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Abstract

We present a decoupled, linearly implicit numerical scheme with energy stability and
mass conservation for solving the coupled Cahn-Hilliard system. The time-discretization is
done by leap-frog method with the scalar auxiliary variable (SAV) approach. It only needs
to solve three linear equations at each time step, where each unknown variable can be
solved independently. It is shown that the semi-discrete scheme has second-order accuracy
in the temporal direction. Such convergence results are proved by a rigorous analysis of
the boundedness of the numerical solution and the error estimates at different time-level.
Numerical examples are presented to further confirm the validity of the methods.

Mathematics subject classification: 65M12, 65M22, 65M70.
Key words: Coupled Cahn-Hilliard system, Leap-frog method, Scalar auxiliary variable,
Error estimate.

1. Introduction

In this paper, we consider the coupled Cahn-Hilliard system

ou 9
yr MA( = €Au+ f(u,v)), (1.1a)
% = M,[A(—e2Av+ g(u,v)) — o(v — )] (1.1b)

in Q x (0, 7] with periodic boundary conditions and following initial conditions:
u(x,0) = ug(x), v(x,0) =wvg(x), (1.2)

where ) is a smooth bounded domain in R? (d = 1,2, 3), M, and M, are the mobility constants
that control the speed of u and v move. ¢, and €, represent the interfacial width between
macrophases (described by «) and microphases (described by v). o is related to the connectivity

* Received April 10, 2023 / Revised version received November 7, 2023 / Accepted February 19, 2024 /
Published online May 6, 2024 /
1) Corresponding author



2 D. ZHAO, D.F. LI, Y.B. TANG AND J.M. WEN

between the two components of the copolymer. © = [, vdx/|Q| is the mass ratio between two
polymers. f(u,v) = u3—u+av+ Bv? and g(u,v) = v¥ — v+ au+2Buv are the first variational
derivative of the double welled potential

1 1
W(u,v) = Z(UQ —1)?+ Z(UQ —1)% 4 auv + Buv?,

where a and 8 are two coupling parameters. The coupled Cahn-Hilliard system was proposed
to study the phase transition of the mixture of a homopolymer and a copolymer [2,3]. And it
has been widely used in the study of physics and materials.

Theoretical analysis for the coupled Cahn-Hilliard system has been well done recently. Here
we refer interested readers to [7,8,21] for the existence, uniqueness and regularity of solutions,
weak formulation and the well-posedness of the system, and global existence and decay estimates
to the system. It is noticed that system (1.1) has two distinguishing features. For one thing,
taking the inner product of (1.1a) and (1.1b) with 1, we have

i udx:i/vdx:o.
dt Jo dt Jq

This indicates that the phase variable’s mass are conserved. For another thing, taking the inner
product of (1.1a) and (1.1b) with —(—A)~tu; and —(—A) 1oy, respectively, we can obtain the
energy dissipation law

d OE(u,v OE(u,v 1 1
B = [ |2y SE) - gl <0 (03)
with the energy defined by
63 2, G 2 g 2
B, = [ V0P + ST+ W v)ix-+ 2w - D, (1)
Q
where || - [|_1 is the norm defined in H}

er

In the past several decades, many gfforts have been done to develop energy-stable schemes
for the coupled Cahn-Hilliard system. Typical ways include the convex splitting approach
[9,10], the stabilized approach [17,22,29], the Lagrange multiplier approach [4,5,12], the in-
variant energy quadratization approach [32,33,36], the scalar auxiliary variable (SAV) ap-
proach [1,11,14,18,25,26,28], the relaxation approach [13,15,16] and so on [6,23,27,34,35,37].
Generally speaking, a class of couple system was obtained by using the usual time-discretization
with the mentioned approaches. For example, Yang and Kim [31] proposed a coupled scheme
by using the Lagrange multiplier approach and the second-order backward difference formula
(BDF2) method. Li et al. [24] presented a linearized implicit and coupled scheme by using the
Crank-Nicolson-type method and a nonlinearly stabilized splitting approach. Li and Mei [20]
developed a family of coupled schemes by using the BDF2 method and the SAV approach. The
coupled schemes required some additional decoupled or iterative methods to get the numerical
approximations.

In recent years, there are some decoupled schemes for solving the coupled Cahn-Hilliard
system. In [19], a linearly implicit scheme was constructed by using an extension of the typical
invariant energy quadratization approach with the Crank-Nicolson method, BDF1 method, and
BDF2 method, respectively. In [30], a linearly implicit scheme was constructed by using BDF2
method and an efficient variant of the SAV approach and the energy relaxation technique.
However, these references have no convergence results of the decoupled schemes.
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This paper aims to present an effective structure-preserving scheme and its error estimates
for the coupled Cahn-Hilliard system. Firstly, the coupled Cahn-Hilliard system is rewritten
as an equivalent system by using the SAV approach. Secondly, the resulting system is approxi-
mated by using leap-frog method and stabilized approach for time discretization. A decoupled
and semi-discrete scheme is obtained by carefully choosing the intermediate average variable in
the leap-frog scheme. The semi-discrete scheme is proved to be unconditionally energy-stable
and mass-conserving. Moreover, it is shown to be second-order accuracy in the temporal di-
rection. Such convergence results are proved by rigorous error estimates and boundedness of
the numerical solution at different time-level. Finally, several numerical examples are given to
confirm the theoretical results.

The rest of the paper is organized as follows. In Section 2, we propose the semi-discrete
scheme and prove the mass conservation and energy stability of the scheme. In Section 3, we
give the error estimate of the semi-discrete scheme. In Section 4, some numerical examples are
provided to validate the effectiveness of the scheme.

2. Numerical Scheme

In this section, we present the Leap-Frog-SAV scheme for solving system (1.1) and demon-
strate that the scheme is unconditionally energy-stable and mass-conserving.

