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Abstract. In this article we introduce a novel numerical method to solve the problem

of optimal transport and the related elliptic Monge-Ampère equation using neural net-

works. It is one of the few numerical algorithms capable of solving this problem effi-

ciently with the proper transport boundary condition. Unlike the traditional deep learn-

ing solution of partial differential equations (PDEs) attributed to an optimization prob-

lem, in this paper we adopt a relaxation algorithm to split the problem into three sub-

optimization problems, making each subproblem easy to solve. The algorithm not only

obtains the mapping that solves the optimal mass transport problem, but also can find

the unique convex solution of the related elliptic Monge-Ampère equation from the map-

ping using deep input convex neural networks, where second-order partial derivatives

can be avoided. It can be solved for high-dimensional problems, and has the additional

advantage that the target domain may be non-convex. We present the method and sev-

eral numerical experiments.
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1. Introduction

The motivation for this work is the problem of optimal mass transport. In 1781, Monge

proposed a study on optimal transport (OT) when considering the best way to rearrange

a pile of materials from one configuration to another. Compared to its core theories in

partial differential equations (PDEs), probability, analysis are mature enough cf. [12, 41],

numerical methods for the OT problem remain underdeveloped.

The optimal mass transport problem can be stated as follows. Suppose we are given

two probability densities:

1) f , a probability density supported on X ,

2) g, a probability density supported on Y ,
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where X , Y ⊂ Rd , d ≥ 2 are bounded and compact. The problem is to find a mapping

m : X → Y which minimizes the transportation cost

m(x) = argmin
m∈M

∫

X

|x −m(x)|p f (x)d x ,

where

M=

�
m : X → Y

����

∫

X

h
�
m(x)
�

f (x)d x =

∫

Y

h(p)g(p)dp

for all continuous test functions h

�
. (1.1)

In the original problem Monge took p = 1; the case p = 2 corresponds to the Kantorovich

(or Wasserstein) distance. Same as in the most commonly studied cases, we consider the

case of p = 2 for the remainder of this paper.

An important theorem by Brenier [5,15] states that the unique optimal mapping is the

(almost everywhere) unique gradient of a convex function, which is denoted by ∇u. By

using a change of variables and coordinates, we obtain

det(D2u) =
f

g(∇u)
, (MA)

along with the restriction

u is convex. (C)

The accompanying boundary condition is derived from the condition that m maps X to Y

and reads

∇u(∂ X ) = ∂ Y. (BV2)

OT problem is equivalent to Monge-Ampère equation with conditions (BV2).

OT is used in a wide range of fields, including computational fluid dynamics, color

transfer between multiple images or deformation in the context of image processing, in-

terpolation schemes in computer graphics, and economics, via matching and equilibrium

problems. In addition, optimal transport has recently attracted the attention of biomedical-

related scholars and is widely used as a data enhancement tool for guiding differentiation

during single-cell RNA development as well as for improving cellular observables, thereby

improving the accuracy and stability of various downstream sub-tasks. Among the many

applications, we focus on mesh generation and illumination optics. In our numerical re-

sults, we will give two examples from each of these two applications.

Until now, the numerical solution of the Monge-Ampère equation is still being devel-

oped. However effective algorithms with transport conditions are still rare. An early numer-

ical method for the related Monge-Ampère equation introduced by Oliker and Prussner [33]

used a discretization based on the geometric interpretation of the solutions. Another re-

cent method developed by Benamou et al. [3] introduced a new discretization wide-stencil
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scheme of the determinant operator, but it had the restriction that the target domain is

convex. Using the augmented Lagrangian and least-squares methods discussed by Dean

and Glowinski et al. [17], one had been able to compute least-squares solutions, despite

owing to the lack of the data, this problem has no classical solutions (solution in H2(Ω)).

Based on this, two least-squares methods were presented by Caboussat et al. [7] and Prins

et al. [36]. In recent years, Lévy [25] has proposed a semi-discrete method to routinely

handle three-dimensional problems containing millions of unknowns, and Cuturi [11] has

proposed the Sinkhorn approach, which can handle arbitrary transport cost functions, and

can be made very efficient in the case of quadratic cost functions.

