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Abstract. For the primal-dual monotone inclusion problem, the split-Douglas-Rach-

ford (SDR) algorithm is a well-known first-order splitting method. Similar to other

first-order algorithms, the efficiency of SDR is greatly influenced by its step param-
eters. Therefore, expanding the range of stepsizes may lead to improved numerical

performance. In this paper, we prove that the stepsize range of SDR can be ex-

panded based on a series of properties of the product Hilbert space. Moreover,
we present a concise counterexample to illustrate that the newly proposed stepsize

range cannot be further enhanced. Furthermore, to bridge the theoretical gap in
the convergence rate of SDR, we analyze the descent of SDR’s fixed point residu-

als and provide the first proof of a sublinear convergence rate for the fixed point

residuals. As an application, we utilize SDR to solve separable convex optimization
problems with linear equality constraints and develop a novel preconditioned alter-

nating direction method of multipliers (NP-ADMM). This method can handle sce-

narios where two linear operators are not identity operators. We propose strict con-
vergence conditions and convergence rates for the preconditioned primal-dual split

(P-PDS) method and NP-ADMM by demonstrating the relationship between SDR,
P-PDS, and NP-ADMM. Finally, we conduct four numerical experiments to verify the

computational efficiency of these algorithms and demonstrate that the performance

of these algorithms has been significantly improved with the improved conditions.
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1. Introduction

Let G and H be two real Hilbert spaces. Let B : G → 2G and A : H → 2H be

maximal monotone operators, and let Id be the identity operator. Let L : H → G be

a continuous nonzero linear operator. L∗ : G → H is the adjoint of L. This paper

focuses on the primal-dual monotone inclusion problem, which can be described as

follows:

Find (u, x) ∈ G ×H s.t.

{

0 ∈ Ax+ L∗u,

0 ∈ B−1u− Lx.
(1.1)

The solution set of (1.1) is defined as

Z :=
{

(u, x) ∈ G ×H | 0 ∈ B−1u− Lx, 0 ∈ Ax+ L∗u
}

.

We assume Z is nonempty. Problem (1.1) finds wide applications in various fields

including variational inequalities [20], optimization [37], economics and traffic theory

[22], signal and image processing [12], and differential inclusion [3,38].

A classical instance of problem (1.1) is the following monotone inclusion problem:

{

0 ∈ ∂f(x) + L∗u,

0 ∈ ∂h∗(u)− Lx,
(1.2)

where f : H → (−∞,∞] and h : G → (−∞,∞] are proper lower semicontinuous

convex functions. Problem (1.2) can be equivalently written as the following convex-

concave saddle point problem:

min
x∈H

max
u∈G

{

f(x) + 〈u,Lx〉 − h∗(u)
}

. (1.3)

Moreover, if (u∗, x∗) is a solution to problem (1.2), then x∗ is a solution to the following

convex optimization problem:

min
x∈H

f(x) + h(Lx), (1.4)

and u∗ is a solution to the dual problem of (1.4)

min
u∈K

f∗(−L∗u) + h∗(u). (1.5)

For solving problem (1.3), the Arrow-Hurwicz-Uzawa algorithm (AHUA) was first

proposed in [2]. The recursion of AHUA is described as



















yk+1 = argmin
y∈G

{

h∗(y) +
1

2σ
‖y − (yk + σLxk)‖2

}

,

xk+1 = argmin
x∈H

{

f(x) +
1

2τ
‖x− (xk − τL∗yk+1)‖2

}

.
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The convergence of AHUA can be guaranteed by choosing sufficiently small primal

step τ and dual step σ, or by assuming strong convexity of the function. However,

excessively small steps may lead to reduced computational efficiency of the algorithm.

To address this limitation, Chambolle and Pock [11] improved AHUA and introduced

the primal-dual hybrid gradient algorithm (PDHG)



















yk+1 = argmin
y∈G

{

h∗(y) +
1

2σ
‖y − (yk + σLxk)‖2

}

,

xk+1 = argmin
x∈H

{

f(x) +
1

2τ
‖x− (xk − τL∗(2yk+1 − yk))‖2

}

.

The convergence of PDHG can be established when the condition τσ‖L‖2 < 1 is sat-

isfied [11]. He and Yuan [27] simplified the proof of PDHG’s convergence in [11] by

interpreting PDHG as a type of variable metric proximal point algorithm. Additionally,

they proposed a primal-dual-based contraction method, which can be summarized as

follows:


































ỹk = argmin
y∈G

{

h∗(y) +
1

2σ
‖y − (yk + σLxk)‖2

}

,

ȳk = ỹk + θ(ỹk − yk),

x̃k = argmin
x∈H

{

f(x) +
1

2τ
‖x− (xk − τL∗ȳk)‖2

}

,

uk+1 = uk − γαkH
−1M(uk − ũk),

(1.6)

where u := (y, x) and the choices of αk, H, and M are detailed in [27]. He and

Yuan [27] proved that the convergence of (1.6) can be guaranteed by appropriately

selecting the values of σ, τ , and θ. Moreover, their numerical experiments also showed

that (1.6) has better numerical performance than PDHG. For the special saddle point

problem

min
y∈Y

max
x∈X

{

〈y,Ax〉+ ν

2
‖By − b‖2

}

, (1.7)

where ν > 0,Y and X are nonempty closed convex sets. In [9, 28], for solving (1.7),

the ranges of σ, τ , and θ in (1.6) can be further expanded to improve computational ef-

ficiency. Condat [15] improved the parameter condition of PDHG in finite-dimensional

Hilbert spaces to

τσ‖L‖2 ≤ 1. (1.8)

For a proper lower semicontinuous convex function f : H → [−∞,+∞), the subdif-

ferential ∂f is a maximal monotone operator [4, Theorem 20.25]. However, not all

maximal monotone operators are subdifferential operators [37]. Therefore, problem

(1.2) is a special case of problem (1.1). For instance, certain variational inequality

problems [20], equilibrium problems [22], and differential inclusion problems [3, 38]

can be expressed in the form of problem (1.1), but not in the form of problem (1.2).

To solve the more general problem (1.1), an efficient split algorithm is the primal-dual



4 M.R. Wang, X.J. Cai and Y.X. Chen

splitting (PDS) method proposed in [42]. This method generates a sequence in H × G
using the iterative scheme

{

xn+1 = JτA(xn − τL∗vn),

vn+1 = JσB−1

(

vn + σL(2xn+1 − xn)
) (1.9)

with initial point (x0, v0) ∈ H×G and positive numbers τ, σ satisfying τσ‖L‖2 < 1. For

problem (1.2), PDS coincides with PDHG. To avoid the estimation of the operator norm

of L and accelerate the convergence, the preconditioned versions of PDS and PDHG

(P-PDS, P-PDHG) were proposed in [14, 35], respectively. In detail, τId and σId are

generalized to Y and Σ, respectively, where Y and Σ are two strongly monotone self-

adjoint continuous linear operators. In [14,35], the convergence of P-PDHG and P-PDS

can be guaranteed when Σ and Y meet

∥

∥Σ
1

2LY
1

2

∥

∥ < 1, (1.10)

where Σ
1

2 and Y
1

2 are square roots of Σ and Y , respectively, i.e., Σ = Σ
1

2Σ
1

2 , Y =

Y
1

2Y
1

2 .

Very recently, for a special case of problem (1.3), by setting h∗(u) = 〈u, b〉, the

convergence condition of PDHG can be improved to

τσ‖L‖2 < 4

3
, (1.11)

by He et al. [23]. Next, for the more general case where h∗ is not necessarily linear, the

global convergence of PDHG in finite-dimensional Hilbert spaces can be demonstrated

under condition (1.11) by Li and Yan [31]. The convergence of P-PDHG in finite-

dimensional Hilbert spaces was proved by Jiang et al. [29] and Ma et al. [34] under

two conditions similar to (1.11).

For solving the problem (1.1) in general Hilbert spaces, the split-Douglas-Rachford

(SDR) algorithm was proposed by Briceño-Arias and Roldán [6]. The recursion of the

SDR reads as






















vn = Σ(Id− JΣ−1B)(Lxn +Σ−1un),

zn = xn − Y L∗vn,

xn+1 = JY Azn,

un+1 = ΣL(xn+1 − xn) + vn.

(1.12)

The weak convergence of the sequence generated by SDR was proved by [6] under the

condition
∥

∥Σ
1

2LY
1

2

∥

∥ ≤ 1, (1.13)

where Σ
1

2 , Y
1

2 are square roots of Σ and Y , respectively.
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Motivation and our contribution. It is widely recognized that the convergence con-

ditions of P-PDHG can be enhanced [29, 34], and SDR can be reduced to P-PDHG for

problem (1.2) [6]. This leads to some natural questions: Can the convergence con-

dition of SDR be improved? What is the convergence rate of SDR in terms of fixed

point residuals? In this paper, we address these questions by examining the weaker

convergence conditions of SDR and the convergence rate of SDR concerning fixed

point residuals. Our main contributions are as follows. Building upon the insights

from [29,31,34], we refine the convergence condition (1.13) of SDR to

∥

∥Σ
1

2LY
1

2

∥

∥

2
<

4

3
. (1.14)

Furthermore, we demonstrate that (1.14) cannot be further improved, i.e., the in-

equality (1.14) cannot be replaced by “≤”, as evidenced by a counterexample in finite-

dimensional Hilbert spaces. A summary of the algorithms and convergence conditions

mentioned above is provided in Table 1. The results established in this paper are high-

lighted in bold, and the symbol “−” indicates that A and B are only maximal monotone

and not necessarily the subdifferentials of proper lower semicontinuous convex func-

tions.

The numerical experiments in Section 5 demonstrate a significant improvement

in the performance of SDR when using the improved condition (1.14). Furthermore,

based on certain properties of product Hilbert spaces, we establish the sublinear con-

vergence rate of SDR in terms of fixed point residuals under the condition (1.13). To

the best of our knowledge, our convergence rate result is the first to address the sublin-

ear and non-ergodic convergence rate of SDR in terms of fixed point residuals. Finally,

we propose a novel preconditioned ADMM (NP-ADMM) by applying SDR to solve the

following separable convex optimization problem with linear equality constraints:

min
x∈H,w∈K

f(x) + g(w)

s.t. Lx+ Jw = b,

Table 1: The comparison of the convergence conditions of some primal-dual algorithms.

Algorithm A B Σ, Y H, G
PDHG [11] ∂f ∂h σId, τId, τσ‖L‖2 < 1 finite dimension

Condat [15] ∂f ∂h σId, τId, τσ‖L‖2(<) ≤ 1 (in)finite dimension

He et al. [23] ∂f domB = {b} σId, τId, τσ‖L‖2 < 4

3
finite dimension

Li and Yan [31] ∂f ∂h σId, τId, τσ‖L‖2 < 4

3
finite dimension

P-PDHG [35] ∂f ∂h ‖Σ 1

2LY
1

2 ‖ < 1 finite dimension

Jiang et al. [29] ∂f ∂h Σ = σId, σ‖LY 1

2 ‖2 < 4

3
finite dimension

Ma et al. [34] ∂f ∂h ‖Σ 1

2LY
1

2 ‖2 < 4

3
finite dimension

PDS [42] − − σId, τId, τσ‖L‖2 < 1 infinite dimension

SDR [6] − − ‖Σ 1

2LY
1

2 ‖2 ≤ 1 infinite dimension

This paper (SDR) − − ‖Σ 1

2LY
1

2 ‖2 < 4

3
infinite dimension
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Table 2: The comparison of iPADMM and NP-ADMM.