Firstly, we introduce some notations and definitions. Denote the space LP(Q2) by L? in short.
The Sobolev spaces H® will also be used. The space LP(0,T; V) represents the L? space on the
interval (0, 7)) with values in the function space V. We use || - || to denote the norm in the
space V, and the L? norm without a subscript. For any two functions u, v € L?(2), we denote
the L?(Q) inner production and norm by

(o) = [ uGeo@dx,  ful? = ().
Q
Define the spaces

L§(Q) = {v € L*(Q)|(v, 1) = 0},

2 2 . T
Lyer () = {v € L*(Q)|v is periodic on 0N},
Hp.,. () = {v e H*(Q)|v is periodic on 0Q}.

Denote by H, % () the dual space of H,,.(€2). Suppose f,g € L§(£2), we define
v = (—A)f € H() N I3(9)

is the unique solution to the periodic boundary value problem —Avy = f in Q. And in this

case, we denote the inner product and norm in Hp_ei by

(f:9)1 = (Vup, Vog),  fll-2 =V, F) -1

And via integration by parts, we have

(f.9)-1=((=8)""f9) = ((=D)" g, f) = (9, F) 1.

Denote the unit operator by Z, which means Zf = f.
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2.1. Leap-Frog-SAV scheme

Introduce the scalar auxiliary variable r(t) = \/F1(u,v) + Cpy, where Cy > 0 is a constant
such that Ey(u,v) 4+ Cy > 0 and

1 1
Er(u,v) := / W (u,v) — §Slu2 — §ng2dx.
Q

Here S; and S are stabilization parameters. The system (1.1) can be rewritten as follows:

au— —62 u u L~U’U a
E_MUA( 2Au+ Su+ El(u,v)+Oof( : )), (2.1a)
@* — 2 Av v LNU’U —o(v—o

ot M”{A< vAV+ Sput El(u,v)—i-Cog( ’ )> ( )]’ (2.1b)
re = ! [(F (), ) + (5,0, )] (2.1¢)

2y/Ey(u,v) + Cy

where f = flu,v) — Siu, g = g(u,v) — Sav. Next, we use leap-frog method to construct the
time-discrete scheme for system (2.1).

For a positive integer N, let 7 = T/N be the temporal stepsize, and ¢, = nr, n =
0,1,2,..., N, be the temporal grid points in [0,7]. Define @, = {t,|0 < n < N}. Denote
U™, V™ R" be the semi-discrete numerical approximations for u(-,t,),v(-, t,), and r(t,), re-

_ 1
V= —/ V"dx.
2] Jo

) gy o )
\/El(U,’U)‘{’CO’ , \/El(’u,’U)ﬁLCo

Then, we have the Leap-Frog-SAV scheme as follows:

spectively. Denote

Let
F(u,v) =

Un+1_Un—1 Un+1 Un—l Un+1 Un—l
=M, [ et L gA ; FRMAF(U™, V")] . (2.2a)
-
VnJrliVn*l VnJrl anl VnJrl anl
7:Mv|:—6121A2 + +S5A + +R"AG(U™, V")
27 2 2
Vn+1 + Vn—l Vn-i—l + Vn—l
— — 2.2
(Y )| (2.20)
RnJrliRnfl 1 UnJrliUn*l VnJrliVn*l
—=—-|(F(U" V"), ———— Gguor,vh), — 2.2
or 2[< UV, —; >+< UV —; >] (2.2¢)
where n =1,2,...,N — 1, and U', V!, R! is solved by
U'=U"+71M,[ - AU + S;AU + RPAF(U°, VO], (2.3a)
V=V 47 M, [ - A’V + SAVT + ROAGU?, V) —o(VE = V)], (2.3b)
1
R' =R+ S[(F(U%V®), U = U°) + (GU°, V°), VI = V)], (2.3¢)

2

where U® = u(-,0), VO = v(-,0), 7° = \/E1 (u(-,0),v(-,0)) + Cp.
In fact, the value of V" is equal to #(-,0) because of the mass conservation, which will be
proved later. And the scheme (2.2) can be efficiently implemented as follows:
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e Compute U, V! and R! by solving Egs. (2.3).

e For 1 <n < N, weobtain U"*! and V"*! from scheme (2.2a)-(2.2b) by solving equations
of the form

PU™ = QU + 27 M, AF(U™, V")R",
PV = QU 4 20 My AG(U™, VY R™ + 27 M0,

where
Py = [T+ 7M,(,A% = $1A)], P, = [I+7M,(c;A% — S3A +0T)],
Q.= [I — 1M, (eiAQ — SlA)], Q, = [I —T7M, (e?}AQ — S A + O‘I)}.

e With U™+l and V™! known, compute R"*! by solving Eq. (2.2¢).

2.2. Mass conservation and energy stability

In this subsection, we will give the proof of the mass conservation and energy stability of
the proposed scheme.

Theorem 2.1. Suppose that U™, R™ are the numerical solutions of scheme (2.2). Then, for
1<n <N, we have

/U”dx:/ UYdx, /V"dx:/Vde, E% < EX',
Q Q Q Q

where

0 63 02612; on2 . S r012 L 92,012, T 1,0 02 02
B = 2O 24 2 VO R 0O + VO + SOV, + RO,

n 6% n n— 6121 n n— S1 n n-
B = S ([0 [0 )+ S ([ V) 4 S o o)
82 tomia ity 7 (i oo am1_ - n -
4 S ) 4 S (VPR VT R

Proof. Taking the inner product of (2.3a) and (2.3b) with 1, it holds that

—~
S
pA
—
~
I

(U 1) +7Mu(A(—es AU+ 51U+ RF(U°, V), 1) = (U°, 1),
V1=V 1) +7M(A(—e2 AV + SV +RGU, V), 1) — Mo (VI =V, 1) =(VO, 1),

where we use the boundary conditions and

(vt—vii) :/

Vi Vidx = / Vidx —|Q|V! = 0.
Q Q
Taking the inner products of (2.2a) and (2.2b) with 1, we have
(Ut —Um 1) =M (A[(— A+ S T) (U + U + 2R F(U™, V)], 1) =0,
(Vi — vt 1) = tMG(A[(— 2 A+ S T) (VPP + VY 4 2RMG(U™, V)], 1)
— TMyo [(VIH VL) (vt — v )]