Inspired by Prins et al., in this article we advocate a relaxation algorithm to solve a well-

chosen least-squares variant of the combined problem (MA, BV2, C) in combination with

the machining learning method. With such an algorithm, we are able to decouple the

treatment of the differential operators from the treatment of the nonlinearities.

Our algorithm differs from the algorithm of Prins et al. in three ways. First, we use

machine learning to do least squares, which allows us to solve higher dimensional problems.

Secondly, instead of using experiments to test which α (Relates to the ratio of the boundary

to the interior, seeing (3.26) and (3.27) for details) is better, we can choose the α adaptively

based on a machine learning strategy. Thirdly, we use a convex neural network to compute u

which guarantees the convexity of u. It is worth noting that our algorithm has the limitation

of only being able to deal with the problem where the support of the target density is simply

connected.

The remainder of this paper is as follows. In Section 2, we introduce the numerical

method and give the framework of the relaxation algorithm. In the outer iteration of the

algorithm, there are three sub-optimization problems that need to be solved. In Section 3,

we briefly discuss neural networks and how each suboptimization problem constructs a neu-

ral network to train. In Section 4, we briefly introduce the input convex neural network,

explain how to calculate the solution u of the Monge-Ampère equation from the OT map-

ping m, and summarize the algorithm. In Section 5, we present numerical examples. The

paper ends with a brief section devoted to a summary and conclusions.

2. Relaxation Algorithm for a Least Square Problem

In this section, we introduce our novel numerical method to solve optimal mass trans-

port with quadratic cost function. Let f : X → [0,∞) and g : Y → (0,∞) be bounded

functions denoting (mass) densities with bounded compact supports X ⊂ Rd and Y ⊂ Rd .

The problem is to find a mapping m : X → Y , minimizing the transportation cost

C[m] =

∫

X

|x −m(x)|2 f (x)d x .

According to (1.1) the source density f and target density g satisfy the condition

∫

X

f (x)d x =

∫

Y

g(p)dp.
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Due to key results by Brenier, the optimal transport plan can be characterised as the (sub)

gradient of a convex function u. We transform the optimal transport problem into the

combined problem (MA,BV2,C).

To this end, we require that the Jacobi matrix of m, given by

Dm=





∂m1

∂ x1

· · ·
∂m1

∂ xd
...

. . .
...

∂md

∂ x1

· · ·
∂md

∂ xd





equals a real symmetric positive semidefinite matrix P, and satisfies

det(P) =
f

g(m)
.

Since P is symmetric, we have ∂mi/∂ x j = ∂m j/∂ x i. This implies that m is a conservative

vector field and thus the gradient of a function. Introducing V = [C2]d , which is the set

of d-dimensional, twice continuously differentiable vector fields, we enforce the equality

Dm= P by minimizing the following functional over V ×Q f /g :

JI (m, P) =
1

2

∫

X

‖Dm− P‖2
F
d x , (2.1)

Q f /g(m) =

§
q ∈ Q, det(q) =

f

g(m)

ª
,

Q =
�
q ∈ L2(Ω)d×d , q = qt

	
,

where ‖ · ‖F is the Fröbenius norm. In addition to mass conservation, we require that the

mapping satisfies

m(X ) = Y, m(∂ X ) = ∂ Y.

This boundary condition is nonstandard, nonlinear, and requires special attention. We

address the boundary condition by minimizing a second functional

Jb(m, b) =
1

2

∫

∂ X

|m− b|2ds.

We minimize this functional over b from the set

B =
¦

b ∈
�
C1(∂ X )
�d
| b(x) ∈ ∂ Y,∀x ∈ ∂ X

©
.

We combine the functionals JI for the interior and Jb for the boundary by a weighted aver-

age

J(m, P, b) = (1−α)Jb(m, b) +αJI (m, P).

Under ideal conditions that is P, b and m are in continuous space, we calculate the minimiz-

ers by a relaxation algorithm, that is repeatedly minimizing over the three sets V,Q f /g(m),
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and B separately. Due to the fact that the optimal mass transport problem has a solution,

there is a set of parameters P, b and m such that J(m, b, P) = 0.