Algorithm H, G, K J , b

iPADMM [34] [32] finite dimension, K = G J = −Id, b = 0

NP-ADMM infinite dimension −

where f : H → (−∞,∞] and g : G → (−∞,∞] denote proper lower semicontinuous

convex functions, L : H → G and J : K → G are linear continuous operators, and

G,H and K are real Hilbert spaces. Unlike the indefinite proximal ADMM (iPADMM)

proposed in [32,34], NP-ADMM can handle more general situations where both L and

J are not Id, meaning that NP-ADMM can solve more general problems than iPADMM.

We summarize the main differences between iPADMM and NP-ADMM in Table 2. Under

some assumptions, we prove the global convergence and sublinear convergence rates

of NP-ADMM, and its tight convergence condition is also proposed.

This paper is organized as follows. Section 2 presents the notations and preliminar-

ies. In Section 3, we prove the convergence of SDR under condition (1.14) and propose

a counter-example to demonstrate the tightness of condition (1.14). Additionally, we

establish the sublinear convergence rate of SDR in terms of fixed point residuals un-

der condition (1.13). Section 4 introduces a novel preconditioned ADMM (NP-ADMM)

method for solving separable convex optimization problems with linear equality con-

straints, and provides theoretical results on the convergence and rates of NP-ADMM. In

Section 5, we conduct numerical experiments to demonstrate the efficiency of SDR and

NP-ADMM with the improved condition (1.14). Finally, Section 6 concludes the paper.

2. Notations and preliminaries

In this paper, G and H denote two real Hilbert spaces with the inner product 〈·, ·〉
and associated norm ‖ · ‖. The symbols “→” and “⇀” denote strong and weak conver-

gence, respectively. For a continuous nonzero linear operator L : H → G, we denote its

adjoint operator by L∗ : G → H, the range of L by ranL, and the kernel of L by kerL.

Id represents the identity operator.

Let A : H → 2H be a set-value operator. The domain, range, graph, and the zero

point set of A are denoted by domA = {x ∈ H | Ax 6= ∅}, ranA =
⋃

x∈domA Ax,

graA = {(x, y) ∈ H × H | y ∈ Ax, x ∈ domA}, and zerA = {x ∈ H | 0 ∈ Ax},

respectively. The inverse of A is denoted by A−1 : y → {x | y ∈ Ax}. The operator

A is monotone, if for every (x, y), (z, w) ∈ graA, we have 〈y − w, x − z〉 ≥ 0. The

operator A is µ-strongly monotone (µ >0), if for every (x, y), (z, w) ∈ graA, we have

〈y − w, x − z〉 ≥ µ‖x − z‖2. The operator A is maximal monotone if it is monotone

and there exists no monotone operator B : H → 2H such that graB properly contains

graA. The resolvent of a maximal monotone operator A is denoted by JA = (Id+A)−1,

and we have dom JA = H [4, Theorem 21.1]. Using the definition of the resolvent, we
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can directly obtain that

y = JAx ⇔ x− y ∈ Ay.

For any given self-adjoint continuous linear operator S : H → H, we define ‖ · ‖2S =
〈·, ·〉S , where 〈·, ·〉S : (x, y) 7→ 〈Sx, y〉 is symmetric and bilinear, but for x ∈ H, 〈x, x〉S
can be negative. For every x, y, z, and w in H, we have

‖x+ y‖2S = ‖x‖2S + ‖y‖2S + 2〈x, y〉S , (2.1)

and

2〈x− y, z − w〉S = ‖x− w‖2S + ‖y − z‖2S − ‖x− z‖2S − ‖y − w‖2S . (2.2)

Further, if S is a self-adjoint, monotone, and continuous linear operator, then 〈·, ·〉S is

a semi-inner product on H. If S is a self-adjoint, strongly monotone and continuous

linear operator, then 〈·, ·〉S can be an inner product on H, and the topologies of (H, 〈·, ·〉)
and (H, 〈·, ·〉S) are equivalent.

We define Γ0(H) as the set of proper lower semicontinuous convex functions f :
H → (−∞,∞]. Let f ∈ Γ0(H), then the subdifferential of f which is defined by

∂f : x 7→
{

u ∈ H | f(y) ≥ f(x) + 〈u, y − x〉,∀y ∈ H
}

is maximal monotone. The set of minimizers of f , denoted by argminx∈H f(x), is

represented by zer ∂f . The resolvent of ∂f is also called the proximal operator of f ,

which is also denoted by proxf : x 7→ argminy∈H{f(y) + ‖y − x‖2/2}. Generally, we

denote

proxYf : x 7→ argmin
y∈H

{

f(y) +
1

2
‖y − x‖2Y

}

, (2.3)

where Y : H → H is a strongly monotone self-adjoint linear operator. We have proxf =

proxIdf and proxYf = JY −1∂f [4, Proposition 24.24]. The Fenchel conjugate of f is

defined by f∗ : u 7→ supx∈H{〈u, x〉 − f(x)}. We have f∗ ∈ Γ0(H) and ∂f∗ = (∂f)−1, if

f ∈ Γ0(H). It follows from [4, Proposition 23.34]

JY −1A + Y −1JY A−1Y = Id, (2.4)

that

proxYf + Y −1proxY
−1

f∗ Y = Id, (2.5)

where (2.4) is called the generalized Moreau identity. Given a nonempty convex set C,

let sriC represent the strong relative interior of C. If C is a nonempty closed convex

set, we denote the indicator function of C as IC ∈ Γ0(H) and the normal cone of C as

NC = ∂IC . Using the definition of resolvent of NC , we have JNC
= PC , where PC is

the projection operator onto the closed convex set C.

Lemma 2.1 (Opial Lemma [4, Lemma 2.47]). Let {cn}∞n=1 be a sequence in real Hilbert

space E and let C be a nonempty subset of E . Suppose that for any given c ∈ C, {‖cn −
c‖}∞n=1 converges and that every weak sequential cluster point of {cn}∞n=1 belongs to C.

Then {cn}∞n=1 converges weakly to a point in C.
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Theorem 2.1 (Fenchel-Rockafellar Duality Theorem [4, Lemma 15.23]). Let f ∈ Γ0(H),
g ∈ Γ0(G), and let L : H → G be a continuous linear operator such that

0 ∈ sri
(

dom g − L(dom f)
)

.

Then inf(f + g ◦ L)(H) = −min(f∗ ◦ (−L∗) + g∗)(G).
Lemma 2.2 (Cauchy-Bunyakowsky-Schwarz Inequality [16, Proposition 1.4]). If 〈·, ·〉
is a semi-inner product on H, then

|〈x, y〉| ≤ ‖x‖‖y‖

for all x and y in H, where ‖ · ‖ :=
√

〈·, ·〉.
Lemma 2.3 ([5, Proposition 2.7]). Let x = (u, x) ∈ G⊕H. Denote M : x → (B−1u,Ax),
S : x → (−Lx,L∗u), then Z = zer(M + S) and M + S is maximal monotone in G ⊕
H, where G ⊕ H is the Hilbert direct sum of G and H equipped with the inner product

〈x1,x2〉G⊕H := 〈u1, u2〉+ 〈x1, x2〉, where xi = (ui, xi) ∈ G ⊕H, ui ∈ G, xi ∈ H, i = 1, 2.

The following result involves the properties of monotone linear operators.

Lemma 2.4. Let G and H be real Hilbert spaces. Let L : H → G be a continuous linear

operator. Let Σ : G → G and Y : H → H be self-adjoint strongly monotone continuous

linear operators, and α is a given positive number. Then, the following assertions are

equivalent:

(i)
∥

∥Σ
1

2LY
1

2

∥

∥

2
<

1

α
.

(ii) Y −1 − αL∗ΣL is strongly monotone.

Proof. Since Σ and Y are self-adjoint strongly monotone continuous linear opera-

tors, there exist self-adjoint strongly monotone continuous linear operators Σ
1

2 and Y
1

2

such that Σ = Σ
1

2Σ
1

2 , Y = Y
1

2Y
1

2 [30, Theorem 4.3]. Furthermore, Σ,Σ
1

2 , Y and Y
1

2

are bijections.

(ii) ⇒ (i). Since Y −1 − αL∗ΣL is strongly monotone, there exists a positive num-

ber µ, such that

〈

(Y −1 − αL∗ΣL)x, x
〉

≥ µ‖x‖2 > 0, ∀x ∈ H\{0}.

Noting that Y − 1

2 is a bijection and combining the following identity:

〈

(Y −1 − αL∗ΣL)x, x
〉

=
∥

∥Y − 1

2x
∥

∥

2

(

1− α
‖Σ 1

2LY
1

2Y − 1

2x‖2

‖Y − 1

2x‖2

)

, (2.6)

we get

1− α
‖Σ 1

2LY
1

2Y − 1

2x‖2

‖Y − 1

2x‖2
≥ µ‖x‖2

‖Y − 1

2x‖2
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≥ µ inf
x∈H\{0}

‖x‖2

‖Y − 1

2x‖2
=

µ

‖Y − 1

2 ‖2
> 0, ∀x ∈ H\{0}. (2.7)

By the arbitrariness of x, (2.7) implies supy∈H\{0} ‖Σ
1

2LY
1

2 y‖/‖y‖ <
√

1/α.

(i) ⇒ (ii). Using (2.6), for any x ∈ H\{0}, we have
〈

(Y −1 − αL∗ΣL)x, x
〉

=
∥

∥Y − 1

2x
∥

∥

2

(

1− α
‖Σ 1

2LY
1

2Y − 1

2x‖2

‖Y − 1

2x‖2

)

≥
〈

x, Y −1x
〉(

1− α‖Σ 1

2LY
1

2 ‖2
)

≥ η
(

1− α‖Σ 1

2LY
1

2 ‖2
)

‖x‖2

= ξ‖x‖2, ∀x ∈ H\{0},

where η is the strong monotonicity constant of Y −1 and ξ = η(1 − α‖Σ 1

2LY
1

2‖2) > 0
from (i). Thus the proof is complete.

Remark 2.1. Here we introduce a special case of Lemma 2.4. Let H = R
n, G = R

m,

L = (lij)m×n ∈ R
m×n, Y = diag(τ1, · · · , τn) and Σ = diag(σ1, · · · , σm), where

τj =
t

∑m
i=1

|lij |2−α
, σi =

s
∑n

j=1
|lij |α

.

We can prove ‖Σ 1

2LY
1

2 ‖2 ≤ st for α ∈ [0, 2] and s, t > 0, by using [35, Lemma 2].

For further properties of monotone operators, functional analysis, and convex anal-

ysis, the readers are referred to [4,16,36].