= —TMUO' |:/ Vn+1dX — |Q|‘7n+1 +/ Vn_ldX — |Q|‘7n_1 = 0
Q Q
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Then, we have the mass conservation of the scheme in the sense that

/U”de:/U"dx:~~~:/U1dx:/Uodx,
Q Q Q Q
/V"+1dx:/V"dx:~~~:/V1dx:/V0dx.
Q Q Q Q

Next, we consider the discrete energy dissipation law of the scheme. Taking the inner
products of (2.3a) and (2.3b) with —(—=A)~Y(U! —U%)/M,7 and —(—=A)"Y(V! - VY)/M,T,
respectively, and adding them together, we have

— U = OO - IV - VO
M,T -1 M, -1
= (VUL V(U =U%) + & (VVL V(V! = V7))
+ S (U U U + S (VE, V- V0)
+RYFU° VY, U —U% + RUGU, V%), V! - V9
+o((—A)"H (VI =V, V-V, (2.4)
Noting that [, V! —Vldx =0, ie. V! —V?! e LE(Q), we have ((—A)~}(V! - V1),1) = 0.
Then, it holds that
((=A)"' (v =VvhH vt =V
={((=A) (VI =VH VI =V + (VI = VO ((=A) (VI =V, 1)
=((=A) (V= VH, (VI =V = (VO - V?)
1 _ _ _ _
=SV =VHEZ = VO = VO [V = V) = (VO = V2],
Multiplying 2R" on both sides of (2.3c), we have
2(R'R° — |R°)?) = RY(F(U°,V),U" —U") + RYG(U°, V), V! — V).

Taking them into (2.4), we obtain

€2 €2 S1
2(EY — &) = S (IVUY2 ~ [V0°12) + LIV~ 9VOR) + e - ooje)
S o _ _
+ 5 (VA= 1VOIR) + 5 (IVE = VHZ = VO = VOI2,) + RIRY — |ROP?
1

vt =voz, <o.

1
< Ul _ UO 2 -
MuTH (= M,

Similarly, for n > 1, taking the inner products of (2.2a) and (2.2b) with —(—A)~}U"+! —
U1 /M, and —(—A)~ Y (VT —vn=1) /M, respectively, and adding them together, we obtain

n n— 1 n n—
= g IO = U = V- VR,

2
n n— ev mn n—
(VU — Ut ) + S (Vv = vV i)

S n n— S n .-
+1mUﬂFn01M+§WVﬂwwvlm

4 Rn< (Un’Vn), Un—i—l _ Un—1> 4 Rn<G(Un,Vn), Vn+1 _ Vn—1>
+ Yt P, — v - 2,

w|:m
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where we use

<(—A)_1 [(Vn+1 + Vn—l) _ (Vn-‘,—l 4 Vn—l)} , Vn+1 _ Vn—1>
o LA A LI | S A (PP

Multiplying 47R™ on both sides of (2.2c), we have

2R"'R" —2R"R"!
= RYF(U", V"), U™ — U + RYGU™, V"), Vit -yt

Then, we obtain

2 2
2(Bgt! - Bg) = (VU2 — VU ?) + 6g”(I\VV"“II2 = vvi?)

3
+ 2 S (U2 = U= 2) + (Ve = Ve )
+

(an—i-l Vn—i—lHQ_l _ an—l _ Vn—l”Q_ ) 4 2Rn+1Rn _ 2Ran—1

= — 5" = U2y — o [V - VR, <0,

C2M,T 2M,T

which implies that Eg“ < E¢. This completes the proof.

3. Error Estimate

In this section, we present the error estimate of the Leap-Frog-SAV scheme. Denote
1

u” =u(ty), VP =wv(,t,), 0" =-—= [ Vdx, 1" =r(ty).
12/ Jo

Considering Eq. (2.1) at t = t,,n=1,2,..., N — 1, we have

n+l _ , n—1 n+1 n—1 n+1 n—1
v v =M,| — eiAQu tu —|—8’1Au U +r"AF (u™,0") | +p7,
2T 2 2
n+l _ ,n—1 n+1 n—1 n+1 n—1
v_-v = M, fefjAQU T JrSQAU T +r"AG(u",0")
2T 2 2
U(,UnJrl + ,Unfl B —n+1 + o —n— 1):| N pn
2 2 2
r"+1 _ Tn—l 1 ,un-l-l_un—l ,Un-l-l_vn—l

And for ¢ = 0, we have
u' =’ + 7M, [ — A%t + S1Au + P AF(u®,ul)] + 0,
vt =00+ 7 M, [ — €A% + S Avt +10AG W0, 0°) — o(v! — 01)] + ph,
1

rh= 10 S [P, 00),ut = ) + (G0, %), 0t = )] + g,

The truncation errors p’, ¢ = 1,2, 3, are as follows:

) =ut —u® — 70’ + TME A2 (ut —u®) — T M, S1A(ut — u®)

(3.1a)
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= / (1 — 8)uge (-, 8) + M, (GZAQUt(-, s) — S1Au(-, s))ds, (3.3)
0
P9 =o' =0’ — 700" + TM, 2 A% (vt — %) — TM, S A(vt —00) — TM,o (vt — )
= / (1 — $)vue(ey8) + M, (63A2’l}t(', s) — SaAv(+, 8) — ovg(, s))ds, (3.4)
0
Py =rt =1’ — 790 = / (1 — 8)ru(s)ds, (3.5)
0
N un-i—l _ un—l N 9 o un—i—l + un—l N
pL = T—atu —Mu(—ﬁuA +51A)(f —Uu )
o 2 M, 242
= / E(s — tp—1) us(+, 8) + T(S - tn_l)(euA uge(+, 8) — S1Aug (-, s))ds
th—1
frt 1 2 M, 202
—|—/ E(s — tot1) ust (-, 8) — 7(5 - tn+1)(6uA ue (-, 8) — S1Aug (-, 5))ds, (3.6)
tn,
n+1l _ ,m—1 n+1 n—1
= = g — My(— EA% 1 S,A — oT) <w v")
2T 2
—n-+1 —~n—1
_ Md% _ 5n>

tn 1 )
= — (s —tn—1)*vere (-, 8)
/t1 4T

n

M, _
+ 7(5 — tn_l)((63A2 — SoA)vg (v, 8) + ov (-, 8) — oV (-, s))ds

tnt1 )
(s —1 .
+ /tn i (S n+1) Uttt( ,S)