In practice, by using three neural networks we calculate the minimizers by a relaxation

algorithm, that is repeatedly minimizing over the three sets eV , eQ f /g(m), and eB separately.

eV is a finite set of points of V , eQ f /g(m) is a finite set of points of Q f /g(m), and eB is a finite

set of points of B.

The initialization strategy is as follows: Without loss of generality, assume that both

X and Y are d-dimensional spaces, and Y is simply connected, because the target density

function g(p)must be nonzero. Let [a1, b1]×[a2, b2]×· · ·×[ad , bd] be the smallest bound-

ing box of X that are parallel to the axes. Also let [c1, d1]× [c2, d2]× · · · × [cd , dd] ⊃ Y be

the smallest bounding box of Y that are parallel to the axes. The initial guess m0 is given

by

m0
i =

x i − ai

bi − ai

di +
bi − x i

bi − ai

ci , (2.2)

where i = 1,2,3, . . . , d , and m0
i

is the i-th component of the initial guess m0.

Subsequently, we perform the iteration

bn+1 = argmin
b∈eB

Jb(m
n, b), (2.3a)

Pn+1 = argmin
P∈eQ f /g(mn)

JI (m
n, P), (2.3b)

mn+1 = argmin
m∈eV

J(m, bn+1, Pn+1). (2.3c)

This procedure is repeated until the value of J(mn, bn, Pn) stabilizes.

3. Minimizing Procedures for b, P, m

In this section, firstly we briefly introduce fully connected feedforward neural network

in Section 3.1. Secondly, by using the initial guess m0, we start the iteration process. Each

iteration consists of three steps, which are described one by one in Sections 3.2-3.4.

3.1. Fully connected feedforward neural network

An increasing number of algorithms have emerged in recent years for solving PDEs

using neural networks [9, 18, 20, 21, 27, 29, 44]. Our algorithm also uses neural networks

to solve the problem. In this paper, we consider two kinds of neural networks: standard

fully connected feedforward neural network (FNN) and input convex neural networks. In

this section we describe the standard fully connected feedforward neural networks, which

can approximate arbitrarily well a large class of input-output maps, i.e., they are universal

approximators, cf. [10,35]. The core of our algorithm is to build three FNN(Neti) to update

b, P, m with Mi ≥ 3 layers, of which (Mi − 2) are hidden layers, i = 1,2,3. Since bn+1 of

(2.3a), Pn+1 of (2.3b), mn+1 of (2.3c) are our approximation goal, we will consider Net1 and
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Net3 as a Rd → Rd map, Net2 as a Rd → R(d
2+d)/2 map (R(d

2+d)/2 denotes the elements of the

upper triangle of the symmetric matrix P). Let ni
j
, j = 1, . . . , Mi , be the number of neurons

in each layer of Neti, we then have n1
1 = n1

M1
= n3

1 = n3
M3
= n2

1 = d and n2
M2
= (d2 + d)/2.

We can consider Neti as an operator. For any input yin ∈ Rd , the output of the network

Neti is

yout = Neti(y
in;Θ),

where Θ is the parameter set including all the parameters in the network. The operator is

a composition of the following operators:

Neti(·;Θ) = (σMi
◦WMi−1) ◦ · · · ◦ (σ2 ◦W1),

where W j is a matrix for the weight parameters connecting the neurons from j-th layer

to ( j + 1)-th layer, after using the standard method of adding biases to the weights. The

so-called activation functions σ j : R → R in the j-th layer are often defined by applying

some non-affine function such as sigmoid functions, ReLU (rectified linear unit), etc. In

this paper, we use tanh(x) as the activation function in all layers i.e. σ j(x) = tanh(x),

except at the output layer σMi
(x) = x . This is one of the common choices for FNN.

