ter 5])

[ully < CJlfll-1- (3.15)
By using (3.15), we have (cf. [8,32])
B;(u,w,v Lu,v
sup B0 gy L)y p g 2 Cplluls, Y e HA@).
vEHE () [v]l1 vEH(Q) [v]l1
This completes the proof. 0

For any u € H}(Q),u, and w;, € QF, set
Bi w(un, w,vp) = ap(un, vn) + bin(un, w,vp),

where ap(-,-) and b; (-, -, ) are defined in (2.13). Then the definition of the energy projection
(3.12) can be written as

Bin(Ruu, é,v1) = Bi(u,d,v1), You € Qf. (3.16)
If ¢ € W1o°(Q), then the form B; is bounded, i.e.
Bin(un, ¢, vn) < Cllunl|r]|vnlls- (3.17)
From Lemma 3.4, we can get the following lemma for the discrete form B; j,.

Lemma 3.5. Suppose ¢ € W2>(E) N H*(E) N QF. There exist an h* > 0 and a constant
C‘B > 0 such that for all h < h*,

B, _
sup Bin(un, ¢,vn) > Cpllunlli, Vun € QF.

oneQr llvn 1
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Proof. From (3.13), there exists v € Hg(£2) such that
Bi(u,¢,v) > Cllullillv|l, Vue Hy(Q). (3.18)
From [8, Lemma 5.6], for any v € H}(Q), there exists a v, € QF such that
an (v, up) = a(v,uy), Yuy € QF, (3.19)

and
hllon = vll1 + [lvn —vllo < Chllv]l1, |lonlls < vl (3.20)

Then we have

B n(un, ¢, v1) = an(up,vn) + bip(un, ¢, vp)
= a(un,v) + bin(Un, ¢, vn) — bi(un, ¢,v) + bi(un, ,v)
= Bi(un, ¢,v) + bin(un, ¢, vn) — bi(un, ¢,v)
> COpllunlillvfly = [bin(un, @, vn) = bi(un, ¢,0)|  (by (3.18))
= Ollunllillvlly = |bin(un, @, vn) = bi(un, @, vn) + bi(un, é,vn —v)|.  (3.21)

Next, we estimate b; p(un, ¢, vp) — bi(un, ¢, vy) and b;(up, ¢, vy, — v), respectively.
bi,h(uha ¢a ’Uh) - bi(uha ¢a Uh)
= Z { (¢'TI)_upII) Vg, H2_1V1}h)E — (q'up Vo, Vvh)E}
E

=> {(¢un (V) — V), Vun) , + ((¢'T_ un TRV, T Vo), — (¢ unTIRVS, Vo) ) }
E

=Y {h+ L} (3:22)
E

From Lemma 3.3, we have
I = (q'un(I{Ve — Vo), Vup) .
= (¢" (M} _yup — up) Vo + 1 _yup (VY — Vo) + (un — I} up) )V, Voy)
< O (I yun = wnll gl Volloe.r + [0 yun | pl|IEVS = Vol ) ol
< Chgllun|j1,z|vnl,e- (3.23)
Setting 3 = ¢'II{ V¢, then from (2.6)-(2.8) and (2.23), we get
I = (¢'T_ up IRV, V), — (¢unll}Veé, Vop)
<C (HﬂUh =10 (Bun)||g 5 + hEHUhHLE) vnll1,e.
Taking 3 = ¢'V¢, and using Lemma 3.3, then we deduce that
Hﬁuh - H2—1(5Uh)Ho,E < H(ﬁ - B)uhHO,E
+ HBUh - H2—1(Buh)Ho,E + ||H2—1(Bu) - H2—1(ﬂu)”o,E
< (8- B)uhHO,E + Chg||Vounli,e

<18 = Bllo,ss.ellunllr,z + Chel|Véunl1,e
< Chg|lunlh,z- (3.24)
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Hence,
I < Chellun|ly,ellvall,e- (3.25)

Inserting (3.23) and (3.25) into (3.22), we get
bi,n(un, &, vn) — biun, &, vn) < Cihllunlillonlls < Crbllun ]|l (3.26)
Now, we estimate the term b;(up, ¢, v, — v). There holds
bi(un, ¢, vn —v) = (¢'urVe, V(vy — v))

= 7(div(qiuhv¢),vh — v) + /{m ¢'up Ve - n(vy — )

< O|\div(q"unVe)||,llv = vnllo
< Cohllupillvlli  (by (3.20)). (3.27)

Substituting (3.26) and (3.27) into (3.21), it yields

1 -
Bin(up, ¢, vp) > QCB||Uh||1HU||1 > Cpllunll1llvnll,

where
a 2(01 4+ CQ)

This completes the proof. 0

h <h*

Now we can show the existence and uniqueness of the solution of (3.12) as follows.

Lemma 3.6. If ¢ € W (E)N H?(E) OQZ and h is small enough, then there exists a unique
solution Rpu satisfying (3.12).

Proof. It is easy to get the result of Lemma 3.6 by using generalized Lax-Milgram lemma
(see [27]), since the discrete form B;j satisfies all the conditions of generalized Lax-Milgram
lemma from (3.17) and Lemma 3.5. O

Next, we shall present some error estimates for the energy projection R, in Lemmas 3.7-3.9.
First, we show the error estimates for R, in the L? and H' norms as follows.

Lemma 3.7. Suppose u € H**1(Q) and ¢ € W>(Q) N H*T2(Q). If h is small enough, then
the following estimate for the projection Ry, holds:

| Riu — ullo + h||V(Ruu — u)|jo < ChFHL,

Proof. Suppose u; € QF is the interpolant to u € Hg(Q) and u, € Py(FE). From (2.16) and
(3.12), we have

Co||V(Rpu — ur)||2 = Coa(Rpu — ur, Rpu — ur) < an(Rpu — ur, Rpu — ug)
= ap(Rpu, Rpu —ur) — ap(ur, Rpyu — up)
= a(u, Rpu — ur) + b;(u, ¢, Rnu — uy) — by n(Rpu, ¢, Rpu — uy)

- Z (ar (ur — wr, Rpu — ur) + af (ux, Ryu — ur))
E
= _ Z (af(ul — U, Rpu — uy) + a® (uy — u, Rpu — u;))
E

+ (bi(u, , Ryu — ur) — b n(Ryu, ¢, Rpu — up))
=: By + Bs. (3.28)
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Using (2.10), (2.11) and (2.17), it yields