M, _
- 7(5 - tn+1)((63A2 — SQA)'Utt(', s) + ov (-, 8) — o, s))ds, (3.7)
N Tn—i—l o Tn—l N
ps=——7—— —0Or
1 - un—i—l _ un—l N - ,Un+1 _ ,Un—l N
§|:<F(’LL , U ),T—&gu >+<G(u , U ),T*atv >:|

1 tn tn+1
= 4— |:/ (S — tn71)27ﬂttt(5)d5 + / (S — tn+l)2rttt(5)d5:|
Tl Jtn t

n

1 tn tn41
- — <F(u", ™), / (s — tn,l)Quttt(, s)ds + / (s — tn+1)2um(~, s)ds>

tn—1 tn

tn tn41
- — <G(u", U”),/ (5 —tn_1)*vst (-, 8)ds + / (5 — tni1) s (-, s)d5>, (3.8)
tn—1 tn
where 7 refers to the identity operator, i.e. Zv =v, v € V.

Denote that e} = u" —U", e} =™ — V™ e =r" — R™. The following lemma is essential
for the error estimate.

Lemma 3.1 (Discrete Gronwall Inequality). Let 7, B and ay, by, ck,vi (k > 0) be non-
negative numbers such that

an—l—TZbk STZ%%-FTZC/C-FB for n>0.
k=0 k=0 k=0
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Suppose that Ty, < 1 for all k, and set o, = (1 — 7y,)~ L. Then,
n n n
an +7‘Zbk < (Tch +B> exp (TZ%%) .
k=0 k=0 k=0
Assumption 3.1. Assume that exact solutions of the coupled Cahn-Hilliard system (1.1)-(1.2)

exist and satisfy

u,v € L0, T; Wh®) N L>®(0,T; H?), uy, v, € L(0,T; L*) N L*(0,T; HY),
uge € L*(0,T; H?), vie € L*(0,T; H) N L*(0,T; HY),
Uttty Uttt (S LQ(O, T; L2) M LQ(O, T; Hﬁl).

And we denote that M = max{||u"”| g2, [|[Vu™| L, [|[0" |52, VO™ || Lo, [|[uf]l, |03, 7]}

Theorem 3.1. Suppose that Assumption 3.1 holds, then, there exists a constant 7y such that,
when T < 19, it holds for all0 <n < N,

max {|U" |2, |[V"|lm=} < M +1, (3.9)
max {[lezllz, leglla e} < O, (3.10)

where M and C' are constants independent on temporal step size T.
Proof. We complete the proof by applying the mathematical induction to n.

Step 1. The results (3.9)-(3.10) with n = 0 is valid since €2 = €2 = e = 0. As forn = 1,
subtracting (2.3) from (3.2), we have

ey =TM,[ — €A%, + SiAel] + pf, (3.11a)
ey =TM,[ — e A%} + Saley — gey] + p, (3.11b)
er = pl. (3.11c)

Taking the inner products with el — Ael and el — Ael of (3.11a) and (3.11b), respectively, we
have

et |l +mMuSi|[Ver||” +7Mu (€ + S1) [ Aeh||* + Muel | Vaey|*
1 1
= (0, L) + (V2. Vel) < o||d|[5, + QHeiHZI,
(1+ TMUU)He}}HZl + TMUSQHVG11}H2 + M, (612} + Sg)HAe},W + TMvef,HVAe},HQ
1 1
= (p3, ey + (Vp9,Vel) < = ||o3||5 + §HeiH21-

From (3.3)-(3.5) we know that there exists a constant C' independent of 7 such that

)
162,00 < T/O lueellars + Mo (2| A%, + 84| A g2 ) ds < O,

-
||pg||H1 < 7'/0 vt g2 + MU(Q%HAQWHHI + So||Ave || +O’||’Ut||H1)dS < Cr?

.
’pg‘ ST/ |rse|ds < CT2.
0
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Then, we have

ekl +27Mu(€ + s1) | aey]” < c27, (3.12)
||e11}||i,1 +2TM71(€121+S2)HA€11}H2 < C%rt, (3.13)

Combining with
lex| = |p5] < C72, (3.14)

we have (3.10) holds for n = 1. And
10 a2 < lut Lz + [Jeal| o + [|Aeu]] < M+ C72 +

IV 2 < ot + [len]|,pn + | Aeb]] < M+ O + ————73 <M +1,

where we set

, 1 Y2My(2 + S1) /2M, (€2 + Ss)
7 < 71 :=min , ,
/20 (20)2/3 (20)2/3

Then, (3.9) holds for n = 1.