3.2. Minimizing procedure for b

In this section, we construct the neural network Net1to perform the minimization step

(2.3a). We minimize the functional JB(m, b) over b ∈ eB. As we said before m = mn is fixed

in this step. If n = 1, m is the initialization choice determined by (2.2), if n > 1, m is the

output of Net3. The update in this step is only done on the boundary ∂ X , so we choose

{x i}
Mb

i=1
as a set of some sufficiently densely chosen collocation points on the boundary

∂ X . The input of Net1 is the coordinates of the boundary sampling points {x i}
Mb

i=1
, and the

output is the coordinates of b. Because no derivative of b with respect to either direction in

the functional Jb, the minimization can be done point-by-point. So the minimization step

(2.3) equals to

min
bi∈∂ Y
|mi − bi|, (3.1)

where mi indicates the mapping value for each point x i ∈ ∂ X . In other words, mi is

the output value of Net3 with input x i. In general, we assume that the boundary of the

target domain Y can be expressed in terms of the elementary function. Supposing the

analytical expression is B(x) (for example, boundary on a circle: x2+ y2−1= 0). Multiply

the constraints on the boundary by a sufficiently large penalty factor Λ1 as part of the

optimization problem (3.1). Thus, the loss function corresponding to the minimal value

problem takes the form

E1 :=
1

Mb

Mb∑

i=1

�
|mi − bi|

2 +Λ1B2(bi)
�

. (3.2)

For complex boundary cases such as polygons, we discretize the boundary of Y by employ-

ing points zk ∈ ∂ Y , k = 1,2, . . . , Nb with increasing index along the boundary, and define
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zNb+1 = z1. We connect neighboring points using line segments (zk, zk+1) and determine

the closest point to mi, j on all line segments (zk, zk+1).

First we determine for a given point mi, j and a given line segment (zk, zk+1), the pro-

jection mk
i

of mi on the line through zk and zk+1. This projection is given by

mk
i = zk + tk(zk+1 − zk),

tk =
(mi − zk) · (zk+1 − zk)

|zk − zk+1|
.

If tk ∈ [0,1], the projected point is on the line segment, and the nearest point to mi, j is

given by mk
i, j

. If tk < 0, the projected point is not on the line segment and the nearest point

is given by zk, and if tk > 1, the nearest point is given by zk+1. Thus, the nearest point on

the line segment (zk, zk+1) is given by

m̃k
i = zk +min(1,max(0, tk))(zk+1 − zk).

For each point x i, j on ∂ X , obviously we can consider the nearest point bi, j on all the line

segments by

bi = argmin
m̃k

i

��m̃k
i −mi

��2.

For high-dimensional problems, we only consider two simple cases, one in which the bound-

ary function can be expressed analytically, and the other is the unit cube.

For the all sampling points
∑Mb

i=1
x i on ∂ X , the loss function is given by

E1 :=
1

Mb

Mb∑

i=1

|bi −mi |
2. (3.3)

It is worth noting that, although E1 contains the output of Net3, we only optimize the

parameters of Net1 by cutting off backpropagation with respect to the Net3 parameters.

3.3. Minimizing procedure for P

In this section, we construct the neural network Net2 to perform the minimization step

(2.3b). We minimize JI (m, P) defined in (2.1) over the matrices P ∈ eQ f /g(mn). Thus, we

require that P is symmetric and satisfies

det(P) =
f

g(m)
.

We assume that m= mn is given in this step. Same as minimizing procedure for b, if n= 1,

m is the initialization choice determined by (2.2), and if n > 1, m is the output of Net3.

The update in this step is performed only in region X (not on the boundary), so we choose

{x i}
Ma

i=1
as a set of some sufficiently densely chosen collocation points in the domain X .
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Since the integrand of JI(m, P) does not contain derivatives of P, the minimization can

be carried out pointwise; thus for each x i ∈ X we have to minimize ‖D − P‖F , where D is

the Jacobi matrix of m. For ease of presentation, we introduce the notation

P =

�
p11 p12

p12 p22

�
, D =

�
d11 d12

d21 d22

�

with d11, d12, d21, d22 can be obtained by back propagation of Net3, respectively. The input

of Net2 is the coordinates of the internal sampling points {x i}
Ma

i=1
, and the output is elements

(p11, p12, p22) of the triangle on matrix P. The same can be deduced when the dimension

is higher than 2. Next, we introduce the function

H(p11, p12, p22) =
1

2
‖D − P‖2F .