By = — Z (af(ul — U, Rpu — uy) + a (uy — u, Rpu — ur))

E
<C> (IV(ur = oz + [V (ur = w)o.e) | V(Rau — ur)
E
< Ch||V(Rpu —ug)|fo. (3.29)

To estimate B, first for any w, v, € H'(Q) and u;, € QF we have
bE (up, w,vp) — bfh(uh, w, vp,)
= (qiuth, Vvh)E — (qiﬂgfluhHQVw, H271V1}h)E
= (qiuh (Vw — Hng) , Vvh)E
+ ((q'wnl1)Vw, Von) , = (¢TI0 TV, 1), Vo) )
= Bo1 + Ba. (3.30)
For w € Wh*°(E) and u € L*(E), there holds
Bo1 = (q'un (Vw — I Vw), Vop,)
= (¢'((un — w)Vw 4+ u(Vw — I Vw) + (u — up) IR Vw), Vo)
< c(|| ) 1V0nllo.e
e £)[Vonlo.e. (3.31)

And setting 3 = ¢'II Vw, from (2.23) we have

Bas = (q'unll}_,Vw,Vy) , — (¢TI upJI)_, Vw, I, Vog,)
< ||Bun — H2—1(5uh)H07Evah - H2_1VvhH01E
+ |8+ Vo, =) _4 (8- VUh)HO’EHUh - H271uh||01E
+ Cpllun — T _yunl|y || Vor = T2 Vonl],
< C(Jfun =T _yunly s + | Bun = Ty (Bun) g 5 ) IF0n o, (3.32)
Combining (3.31)-(3.32) with (3.30), we have
by’ (un, w,vp) — b (un, w, vn)

< (Il = wnllo.e + flur = T0_yua,,

+ || Bun, — 117, (Bun) Ho T hpllwllks, E)| (3.33)
Second, taking up = Rpu,w = ¢ and v, = Rpu — uy in (3.33), we have
bi(Rpu, ¢, Ryu — ur) — by p(Ryu, ¢, Rpu — uy)
< Z C(h’ﬁ; + JJu —
E
+ [|8Rru — T, (BRww), )|
C(|lu— Rpullo + h*) |V (Rpu — ur)|fo- (3.34)

Iy Rually
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Hence,

By = bi(u, ¢, Rpyu — ur) — b; p(Rpu, ¢, Rpyu — ug)
= bi(u, ¢, Rpu — ug) — bi(Rpu, ¢, Rpyu — ur)
+ bi(Rpu, ¢, Rpu — ur) — by p(Rpu, ¢, Rpu — ur)
< C(|lu = Ruullo + ") |V (Ruu — ur)lfo- (3.35)

Substituting (3.29) and (3.35) into (3.28), it yields
IV(Rhu —up)llo < C([lu— Ruullo + 1*). (3.36)

Next, we present the L? estimate for Rj, — u. Define the adjoint problem as follows:

—A@i +¢'V¢ - Vuw' =u— Ryu, €1, (3.37)
w' =0, x € 0N.
If ¢ € WHo°(Q), then the regularity result holds (cf. [44])
[w']l2 < Cllu — Ryullo. (3.38)

From (3.12) and (3.37), we have

|u— Rpull§ = (— Aw',u — Rpu) + (¢'Vo - Vo', u — Ryu)
= a(u — Rpu, wi) + b; (u — Rpu, @, wz)
= a(u — Rpu,w' — w}) + a(u — Rhu,wé) + b; (u — Rpu, ¢, w* — w})
+b; (u — Rpu, ¢, w}) + ap (Rhu, w}) —ap (Rhu, w})
+ biﬁh(Rhu, o, w}) — biﬁh(Rhu, o, w})
= a(u — Rpu, w' — w}) + (ah (Rhu,wﬁ) — a(Rhu, w}))
+bi(u— Ryu, ¢, w" — wh) + (bin(Rpu, d,wh) — b (Rpu, ¢, wh))  (by (3.12))
=: Dy + Dy + D3+ Dy. (3.39)

From (3.38), we get

Dy = a(u— Ryu,p’ —pf) < C||V(u— Rpu)|o]|V(w' — w})HO
< Chl[V(u— Rypu)ollw'|l2 < CR|IV (u = Ryu)|oflu — Ryullo. (3.40)

From (2.11) and Lemma 2.2, we have

Dy = ay (Rhu, w}) — a(Rhu, w})

= Z {af (Rhu — un, wh — ngiv) —a¥ (Rpu — g, wh — ngi)}
E

<Y IV B — ug)

0.8(|V (wi — Ihw) [

< C(h*ullisr + IV (Ruu — w)llo) w2
< C(hF*! + || V(Rpu — u)lo) || Rru — ullo. (3.41)
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and
Dy = b;(u — Ryu, ¢, w' — wi) < C||V (R —u)||o]|V (w' = wp)]|,
< O V(Rpu —u)lohl|w'||2 < Ch|V(Ryu — u)|lo]| Rnu — ulo. (3.42)
It remains to estimate D4. There holds
Dy=0b; h(Rhu qb,wI) —b; (Rhu qﬁ,wI)
=3 (¢ (M (Ru) 19V, T V), — 0 (Ruu¥o, Vo)), )
E
-3 ( (I (Raa) IRV 6, T, V), — o (RuullfV o, Vi), 1)
E
¢ (Ryu(T)V6 — Vo), Vu) )
Z (D41 + Da2). (3.43)
B
Setting 3 = ¢'IIYV¢ and uj, = Rpu, from (2.23) it yields
Dy1 = ¢'(II)_y (Rpu)IIL V¢, Hg_lvuj})w — ¢'(Rpull) Ve, wa,)OVE
= (Bﬂg_luh, Hg_1Vw3)E — (Buh, Vw})E
< HB -Vuwj — Hgfl(ﬁ - Vwp) HO,EHuh - Hgﬂuh”o,E
+ [Vt = ey (Vp) o g1 Bun = Ty (Bun) |,
+ CHVw} — H271Vw}HO7E||uh — HgfluhHO,E' (3.44)
Note that
H“h ~ 1 luhHo E HRh“ — I 1 (Rpu) HO,E
= [|[Rpu — ullo,g + ||u — HgfluHmE
+ || _qu — H%_thuHOE
< || Rhu — ullo,z + Chlp k.5, (3.45)
18+ Vwp =T, (5 - Vi) [
< 18- (Vi = V') [l + 1BV’ =T, (8- V)|,
+ ||H2,1ﬂ~- (V' — vw})”O,E
< Chg|w'|2,E, (3.46)
HBuh - Hgfl(guh)HO,E
T
< 1B (Rnt — o, + || — TO_ (o) 5
+ [0 Bu — BRuull,
< C(||1Rhu — ullo,e + h¥||ullk,r). (following (3.24)) (3.47)
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Combining (3.45)-(3.47) with (3.44), we get
E:DM<C§:MNWMEWRW*UME+hHﬂhﬂ
< C(h”Rhu —ullg + hFTH| Ryu — ulo).
Now, we estimate Dys. From Lemma 3.3, it follows that