Step 2. Assuming that (3.9)-(3.10) hold for any n<m (1<m<N), and noting that H? — L*>
in Q C R4 (d < 3), we deduce that

[ [ Lo, U [Loss [0 [ Loes [V*[Le < Co(M +1),  0<n<m, (3.15)

where Cq is a constant independent on 7. Therefore, we have the boundedness of the related

functions. Denote that

My = max {|[f(w™, o™, lg(™ o™, | F O™ V™)L g o™, v,
IV ™, 0™ Vg™, ™) IV U™, VL VU™, v,
[F@™ vl IG@™ v IVE@™, v, IVGE™, v}

Then, we have

W™, v™) =W (@™, vm)

3

1 m\2 1 m\2 1 m\2 1 m\2
=7l = 1] = 2@ = 1]+ 7 [(™)* = 1] = 7 [(V™)* = 1]
+aumvm _ CYUme +ﬁum(vm)2 _ ﬁUm(Vm)2
= i[(um)2 + (U™ =2](W™ + U™)er + av™el + alU™ el + B(v™)%ell

1
+ 1 [(vm)2 + (Vm)2 — 2} (™ 4+ V™Melt + ﬂUl(vm +V™er,
which implies that

|E1(u™,0™) — E(U™, V™) §/|W(um,vm)7W(Um,Vm)|dx
Q

< Cr(flei ]| + llex'll), (3.16)
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where (' is a constant dependent on «, 3, M, and €2. Then, we can obtain

1 1
\/El(um,vm)+00 \/El(Um,Vm)+Co

| /EmmrmTa - R TG
Eram vm) + o) (B (U, V) +Co)

1

<L Ey(U™, V™) — Ex(u™,0™)
<&

\/El (um, ’Um) + CO+\/E1 Um7 Vm) + Cy

—|Ey(u™,0™) — By (U™, V™)

C
o (el + [ley

= 2Co/To
Hf m m . f(Um Vm)”
< H[ 24umU™ + (Um)2—1—Sl}eumHJrHaevarﬂ(vm+Vm)e;”H

< O Heu’”H +[lex]D),

[V f(u™,v™) fo<Um vm)H

of
vl
‘ v (8u (um o) 8u (um,ym )H ‘ “u oulwm vm)
_of gl
81} (wmwmy Qv lwm, Vm) ‘v ov l(um,vm)

< V™ = [3(w™ + Umeir | + [[[3U™)° =1 = S1] Vel
+ Vo™ || s |28 || + ||l 4+ 28V ™ VeR |
< Ca([let | grn + €8] )
where Cy = max{6CoM (M +1),3C3(M +1)?> + 1+ S1,a + 28Cq(M + 1)}. Now, we have
[E(u™, ™) = FU™, V™
_ flum,om) fom.vm
\/El(um,vm) + Cy \/El um, Vm + Co
1 - 1
\/El(um,vm)+00 \/El(Um,Vm)+CQ
1
VEL(U™, V™) + Cy
C1 M,y Cy m m
(o + = ) et + ez )
: Mﬂ(HeumH + e ]l)-

Flu™,o™)

+

[f(um7vm) . f(Um, Vm)}

IIVF ) VF(U’” Vol
viwom,vm)
\/El um™, y™m) +CO \/El(Um,Vm) +Co

11
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1 1
\/El(um,vm) + Cop \/El(Um’Vm) + Cy
1
\/El(Um,Vm) + Cy

< ||Vf@™,om)

V(™ vm) = VU™, vm)

< Mo ([lei [ g + Nt |l )
Similarly, we can find a constant My > 0, such that
1G™, ™) = GU™ V™| < Mao([|er || +[[eF]]),
VG @™, 0™) = VGU™, V™| < Moo ([ler|| g + [[en]] 171)-
Let My = 2(Ma; 4 May)?, we have
[F @™, 0™) = FU™ V™2 +[|Gu™,0™) = GU™, V™)|?
< Mz(He’”H2+ le]*). (3.17)
IV (F@™ o™ = FU™ V™) + |V (G, ™) — o™, vm) |
< Mz(Heu’”HHl + e 5)- (3.18)
Subtracting (2.2) from (3.1) with n = m, we have

em Tl _em=l= _ M, 2 A2 (eum+1 + 67“"_1) + TMuslA(eum+1 + 67“"_1)

+27 M, [ AF(u™,v"™) — R"AF(U™, V™)| + 27p7", (3.19a)
egwrl—evm*l: — 1M, 62A2( m+l 4 emfl) + TMUSQA(evarl + evmfl)

—7M, 0( m+l 4 e 1)

+27 M, [r" AG(u™, v™) = RMAGU™, V™| + 27pY", (3.19b)
1
e;n—i—l_e:‘n— _5[ u™ ,Um)’um-i-l _ um—l) _ <F(Um, Vm)’ Um+1 _ Um—l)]
1
—|——[<G( ™), m“—vm*l)—(G(Um,Vm),VmH—Vm*lﬂ—i—QTpg”, (3.19¢)

2
where pl", i = 1,2, 3, are defined in (3.6)-(3.8). Taking the inner products of (3.19a) and (3.19b)
with (e +! +em=1) — A(emtl +em=1) and (et +em=1) — A(emt! + e~ 1), respectively,
multiplying 2™ on both sides of (3.19¢), and adding up them together, we obtain
ez W = Nt 1+ Mlew W = et s + e = e =7+ et — et
+ TMUUHeUmH—i—evmfl H2+7'Mu8’1 HV(euerl—i—eumfl) H2+TM»U(SQ + U)HV(eZ‘H—i—e?*l) H2
+ M (St + D) [ A(er T+ en ) [P+ M (82 + ) A (et ey
+ TMueiHVA(eTJrl + eumfl) ||2 + TMU€3||VA(€TU”+1 + e’vnfl) ||2
=27 M, (r"™ AF(u™,v™) — R"AF(U™, V™), (et + e ') — Ale™ e 1))
+27'Mu<rmAG u™, ") — RTAGU™ V™), (el T + el — At + e h)
4 emtt [(F(um,vm) u™ Y (PO, V™), U — Umfl)]
+ e TG W™, 0™, 0 — o —(GUT, V), VI — ]
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27 (ol (et + et — Al + e h))
+27(p8", (et e ) = Aleg ™t et h)) + drpgter ™t
=1 Ay + Ay + A3 + Ay + As + Ag + Ar. (3.20)

Noting that we have estimates in (3.15)-(3.18), and using Cauchy inequality and the inequality
ab < 0a® + b%/(40), each term at the right hand of (3.20) can be estimated step by step.