Thus, for each x i ∈ X , we have the following problem:

minimize H(p11, p12, p22),

satisfying p11p22 − p2
12 =

f

g
,

(3.4)

where f /g is shorthand notation for f (x i)/g(m(x i)). If the dimension is higher than 2, this

problem can not be solved analytically. Naturally we construct the loss function of Net2

E2 :=
1

Ma

�
‖D− P‖2F +Λ2

�
det(P)−

f

g

��
, (3.5)

where Λ2 is a suitably large constant.

The following analysis and results in this section are from Prins et al. [36], whose results

we use to construct neural networks to solve the problem, and to which we add proof details

such as the discriminant of a quadratic equation in one variable with no real roots.

We study the situation when the space dimension is 2, i.e. d = 2. For each fixed

x i ∈ X , there is a unique set (p11, p12, p22) corresponding to it by solving (3.4) analytically.

Therefore E2 is different from (3.5). First, we slightly simplify the minimization problem.

Let DS be the symmetric part of D, i.e.,

DS =

�
d11 dS

dS d22

�

with dS = (d12 + d21)/2. The new function to be minimized reads

HS(p11, p12, p22) =
1

2
‖DS − P‖2 = H(p11, p12, p22)−

1

4
(d12 − d21)

2.

Because (d12−d21)
2 is constant with respect to p11, p22, and p12, and we are only interested

in the minimizer p11, p12, p22 and not in its value H(p11, p12, p22), the minimization problem

(3.4) is equivalent to

minimize HS(p11, p12, p22),

satisfying p11p22 − p2
12
=

f

g
.

(3.6)
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Given d11, d22, dS , and f /g, we distinguish several cases, with at least one and at most

four possible solutions p11, p12, p22 that minimize HS(p11, p12, p22) and satisfy the nonlinear

constraint p11p22 − p2
12 = f /g, which are (local) minima, maxima, or saddle points. We

will show that this is always possible and refer to these solutions as possible minimizers.

Finally, we determine the global minimizer by substituting each possible minimizer in the

function HS(p11, p12, p22).

The possible minimizers of (3.6) are critical points of the Lagrangian function L =

L(p11, p12, p22,λ) defined by

L(p11, p12, p22,λ) =
1

2
‖DS − P‖2 +λ

�
det(P)−

f

g

�
, (3.7)

where λ is the Lagrange multiplier. From the Lagrange’s multiplier theorem, we obtain the

following algebraic system:

p11 +λp22 = d11, (3.8a)

λp11 + p22 = d22, (3.8b)

(1−λ)p12 = dS , (3.8c)

p11p22 − p2
12 =

f

g
. (3.8d)

It is obvious that if λ 6= ±1, the coefficient matrix of the system of linear equations

consisting of (3.8a), (3.8b), (3.8c) about p11, p22, p12 is invertible.

Assuming that λ 6= ±1, we obtain that

p11 =
λd22 − d11

λ2 − 1
,

p22 =
λd11 − d22

λ2 − 1
,

p12 =
λdS

1−λ2
.

(3.9)

Substituting these expressions in (3.8d) gives the quartic equation

a4λ
4 + a2λ

2 + a1λ+ a0 = 0 (3.10)

with coefficients given by

a4 =
f

g
,

a2 = −2
f

g
− det(DS),

a1 = ‖DS‖
2 ≥ 0,

a0 =
f

g
− det(DS).

(3.11)
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Substituting the solution in (3.8) yields the possible minimizers of HS(p11, p12, p22).

Next, we will discuss the solution of (3.10) in three situations under the assumption

that λ 6= ±1.

The first situation is when f > 0. In this situation we can rewrite the quartic equation

as two quadratic equations using Ferrari’s method [39]. Because of f > 0, a4 > 0. We

rewrite (3.10) by dividing a4

�
λ2 +

a2

2a4

�2
= −

a1

a4

λ−
a0

a4

+

�
a2

2a4

�2
.