Z Dys = Z q' (Rh“(H2v¢ - Vqﬁ),Vw})O’E
E

19

(3.48)

_ Z (4 ((Bnu = w) (1996 — V), Vu)), , + ' (u(I)V6 - V6), Vu)), 1)

—CZ< 1Ry — ullo, ||V — V¢’||0<>0EHVMIH0E

E
+ o £ [TV = V|, o) [V )
< C(h||Rpu — ul|§ + R* | Rpu — ullo).

Substituting (3.48) and (3.49) into (3.43), we deduce

Dy = bin(Ruu, ¢, wh) — bi(Rypu, b, wh)
< C(hl|Rau — ull + ¥ Ryu — ullo).

Inserting (3.40)-(3.42) and (3.50) into (3.39), and using (3.36), we have
e — Roull3 < C(HF R — o + Bl R — ).
Hence, if h is small enough, then it follows that
|u — Ruullo < ChFFL.
Combining the above inequality with (3.36), it yields
IV (u ~ Ryu)lo < ChF,

which finishes the proof of this lemma.

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

O

Lemma 3.8. Suppose u € H*1(Q) N L>®(Q), du € H*1(Q), ¢ € WE2(Q) N H*2(Q) and

Ovp(t) € WHo°(Q). For h sufficiently small, there holds

Proof. For simplicity, denote by

Hv—H%uHs :ZHU—HQUHS’E, v Hkv Z v Hku
E

B
for any u,v € H}(Q). Since

VO (Rpu —u)jo < || VO (Rhu — MYu)
< HV@t (Rhu - H%u)

+ Oh¥||0gull 1,

lo

ly

“)Ho

(3.54)
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it suffices to present |V (Rpu — Iu)|lo. Taking derivative with respecting to ¢ on both sides
of (3.12), we have

a(Opu, vp) + a(u, Opvp) + ¢ (at(quﬁ), Vvh) + ¢'(uV ¢, 0; V)
= ap (O Rpu,vp) + an(Rypu, Opvp) + ¢ (0 (I RpudIf V) 115 Vioy,)
+ ' (II)_ RpuII)V ¢, 9,115 Vuy,). (3.55)

Setting vy, = Oyvy, in (3.12), it follows that
a(u, Opvp) + qi(uV(b, Vo) = ap(Rpu, Orvp) + q (Hg_thuHQVqﬁ, V@tvh). (3.56)
Combining (3.55) with (3.56), we get
a(Opu,v) + ¢ (0 (uV ), Vor) = an(9Rpu,vn) + ¢ (0 (11} RpulIf V), 11} _1 Vo). (3.57)

To estimate ||V;(Rpu — H%u)||o, for simplicity, we set ¢ = Rpu — Iu. Then from (3.57), we
have

CollVOplig = Coa(Buh, 8yp) < an(Bp, D)
= ap (O Rpu, 0p)) — ap (8,51_121;, (%1/})
= {a(du, ) — an (8:110u, Byp) }
+1{4d" (0:(uVe), Voru) — ¢' (0, (Ty_, RpulIy V), 1IN _, V) }  (by (3.57))
=T + Ty (3.58)

Using (2.19), it is easy to deduce that

Fl = a(@tu, at’lb) — ap, (atﬂgu, at’lb) = Z aE (Gtu — atﬂgu, at’lb)
E

< 2V (@ = o) IV O lop < CHYOrullis VO lo
E
< Ch?* 0|41 + €l VO3 (3.59)
There holds
Ty = ¢' (0, (uV ), Varp) — ¢' (8, (T} _ Ryull) V), I} V1)
={¢"(0:(uV¢ — RyuVe), Vo) }
+{q" (0:(RhuV $), Vo) — ¢' (8, (TI_ Rpully V), II0_ V1)) }
< C([[0¢(u — Rpu)llo + [lu — Rpullo) VO [lo
+ {q' (0 (RhuV ), Voub) — ¢ (0, (II)_ Rpull) Vo) TI)_ V) }. (3.60)

Next, we estimate the last term

¢ (01 (RpuN'¢), Voup) — ¢' (0, (TI)_ RyuII) V), T}, VOs))
= ¢' (0 (Rau)V, Vo) + ¢' (Rpud, Ve, Voip)
— ¢ (0, (T} Rpu) IV ¢, T1,_ 1 VO0) — ' () Rpudy () V) 1), VO)
= {bF(0u(Rnu), ¢, 00b) — b, (0(Ruu), 6, 01))
E

+ b7 (R, 0, ) — b, (Riu, 0y, 91)) } (3.61)



Error Analysis of Virtual Element Methods for the Time-dependent Poisson-Nernst-Planck Equations 21

Similarly as the deduction of (3.34), by taking u,=0; Rpu, w=¢,v,=0i and up=Rpu, w=0;¢,
v, = Opb in (3.33), respectively, we have

bF (0u(Ruu), ¢, 00p) — b, (0y(Ruu), d, Ot))

< C(||0wu — 0 Rpullo,e + hillollks1,2) VOt o,k
by (Ruu, 8,0, 0ptp) — b, (Ryu, 0y, 04))

< C(|lu— Rpullo,p + Wgl|0:9llkt1,8) VO lo, £

Inserting the above two inequality into (3.61) and using Lemma 3.7, we get

q' (0:(RhuV o), Voup) — ¢ (0, (I _ Rpull) Vo), II)_ VO
<> {0 — 8 Ryullo.p + |l — Ruullo,z + h*) IVl }
E

< O + 04— Ruw)]12) + eI VO3 (3.62)
Combining (3.60) with (3.62), and using Lemma 3.7 again, it yields
Ty < C(h* + |0:(u — Ryu)||3) + el V|3 (3.63)
At last, substituting (3.59) and (3.63) into (3.58), we have

VO (Rhu — Iw) ||, = IVOp]lo < C(h* + [|0¢(u — Ryu)|o).

ly

Hence,
VO (Rpu — u)|o < C(hk + 10 (uw — Ryu) o).