Ay =27 M, (P A[F(u™ ™) = F(U™ V™), (en ™ + e t) — A(e ™ + e 7))
+ 27 M, < TAFU™, V™), (em+1 + eT_l) - A(eu"”rl + eum_1)>
= —2r M, (r™V[F(u™,v™) — F(U™, V™)),V (et +ert))
+ 27 My (P [F(u™, 0™) = F(U™, V™)], VA(ep T + e ™))
— 21 M, {(e]'VFU™, V™),V (e + e ')
+ 27 M, (e VF (U m, V™), VA (et + eum71)>

/\/\/\/\

911

< 200, (g IV o) = RO V)P 4 S e e+ e )

921

+ 27 M, < I 2| VE (u™, v™) — VEU™, V™)||* + ||VA( mtl 4 em= 1)||2>

912

+2¢Mu<—|VF(Um,Vm)|2\eT12+ [V (et +er )| )
2012

922

+2r (G VRO VPl + 2 vaer + ) )
2022

(021 + 022) My || VA (e 4 em 1) ||” 4 7(011 + 012) M, ||V (e 4+ em 1) |
1 1 1
b (g g ) MM (e + e l) + 7( s + g )M @21)

Ay =27 M, (r" A[G(u™v™) = GU™ V™, (el + el 1) — Alel ™ + et h))
+ QTMU< TAGU™, V™), (ev’"Jrl + eL"_l) - A(eﬂ”rl + evm_1)>
T(n21 + 122) My || VA (e 1 + e ! H2 + 7(m1 + 1) My ||V (e Jremfl)H2

HC—%JMMWMWM+meHGﬂ—Jmer@m>

mi o N2 M2 M22
As for
Ag = e HE @™ ™) — (U™, V™), 0™t — ™1
+ em+1<F(Um’ V™) en ™ — e ™) = Agy + Asa, (3.23)
Ay = ™G, GU™, V™), vt — 1y
+ €T+1<G(Um Vm) ey — €T_1> = Ag + Ago, (3.24)
we have

Aglsw( o e [+ S iF e, m)F(Um,vmnF)
< 7M2|er +TMQ(He;”H + e ). (3.25)

A < 72l 0 ([l + [l ). (3.26)
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And using (3.19a) and (3.19b), we have
Agy = TM ™ (F(U™, V™), —2A2(em ! 1 em1) 4 S A (e 4+ em 1))
+ 2T My e T HEU™, V™), P AF (U™, 0™) — RTAF (U™, V™))
+2re THEU™, V™), i)
<TM eV EU™ V™), EVA(el T + et = SV (et e )
=21 My (e T'VF(U™, V™), P [VF(u™,0™) = VEU™, V™))
—2r M (el T'VF (U™, V™), e’ NEU™, V™)) 4 2r{e T E(U™, V™), p")

< TM.€ <L||VF<U’”, VPl + ]| VA (e + ) H2)
4023
1
+ 7 M5, (KWF(UM, VI Pler o o]V (et 4 e ) \!2)
13
#2rt, IV VR 4 Gl PIVEG o) - VEOT VR
+27Mu(§|VF<Um,vm>|2\eL”+1|2+§|VF<UW,VW>|2\6T|2)
1 1
war(GIVE@ VP 4 o, )
_ L L 2 m my|2] ,m+1]2
_T[(491351+49236u+2)Mu+1}|VF(U Vet
+ M VEO™, V™) |2 ler |

+ 7913MuS1||V(€um+l + e'runfl) H2 + 7923Mu63||VA(6T+1 + e'runfl) ||2
+ M PV F @™, 0™) = VEU™ V)2 + 7ol

B [ ) P R

4013 4023
+ 700 My S|V (e + el ™) | 4+ rhas M€l VA (et + e |
+ M MMy (|| |5+ e |5) + lloT I (3.27)

Ay = TMU€T+1<G(Um, V), —e2A? (e:}”Jrl + evmfl) + SQA(eUerl + e:}”*l»
+ 2T M, e™ THGU™, V™), rmAG (U™, v™) — R™AGU™, V™))
— TMUU€T+1<G(Um, vm, (eTJr1 + evm71)> + 276T+1<G(Um, vm, p72”>

1 1
< T[<—82 +— 4 2>MU + 1] IvG(wm™, V’")||2|e;"+1\2
413 4np3

+ M, |[VGU™, V™2 er |
+ T My Sa||V (et + et ) H2 + T Mye2|[ VA (e ™ + et H2
+ M P VG (W™, 0™) — VGU™, V™| + 7| o]

+ oo (FIG@™ VIRl 4 gl + e )

1 1 1
< TK—SQ +— 42+ —a)Mv + 1} Mf‘e;nﬂf + TMUMf\eTF
4ms 4123 2
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+ 2 Mol + e
+ 71 My S| (€241 + €21 |2 4 7o M2 || VA (e + =) ||
+ MMMy ([l [+ el 1) + 7o |2

Substituting (3.25)-(3.28) into (3.23)-(3.24), we obtain

1 1 m m
ts <ol (st o)t | w0 e P rar g
0 LS T 4 o) P+ 1t M VA 4+ )
+ 7 (M M2+ )My (||| + e Z0) + 7o),

1 1 1
Ay < 7'{ [(—Sng e+ 2+ §J)Mv+ 1:|M12+M2}‘6T+1‘2+TMUM12’€T‘2

43 413
I e P 4 MoV (e + e P ol

+ M VA (4 e )|+ 7 (M2 4 1) (2 + e ).
Besides, we have

A5 = 27<p71”, (euerl + eumfl) — A(euerl + eum71)>

2

)

11
v L e AR VAR LNCAS oy
Ag = 2r(p, (e e 1) = A(ep ! + et )

1 1 m m— 2 m m— 2
(et DV o I e s ) P 98 e e ),

Ar < 4T<§|p§”| + %W“\Q) =27 (o [" + e 1[7).