Adding an arbitrary variable y to the square on the left side and the consequent additional

term to the right side yields

�
λ2 +

a2

2a4

+ y

�2
= 2yλ2 −

a1

a4

λ−
a0

a4

+

�
a2

2a4

�2
+

a2

a4

y + y2. (3.12)

Attempting to represent the right-hand side as a perfect square yields the following equa-

tion: �
λ2 +

a2

2a4

+ y

�2
=

�p
2yλ−

a1

2a4

p
2y

�2
. (3.13)

By equating the right-hand sides of (3.12) and (3.13), we see that this is only conceivable,

if y is the solution of the following cubic equation:

y3 + b2 y2 + b1 y + b0 = 0 (3.14)

with coefficients given by

b2 =
a2

a4

, b1 =
1

4

�
a2

a4

�2
−

a0

a4

, b0 = −
1

8

�
a1

a4

�2
.

A real solution for y can be obtained by Cardano’s method [39]

G =
3b1 − b2

2

3
, K =

27b0− 9b2 b1 + 2b2
2

27
,

z =
3

√√√√
−

K

2
+

√√√�K
2

�2
+

�
G

3

�3
+

3

√√√√
−

K

2
−

√√√�K
2

�2
+

�
G

3

�3
,

y = z −
b2

3
.

(3.15)

We obtain from (3.12) using the value of y given by (3.15)

λ2 +
a2

2a4

+ y = ±

�p
2yλ−

a1

2a4

p
2y

�
,
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where λ is represented by two quadratic equations. By solving both, the following four

roots of the quartic equation are obtained:

λ1 = −

s
y

2
+

√√
−

y

2
−

a2

2a4

+
a1

2a4

p
2y

,

λ2 = −

s
y

2
−

√√
−

y

2
−

a2

2a4

+
a1

2a4

p
2y

,

λ3 =

s
y

2
+

√√
−

y

2
−

a2

2a4

−
a1

2a4

p
2y

,

λ4 =

s
y

2
−

√√
−

y

2
−

a2

2a4

−
a1

2a4

p
2y

.

(3.16)

But there may be two problems. First, if y = 0, division will be divided by zero. It is not

allowed, because when y = 0, from (3.14) we can obtain b0 = 0, therefore a1 = ‖DS‖
2 = 0

which contradicts our assumptions λ 6= ±1 (λ = ±1 case will be discussed later). Second,

a quartic equation may have no real roots. Fortunately this will not happen again in our

algorithm. By using [14, Theorem 5], we can obtain the necessary condition for the quartic

equation to have no real roots

∆4 ≥ 0,

(H ≥ 0) or (F ≤ 0),
(3.17)

where ∆4 is the discriminant of the quartic equation. ∆4, F and H are given by

∆4 = 256a3
4a3

0 − 128a2
4a2

2a2
0 + 144a2

4a2a2
1a0

− 27a2
4a4

1 + 16a4a4
2a0 − 4a4a3

2a2
1,

H =
8a2

a4

, F =
16a2

2

a2
4

−
64a0

a4

.

For ease of expression, we define

V =
det Ds

f /g
, r =

‖Ds‖
2

f /g
≥ 0. (3.18)

From (3.17) we find

(V ≤ −2) or (−8≤ V ≤ 0). (3.19)

We rewrite the discriminant

∆4 = (2V − r)(2V + r)(27r2 + 256− 192V − 60V 2 − 4V 3).

From (3.19) we have

256− 192V − 60V 2 − 4V 3 ≥ 0.
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Thus, the following is a required condition for the quartic equation to have no actual roots:

2V ≤ −r.

Substituting (3.18) and simplifying the inequality we find

(d11 + d22)
2 ≤ 0.

This means d11 = −d22, which contradicts with the hypothesis λ 6= −1. So the real roots

of the quartic equation given by (3.16) are substituted in (3.9) and (3.4), yielding at least

two and at most four critical points of the Lagrangian L(p11, p12, p22,λ) given by (3.7), and

thus at least two and at most four possible minimizers of (3.6).

The second situation is when f = 0. That means the source density is zero. Because

a4 = 0, (3.10) reduces to a quadratic equation. And discriminant of this quadratic equation

is

∆ = a2
1 − 4a2a0 =
�
d2

11 − d2
22

�2
+ 4d2

S (d11 + d22)
2 > 0.