This completes the proof of the lemma. O

Using the similar analysis for Lemmas 3.7 and 3.8, we can get the following result.

Lemma 3.9. Suppose u € HFT1(Q) N L>(Q),00u € H(Q), ¢ € W22(Q) N H2(Q) and
Opp(t) € WEo°(Q). If h is small enough, then we have

|04(Rru — u)lo < CRML.

3.3. Error estimates for semi-discrete case in the H' norm

In this subsection, we give a priori error estimate in the H' norm for the semi-discrete
solution. Assume
p', pie L>(0,T; HHQ)NL®(Q)), i=1,2,
¢ € L=(0,T; HM2(Q) nW2>(Q)), o) € L=(0,T; HH( Q) nWh>(Q).  (3.64)
We also suppose
feL>=(0,T;H*Q)), F'e L>(0,T;H"*(Q)). (3.65)

In the following lemma, we present the error bound of 9;(V¢ — V¢y,), which will be used in the
H' norm error estimates.
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Lemma 3.10. Let (¢,p") and (¢n,p,) be the solutions of (2.4) and (2.14), respectively. As-
sume (3.64) and (3.65) hold. If h is small enough, then we have

2
[0:(Vé —~ Von)llo < C <h’“ +2_ [l (Rup pég)Ho> -
i=1
Proof. For any t € (0,T), suppose Ry¢ € Q) is the H' projection to ¢(t), satisfying
ap, (thﬁ,wh) = a(¢,wp), Ywp, € QF. (3.66)
From (2.4) and (2.14), we have
a(@,wn) — an(pn, wr) + b(p*, p*,wp) — bu(Ph, PR, wn) = (f — frywa).
Then, from (3.66), it follows that
an (Rth — Gnswn) = (f — fr,wn) + b (phs 7 wh) — B(p17p2,wh)- (3.67)

Taking derivative with respect to ¢ on both side of the above and setting n = thﬁ — ¢p, then
it yields

an (O, wp) + an(n, Opwy,)
= (0:(f = fn),wn) + (f = fn, Opwy)
+ bp, (Ouph,, 0D}t w) + b (- D3> Orwn)
- l;(@tpl, o2, wh) - l;(pl,pQ, 8twh). (3.68)

Setting wy, = dywy, in (3.67), then we get
an(n, 0vwn) = (f — fr, Oywn) + bn (ph, Ph, Oswn) — b(p", p*, Opwy,).
Inserting the above into (3.68), it follows:
ah(atnv U}h) = (at(f - fh)a ’U_)h) + l;h (atp}lw atp}27,a wh) - B(atplv atp27 wh)-
Taking wy, = 0yn and using Lemma 2.6, we have
an(0m, Oym) = (3t(f = fn), 3#7) + b, (atp}lw atpiv 3#7) - B(atp17 ap?, aﬂ])
<0:(f = fu)llollOenllo + ’ijh(atp}luatp}%aatn) - 6(515171,515172,51:77)‘
2
<C <h’“ +> [lo: (v —pi)!\()) IV 0emllo- (3.69)
i=1
Hence,

CollaeVnl[§ = CollVOeng < an(den, 0en)

2
<C (hk + o’ —pZ)HO> Voo,

i=1

which deduce that

2
ot vl < ¢ (13-t s, ). .10

i=1
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Next, we estimate ||0;(VRyp — V)|lo. First, taking derivative with respect to t on both sides
of (3.66), we have

an (0 Rd, wn) + an (R, Oywn) = a(0pd, wy) + a(é, dywy,).
Taking w;, = dywy, in (3.66) and inserting the resulted equation into the above, we get
an (0rRudywp) = a(Opp,wy,).

Then setting
wy, = i) = 0 (VRp¢ — IV ),

it follows that

Co Z IVo:ill3,e < Co Z ay, (9¢1, O41))

= Z ar atRh¢, Om) — ar (0106, 0,17))
B

= (a®(010,0177) — o (01100, D) )
E
<O ||V — VIO, [Vl
E

< Ch¥||V 0.
Hence, .
S l0(VRG —1VE)||, < CE,
E
Then

[0:(V6 = VEn0) o < 3 (19:(V6 ~ V) |, + |0 (T6 ~ VRi) ) < OB,
E

Combing the above with (3.70) and using Lemma 3.9, we get

2
[0:(V¢ — Von)lo < C <hk + > [0 Rip' pi)lo) :

i=1
This completes the proof of this lemma. O

Now we can present the error estimates in the H' norm.

Theorem 3.2. Suppose the decomposition Ty, is quasi-uniform. Let (¢,p') and (¢n,pi) be the
solutions of (2.4) and (2.14), respectively, and set pﬁho := (p§) 1, the interpolant function of the
initial value of pb in QF. Suppose (3.64) and (3.65) hold. For all t € (0,T) and h sufficiently
small, the following estimate holds:

[p°(t) = ph(D)]], + () = ¢n (&)1 < Ch*. (3.71)
Proof. From (2.4) and (2.14), for any v, € QF, we have

(Pi, Uh) —mp (pz,t, Uh) + G(Pi, Uh) — ah(PZ, Uh)
+ bi (D, dnyvn) — bin (Pl Dy vn) = (F' o) — (Fi, vn)- (3.72)
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Then from (3.12), it follows that
(vi = (Bap"), + (Bup") o vn) +mn ((Bup'), = phoson) = ma((Bap®) ,,vn)
+ an(Rnp" — phyvn) + bin (Rup', d,08) — bin (ph dnsvn) = (F* — Fi,vp).