3. Algorithm, convergence analysis and rates

In this section, we will prove the convergence of the split-Douglas-Rachford (SDR)

algorithm under the improved convergence condition (1.14). We will also demonstrate

the tightness of the condition (1.14) through a specific example. The iterative scheme

for SDR is outlined in Algorithm 3.1.

Algorithm 3.1 Spilt-Douglas-Rachford Algorithm.

Let Σ : G → G and Y : H → H be strongly monotone self-adjoint continuous

linear operators. For given (xk, uk), the new iterate (xk+1, uk+1) is generated by the

following recursion:

ũk = JΣB−1 (uk +ΣLxk) , (3.1)

xk+1 = JY A(xk − Y L∗ũk), (3.2)

uk+1 = ũk − ΣL(xk − xk+1). (3.3)
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Remark 3.1. Using (3.1) and (3.3), we have

ũk+1 = JΣB−1

(

ũk +ΣL(2xk+1 − xk)
)

.

Hence, the equivalence of P-PDS and SDR is obtained.

3.1. Convergence of SDR under the improved condition (1.14)

To propose an improved convergence condition for Algorithm 3.1, we will present

some useful results.

Lemma 3.1. For any given (u∗, x∗) ∈ Z, the sequence {(uk, ũk, xk)}∞k=1
generated by

Algorithm 3.1 satisfies the following inequality:

‖xk+1 − x∗‖2Y −1 + ‖uk+1 − u∗‖2
Σ−1

≤ ‖xk − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 − ‖xk+1 − xk‖2K − ‖uk − ũk‖2Σ−1 , (3.4)

where K = Y −1 − L∗ΣL.

Proof. For any given (u∗, x∗) ∈ Z, using the definitions of JY A and JΣB−1 , the

monotonicity of A and B, (3.1) and (3.2), we have
〈

ũk − u∗,Σ−1(uk − ũk) + L(xk − x∗)
〉

≥ 0, (3.5)
〈

L∗(ũk − u∗) + Y −1(xk+1 − xk), x
∗ − xk+1

〉

≥ 0. (3.6)

Summing (3.5) and (3.6), we obtain that

0 ≤
〈

ũk − u∗,Σ−1(uk − ũk) + L(xk − x∗)
〉

+
〈

L∗(ũk − u∗) + Y −1(xk+1 − xk), x
∗ − xk+1

〉

=
〈

ũk − u∗,Σ−1(uk − ũk)
〉

+
〈

L∗(u∗ − ũk), xk+1 − xk
〉

+
〈

xk+1 − x∗, Y −1(xk − xk+1)
〉

=
1

2

(

‖uk − u∗‖2
Σ−1 − ‖uk − ũk‖2Σ−1 − ‖ũk − u∗‖2

Σ−1

)

−
〈

L∗(ũk − u∗), xk+1 − xk
〉

+
1

2

(

‖xk − x∗‖2Y −1 − ‖xk+1 − x∗‖2Y −1 − ‖xk − xk+1‖2Y −1

)

, (3.7)

where the first equality follows from the definition of the adjoint operator and the last

equality follows from (2.2). Obviously, we have

‖ũk − u∗‖2
Σ−1 + 2〈L∗(ũk − u∗), xk+1 − xk〉+ ‖xk+1 − xk‖2L∗ΣL

= ‖ũk − u∗ +ΣL(xk+1 − xk)‖2Σ−1 .

Using (3.3), we can obtain that

‖ũk − u∗ +ΣL(xk+1 − xk)‖2Σ−1 = ‖uk+1 − u∗‖2
Σ−1 . (3.8)

Substituting (3.7) into (3.8) and simplifying it, we can obtain (3.4), which completes

the proof.

Revisiting Lemma 3.1, we obtain the following result.
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Lemma 3.2. Let {(uk, xk)}∞k=1
be the sequence generated by Algorithm 3.1, where the

operator Y − 3L∗ΣL/4 is strongly monotone. Then, it holds that

‖xk+1 − x∗‖2Y −1 + ‖uk+1 − u∗‖2
Σ−1 +

1

2
‖xk − xk+1‖2P

≤ ‖xk − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 +

1

2
‖xk − xk−1‖2P

−
(

‖xk − xk+1‖2V +
∥

∥

∥
uk − uk+1 +

1

2
ΣL(xk+1 − xk)

∥

∥

∥

2

Σ−1

)

(3.9)

for any given (u∗, x∗) ∈ Z, where P = Y −1 − L∗ΣL/2.

Proof. According to (3.3), we have

‖uk − ũk‖2Σ−1 = ‖uk+1 − uk +ΣL(xk − xk+1)‖2Σ−1

= ‖uk+1 − uk‖2Σ−1 + ‖xk − xk+1‖2L∗ΣL

+ 2〈uk+1 − uk, L(xk − xk+1)〉. (3.10)

Using (3.4) and (3.10), we obtain that

‖xk+1 − x∗‖2Y −1 + ‖uk+1 − u∗‖2
Σ−1

≤ ‖xk − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 −

(

‖xk+1 − xk‖2K + ‖uk − ũk‖2Σ−1

)

= ‖xk − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 − ‖xk+1 − xk‖2Y −1 − ‖uk+1 − uk‖2Σ−1

+ 2〈uk+1 − uk, L(xk+1 − xk)〉. (3.11)

By a simple manipulation, we conclude that

‖uk+1 − uk‖2Σ−1 + 2〈uk − uk+1, L(xk+1 − xk)〉+ ‖xk+1 − xk‖2Y −1

=

∥

∥

∥

∥

uk+1 − uk +
1

2
ΣL(xk+1 − xk)

∥

∥

∥

∥

2

Σ−1

+ ‖xk+1 − xk‖2Y −1− 1

4
L∗ΣL

+ 〈uk − uk+1, L(xk+1 − xk)〉. (3.12)

It follows from (3.2) and the definition of JY A that

xk − xk+1 − Y L∗ũk ∈ Y Axk+1,

xk−1 − xk − Y L∗ũk−1 ∈ Y Axk.

Using the monotonicity of A and the existence of Y −1, we have

〈

Y −1(xk − xk+1)− L∗ũk − Y −1(xk−1 − xk) + L∗ũk−1, xk+1 − xk
〉

≥ 0. (3.13)

Utilizing (3.3), we obtain

uk+1 − uk = ũk − ũk−1 −ΣL(xk − xk+1) + ΣL(xk−1 − xk). (3.14)
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Substituting (3.14) into (3.13), we get

〈L∗(uk+1 − uk), xk+1 − xk〉
≤ −‖xk+1 − xk‖2K + 〈xk+1 − xk,K(xk − xk−1)〉, (3.15)

where K = Y −1 − L∗ΣL. Substituting (3.15) into (3.12), we have

‖uk+1 − uk‖2Σ−1 + 2〈uk − uk+1, L(xk+1 − xk)〉+ ‖xk+1 − xk‖2Y −1

≥
∥

∥

∥

∥

uk+1 − uk +
1

2
ΣL(xk+1 − xk)

∥

∥

∥

∥

2

Σ−1

+ ‖xk+1 − xk‖2Y −1− 1

4
L∗ΣL

+ ‖xk+1 − xk‖2K

+ 〈xk − xk+1,K(xk − xk−1)〉. (3.16)

Because V := Y −1−3L∗ΣL/4 is strongly monotone, we can get 〈·, ·〉V is an inner prod-

uct. Σ is a strongly monotone self-adjoint continuous linear operator, thus 〈·, ·〉L∗ΣL is

a semi-inner product. By Lemma 2.2, the last term in (3.16) implies that

〈xk − xk+1,K(xk − xk−1)〉

=

〈

xk − xk+1,

(

V − L∗ΣL

4

)

(xk − xk−1)

〉

≥ −‖xk − xk+1‖V ‖xk−1 − xk‖V
− 1

4
‖xk − xk+1‖L∗ΣL‖xk−1 − xk‖L∗ΣL

≥ −1

2
‖xk − xk+1‖2V − 1

8
‖xk − xk+1‖2L∗ΣL

− 1

2
‖xk−1 − xk‖2V − 1

8
‖xk − xk−1‖2L∗ΣL

= −1

2
‖xk − xk+1‖2P − 1

2
‖xk − xk−1‖2P , (3.17)

where P = Y −1 − L∗ΣL/2. Substituting (3.16) and (3.17) into (3.11) and by simple

manipulations, we immediately get (3.9). Hence, we complete the proof.

Combining the above lemmas, the weak convergence of the sequence generated by

Algorithm 3.1 with condition (1.14) is presented.

Theorem 3.1. Let (u0, x0) ∈ G×H and Σ : G → G, Y : H → H be strongly monotone self-

adjoint continuous linear operators such that V := Y −1−3L∗ΣL/4 is strongly monotone.

The sequence {(uk, xk)}∞k=0
generated by Algorithm 3.1 satisfies the following statements:

(i)
∑

k∈N
‖xk+1 − xk‖2V < +∞,

∑

k∈N

∥

∥

∥

∥

uk − uk+1 +
1

2
ΣL(xk+1 − xk)

∥

∥

∥

∥

2

Σ−1

< ∞.

(ii) There exists (u, x) ∈ Z satisfying xk ⇀ x,uk ⇀ u in H and G, respectively.
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Proof. Firstly, by rearranging the terms of (3.9), we can deduce

‖xk − xk+1‖2V +

∥

∥

∥

∥

uk − uk+1 +
1

2
ΣL(xk+1 − xk)

∥

∥

∥

∥

2

Σ−1

≤ ‖xk − x∗‖2Y −1 − ‖xk+1 − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 − ‖uk+1 − u∗‖2

Σ−1

+
1

2
‖xk − xk−1‖2P − 1

2
‖xk − xk+1‖2P . (3.18)

Therefore, it follows from (3.18) that

∑

k∈N

‖xk+1 − xk‖2V < +∞,
∑

k∈N

∥

∥

∥

∥

uk − uk+1 +
1

2
ΣL(xk+1 − xk)

∥

∥

∥

∥

2

Σ−1

< ∞.

Then we turn to prove (ii), we define X as the product space of G and H equipped with

the inner product

〈x1,x2〉X :=
〈

u1,Σ
−1u2

〉

+
〈

x1, Y
−1x2

〉

,

where Σ : G → G and Y : H → H are strongly monotone, self-adjoint, and continuous

linear operators, xi = (ui, xi) ∈ X , ui ∈ G, xi ∈ H, i = 1, 2. We denote the associated

norm by ‖ · ‖X =
√

〈·, ·〉X . We can verify that (X , 〈·, ·〉X ) is a Hilbert space and the

topology of X and G ⊕H is equivalent.

For every k ∈ N, denote xk = (uk, xk). We can rewrite (3.9) as

‖xk+1 − x
∗‖2X +

1

2
‖xk − xk+1‖2P

≤ ‖xk − x
∗‖2X +

1

2
‖xk − xk−1‖2P

−
(

‖xk − xk+1‖2V +
∥

∥

∥uk − uk+1 +
1

2
ΣL(xk+1 − xk)

∥

∥

∥

2

Σ−1

)

, (3.19)

where x
∗ := (u∗, x∗) is an arbitrarily given element in Z.