Always the two distinct real roots are given by

λ=
−a1 ±
q

a2
1
− 4a2a0

2a2

.

Substituting these values of λ in (3.9), we can find two possible minimizers.

The third situation is when f = 0 and a2 = 0. Substituting f = 0 and a2 = 0 in (3.11),

we can find ‖DS‖ = 0, i.e. d11d22 − ds2 = 0 and a0 = 0. Therefore, the (3.10) reduces to

a linear equation with the coefficient of the constant term to be 0. Obviously, the only root

is λ = 0. Again, the values of p11, p12, and p22 are determined using (3.9), yielding one

potential minimizer p11 = d11, p12 = dS and p22 = d22.

Next, we discuss the two situations when λ= ±1.

The fourth situation is when λ= 1. Substituting λ= 1 into (3.8) gives us d11 = d22 and

ds = 0. At this point we cannot calculate (p11, p12, p22) by (3.9). Consequently, we compute

the minimizer of H(p11, p12, p22,λ) using a different method. First of all, we simplify (3.4)

by using d11 = d22 and ds = 0

minimize H(p11, p12, p22) =
1

2

�
(p11 − d11)

2 + 2p2
12 + (p22 − d11)

2
�

,

satisfying p11p22 − p2
12
=

f

g
.

Secondly, using the constraint p11p22− p2
12 = f /g, we transform the optimization problem

over R3 into a problem over R2 restricted to the domain, where p12 = ±
p

p11p22 − f /g is

real,

argmin
(p11,p22)

1

2

�
(p11 − d11)

2 + 2

�
p11p22 −

f

g

�
+ (p22 − d11)

2

�
. (3.20)
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The minimizer can be found in the interior of this domain or on the boundary. If the

minimizer is in the interior, by setting the derivatives with respect to p11 and p22 to 0, we

will obtain a critical line

p11 + p22 = d11. (3.21)

Since p12 must be a real number, from p12 = ±
p

p11p22 − f /g, we deduce that p11p22 −

f /g ≥ 0. Combining p11p22 − f /g ≥ 0 with p11 + p22 = d11 yields

p2
11 − d11p11 +

f

g
≤ 0.

In the same way because p11 is real, the discriminant of the quadratic equation on the left

hand side greater than or equal to 0, i.e. ∆ = d2
11 − 4 f /g ≥ 0. Then, the part of the line

corresponding to real values of p11 is given by

d11 −
q

d2
11
− 4 f /g

2
≤ p11 ≤

d11 +
q

d2
11
− 4 f /g

2
. (3.22)

When (3.21) holds and p11 satisfies (3.22), we can get more than one set (p11, p12, p22) ∈ R3

such that (3.20) is minimized. Bringing (3.21) to H(p11, p12, p22) yields the minimum value

Hinter ior =
1

2
d2

11
−

f

g
,

where Hinter ior is the shorthand notation for H(p11, p12, p22) when minimizer is in the in-

terior of the domain.

Next, we need to find possible minimizers on the boundary of the domain where p12 is

real. The boundary is an hyperbola, given by p12 = 0

p11p22 =
f

g
.

Bringing into (3.20) gives

argmin
p11∈R

1

2

�
(p11 − d11)

2 +

�
f

gp11

− d11

�2�
. (3.23)

The minimizer satisfies the derivative of (3.23) with respect to p11

p11 − d11 +
f d11

gp2
11

−
f 2

g2p3
11

= 0.

Multiplying both sides of the equation by p3
11 and then factoring gives

�
p2

11
−

f

g

��
p2

11
− d11p11 +

f

g

�
= 0.
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The first two solutions are given by

p11 =
d11 ±
q

d2
11
− 4 f /g

2
,

correspond either to the ends of the line segment specified by (3.22), or are complex value.

If they are complex value, they can be ignored obviously. If they correspond to the segment’s

borders, they will provide the same H(p11, p12, p22) value as the case where minimizer is

in the interior of the domain, and can therefore be ignored as well.