Let 0" = Rpp® — pi,n' = p* — Rpp' and take v, = 0 := (Rpp’ — pt): in the above equation.
Then it follows that
my (0}, 07) + an (6", 67)
= = (1, 01) + {mn((Rup") , 01) = ((Bnp') ., 01) }
+ (F' = F},,07) + {bin (Phs dn: 0;) — bin (R’ ¢,6;) }
=: Ay + Az + Az + As. (3.73)

Next, we shall estimate A;,7 = 1,2, 3,4, respectively. First, from Lemma 3.9, we get

Av= =i, 0;) < [t = (Bap'), [0,
< cn o, < on* + el .74
Using (2.20), (2.22), Lemmas 3.7 and 3.9, it yields
Ay = mh((thi)t’Hi) - ((thi)t’ei)
=mn((Rap'), — I (Rap') . 07)
+m (I (Rip') , 07) — ((Bap'),, 07)
< O||(Bup"), =17 (Rip"), || 1610 (by (2.20) and (2.22))
< cnt||6y|, (by Lemmas 3.7 and 3.9)
< Ch* + |63 (3.75)
For the term Az, we have
= (F' = Fi,0;) < ChFY | F?|| i ])67]],
< 0N 4| (376)
To estimate the term Ay, first we get
Ay = b 1 (phy, 1, 0;) — bin(Rup’, 6,06;)
= bin (Pl — Bap', 6,01) + bin(p's dn — 6,60) + bin (0}, — 0' b0 — 6,6;)
= Ay + Ao + Ays. (3.77)

Next, we shall estimate the terms Ay, A42, Aq1, respectively.
From Lemma 3.7 and Theorem 3.1, it yields

A41 - bi,h (p;b - thia ¢7 9;)
= Z ql (H27191H2v¢a Hgflvez) E

72 HO 0TV, T, V')
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—Z{ ((1_,6"), 1096, 11, V6') , + ¢ (1), 0 (T V9),, T}, V6') |
< gtbz-,h(ew, o)+ 32 {1010, oI Vol 1 5
(10 | (), o oo T VO }
< gtbi,h(oi,gb, 0') + C (10713 + V07)13) + e[| 6]
<gbzh(el,qb,el)—i—C(h%—i—HVGZH )+ell6i]lZ  (by Lemma 3.7 and Theorem 3.1). (3.78)

Similarly, we get
Agp = bi,h(pia On — 0, 92)
=Y d' (P TRV (dn — ¢),T1)_, V)
E

) . .
= Z qlgt (Hg_lpZHQV(th —¢),1_, Vel)E

—z{

Hk 1p Hgv(¢h_¢)a Hgflvei)E+qi (Hgflpi (Hgv(¢h_¢))ta Hgflvel)E}

= atbivh(pl’gbh*‘ﬁ’@z +Z{H(H2—1pi)t||o,oo,EHH2V(¢h ‘i’)Ho,E||H2—1V9iHo,E
E

+ ||Hg,1pi||0,oo,EH(H2V(¢h B ‘b))tHO,EHHgflveino,E}

0 ) . )
< Ebi,h(plaﬂﬁh —,0") + C(IV(on — )lo + IV (dn — d)ello) IVO'[lo

o ) . .
< Ebi,h(pa on — 6,0") + C(h** +||Vo'||?2)

+ ez HG@H(QJ, (by Theorem 3.1 and Lemma 3.10) (3.79)

and

Ay = bin(ph, — ' ¢ — ¢,0)
= Z qi (Hgfl(p;lz - pi)Hgv(@bh - ¢),H271V9§)

72 H% L (ph, = P) IRV (61, — ), T3, VO')

E

—Z{ (I, (9}, — 1)), T2V (60 — ), T, VE)

+ 4 (I (ph, — ) (Y (00 — ), 110, 96") . }
9 ) ) )
< 5bi,h (p;z 7p717 ¢h - ¢7 91)

t

+ Z {H (Hgfl (pi - p;.l))tHO,EHHQV((’bh ‘b)Ho,oo,EungflveiHO,E
E

+ HHg—l(pi 7p;L)HO,E||(H2v(¢h - (b))t||O,oo,E||H2—1voiH0,E}' (3.80)
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Note that from Lemma 3.2 and Theorem 3.1, we have

TRV (@ p < [IEVen

o oc, +[1E Vel 5 < C.

lo.
Following the arguments in Lemma 3.2 and using Lemma 3.10, it follows that
||(HgV(¢h ) Ho 0, B = ||HgV én) Ho gt \’H2V¢t||o,E
<C+Ch” 1||<9t(V¢ = Vén)llo
<C+Cht Z 6;

=1

lo-

Hence,

Z HHk 1 pi - Ho EH(HQV((bh - ¢))tHo,oo,EHHk*lveiHo,E

< Cht! Z 16:1], 176710 + Ch¥ (V6o

i=1

2
CIVO 12+ 1) + S |j6i]12.

=1

Combining the above with (3.80), we get

A43 = bi,h(pz - Pi; ¢h - ¢a 92)

) . . . CI o
< 5 bin(h = ' 0n = 0,0%) + CUIVOIS + 12 + e 3 [Joilly + el (0 = ) g
i=1
o _ _ _ . 2 . _
< gy bun (Ph = P’y 00— 6,6%) + C(IVOI§ + h™) + e 3 16115+ 2¢ (1163 15 + [17[15)
=1
o . . . . 2
< G ben bk =90 = 6.0) + C(n** 4 [VO'I) + 3¢ Y o] (3.81)
=1

where Lemma 3.9 is used in the last inequality. Inserting (3.78), (3.79) and (3.81) into (3.77),
it follows that

A4g§t(bi,h(9i,¢,e>+blh( b — 6,0°) + bun (9 b — 6,67))

+ (|| V0|3 + h?*) —i—ZSeHGZHO (3.82)

i=1

Thus combing (3.73)-(3.76) and (3.82), we have

C.| 0 ||v91 < mu (07, 0}) + an (0", 0})
o ) )
< a(bi,h(917¢791)+bi,h( ,Qbh*(ls, ) +bz h(p ¢h 7¢791))

o + l

2
CIVE 12 + 1) +5¢ > [0 2.

=1
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Then integrating with respect to ¢t on both sides, it yields
w613 < c<bi,h(9i,¢, 0%) + b (o, — ', 6n — 6, 0°)
+bin (P dn — 0,0") + /Ot | VO|adt + h%)
< o (10161 ¥ello + 0 - Tl

+ [Ip’]

t
00c[ V6 — Vullo ) 196 o + / V6|24t + h%)
0
t
< C(/ | VO||2dt + h%) +¢|VO'||2.  (by Lemmas 3.1 and Theorem 3.1)
0

Thus, we have
t
ve3 < ¢ [ Ivoliar+ 1)
0

By using the Gronwall inequality, we get
V6|2 < Ch .

Then using Lemma 3.7, we have . 4
Ip" = pill, < 0",

which combined with Lemma 3.1 shows

¢ — nlly < CR”.