Because V = Y −1 − 3L∗ΣL/4 is strongly monotone, we obtain that ‖ · ‖V is a norm

in H. Using the conclusion of (i) and (3.3), we have

xk − xk+1 → 0, uk − uk+1 → 0, uk − ũk → 0, k → ∞ (3.20)

in H and G, respectively. We know that the sequence {‖xk+1−x
∗‖2X+‖xk−xk+1‖2P /2}∞k=1

is convergent from (3.19). Because V := Y −1 − 3L∗ΣL/4 is strongly monotone, we

get ‖Σ 1

2LY
1

2 ‖2 < 4/3 < 2 and P = Y −1 − L∗ΣL/2 is strongly monotone by utilizing

Lemma 2.4. Further, we can yield that ‖·‖P is a norm in H and that {‖xk−xk+1‖2P }∞k=1

converges to 0. Thus, we immediately have that {‖xk+1 − x
∗‖2X }∞k=1

converges for any

given (u∗, x∗) in Z. Hence, {xk}∞k=1
is a bounded sequence in X . Furthermore, we can

claim that the sequence {xk}∞k=1
is also bounded in G⊕H from the equivalence of ‖·‖X

and ‖ · ‖G⊕H.
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Next, let (ũ, x̃) ∈ G ⊕H be a weak sequential cluster point of {xk}∞k=1
. Without loss

of generality, we may assume xkj ⇀ (ũ, x̃), j → ∞. It is clear from the definition of the

inner product of G ⊕H, (3.4) and (3.20) that

ũkj ⇀ ũ, xkj+1 ⇀ x̃, j → ∞. (3.21)

Utilizing the definitions of JY A and JΣB−1 and the iterative scheme of Algorithm 3.1,

we can get

0 ∈ B−1ũk − Lxk+1 +Σ−1(ũk − uk) + L(xk+1 − xk), (3.22)

0 ∈ Axk+1 + Lũk + Y −1(xk+1 − xk). (3.23)

By using the definition of M+ S, we get
(

Σ−1(ukj − ũkj) + L(xkj − xkj+1), Y
−1(xkj − xkj+1)

)

∈ (M+ S)(ũkj , xkj+1). (3.24)

We conclude from the continuity of Σ−1, Y −1 and L, the maximal monotonicity of

M+ S in G ⊕H and (3.21) that

(0, 0) ∈ (M+ S)(ũ, x̃). (3.25)

Therefore, we deduce from the convergence of {‖xk+1 −x
∗‖2X }∞k=1

, (3.25), Lemma 2.1

and the definition of the inner product of G ⊕ H that there exists (u, x) ∈ Z such that

uk ⇀ u,xk ⇀ x in G and H, respectively. Thus we have obtained the result of the

theorem.

3.2. An example of the condition (1.14) tightness

Next, we claim that condition (1.14) is tight to ensure the convergence of the se-

quence generated by Algorithm 3.1.

Example 3.1. We use Algorithm 3.1 with Σ =Id and Y = 4Id/3 for solving the follow-

ing convex-concave saddle point problem in real lines R [26],

min
x∈R

max
y∈R

{

x+ IR+
(x)− xy + y − IR+

(y)
}

,

which has a unique saddle point (1, 1). In this problem, we can verify that A = 1+NR+
,

B−1 = NR+
− 1 and L = −Id. In this setting, we choose Σ = Id, Y = 4Id/3, thus the

iterative scheme of Algorithm 3.1 can be rewritten as


















ũk = max{uk − xk + 1, 0},
xk+1 = max

{

xk +
4

3
(ũk − 1), 0

}

,

uk+1 = ũk + (xk − xk+1).

Choosing the initial point (u0, x0) = (7/8, 5/4), we obtain (u1, x1) = (9/8, 3/4), (u2, x2)
= (7/8, 5/4) = (u0, x0). Thus, the sequence {(uk, xk)} generated by Algorithm 3.1 with

‖Σ 1

2LY
1

2 ‖2 = 4/3 does not converge. Combining Remark 3.1 and Example 3.1, we can

conclude that the condition (1.14) is tight for P-PDS.
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3.3. Convergence rate of SDR

In the final part of Section 3, we will examine the convergence rate of SDR. We

define the fixed point residual of SDR as

rk := ‖uk+1 − uk‖2Σ−1 + ‖xk+1 − xk‖2Y −1 .

If rk = 0, then it can be inferred from (3.22) and (3.23) that (uk, xk) is a solution point

of problem (1.1). Hence, we can use rk as an indicator to evaluate the convergence

speed of SDR.

Lemma 3.3 ([6, Theorem 3.3]). Let the sequence {(uk, xk)}∞k=1
be generated by Algo-

rithm 3.1 with (1.13), it holds

‖xk+1 − x∗‖2Y −1 + ‖uk+1 − u∗‖2
Σ−1 + ‖xk+1 − xk‖2K

≤ ‖xk − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 + ‖xk − xk−1‖2K

− ‖xk+1 − xk‖2Y −1 − ‖uk+1 − uk‖2Σ−1 (3.26)

for any given (u∗, x∗) ∈ Z, where K = Y −1 − L∗ΣL.

To simplify the proof of the convergence rate of SDR, we introduce the following

notations. For the given Σ, Y , and L in Algorithm 3.1, let Q,H,M : G ⊕H → G ⊕H be

operators that satisfy the following conditions:

Q(u, x) =
(

Σ−1u+ Lx, Y −1x
)

, (3.27)

H(u, x) =
(

Σ−1u, Y −1x
)

, (3.28)

M(u, x) =
(

u+ΣLx, x
)

(3.29)

for all (u, x) ∈ G ⊕H.

From the definitions of Q,H and M and the continuity and linearity of Σ, Y, L, and

L∗, it can be inferred that Q,H and M are continuous linear operators. Further, we

can get the following results.

Lemma 3.4. Suppose Q,H, and M are defined by (3.27), (3.28), and (3.29), respec-

tively. Then we have Q = HM and (Q∗ +Q−M∗HM)(u, x) = (Σ−1u, (Y −1 −L∗ΣL)x)
for any (u, x) ∈ G ⊕H.

Proof. For any (u, x) ∈ G ⊕H,

HM(u, x) = H
(

u+ΣLx, x
)

=
(

Σ−1(u+ΣLx), Y −1x
)

=
(

Σ−1u+ Lx, Y −1x
)

= Q(u, x).
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For arbitrary pairs (u1, x1) and (u2, x2) ∈ G⊕H, utilizing the definitions of Q and inner

product in G ⊕H, we can obtain that

〈

Q(u1, x1), (u2, x2)
〉

=
〈

Σ−1u1, u2
〉

+
〈

Lx1, u2
〉

+
〈

Y −1x1, x2
〉

=
〈

u1,Σ
−1u2

〉

+
〈

x1, L
∗u2
〉

+
〈

x1, Y
−1x2

〉

=
〈

(u1, x1), (Σ
−1u2, Y

−1x2 + L∗u2)
〉

.

Thus we obtain Q∗(u, x) = (Σ−1u2, Y
−1x2+L∗u2). Similarly, we can verify M∗(u, x) =

(u, x+ L∗Σu). Hence, we can yield

(Q∗ +Q−M∗HM)(u, x)

=
(

2Σ−1u+ Lx, 2Y −1x+ L∗u
)

−
(

Σ−1u+ Lx, Y −1x+ L∗u+ L∗ΣLx
)

=
(

Σ−1u, Y −1x− L∗ΣLx
)

.

Thus the proof is complete.

Lemma 3.5. Let {(uk, ũk, xk)}∞k=1
be the sequence generated by Algorithm 3.1, then it

holds

(0, 0) ∈ (M+ S)(ũk, xk+1) +Q(ũk − uk, xk+1 − xk), (3.30)

(uk+1, xk+1) = (uk, xk) +M(ũk − uk, xk+1 − xk). (3.31)

Proof. Based on (3.1)-(3.3), and the definition of the resolvent of the maximal

monotone operator, we can obtain directly

0 ∈ B−1ũk − Lxk+1 +Σ−1(ũk − uk) + L(xk+1 − xk),

0 ∈ Axk+1 + Lũk + Y −1(xk+1 − xk).

By using the definitions of M + S, Q, and M , we complete the proof of (3.30) and

(3.31).

Lemma 3.6. Let {(uk, ũk, xk)}∞k=1
be the sequence generated by Algorithm 3.1, we have

the following inequality:

‖uk+2 − uk+1‖2Σ−1 + ‖xk+2 − xk+1‖2Y −1

≤ ‖uk+1 − uk‖2Σ−1 + ‖xk+1 − xk‖2Y −1 − ‖uk − ũk − (uk+1 − ũk+1)‖2Σ−1

− ‖xk − xk+1 − (xk+1 − xk+2)‖2K , (3.32)

where K := Y −1 − L∗ΣL.
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Proof. Throughout the proof of this lemma, we use 〈·, ·〉 for 〈·, ·〉G⊕H. We note that

(3.30) holds for k := k + 1, thus, we have

(0, 0) ∈ (M+ S)(ũk+1, xk+2) +Q(ũk+1 − uk+1, xk+2 − xk+1).

Using the monotonicity of M+ S in G ⊕H, we deduce

〈

(ũk − ũk+1, x̃k − x̃k+1), Q(ũk+1 − uk+1, x̃k+1 − xk+1)
〉

≥
〈

(ũk − ũk+1, x̃k − x̃k+1), Q(ũk − uk, x̃k − xk)
〉

. (3.33)

We note that for all (u, x) ∈ G ⊕H, the equality

〈(u, x), Q(u, x)〉 = 〈Q∗(u, x), (u, x)〉

=
1

2
〈(Q∗ +Q)(u, x), (u, x)〉 = 1

2
‖(u, x)‖2Q∗+Q (3.34)

always holds. Utilizing (3.33) and (3.34), we yield

〈

(uk − uk+1, xk − xk+1), Q(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)
〉

=
1

2
‖(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)‖2Q+Q∗

+
〈

(ũk − ũk+1, x̃k − x̃k+1), Q(ũk+1 − uk+1, x̃k+1 − xk+1)
〉

−
〈

(ũk − ũk+1, x̃k − x̃k+1), Q(ũk − uk, x̃k − xk)
〉

≥ 1

2
‖(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)‖2Q+Q∗ . (3.35)

Substituting (3.31) in the left-hand side of (3.35), we obtain

〈

M(uk − ũk, xk − x̃k), Q(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)
〉

≥ 1

2
‖(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)‖2Q+Q∗ . (3.36)

Noting Q = HM , let

x = (uk − ũk, xk − x̃k),

y = (0, 0),

z = (uk − ũk, xk − x̃k),

w = (uk+1 − ũk+1, xk+1 − x̃k+1),

S = M∗HM in (2.2), then we have

2
〈

M(uk − ũk, xk − x̃k), Q(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)
〉

= ‖(uk − ũk, xk − x̃k)‖2M∗HM − ‖(uk+1 − ũk+1, xk+1 − x̃k+1)‖2M∗HM

+ ‖(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)‖2M∗HM . (3.37)
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Combining (3.36) and (3.37), we can deduce that

‖(uk − ũk, xk − x̃k)‖2M∗HM − ‖(uk+1 − ũk+1, xk+1 − x̃k+1)‖2M∗HM

≥ ‖(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)‖2Q+Q∗−M∗HM . (3.38)

Substituting (3.31) in (3.38), we have

‖(uk+1 − uk, xk+1 − xk)‖2H − ‖(uk+2 − uk+1, xk+2 − xk+1)‖2H
≥ ‖(uk − ũk − uk+1 + ũk+1, xk − x̃k − xk+1 + x̃k+1)‖2Q+Q∗−M∗HM .