Then, we let parameters 6;; and 7,5, 1 = 1,2, j = 1,2, 3, 4, satisfy

15

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(011 + O12 + 01351) My, + 014 = M, S1, (M1 + mz + m3S2) My, + ma = (52 + o),

(021 + Oz + O23€2 )My, + Ooq = My, (21 + M2 + 123e2) M, + 124 = M, €2
Substituting (3.21)-(3.33) into (3.20), we have

m+1 2 m—1]|2 m—+1 2 m—112 m—+1 2 m—1|2
e e = et M + llewH Iz = led™ i + lem ™" = e~

+7M, (8’1 + 62 HA eumJr1 + eum*l)H2 + TMU(SQ + ei)HA(ef}”H + ef}”*l)’f

1
< 2|\ M,
_T{[(491351+49236 - )

1 1 1 2
4 —8+—E+ -0 +2|M,+2 M2+2M2+1} m+1
(47713 2Ty v 2 > ] ! ( ) | |

1,1 1,1 11
+7 1[<912+922+ ) +<n12+n22+ ) ]|e | +T<91 ot )||p1 || )

1 1 1 1
[ PO T e P PSR Y T TS
T 2{[(911+921+) +(7711+7721+) ] +}H€UHH+H6UHH
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_1_ _1_ m m

wr(omt ) oI 2
ml|2 m|2 m—+1 2 m |2 m||2 m|2

< Car(|le [ + el + lem P + e *) + Car ([l 17, + oI, + o).

where Cj takes the maximum value of the coefficients in front of e *1|2 e |2, |le™]|2,, +

1 1 1 1
Cy=max< | —+—+1 — 4+ —+1
Ora Oz M4 N24

G™ = [le™ g + et lizs + et i + el + ley " + e

led )17, and

Let

Replacing m with &k, and summing k from 1 to m, we obtain

G’”HZ w(Sr e[ Al + e P+ Mu(S2 + ) Al + e )]

<G°+C3TZG'“+C4TZ(HP1H L+ oI+ 1o P). (3:34)

k=1

According to (3.6)-(3.8), we know that there exists constants K;, i = 1,2, 3, such that

tnt1
2
ot < Kar? ([ el + el + s )
tn—1

tnt1
2
Hngfl < K273(/ el 21 + lveellFrs + lloel 7 + ||Utt||2—1d8>a
tn 1

o2 sf [ 2 2 2
|p3|” < Kt 7eee|” + Nlweel| + [[veeel|“ds ) .
1

n—

Combining with Assumption 3.1, there exists a constant C5 such that
ot (173 + N3l + 15| < .

Besides, from (3.12)-(3.14), we have
1 1 1 <: CH 2 A42 4
G = llexlli + lealles +lerl” < { 5 7"
Applying the discrete Gronwall inequality in Lemma 3.1 to (3.34). Then, for

1
T<T9=min —, T
cnun [ L)

we have

Gme[ (S1+ €2 [[A(el + b * + My (S + €2) A (2 + b) ]

<exp {C3T(1 — CgT)il}

Car 3 (|- A) 3ot [* + [l(=2) 25" + [o§]) + 6°
k=0

2
< exp {C3T(1 — 037)_1} [C4C5T + (% + 2) MQ} < %4, (3.35)
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where

3T 2 2 2
C? max{elccs [C4C5T+ (% +2) MQ] ., M?, CiM }
0

Co
It implies that
e+ ez + Jen < 6m < et
And the results (3.10) hold for n = m+ 1. Thus, by the mathematical induction, we have (3.10)
holds for all n > 0.

Step 3. According to (3.35), we have

S [Mu(S1+ ) [ Ak + ek ) P+ My (82 + @) |A ek 4+ ek ] < €27
k=1
It implies that ,
Aertt +er M), [[A(eb™ +eb 1) < Os72,

where

C C
Cs = max , )
VM (S1+€2) /M,(S2 + €2)

Then, we have
JAez ] < (et + e )| + 1At 4+ e )|+ - < Calm+ )3 < GTV,
[AU™ | < [|[Au™ | + [|Ae | < M + CeT/T.
It follows that when 7 < 79 = min{1/(4(C6T)?), 72},
U™ gz < Jlu™ e + [l | o + |Aey ™ < M +1.

Similarly, we can obtain ||[V™!| 2 < M + 1, which implies that (3.9) holds for all n > 0 and
we finish the proof. O

4. Numerical Examples

In this section, we present some numerical examples to test the convergence order, mass
conservation and energy stability. The spatial discretization is done by Fourier spectral method.
All computations are performed by using the software Matlab. In numerical experiments, the
convergence orders are calculated by

order = log, <€TT(2T)>

err(T)

where err(7) is the numerical error computed with step size 7.

4.1. Convergence test

Consider the following problem in Q x [0, T1:

O = MA(— &t f(w0) + fr,
% = M,[A( = EAv+g(u,v)) — o(v—10)] + g1, (4.1)

u(z,y,0) = v(z,y,0) = 0.25sin(x) sin(y) + 0.1
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with periodic boundary conditions, where Q = [-37,n| X [-37,n|, T = 0.05, M,, = 1, M, = 1,
a=2,0=3,0=0>50,f; and g; are chosen such that the problem has an exact solution

u=wv = 0.25sin(x) sin(y) cos(t) + 0.1.

Here we use Fourier spectral method with 32 x 32 nodes in the spatial direction and Leap-
Frog-SAV scheme in the temporal direction to solve the problem. The stability parameters in
the scheme are set as S; = Sy = Cy = 5. To test the temporal convergence orders, the problem
is solved with different time step sizes 7 = T/N, N = 4,8,16, 32,64, 128. Besides, to test the
stability of the scheme, the problem with €2 = €2 = 0.1 and €2 = €2 = 0.01 are both solved.