This completes the proof of the lemma. O

4. Error Estimates of the Gummel Iteration Based on VEM

In this section, we first present the fully discrete virtual element scheme for the PNP equa-
tions, and then show the error estimate of the Gummel iteration based on the VEM. As already
mentioned in the introduction, in this paper we focus mainly on the error estimates for semi-
discrete virtual element approximation, since the error analysis of the time discretization follows
a standard procedure. As an example of error analysis for the Gummel iteration of VEM, we
here only present the L? norm error estimates.

The fully discrete scheme is presented (2.15). Since the system (2.15) is a coupled nonlinear
one, we apply the Gummel iteration to decouple and linearize it. The Gummel iteration of
VEM (2.15) for PNP equations is presented as follows.

Algorithm 4.1: Gummel iteration of VEM.

Step 1. Give the initial value pi’o,i =1,2,¢% € QF.
Step 2. Let p™? = pi" 1 i =1,2,¢7" = ¢t asn > 1.

i,m,l

Step 3. For! > 1, compute p,"",¢ = 1, 2,¢Z’l € QF such that for any v, and wy, € QF,
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i,n,l
mp, (phT ) +an(pi™h o) + bin (0™ ot on)

7,n—1
= (F;nvvh) + mp (ph 7vh)a 1=1,2, (41)
T
an (o) ,wh)+bh(l?;11"l Lyttt swi) = (f1,wn).

Step 4. For a fixed tolerance ¢, stop the iteration if

1nd 1 n,l—1

I, I+ 3™ = o™ 7+ lon = oh Tl < e

and set (p,ll’n,pi’", oy = (pi" l,pi" L gbZ’l). Otherwise set [ < [+1 and goto

Step 3 to continue the nonlinear iteration.

Step 5. Time marching: Stop when n + 1 = N. Otherwise, set n < n + 1, and go to
Step 2.

Assume the following regularity properties hold:

pot, pp™ e L0, T HFYY(Q) N L2(Q)), pi* € Lo(0,T5 L3(Q)), i=1,2,
o™ € L>®(0,T; H*2(Q) n Wkt (Q)), " € L®(0,T; WhH™(Q)). (4.2)

We also suppose
fre L=(0,T; H (Q)NL>(Q)), F*" e L>®(0,T; H*1(Q)). (4.3)
We present the error estimate of qbZ’l — ¢™ in the following lemma.

Lemma 4.1. Let (qb"l,pi’") and (¢} ,p;"l) be the solutions of (2.4) and (4.1), respectively,
set the initial value pz’o = Rpp®° and assume (4.2)-(4.3) hold. Then for alln =1,...,N and
[ > 1, there holds

1=1

ot — gl < c*(mznpm ' mno) ws)

v, , < 0(1+2Hpm ' mul)- w5)

i=1

Proof. The first result (4.4) can be obtained by repeating the arguments in Lemma 3.1.
We only need to show (4.5). It is easy to see that gbZ"l can be viewed as the virtual element
approximation to the solution of the following Poisson equation:

2
n,d _ i i,mn,l—1 .
—A¢," = f, —i—quh in
i=1

with homogeneous Dirichlet boundary condition. Then, using the maximum norm error esti-
mate of the virtual element solution [31], and from the regularity estimate, Taylor’s theorem
and the Gagliardo-Nirenberg inequality, we have
0
TRV},

Noe.z < CIVE™ o0,
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n,l

{11+ )

0,4

¢ ( +Z [ A e PQ’”|0,4>
<1+2sznl 1 ZnH1>,

where the fact ¢> = —Cyq' (C, > 0 is a certain constant) is used. This completes the proof of

zznl 1

IN

IN

this lemma. O

Now, we proceed to estimate the error p;’"’l — p»™ in the L? norm.

Theorem 4.1. Suppose the decomposition Ty, is quasi- umform Let (¢", p»™) and (qﬁh ,pzn l)

be the solutions of (2.4) and (4.1), respectively, and set ph = Rpp"°. Suppose (4.2)-(4.3) hold
and T + h is small enough. Then for alln =1,...,N andl > 0, we have

Sl =l 6 =, < Ol . 49)

Proof. Set
p;;n,l _pim (p;bnl - thi,n) 4 (thi,n 7pi,n) —. il 4 ghm
where p*™ = pi(t,),n = 1,2,..., N. From Lemma 3.7, we obtain
"™ lo < ChF*!. (4.7)
The estimate for v*™! requires more analysis. Denote by

DT n_ —(,n__ ,n—1 )
u 7_(u w7
For all v;, € QF, from (2.4) and (4.1), there holds

mp, (Drvim’lvvh) + ah( i’"’lvvh)

= (F" o) = bin (07" o1 o) — muy (Dr Riup™™™, o) — an (Rap®™™, o)
(2 ) ) () - (o)
= (F™ ) = bin (0™, o3t on) — ma (Dr Rup™, vp) — an (Rpp™™, vp)
Falp ) = (Fn) 4 G o) + 0% ) o (205 = 53 )
= (B = F"" o) + (0" on) = mn (D Rp™™ on)) + (a(p™", on) — an(Rap"",vn))
+ (0 (", 9" o) = i (0™ 81" vn)) + (% (" ="M, vh>
= H} + HY + H} + H" + H. (4.8)
From (3.5), we have

H' = (F,?” — FP o) = (IIRF" — FP" vy) < CRM T ES™ | ||un]fo. (4.9)
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In order to bound the second term, adding and subtracting suitable terms, we can obtain

H; = (p?na Uh) — mp (DTthiJLa Uh)
= ((pi",vn) — (Dep™™,v1)) + Z (D-(p"" —IIP"™"), vn)
B

+ (Z (D-Ip"™" vp) py — my, (D Rup™™, vh)>
E
=: Hay + Hao + Hog. (4.10)
The estimates for Ho; to Haos can be determined as follows:
Hs < ||pin - Drpi’nHO”UhHO
< H%T . attpi(z,g)HOthHO, (t""! < ¢ <t™) (by Taylor’s expansion)

< C7llvnllo;

Hop = Z (D-(p"" = TIPp"™), vp)

E
<37 [ I ) sl
< ChF|lvp]fo-
Hys = Z ((DTﬂgpi’",vh)E — mf (DTthi’", vh))
E
=Y (mf (D Ip"" — D-Ryp™™, vp)) (by (2-20))

E
<Y ||D- (mptn = 0"")[|o gllvnllo + || D= (0" = Rap™™) || lonllo
E
1t , .
<3 [l )@l

I . .
b2 [0~ Ba)0) gl
tn—l

-
< Ch¥||valo- (by Lemma 3.9).