Using the definition of the inner product of G ⊕H, we directly obtain the conclusion of

this lemma.

Now, we present the sublinear convergence rate of SDR from the above lemmas.

Theorem 3.2. Let {(uk, xk)}∞k=1
be the sequence generated by Algorithm 3.1 with (1.13),

then we have

‖uk+1 − uk‖2Σ−1 + ‖xk+1 − xk‖2Y −1 = o(1/k). (3.39)

Proof. Denote

ak := ‖uk+1 − uk‖2Σ−1 + ‖xk+1 − xk‖2Y −1 .

Since Y −1 − L∗ΣL is monotone and (3.32) holds, we have that the sequence {ak}∞k=1

is decreasing. Further, we can rewrite (3.26) as

ak ≤ ∆k −∆k+1, ∀k ∈ N+, (3.40)

where

∆k = ‖xk − x∗‖2Y −1 + ‖uk − u∗‖2
Σ−1 + ‖xk − xk−1‖2K .

For any given positive integer n, summing k from 1 to n on both sides of the inequality,

we have
n
∑

k=1

ak ≤ ∆1 < ∞. (3.41)

For any real number r, the largest integer that is not greater than the number r is

denoted by ⌊r⌋. It can be seen from the decreasing sequence {ak} and (3.41) that

0 ≤ n

2
an ≤

n
∑

k=⌊n
2
⌋

ak → 0, n → ∞, (3.42)

which implies the conclusion of this theorem.

Remark 3.2. In finite-dimensional Hilbert spaces, Ma et al. [34] established the sub-

linear convergence rate, in terms of fixed point residuals, of P-PDHG under the con-

dition (1.10). Therefore, under the condition (1.14), which is weaker than (1.10),

Theorem 3.2 yields the same result regarding the sublinear convergence rate in gen-

eral Hilbert spaces.
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4. A novel preconditioned ADMM and its tight convergence conditions
and rates

4.1. A special case: A linear operator is the negative identity operator

Initially, we investigate the numerical algorithm for solving the following convex

optimization problem in the Hilbert space H:

min
x∈H

f(x) + h(Lx). (4.1)

Assumption 4.1. For problem (4.1), we make the following two assumptions:

(A1) 0 ∈ sri(L dom f − domh).

(A2) The solution set of problem (4.1) is nonempty.

Remark 4.1. Problem (4.1) can be rewritten as

min
x∈H

sup
u∈G

{

f(x) + 〈u,Lx〉 − h∗(u) := Φ(x, u)
}

. (4.2)

Under Assumption 4.1, we get the solution set of dual problem of (4.1) is nonempty

and the duality gap is zero by using Theorem 2.1. From [4, Theorem 19.1], we obtain

that
{

0 ∈ ∂f(x) + L∗u,

0 ∈ ∂h∗(u)− Lx,

where x is a solution to the primal problem and u is a solution to the dual problem.

Thus, the set of saddle points of Φ is nonempty. Further, if (x, u) is a saddle point

of Φ, then x is a solution to the problem (4.1) and u is a solution to the dual problem

of (4.1).

The problem (4.2) is a special case of (1.1), by setting A = ∂f and B = ∂h. Hence,

under assumptions (A1) and (A2), we have

Z :=
{

(u, x) | 0 ∈ ∂h∗(u)− Lx, 0 ∈ ∂f(x) + L∗u
}

6= ∅

and Algorithm 3.1 reduces to the following iterative scheme:

ũk = proxΣ
−1

h∗ (uk +ΣLxk) , (4.3)

xk+1 = proxY
−1

f (xk − Y L∗ũk), (4.4)

uk+1 = ũk − ΣL(xk − xk+1). (4.5)

The following result reveals the relationship between the solutions to the two equiv-

alent forms of the problem (4.1).
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Lemma 4.1. Consider the following two convex-concave saddle point problems:

min
x∈H

max
u∈G

{

f(x) + 〈u,Lx〉 − h∗(u) := Φ(x, u)
}

, (4.6)

min
x∈H,y∈G

max
λ∈G

{

f(x) + h(y) + 〈Σ 1

2λ,Lx− y〉 := L(x, y, λ)
}

. (4.7)

Suppose that Assumption 4.1 holds, then the set of saddle points of Φ is nonempty. For an

arbitrarily given (x, u), which is a saddle point of Φ, there exists λ ∈ G such that (x,Lx, λ)

is a saddle point of L and u = Σ
1

2λ.

Proof. Based on the discussion in Remark 4.1, we have that the set of saddle points

of Φ is nonempty. Clearly, saddle points of L are also solutions to the following equa-

tions:










0 ∈ ∂f(x) + L∗Σ
1

2λ,

0 ∈ ∂h(y)− Σ
1

2λ,

y = Lx.

Letting (x, u) be a saddle point of Φ, we obtain that

{

0 ∈ ∂f(x) + L∗u,

0 ∈ ∂h∗(u)− Lx.

Setting y := Lx and λ := Σ− 1

2u, it is clear that (x, y, λ) is a saddle point of L from

∂h = (∂h∗)−1. Thus we complete the proof.

Remark 4.2. We observe that

L(x, y, λ) := f(x) + h(y) +
〈

Σ
1

2λ,Lx− y
〉

is the Lagrangian function of the following problem:

min
x∈H,y∈G

f(x) + h(y)

s.t. Σ
1

2Lx− Σ
1

2 y = 0.
(4.8)

Since Σ
1

2 is a bijection, the equivalence of (4.8) and (4.1) can be obtained. Further, if

(x, y, λ) is a saddle point of L, then x is a solution to (4.1) and y = Lx.

The preconditioned alternating direction method of multipliers (P-ADMM) for solv-

ing (4.1) is given in Algorithm 4.1.

Algorithm 4.1 The Preconditioned Alternating Direction Method of Multipliers

(P-ADMM).

Let Σ : G → G and Y : H → H be strongly monotone self-adjoint continuous linear

operators. For given (xk, λk, yk), the new iterate (xk+1, λk+1, yk+1) is generated by
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the following recursion:

xk+1 = argmin
x∈H

{

f(x) +
1

2

∥

∥Lx− yk +Σ− 1

2λk

∥

∥

2

Σ
+

1

2
‖x− xk‖2Y −1−L∗ΣL

}

, (4.9)

λk+1 = λk +Σ
1

2 (Lxk+1 − yk), (4.10)

yk+1 = argmin
y∈K

{

h(y) +
1

2

∥

∥Lxk+1 − y +Σ− 1

2λk+1

∥

∥

2

Σ

}

. (4.11)

Remark 4.3. The sequence {xk}∞k=1
generated by P-ADMM is well defined, as we can

verify the objective function in the subproblem (4.9) is strongly convex.

Lemma 4.2 ([34, Lemma 3.1]). Let Σ : G → G and Y : H → H be strongly monotone

self-adjoint, then following statements hold:

(i) Let {(xk, ũk)}∞k=1
be the sequence satisfying by (4.3)-(4.5) and denote

yk+1 = Σ−1(ũk − ũk+1) + L(2xk+1 − xk), (4.12)

λk+1 = Σ− 1

2 ũk +Σ
1

2L(xk+1 − xk). (4.13)

Then the sequence {(xk, yk, λk)}∞k=1
is generated by Algorithm 4.1.

(ii) Let {(xk, yk, λk)}∞k=1
be the sequence generated by Algorithm 4.1 and set

ũk = Σ
1

2λk +Σ(Lxk − yk). (4.14)

Then the sequence {(xk, ũk)}∞k=1
satisfies (4.3)-(4.5).

By utilizing Lemmas 4.1 and 4.2, we can directly obtain the weak convergence of

P-ADMM.

Theorem 4.1. Suppose Assumption 4.1 holds. Let {(xk, yk, λk)}∞k=1
be the sequence gen-

erated by Algorithm 4.1, where the operator Y −1− 3L∗ΣL/4 is strongly monotone. Then,

the following statements hold:

(i) There exists a saddle point (x∗, Lx∗, λ∗) of L, such that xk ⇀ x∗, yk ⇀ Lx∗, λk ⇀
λ∗, where

L(x, y, λ) = f(x) + h(y) +
〈

Σ
1

2λ,Lx− y
〉

.

(ii) If Y −1 − L∗ΣL is monotone, then

‖xk+1 − xk‖2Y −1 + ‖Lxk+1 − yk‖2Σ = o(1/k).

(iii) The convergence condition (1.14) is tight.
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Proof. (i) Let {(xk, yk, λk)} be the sequence generated by Algorithm 4.1. By using

the conclusions of Theorem 3.1 and Lemma 4.2, there exists a point (x∗, u∗) which is

the solution to (4.6) such that xk ⇀ x∗ and ũk := Σ
1

2λk + Σ(Lxk − yk) ⇀ u∗. Using

Lemma 4.1, for (x∗, u∗), there exists λ∗ ∈ G such that (x∗, Lx∗, λ∗) is a saddle point of

L and u∗ = Σ
1

2λ∗. Hence, we yield that Σ
1

2λk +Σ(Lxk − yk) ⇀ u∗ = Σ
1

2λ∗. Combining

(4.10), we obtain

Σ
1

2λk+1 +ΣL(xk − xk+1) ⇀ Σ
1

2λ∗. (4.15)

Based on Theorem 3.1, we get xk − xk+1 → 0. It follows from (4.15) and Σ
1

2 is

a bijection that λk ⇀ λ∗. Since λk+1 = λk +Σ
1

2 (Lxk+1 − yk), we get

yk = Lxk +Σ− 1

2 (λk − λk+1) ⇀ Lx∗.

(ii) Let {(xk, yk, λk)}∞k=1
be the sequence generated by Algorithm 4.2. Using The-

orem 4.2, we have {(xk, ũk)}∞k=1
are generated by (4.3)-(4.5), where ũk := Σ

1

2λk +
Σ(Lxk − yk). Combining (4.5) and (4.10), we get

uk+1 = ũk +ΣL(xk+1 − xk)

= Σ
1

2λk +Σ(Lxk+1 − yk)

= Σ
1

2λk+1.

Thus,

‖uk+1 − uk‖2Σ−1 = ‖Lxk+1 − yk‖2Σ.
Using Theorem 3.2, we obtain immediately

‖xk+1 − xk‖2Y −1 + ‖Lxk+1 − yk‖2Σ = o(1/k).

(iii) Considering the following optimization problem in [26]:

min x

s.t. x ≥ 0, x ≥ 1.
(4.16)

We know that the problem (4.16) has and only has a solution x∗ = 1, and the dual

problem of (4.16) is
max λ

s.t. 0 ≤ λ ≤ 1.
(4.17)

It is clear that the problem (4.17) has a unique solution λ∗ = 1. We can show that

the corresponding saddle point problem of (4.16) is the convex-concave saddle point

problem in Example 3.1

min
x∈R

max
y∈R

{

x+ IR+
(x)− xy + y − IR+

(y)
}

.