Table 4.1 shows numerical results in the case of €2 = €2 = 0.1, including the maximum
numerical errors of w and v at time 7', temporal convergence orders, and computational time.
Table 4.2 shows numerical results in the case of €2 = €2 = 0.01. From the results, we can see
that the problem in both cases can be solved well by the Leap-Frog-SAV scheme. And we can
see from the tables that the convergence order in the temporal direction of the Leap-Frog-SAV
scheme is of 2. It is the same as the analysis results in Section 3. Besides, the computational
time required for calculation is very short, which implies that our decoupled scheme only needs
a little computational cost. Fig. 4.1 shows the efficiency curves of maximum numerical errors
at T versus computational time, where the convergence orders can be seen intuitively.

Table 4.1: Numerical errors, convergence orders in the temporal direction, and computational time for

problem (4.1) with €2 = €2 = 0.1.

N Error of u Order of u Error of v Order of v Computational time
4 3.87e-08 * 2.27e-07 * 5.12e-02

8 9.84e-09 1.97 5.68e-08 2.00 6.51e-02

16 2.48e-09 1.99 1.42e-08 2.00 1.21e-01

32 6.23e-10 1.99 3.56e-09 2.00 2.34e-01

64 1.56e-10 2.00 8.90e-10 2.00 4.97e-01

128 3.91e-11 2.00 2.23e-10 2.00 9.40e-01

Table 4.2: Numerical errors, convergence orders in the temporal direction, and computational time for

problem (4.1) with €2 = €2 = 0.01.

N Error of u Order of u Error of v Order of v Computational time
4 3.69e-08 * 2.26e-07 * 5.35e-02

8 9.43e-09 1.97 5.68e-08 1.99 7.12e-01

16 2.38e-09 1.99 1.42e-08 2.00 1.27e-01

32 5.98e-10 1.99 3.56e-09 2.00 2.66e-01

64 1.50e-10 2.00 8.90e-10 2.00 5.31e-01

128 3.76e-11 2.00 2.22e-10 2.00 9.87e-01

4.2. Test on energy stability and mass conservation

Consider the original system (1.1)-(1.2) in © x (0,7), where we set Q@ = [0,1] x [0,1],
€y = €, = 0.05,M,, = 1, M, = 0.05,a = 0.01,58 = —0.9,0 = 100. We investigated the energy
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10° T T 10°

—*—errorof u —*—error of u
s ©—error of v . === errcr201 v
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maximum error
maximum error

1(;4 16'3
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Fig. 4.1. The maximum numerical errors with N = 4,8,16,32,64,128 for problem (4.1) with

(a) €2 = €2 =0.1 and (b) €2 = €2 = 0.01.

stability, mass conservation, and phase transition behaviors of the copolymer and homopolymer
mixtures in this subsection with two smooth initial data. The problem is solved by Fourier
spectral method with 64 x 64 nodes for the spatial discretization and Leap-Frog-SAV scheme
with S1 = S = Cyp = 10 in the temporal direction. Here we define the error of mass as

error of mass(t) = |mg(t) — mg(0)],

where m(t) denotes the mass of ¢ at time ¢ (with ¢ = u or v).
Firstly, we choose the initial functions as

ug = sin (2z(z — )y(y — 1)), wvo = cos (10(z — y))z(z — D)y(y — 1). (4.2)

Fig. 4.2 shows the errors of mass of v and v with 7 = le — 4. From the figure we can see that
the errors of mass of u and v are both in a very small magnitude, indicating that the scheme
is mass-conserving. Fig. 4.3 displays the discrete energy with 7 = le-4, 5e-5, le-5, and be-6. It
can be seen clearly from the figure that the scheme follows the discrete energy dissipation law.
Furthermore, we display the discrete energy with S; = So = 0 (without stability parameters),
we can see that the numerical solutions blow up. These numerical results corroborate that the
stabilization terms can improve the stability of the numerical scheme.

Besides, we present the phase evolution of phase variables v and v at ¢ = 0,0.2,0.3,0.8, 50
in Fig. 4.4. From the results, we can see that there is a macro-phase separation between
homopolymer and copolymer (described by u), and a micro-phase separation of the diblock
copolymer (described by v) occurs inside the separated domain. The results are the same as
the numerical results in [20]. It verifies the effectiveness of our scheme.

Secondly, we choose another two initial functions as

ug = sin (2z(z — D)y(y — 1)), o = cos (40(z — y))z(z — 1)y(y — 1) (4.3)

to verify the energy stability and mass conservation of the scheme. The discrete energy with
7 = le-4,5e-5,1e-5, and 5e-6 are displayed in Fig. 4.6. And the errors of mass of u and v
with 7 = le-4 are shown in Fig. 4.5. Those results also imply that the Leap-Frog-SAV scheme
is energy-stable and mass-conserving. In Fig. 4.7, we present more results about the phase
evolution of phase variables v and v at ¢ = 0,0.3,0.8,37,50. As can be seen from figures, the
phase field separation occurs in a short time and gradually stabilizes. The results are the same
as the numerical results in [20]. And they confirm the effectiveness of the scheme.
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Error of mass of u
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Error of mass of v

Fig. 4.2. The error of mass of u (a) and the error of mass of v (b) with 7 = le-4 for the problem with
initial data (4.2).
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Fig. 4.3. The discrete energy with 7 = le-4, 5e-5, le-5, 5e-6 for the problem with initial data (4.2).
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Fig. 4.4. Evolution of u (top) and v (bottom) with 7 = 1e-04 for the problem with initial data (4.2).
From left to right: ¢ = 0,0.2,0.3,0.8, 50.
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Fig. 4.5. The error of mass of u (a) and the error of mass of v (b) with 7 = le-4 for the problem with
initial data (4.3).
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5. Conclusions

In this paper, we present a linearly implicit scheme for solving coupled Cahn-Hilliard system
by using leap-frog method and the scalar auxiliary variable approach. The scheme is decoupled,
unconditionally energy-stable and mass-conserving. It is shown that the scheme has second-
order temporal accuracy. The error estimate and the boundedness of the numerical solution
are given by using the mathematical induction method. Numerical experiments are presented
to confirm the theoretical results.
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