Hence,
HY = (p;’",vh) — mh(DTthi’”,vh) <C(r+ hk)thHO. (4.11)

Using (2.17) and Lemma 3.7, we have
Hg = a/(piﬁna Uh) — ap (thiﬁna Uh)

=a(p"",vn) — an(p"™, vn) + an(p"" — Rpp"™, vn)
< Ch*||Vop o (4.12)

From Lemmas 2.5 and 4.1, we can express the fourth term as follows:

Hp' = bi(p"", 9", vp) — bz‘,h(p;{n’l, ¢Z’l, vp)
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<o e S

=1
(Hznpm“ mnl)upml i’”||0)nwhno. s

There holds

1, . _
l — -1,
ng =my (—(pzn 1—p2’n 1’),vh>

.
_ 1 i,n—1 in—1 1 i,M i,n—1,1
= Mn (ph — Rpp )+ - (Rup™™ " —py; ), vn
1 AN, — 1,MN—
<O (10" o + 1"~ o) l[onllo, (4.14)
where
~i,n—1 i,n—1 in—1
v =Dy — th ’ .
Collecting the estimation of (4.9), (4.11)-(4.14) into (4.8) and taking v;, = v>™!, we get

1, . . .
mn (;(Uz,n,l o Uz,nfl,l), in, l) +a ( i, n,l’Uz,n,l)
— H + Hy + H} + H}' + HI!
< C(hk+1|Fi,n|k+1 LT hk)HUi,n,lH

+C<hk+ZHPZ“ ' p"’"Ho+<1+lev i pt >|0>Hp’"’ “"Ho>'v“'”

i=1

C i ) )

+ = (164 o + ) o

C(T + hk+z sznl 1 pi,nH0+ <1+Z Hv i,n,l—1 )H0> sznl Ln”o) vai,n,lllo
c A5, — in— i

+ Z (18" o + o o) o (4.15)

and C' is depen-

where [Pl < C||Vob™
dent of |[F"|;41. Note that

1 il 2 in—1,1112 | . -
o= (08 = o HE) = ot E = o (o™ =M + [l 1)
1 ; ; 1. . o
< ;mh(vz,n,l’vz,n,l) _ _HUz,n,lHOHUz,n 1,l||0
1 il 1 . _
< ;mh(vz,n,l’vz,n,l) _ ;mh(vz,nfl,l, ’Uz’n’l).

Combining the above with (4.15), we get

1 . o .
;(HU“”JH% — [[o" S + Vo3

1, . . )
Smh(;(vz,n,l _,Uz,nfl,l)’ znl) +ap ( zn,l,vz,n,l)
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—l—hk—l—Zlenl 1 pz’,n"o_i_(l_i_ZHv i,n,l—1 )HO>sznl z,n"())'vvi,n,l'O

(10" o + o™ o) [l
+h’€+ZHv”l Yo +Z|\v
+hk2|vvi’n’l1|0>|Vvi’"’l|0

=1

<C

+

<C

+Z Vo™= olv™™ o

Aq|QA

+ = (0" o + [lo"™ M o) ™™o (by (4.7))

h2k+2||vznl 1||0+Z||,Uznl|‘0 h2k2”vvznl 1”2
2
+ (an’"vl—wo|vi’”vl||o> + eVt 3)
C

i=1
+ = (10" o + [0~ o) "™ [lo- (4.16)

/\ﬂIQ

Then, it is easy to get

2 2 2 2
o3 < c(# kS o S o + T<Z |Vvi’"’ll||0|vi’n’l||0>
i=1 i=1 i=1
o S VR 4 o E |

2
. —12 in—1(2 ’U" -1, 8>+6|Ui’n’l||%-
i=1

Thus, if & is small enough such that CTh?* < 1, then

2
Hvi,n,l”% S C<7‘3 +7_h2k +7_Z (Hvi,n,l—lno + Hv,uiJL,l—IHO”U', s ||vvi77l,l—1||0)2

i=1
+ H ~ G, n— 1”0 + ||Ui’n1’l||g>. (4.17)

Next, we shall use the mathematical induction to show

Hvi,n,lno S C(T+ hk), n = 1, . ,N, l Z 0. (418)

The idea is the mathematical induction will be used respectively for the index n and [. This
means we first fixed the index n = 1 and show (4.18) holds for any I > 0 by the mathematical
induction. Then, we assume (4.18) holds for the case n = J, J =1,2,...N —1, 1 > 0 and prove
it also holds for the case n = J + 1, where the mathematical induction will be used again for
the varying index [.

First, there holds

1l = i = R,

< sz,l,O i,OHO + ||pi,O _pi,lllo + Hpi,l _ thi,IHO-
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From Step 2 in Algorithm 4.1, we know pil’l’o = pil’o, and using the Taylor’s theorem and

Lemma 3.7, we get
[v"10p < C(7 + ). (4.19)

Similarly,
[Vo'10y < C(r 4+ h*) < C. (4.20)

From (4.17), we have

2
o3 < c(ﬁ F7h 73 ([0 + [T oot o + BF [T )

=1
+ 103 + ||viv°*1|3>.

Noting that

_ pZO Ry =0, 01 = p;o L Ryp™? = p;‘io — Rup™® =0,

£3,0
and assuming C(7 + h*) < 1, it follows:
v lo < C(T 4 hF). (4.21)
Similarly, combining (4.16) with (4.19)-(4.21), we get
Vit < C. (4.22)

Now assume
05 o < C(7 + hF), [V [lg < C

holds for r > 1 and we shall show
[ o < Cl7 4+ 1*), [Vt g < C
By repeatedly using (4.17), it yields
[P+ g < O (T + hF), (4.23)

where

,Uz,O,TJrl _ p;{O,T-i-l _ thz,O _ pz,o _ thz,O -0
is used. Hence, (4.18) holds for n =1 and [ > 0. Similar to the deduction of (4.22) and using
(4.23), we have

[ Vobbr |y < C. (4.24)

Next, assume

[v" o < Clr + %), [[Vor”

0<C, J=1,2,...N—1, 1>0, (4.25)

and we will prove ||v® 0 < C(7 + h*). First, similar to the proof of (4.19), we get

I i, J+1, OH H i,J+1,0 thi,JHHO _ HPZJ _ thi,JJrlHO

< th _ thi,.]HO + Hthi,J _pi,JHO T Hpi,J _pi,JJrlHO T Hpi,JJrl _ thi,.]JrlHO-
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Note that from Step 4 in Algorithm 4.1, pil"] = pil"” is the numerical approximation at time ¢ ;.
Hence, using the assumption (4.25), the Taylor’s theorem and Lemma 3.7, it yields

[v" 0o < C(7 + 1F), IVt 10l < C.
Then, similar to the deduction of (4.21) and (4.22), we have
[v5 T o < C(r 4+ RY), |Vt < O, (4.26)

where . ' .
6% llo = [|py;” = Rup™”|, < C(r + 1)

is used. Now suppose
[oa/HET g < C(r + BF),  [[Vo T g <0, r> 1. (4.27)
By repeated application of (4.17), and using the assumptions (4.25) and (4.27), we get
[oB T+ 1+ |y < C(r + hY).