Hence, using Example 3.1 and Theorem 4.2, we can get that the condition (1.14) for

ensuring convergence of P-ADMM can not be improved. The proof is complete.
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4.2. The general case: No requirements for two linear operators

Next, we deal with more general formulations which involve two linear operators

and three real Hilbert spaces. Let G,H,K be real Hilbert spaces, f ∈ Γ0(H), and

g ∈ Γ0(K). Let L : H → G and J : K → G be linear continuous operators. Consider the

following convex optimization problem:

min
x∈H,w∈K

f(x) + g(w)

s.t. Lx+ Jw = b.
(4.18)

Assumption 4.2. For problem (4.18), we make the following assumptions:

(A1′) b ∈ sri(L dom f + J dom g).

(A2) The solution set to the problem (4.18) is nonempty.

(A3) 0 ∈ sri(dom g∗ − ran J∗).

Remark 4.4. Set K = G, J = −Id, b = 0, then (4.1) is a special case of problem (4.18).

In this case, (A1′) reduces to (A1) and (A3) always holds.

Similar to the discussion in the Lemma 4.1, we can get the following result.

Lemma 4.3. Consider the following two convex-concave saddle point problems:

min
x∈H

max
u∈G

{

f(x) + 〈u,Lx− b〉 − g∗(−J∗u) := Φ̃(x, u)
}

, (4.19)

min
x∈H,w∈K

max
λ∈G

{

f(x) + g(w) + 〈Σ 1

2λ,Lx+ Jw − b〉 := L̃(x,w, λ)
}

. (4.20)

Suppose that Assumption 4.2 holds, then the set of saddle points of Φ̃ is nonempty. For an

arbitrarily given (x, u) which is a saddle point of Φ̃, there exist w ∈ K and λ ∈ G such

that (x,w, λ) is a saddle point of L̃, Lx+ Jw = b, and u = Σ
1

2λ.

Proof. Note that problem (4.18) can be rewritten as

min
x∈H

{

f(x) + min
−Jw=Lx−b

g(w)
}

. (4.21)

We set

h :=
(

(−J) ⊲ g
)

(· − b) : y 7→ min
−Jw=y−b

g(w),

hence (4.21) can be equivalently written as

min
x∈H

{

f(x) + h(Lx)
}

. (4.22)

Using [4, Corollary 15.28], we have (−J)⊲g = (g∗◦(−J)∗)∗. Further, h = ((−J)⊲g)(·−
b) ∈ Γ0(G). (A1′) ⇔ 0 ∈ sri(L dom f + J dom g− b) ⇔ 0 ∈ sri(L dom f − ((−J) dom g+
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b)) ⇔ 0 ∈ sri(L dom f − domh). By using Lemma 4.1 for problem (4.21), we can get

Φ̃ has saddle points. Saddle points of L̃ are also solutions to the following inclusion

problem:










0 ∈ ∂f(x) + L∗Σ
1

2λ,

0 ∈ ∂g(w) + J∗Σ
1

2λ,

Lx+ Jw = b.

(4.23)

Letting (x, u) be a saddle point of Φ̃, we obtain

{

0 ∈ ∂f(x) + L∗u,

0 ∈ ∂h∗(u)− Lx+ b = −J∂g∗(−J∗u)− Lx+ b.

Then there exists w ∈ ∂g∗(−J∗u) such that Lx+ Jw = b. Further, we get











0 ∈ ∂f(x) + L∗u,

0 ∈ ∂g(w) + J∗u,

Lx+ Jw = b.

(4.24)

Comparing (4.23) with (4.24) and setting λ := Σ− 1

2u, it is clear that (x,w, λ) is a saddle

point of L̃. The proof is complete.

Remark 4.5. We note that

L̃(x, y, λ) := f(x) + g(w) +
〈

Σ
1

2λ,Lx+ Jw − b
〉

is the Lagrangian function of the following problem:

min
x∈H,w∈K

f(x) + g(w)

s.t. Σ
1

2 (Lx+ Jw − b) = 0.
(4.25)

Since Σ
1

2 is a bijection, the equivalence of (4.18) and (4.25) can be observed. Further,

if (x, y, λ) is a saddle point of L̃, then (x,w) is a solution to (4.18) and Lx+ Jw = b.

For solving problem (4.18), we propose a novel preconditioned ADMM (NP-ADMM)

as follows:

Algorithm 4.2 Novel Preconditioned ADMM for Solving Problem (4.18).

Let Σ : G → G and Y : H → H be strongly monotone self-adjoint continuous linear

operators. For given (xk, λk, wk), the new iterate (xk+1, λk+1, wk+1) is generated by

the following recursion:

xk+1 = argmin
x∈H

{

f(x) +
1

2
‖Lx+ Jwk − b+Σ− 1

2λk‖2Σ
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+
1

2
‖x− xk‖2Y −1−L∗ΣL

}

, (4.26)

λk+1 = λk +Σ
1

2 (Lxk+1 + Jwk − b), (4.27)

wk+1 ∈ argmin
w∈K

{

g(w) +
1

2
‖Lxk+1 + Jw − b+Σ− 1

2λk+1‖2Σ
}

. (4.28)

The following result provides the existence of solutions to the subproblem (4.28) in

Algorithm 4.2 under Assumption 4.2 (A3).

Lemma 4.4. Suppose 0 ∈ sri(dom g∗ − ranJ∗) holds. Let {(xk, λk, wk)}∞k=1
be the

sequence generated by Algorithm 4.2, then {wk} is well defined. Moreover, denoting

yk = b− Jwk, the sequence {(yk, xk, λk)}∞k=1
satisfies

xk+1 = argmin
x∈H

{

f(x) +
1

2
‖Lx− yk +Σ− 1

2λk‖2Σ +
1

2
‖x− xk‖2Y −1−L∗ΣL

}

, (4.29)

λk+1 = λk +Σ
1

2 (Lxk+1 − yk), (4.30)

yk+1 = argmin
y∈G

{

((−J) ⊲ g)(y − b) +
1

2
‖y − Lxk+1 − Σ− 1

2λk+1‖2Σ
}

. (4.31)

Proof. Set

yk+1 = argmin
y∈G

{

((−J) ⊲ g)(y − b) +
1

2
‖y − Lxk+1 − Σ

1

2λk+1‖2Σ
}

. (4.32)

Since 0 ∈ sri(dom g∗ − ran J∗), we get (−J) ⊲ g = (g∗ ◦ (−J)∗)∗ ∈ Γ0(G) and {yk} is

well defined. Using Fermat’s Theorem, we have

0 ∈ ∂
(

(−J) ⊲ g
)

(yk+1 − b) + Σ(yk+1 − Lxk+1)− Σ
1

2λk+1,

i.e.,

yk+1 − b ∈ ∂
(

g∗ ◦ (−J∗)
)(

− Σ(yk+1 − Lxk+1) + Σ
1

2λk+1

)

= −J∂g∗
(

J∗(Σ(yk+1 − Lxk+1)− Σ
1

2λk+1)
)

.

Hence, there exists wk+1 ∈ ∂g∗(J∗(Σ(yk+1 − Lxk+1) − Σ
1

2λk+1)) such that yk+1 =
b− Jwk+1. Further, we have

J∗
(

Σ(yk+1 − Lxk+1)− Σ
1

2λk+1

)

∈ ∂g(wk+1). (4.33)

Substituting yk+1 = b− Jwk+1 in (4.33), we get

0 ∈ ∂g(wk+1) + J∗
(

Σ(Jwk+1 + Lxk+1 − b) + Σ
1

2λk+1

)

.
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Using Fermat’s Theorem, we yield

wk+1 ∈ argmin
w∈K

{

g(w) +
1

2
‖Jw + Lxk+1 − b+Σ− 1

2λk+1‖2Σ
}

, (4.34)

thus (4.31) and the existence of wk can be obtained. Substituting yk+1 = b− Jwk+1 in

(4.26) and (4.27), respectively, we can have (4.29) and (4.30).

Remark 4.6. Let {(xk, wk, λk)}∞k=1
be the sequence generated by Algorithm 4.2 and

yk = b−Jwk. By using Lemma 4.4, we can obtain that {(xk, yk, λk)}∞k=1
is the sequence

generated by Algorithm 4.1 with h = (−J ⊲ g)(· − b).

Next, we propose the convergence and sublinear convergence rates of Algorithm 4.2.

Theorem 4.2. Suppose Assumption 4.2 holds. Let {(xk, wk)}∞k=1
be the sequence gener-

ated by Algorithm 4.2, where the operator Y −1 − 3L∗ΣL/4 is strongly monotone. Then,

the following statements hold:

(i) There exists a saddle point (x∗, w∗, λ∗) of L̃, such that xk ⇀ x∗, Jwk ⇀ Jw∗, and

λk ⇀ λ∗.

(ii) Suppose ran J∗ = K, then we have wk ⇀ w∗.

(iii) If Y −1 − L∗ΣL is monotone, then

‖xk+1 − xk‖2Y −1 + ‖Lxk+1 + Jwk − b‖2Σ = o(1/k).

(iv) The convergence condition (1.14) is tight.

Proof. (i) Using Theorem 3.1, Lemma 4.2, and Remark 4.6, we obtain that there

exits a saddle point (x∗, u∗) of Φ̃, which satisfies xk ⇀ x∗ and ũk := Σ
1

2λk + Σ(Lxk +
Jwk − b) ⇀ u∗. For (x∗, u∗), using Lemma 4.3, there exists (w∗, λ∗) ∈ K × G which

satisfies (x∗, w∗, λ∗) is a saddle point of L̃, Lx∗ + Jw∗ = b and u∗ = Σ
1

2λ∗. Combining

λk+1 = λk +Σ
1

2 (Lxk+1 + Jwk − b),

we get

Σ
1

2λk+1 +Σ(Lxk − Lxk+1) = ũk ⇀ u∗ = Σ
1

2λ∗.

From Theorem 3.1, we have xk − xk+1 → 0. Since Σ
1

2 is a bijection, we get λk ⇀ λ∗.

Using

λk+1 = λk +Σ
1

2 (Lxk+1 + Jwk − b),

we obtain

Jwk = Σ− 1

2 (λk+1 − λk) + b− Lxk+1 ⇀ b− Lx∗ = Jw∗.
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(ii) If ran J∗ = K, for any v ∈ K, there exists z ∈ K, such that v = J∗z. We

conclude that

〈wk, v〉 = 〈Jwk, z〉 → 〈Jw∗, z〉 = 〈w∗, v〉, k → ∞, ∀v ∈ K.

(iii) Setting yk := b − Jwk and using Remark 4.6, we have that {(xk, yk, λk)}∞k=1
is

generated by Algorithm 4.1 with h = ((−J) ⊲ g)(· − b). Thus, by using Theorem 4.1,

we get

‖xk+1 − xk‖2Y −1 + ‖Lxk+1 + Jwk − b‖2Σ
= ‖xk+1 − xk‖2Y −1 + ‖Lxk+1 − yk‖2Σ = o(1/k).

(iv) By setting K = G and J = −Id, we can know Algorithm 4.1 is a special case of

Algorithm 4.2. Thus, using Theorem 4.1, we can immediately obtain that the condition

(1.14) is tight for Algorithm 4.2. The proof is complete.

Remark 4.7. (i) Regarding problem (4.18), [8] introduced sublinear convergence

rates (in the ergodic sense) for the residuals of function values and constraint violations

in the generalized ADMM. In contrast to the conclusions in [8], our result concerning

constraint violations is non-ergodic, and the proof methodology differs as well.

(ii) If we set Y −1 = (τr)−1Id and Σ = βId (τ, r, β > 0) and interchange the positions

of x and w, Algorithm 4.2 can be reduced to the optimal linearized ADMM (OLADMM)

proposed in [25]. In this scenario, condition (1.14) can degenerate to the result in [25]:

r > β‖LTL‖ and τ ∈ (0.75, 1).

(iii) Particularly, in problem (4.25), if we set G = K, g ≡ 0, and J be a zero operator,

then problem (4.25) can be reduced to a convex optimization problem with linear

equality constraints
min
x∈H

f(x)

s.t. Lx = b.
(4.35)

Denote w0 = 0, Algorithm 4.2 can be reduced to a kind of preconditioned linearized

augmented Lagrangian method

xk+1 =argmin
x∈H

{

f(x) +
1

2
‖Lx− b+Σ− 1

2λk‖2Σ +
1

2
‖x− xk‖2Y −1−L∗ΣL

}

, (4.36)

λk+1 =λk +Σ
1

2 (Lxk+1 − b). (4.37)

Using Theorem 4.2, we can get directly the convergence and the convergence rate of

the sequence {(xk, λk)}∞k=1
satisfying (4.36) and (4.37).

Corollary 4.1. Suppose that b ∈ sri(L dom f) and the solutions to the problem (4.35)

exist. For a given initial point (x0, λ0) ∈ H×G, let {(xk, λk)}∞k=1
be the sequence satisfying

(4.36) and (4.37). If Y −1−3L∗ΣL/4 is strongly monotone, then the following statements

hold:
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(i) There exists a saddle point (x∗, λ∗) of

L̄(x, λ) := f(x) +
〈

Σ
1

2λ,Lx− b
〉

such that xk ⇀ x∗ and λk ⇀ λ∗.

(ii) If Y −1 − L∗ΣL is monotone, then

‖xk+1 − xk‖2Y −1 + ‖Lxk+1 − b‖2Σ = o(1/k).

(iii) The convergence condition (1.14) can not be improved.

Remark 4.8. If we set Σ = Id, Y = τId (τ > 0), then (4.36) and (4.37) can be reduced

to the linearized augmented Lagrangian method (LALM) proposed in [40] with penalty

parameter β = 1 in augmented Lagrangian function

Lβ(x, λ) = f(x) + 〈λ,Lx− b〉+ β

2
‖Lx− b‖2.

In this case, the stepsize range (1.14) is the same as the result in [24] τ‖L‖2 < 4/3.

5. Numerical experiments

This section focuses on testing four special applications of the monotone inclusion

problem (1.1) and presenting the numerical results to support our theoretical state-

ments in Sections 3 and 4.

The first and second experiments involve the use of Algorithm 3.1 to solve the

classical traffic equilibrium problem and the basis pursuit problem, respectively. We

compare the performance of Algorithm 3.1 under conditions (1.13) and (1.14). The

third and fourth experiments provide a report on the numerical performance of Al-

gorithm 4.2 for solving separable convex optimization problems with linear equality

constraints. Specifically, we consider the covariance selection problem and the TV-

L1 denoising problem under conditions (1.13) and (1.14), respectively. Based on the

aforementioned experiments, we have observed that the condition (1.14) can result in

improved numerical performance. Our code is implemented in MATLAB 2021a.

5.1. Traffic equilibrium problem

Firstly, we consider a strongly connected transportation network G(N ,A). The

node set of this network is denoted N and the arc set is denoted A. There are two

different subsets of N that represent origin nodes set O and destination nodes set D,

respectively. The set of origin-destination (OD) pairs is a given subset RS of O×D. For

every given OD pair rs ∈ RS, where r is a origin node, s is a destination node. For each

rs ∈ RS, denote qrs as the travel demand between the OD pair rs. Let Prs denote the

set of paths connecting the OD pair rs and let P be the union of Prs for rs ∈ RS, i.e.
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P :=
⋃

rs∈RS Prs. For a given rs ∈ RS and p ∈ Prs, h
p
rs represents the flow on path p.

Let va be the flow on arc a. Setting total path flow vector h = (hprs, rs ∈ RS, p ∈ Prs)
⊺

and total arc flow vector v := (va, a ∈ A)⊺, we can get v = ∆h, where ∆ = (δa,p) is the

arc-path incidence matrix with entries

δa,p :=

{

1, if path p ∈ P includes arc a ∈ A,

0, otherwise.

Setting total travel demand q = (qrs, rs ∈ RS)⊺, Ω is the OD pair-path incidence matrix

whose entries are

ωp,rs =

{

1, if p ∈ Prs,

0, otherwise,

then the feasible set of flow is

H := {h | Fh ≥ b},

where

F =





Ω
−Ω
I



 , b =





q
−q
O



 .

Let ta(v) be a travel time function about the total flow vector v on a ∈ A, in general,

the larger the traffic volume, the more time it takes for vehicles to pass, so it can be

assumed that ta(v) is a continuous increasing function. Tp is the sum of the arc costs

ta(v) on all the arcs a traversed by the path p ∈ P , i.e.

Tp(h) =
∑

a∈A

δa,pta(v). (5.1)

We can rewrite (5.1) as

T (h) := (Tp, p ∈ P )⊺ = (∆)⊺t(v) = (∆)⊺t(∆h),

where t(v) = (ta(v), a ∈ A)⊺. ta is a continuous increasing function, hence, T is max-

imal monotone. Let crs be the (unknown) minimum travel costs between OD pair

rs, c = (crs, rs ∈ RS)⊺, using Wardrop user equilibrium principle and [20, Proposi-

tion 1.4.8], the above traffic equilibrium problem can be converted into the following

variational inequality:

(h− h∗)⊺T (h∗) ≥ 0, ∀h ∈ H. (5.2)

By utilizing the Lagrange multiplier, the problem (5.2) is equivalent to the following

primal-dual monotone inclusion problem:

{

0 ∈ Th− F ⊺y,

0 ∈ NRm
+
(y)− b+ Fh,

(5.3)
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where m = 3|RS|. Utilizing Remark 2.1, we choose L = −F , s = 1, t = {0.9, 1, 1.1, 1.33}
and α = 1, then the iterative scheme of Algorithm 3.1 for solving (5.3) reads as











ỹk = PRm
+

(

yk − Σ(Fhk − b)
)

,

hk+1 = (Id+ Y T )−1{hk + Y F ⊺ỹk},
yk+1 = ỹk +ΣF (hk − hk+1).

(5.4)

We consider an example in [22]. In this example, G(N ,A) consists of 9 nodes, 28

arcs, 72 OD pairs, and 1216 paths. The diagram of this network reads as Fig. 1.

Figure 1: The network example G(N ,A).

In this section, the arc travel time function follows the Bureau of Public Road (BPR)

function

ta(v) = αa

[

1 + 0.15

(

va
Ca

)4
]

,

where αa and Ca are free-flow travel time and capacity of link a, respectively.

We arrange and number the paths based on the sequence number of the origin

point. We set the free-flow travel time as a sequence of equal differences about the

sequence number of the paths, with an initial value of 15 and a tolerance of 1. Addi-

tionally, we set the capacity of every link a as a sequence of equal differences about the

sequence number of the paths, with an initial value of 30 and a tolerance of 2.

For the traffic demand vector b between each OD pair, we number it based on the

destination point of the OD pair. We set the traffic demand between the OD pairs as

a sequence of equal differences about the sequence number of the OD pair, with an

initial value of 100 and a tolerance of 10. The stopping criterion of Algorithm 3.1 is

‖hk+1 − hk‖2 + ‖yk+1 − yk‖2 ≤ 10−5.

We show the fixed point residual ‖hk+1 − hk‖2 + ‖yk+1 − yk‖2 and relative error

(‖hk+1 − hk‖2 + ‖yk+1 − yk‖2)/(‖hk‖2 + ‖yk‖2) curves with respect to iterations, re-

spectively, in Fig. 2 and use “Iter.” for the iteration numbers. From Fig. 2, we can

observe that condition (1.14) has a significant acceleration effect compared to condi-

tion (1.13).
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Figure 2: The comparison of the numerical performance of SDR with different Σ and Y for solving the
traffic equilibrium problem (5.3).

5.2. Basis pursuit (BP)

Secondly, we consider the basis pursuit problem as follows:

min
x∈Rn

‖x‖1
s.t. Lx = b,

(5.5)

where ‖x‖1 =
∑n

k=1 |xk|, b ∈ R
m, and L ∈ R

m×n is a data matrix. The BP problem (5.5)

plays a key role in compressed sensing and statistical learning [7, 13]. Consider the

primal-dual form of the BP problem (5.5) as

min
x∈Rn

max
u∈Rm

‖x‖1 + 〈u,Lx〉 − 〈u, b〉.

It is equivalent to the following monotone inclusion problem:

{

0 ∈ ∂‖x‖1 + L∗u,

0 = b− Lx.

Using Algorithm 3.1 to solve inclusion problem (5.2), the scheme of Algorithm 3.1 is


















ũk = uk +Σ(Lxk − b),

xk+1 = arg min
x∈Rn

{

‖x‖1 +
1

2
‖x− xk + Y L∗ũk‖Y −1

}

,

uk+1 = ũk − ΣL(xk − xk+1).

(5.6)

We take n = m = 3000. To improve the accuracy of the test, we take three groups

of random data for this numerical experiment and finally take the average value. We
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Figure 3: The comparison of the numerical performance of SDR with different stepsizes for solving prob-
lem (5.2).

set L ∈ R
3000×3000 being a discrete cosine transform (DCT) [1], x∗ ∈ R

3000 whose

entries satisfy standard normal distribution and the sparse density of x∗ is 0.05. In this

experiment, we denote b = Lx∗, and use x0 = 0 and u0 = 0 as the initial points. Using

Remark 2.1, we choose s = 1, t = {0.95, 1, 1.2, 1.33}, and the stopping criterion of

Algorithm 3.1 is

‖xk+1 − xk‖2Y −1 + ‖uk+1 − uk‖2Σ−1 ≤ 10−6.

In Fig. 3, we plot the fixed point residual ‖xk+1−xk‖2Y −1 +‖uk+1−uk‖2Σ−1 and relative

error (‖xk+1 − xk‖2Y −1 + ‖uk+1 − uk‖2Σ−1)/(‖xk‖2Y −1 + ‖uk‖2Σ−1) curves with respect to

iterations, respectively. From Fig. 3, we can see that a larger t results in a small number

of iterations under the same stopping criterion.