Thus, (4.18) holds for n =1,2,..., N, 1 > 0. Then we can easily obtain

2 2
Dol ="y < > (™™ o + lle™"llo)
i=1 i=1
< C(r + h"). (4.28)
Using the similar analysis for Lemma 3.1 and from (4.28), we have
lor —¢™llo < |1 — ¢"||, < C(r + h¥). (4.29)

This completes the proof. 0

5. Numerical Results

In this section, we report a numerical example to test the practical performance of the
virtual element method for solving (2.1). The implement of the numerical experiment is based
on [7]. All the computations are carried out in Fortran 90 on the computer with CPU-2.90 GHz
(Intel (R) Core (TM) i5-10400F), RAM-16 GB.

Example 5.1. Consider problem (2.1)-(2.2) and the right-hand side functions are determined
from the exact solution (cf. [44])

o(t,z,y) = (1 — e”")sin(rz) sin(my),
pl(t,x,y) = sintsin(2mx) sin(27y), (5.1)
p?(t, z,y) = sin(2t) sin(37z) sin(37y).

In the test we consider the time interval [0, 1], the computational domain Q = [0, 1] x [0, 1] with

T =1 and time step 7 = h2, and the charge ¢' = 1 and ¢> = —1. The rectangular domain is
discretized with several different types of polygonal meshes, viz., triangle, square, non-convex
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polygons, mixed-polygon, random Voronoi and smooth Voronoi meshes, which are shown in
Figs. 5.1(a)-5.1(f), respectively.

As the VEM solution can not be known explicitly inside the elements, the convergence
of VEM is evaluated through the relative L? norm and H' semi-norm using the projection
operator IIY onto Py, that is

ersi= | S Ju-Twll e = | 3 (|9 (- T07w) |2
EcTh EcTh

where u is corresponding the exact solution ¢, p! or p? in (5.1), uy, represents the VEM solution
with the order k =1, Hkv is defined by (2.5). To display the convergence results in the figures,
we shall use the mesh-size parameter h which is measured in following ratios (cf. [9]):

(a) Triangular mesh (b) Square mesh

(c) Non-convex mesh (d) Mixed-polygon mesh

(e) Random Voronoi mesh (f) Smooth Voronoi mesh

Fig. 5.1. Six types of polygonal meshes.
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= (2, o

where N is the number of polygons. The convergences of the errors in L? and H' norms at
t = 1.0 are displayed in Figs. 5.2-5.7, which infers that the convergence orders approximate the
second-order and first-order in L? norm and H' norm, respectively. Figs. 5.2-5.7 show that the
numerical result matches with the theoretical results established in Section 4. The results in
Figs. 5.2-5.7 are based on the charge values ¢* = 1,¢? = —1 in (2.1), which is the most common
case. Fig. 5.8 displays the numerical result of different charge values, which indicates the VEM
is also efficient for the values of some other charge values.

5 L2 convergence with k=1 H! convergence wrth k"1
10 ¢ - S
107“; /
Rl 5
— 3 ™
H [ ° 10
o107 =
f ——y - ——
10’41. +p1 10 +p1
: _._Pzr '-"'p2 1
] I b
1070 e oy P ——— = 1070 —|
2 -1 -2 =] 0
10 10 10 10 10 10
mesh size h mesh size h
Fig. 5.2. h-convergence on triangular mesh with ¢ = 1.0.
100 L2 convergence with k=1 H! convergence wrth k‘1
1071; /
5107 5
] f 510¢
~, 107 S [ e
4 ~ e —.—y
10, 0~ ——p!
—o—pzj
[ —
5 -3
10 |- . — - T — 10 L . S =]
107 107 10° 107 10" 10°
mesh size h mesh size h
Fig. 5.3. h-convergence on square mesh with ¢ = 1.0.
4 L2 convergence with k=1 H' eonvergence wnth k’1
10 ¢ T
104‘; /
A §
5 AN T o
107 = | -
0] 10
107! ey e | 10’3:
107 10" 10° 107 107

mesh size h

mesh size h

Fig. 5.4. h-convergence on non-convex mesh with ¢ = 1.0.
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L2 convergence with k=1

H' convergence with k=1

10° 10'
-1
10 100 /
5107 5
e e o
5] 510 -
~, 107 = #.//”"
——¢ Y ,/, ——¢
10,4 +p1 10 ™ +p1
—o—pz —o—pz
10° —r e = "
0 -2 -1 0 2 -1
10 10 10 10 10 10
mesh size h mesh size h
Fig. 5.5. h-convergence on mixed-polygon mesh with ¢t = 1.0.
5 L? convergence with k=1 ; H' convergence with k=1
107 ¢ - 10 .
107}
) 10°
§ 10 2 § t
& | ®
o, 107 i s
| el 10 -
10,“; +D1 [ "‘"p1
; —0—ng t _._p2 1
5_‘ il 723' ........... -h ||
10 ,_2 P 4,‘,.;.—1 — § 10 .._2 e ,.q.:.—1 — 5
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Fig. 5.6. h-convergence on random Voronoi mesh with ¢t = 1.0.
3 L2 convergence with k=1 i H' convergence with k=1
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Fig. 5.7. h-convergence on smooth Voronoi mesh with ¢ = 1.0.
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Fig. 5.8. h-convergence on non-convex mesh with ¢ = 1.0.
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6. Conclusion

In this paper, we study VEMs to approximate the solutions of the time-dependent PNP
equations on general polygonal meshes. We derive the a priori error estimates for semi-discrete
and the Gummel iteration of the fully discrete schemes, respectively. The numerical errors
have been conducted to show that the convergence orders agree with the theoretical results
well. This method is expected to be extended to more complex PNP models, for example, PNP
equations in semiconductor devices and three-dimensional ion channel.
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