5.3. Covariance selection problem

Thirdly, we consider the covariance selection problem penalized by the l1 norm

min
X∈Sn

+

〈S,X〉 − ln
(

det(X)
)

+ ρeT |X|e, (5.7)

where S is a known real symmetric matrix and S
n
+ represents the set of symmetric

n× n positive semi-definite matrices. 〈·, ·〉 is the standard trace inner product in R
n×n,

e ∈ R
n denotes the vector whose elements are all 1, |X| represents a real matrix whose

elements are the absolute value of the corresponding elements of X. The covariance

selection problem has a wide range of applications in various fields [17–19, 41], such

as portfolio, speech recognition, gene network analysis, machine learning, and so on.

By introducing auxiliary variables Y , we can rewrite problem (5.7) as

min
X,Y

〈S,X〉 − ln
(

det(X)
)

+ ISn
+
(X) + ρeT |Y |e,

s.t. X − Y = 0.
(5.8)
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It is clear that Sn+ is a closed and convex subset of Rn×n, therefore we have ISn
+
∈

Γ0(R
n×n). Utilizing Algorithm 4.2 to solve problem (5.8), we set Σ = Y = σId, then

(1.14) reduces to σ2 < 4/3. In this setting, the recursion of Algorithm 4.2 reads as:



















































Xk+1 = arg min
X∈Sn

+

{

〈S,X〉 − ln
(

det(X)
)

+
σ

2

∥

∥

∥

∥

X − Yk +
1√
σ
Zk

∥

∥

∥

∥

2

+
1− σ2

2σ
‖X −Xk‖2

}

,

Zk+1 = Zk +
√
σ(Xk+1 − Yk),

Yk+1 = arg min
Y ∈Sn

+

{

ρeT |Y |e+ σ

2

∥

∥

∥

∥

Xk+1 − Y +
1√
σ
Zk+1

∥

∥

∥

∥

2
}

.

First, we consider the Xk+1 subproblem. Because − lnx → +∞, x → 0+, Xk+1

must be a interior point of Sn
+, i.e. Xk+1 ∈ Sn

++. Utilizing Fermat’s Theorem, we can

get that Xk+1 satisfies

S − σYk +
√
σZk −

1− t2

t
Xk +

1

σ
Xk+1 −X−1

k+1
= 0. (5.9)

For the sake of convenience, we set F = S − σYk +
√
σZk − (1− t2)Xk/t and let

F = Gdiag(λ1, λ2, · · · , λn)G
⊺ (5.10)

be the symmetric Schur decomposition of F , where G is an orthogonal matrix and

λi (i = 1, 2, . . . , n) are eigenvalues of F . The symmetric Schur decomposition of the

solution of (5.9) can be written into the following form [21]:

Xk+1 = Gdiag(λ̃1, · · · , λ̃n)G
⊺, (5.11)

where λ̃i (i = 1, 2, . . . , n) are to be determined. In fact, substituting (5.10) and (5.11)

into (5.9), we obtain

λ̃i =
−σλi +

√

σ2λ2
i + 4σ

2
, i = 1, 2, . . . , n.

Next, we solve Yk+1 subproblem. Using the definition of proximal operator and Moreau

identity, we get

Yk+1 = Xk+1 +
1√
σ
Zk+1 −min

{

max

{

Xk+1 +
1√
σ
Zk+1,−

ρ

σ

}

,
ρ

σ

}

.

In this experiment, we generate the data of the problem (5.8) identically as [33].

In detail S = A−1 + lV − min(λmin(A
−1 + lV ) − v, 0)Id, where V is an independent

and identically distributed uniform random symmetric matrix, A is a sparse invertible

matrix with positive diagonal elements, Id is the n×n identity matrix, l and v are small
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Figure 4: The comparison of NP-ADMM with different stepsizes for solving covariance selection problem
(5.8), n = 500 (left), n = 1000 (right).

positive numbers. Similar to parameter setting in [33], we take the sparse density of

A to be 0.01, l = 0.15, v = 0.0001, and ρ = 0.5. We set σ = τ =
√

((2j − 1)/2j)(4/3),
(j = 1, 2, 3) and the stopping criterion is

‖Xk+1 −Xk‖2 + ‖Xk+1 − Yk‖2 < 10−5.

To improve the accuracy of the test, we take three groups of random data for this

test and finally take the average value. From Fig. 4, we draw the fixed point residual

‖Xk+1−Yk‖2+‖Xk+1−Xk‖2 curve with iterations in the situation of dimension n = 500
and n = 1000. As can be seen from Fig. 4, when the stepsizes of Algorithm 4.2 are

close to the boundary of the condition (1.14), the number of iterations required is

significantly reduced.

We present the more detailed numerical result of Algorithm 4.2 under different

choices of Σ and a variety of dimensions n in Table 3 where “Time” is the computing

time in seconds. We can observe that under the same dimension, the CPU time and

the number of iterations of Algorithm 4.2 under condition (1.13) are about 30% higher

than those under condition (1.14). This advantage of condition (1.14) is more obvious

for large-scale situations of problem (5.8).

5.4. TV-L1 denoising

Finally, we consider the following TV-L1 denoising problem (discrete vision) for

image denoising

min
x∈RN

τ‖Dx‖1 + ‖x− q‖1, (5.12)

where q is the observed image, D : x 7→ Dx :=

(

D1x
D2x

)

is the discrete gradient operator,

and τ is a regularization parameter. In our experiment, we set τ = 1 and input image q
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Table 3: The numerical result of solving problem (5.8).

n
j = 1 j = 2 j = 3

Iter. Time(s) Iter. Time(s) Iter. Time(s)

100 32 0.7702 27 0.2308 26 0.1894

200 56 1.6931 47 1.2226 44 1.1039

300 82 6.5089 67 4.1391 64 4.0714

400 108 12.5759 89 10.6139 85 9.8401

500 137 25.1082 112 18.8840 107 18.3507

600 167 44.2045 137 37.1000 130 33.2041

700 199 71.3312 163 58.8336 155 55.3372

800 233 124.6614 191 101.4911 181 96.0022

900 267 192.5235 219 155.2754 208 139.1944

1000 304 373.0020 249 284.4315 236 270.8189

with 25% salt and pepper noise. We employ SNR(dB), i.e.,

SNR = 20 lg
‖x∗‖

‖x̃− x∗‖
to measure the quality of a recovered image where x̃ is a reconstructed image and x∗

is the real image. To simplify the subproblem, we use the following equivalent form of

(5.12) proposed in [39]:

min
x,y,z

τ‖y‖1 + ‖z − q‖1

s.t.

(

D
Id

)

x+

(

−Id O
O −Id

)(

y
z

)

=

(

0

0

)

.
(5.13)

We set
(

y
z

)

= w, f(x) = 0, g(w) = τ‖y‖1 + ‖z − q‖1, L =

(

D
Id

)

, J =

(

−Id O
O −Id

)

.

Noting the structure of D, we decomposed y as y =

(

y1

y2

)

. In this setting, we set

Σ = σIdN , Y = σId3N (σ > 0), thus, we can rewrite Algorithm 4.2 as






























































xk+1 = xk − σ2
(

D⊺

1D1 +D⊺

2D2 + Id
)

xk

+ σ2
(

D⊺

1y
1
k +D⊺

2y
2
k + zk −D⊺

1λ
y1

k −D⊺

2λ
y2

k − λz
k/
√
σ
)

,

λy1

k+1
= λy1

k +
√
σ
(

D1xk+1 − y1k
)

,

λy2

k+1
= λy2

k +
√
σ
(

D2xk+1 − y2k
)

,

λz
k+1

= λz
k +

√
σ(xk+1 − zk),

y1k+1
= prox τ

σ
‖·‖1

(

D1xk+1 + λy1
k+1

/
√
σ
)

,

y2k+1
= prox τ

σ
‖·‖1

(

D2xk+1 + λy2
k+1

/
√
σ
)

,

z1k+1
= q + prox 1

σ
‖·‖1

(

xk+1 + λy1
k+1

/
√
σ − q

)

.
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Under this choice of Σ and Y , the condition (1.14) can be rewritten as

σ2‖L‖2 < 4

3
.

Next, we provide a range of σ by estimating ‖L‖. For any given x ∈ R
N , we have

‖Lx‖2 = ‖Dx‖2 + ‖x‖2 ≤
(

‖D‖2 + 1
)

‖x‖2.

Using ‖D‖ <
√
8 [10], we can get

‖L‖ = sup
x∈RN\{0}

‖Lx‖
‖x‖ ≤ 3.

Thus, we can set σ =
√

1/9 + (1− 2−d)/27, d = 0, 1, 2, 3 in NP-ADMM. We take House

(720×960) and Peppers (512×512) for testing. In Fig. 5, we show the SNR with respect

to iterations.

In Table 4, we report more detailed numerical results, and the restored images are

summarized in Fig. 6. These results in Table 4, Figs. 5 and 6 show that NP-ADMM
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Figure 5: SNR with respect to iterations for solving TV-L1 model (5.12). Left: House: 720×960 and right:
Peppers: 512× 512.

Table 4: Numerical results for solving problem (5.12).

Algorithm
House Peppers

SNR Time(s) Iter. SNR Time(s) Iter.

NP-ADMM d = 0 39.0650 83.0778 171 29.2215 18.6319 87

NP-ADMM d = 1 39.1329 81.3900 165 29.2471 17.3215 78

NP-ADMM d = 2 40.9202 77.1009 154 29.2610 14.5727 66

NP-ADMM d = 3 40.9403 75.9415 150 29.2642 14.2776 65
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Figure 6: From left to right: original clean image, noisy image with 25% salt and pepper noise, image
denoising using NP-ADMM (d = 0, 1, 2, 3). Test problem House (the first row), 720 × 960; test problem
Peppers (the second row), 512× 512.

can effectively solve TV-L1 denoising problem (5.12). However, when the stepsize

range approaches the boundary of (1.14), the number of iterations and iteration time

gradually decrease and the advantage is more obvious for high-resolution images.

6. Conclusion

In this paper, we investigate the convergence of SDR for the primal-dual monotone

inclusion problem and propose a novel preconditioned ADMM for solving separable

convex optimization problems with linear equality constraints. We enhance the con-

vergence condition of SDR. By constructing a concise counterexample, we demonstrate

that the new range proposed in this paper cannot be improved any further. Additionally,

to address the theoretical gap in the convergence rate of SDR, we establish a sublin-

ear convergence rate in terms of fixed point residuals for the first time. Moreover, by

utilizing SDR to solve separable convex optimization problems with linear equality con-

straints, we develop a novel preconditioned alternating direction method of multipliers

(NP-ADMM) that can handle cases where the two linear operators are not identical. We

also introduce tight convergence conditions and convergence rates for NP-ADMM. Fi-

nally, we conduct four numerical experiments to validate the computational efficiency

of these algorithms and demonstrate that the performance of these algorithms has been

significantly enhanced with our improved conditions.
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[3] H. ATTOUCH AND M. THÉRA, A general duality principle for the sum of two operators,

J. Convex Anal. 3 (1996), 1–24.
[4] H. H. BAUSCHKE AND P. L. COMBETTES, Convex Analysis and Monotone Operator Theory

in Hilbert Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, Cham, 2017.
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