The other two solutions are given by

p11 = ±

√√ f

g
,

correspond to the following two possible minimizers:

p11 = p22 = ±

√√ f

g
, p12 = 0.

Substituting these expressions in H(p11, p12, p22) yields the minimum value in boundary of

the domain

Hboundar y =
f

g
± 2d11

√√ f

g
+ d2

11,

where Hboundar y is the shorthand notation for H(p11, p12, p22) when minimizer is on the

boundary of the domain. Subtracting Hinter ior from Hboundar y yields

Hboundar y −Hinter ior =
1

2
d2

11 + 2
f

g
± 2d11

√√ f

g
≥ 0,

therefore we only need to consider the case where the minimizer is in the interior when

d2
11 − 4 f /g ≥ 0. For the sake of simplicity, we select p11 in the middle of the line segment.

To summarize the above, we can determine (p11, p12, p22) provided by






p11 = p22 =
d11

2
, p12 = ±

√√√d2
11

4
−

f

g
, if d2

11 − 4
f

g
≥ 0,

p11 = p22 = ±

√√ f

g
, p12 = 0, otherwise.

The fifth situation is when λ = −1. Substituting λ = −1 into (3.8) gives us d11 = −d22.

Now we cannot calculate (p11, p12, p22) by (3.9). Consequently, we compute the minimizer

of H(p11, p12, p22,λ) using a different method. We find from (3.8a) and (3.8c)

p11 − p22 = d11, p12 =
ds

2
.
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Substituting these in (3.8d) we can obtain a quadratic equation

p2
11 − d11p11 −

d2
S

4
−

f

g
= 0.

Solving for p11 we find two solutions

p11 =
d11

2
±

q
d2

11
+ 4 f /g + d2

S

2
,

p12 =
dS

2
,

p22 = −
d11

2
±

q
d2

11
+ 4 f /g + d2

S

2
,

which are always real.

Summary. The following is the process for minimizing over P. When the space dimen-

sion is 2, for each point x i which is in the interior of domain X , we calculate the value of

f (x i)/g(m(x i)), where m(x i) is the output of the Net3 with input x i. We determine which

of the five situations discussed above applies and find at least one and at most four possi-

ble minimizers (p11,i , p12,i , p22,i) for fixed x i. From this and (3.5), we can summarize the

modified loss function of Net2

E2 :=






1

Ma

Ma∑

i=1

�
‖D − P‖2F +Λ2

�
det(P)−

f

g

��
, d > 2,

1

Ma

Ma∑

i=1

�
(p11 − p11,i)

2 + (p12 − p12,i)
2 + (p22 − p22,i)

2
�

, d = 2.

(3.24)

In practice, when d > 2 the ‖D − P‖2F part of E2 can be modified to

1

Ma

Ma∑

i=1

∑

m¶n

|Pmn − dmn|
2

d2
mn

to prevent optimization towards one component while ignoring other components. Similar

to the minimizing procedure for b, it is worth noting that, although E2 contains the output

of Net3, we only optimize the parameters of Net2 by detaching the output of Net3.

3.4. Minimizing procedure for m

In this section, we construct the neural network Net3 to perform the minimization step

(2.3c). We assume P and b are given by Net1 and Net2 and minimize J(m, P, b) over the

functions m ∈ eV . For ease of notation, we omit the indices n and n + 1. In contrast to

the other two minimization steps, this step cannot be performed pointwise. The update
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in this step is not only done on the boundary ∂ X , but also in the interior of domain X , so

collocation points are {x i}
Mb+Ma

i=1
. At this point the loss function of Net3 is

E3 := (1−α)E1 +αE2. (3.25)

It is worth noting that, although E3 contains the output of Net1 and Net2, we only optimize

the parameters of Net3 by detaching the output of Net1 and Net2.

As can be seen from Fig. 3, the choice of α has a large impact on the performance of the

algorithm (speed of convergence, degree of fit of the solution at the boundary, etc.) Next

we give two strategies for α selection:

1. Frequency principle [45]. It means Deep Neural Networks (DNNs) often fit target

functions from low to high frequencies during the training process. For this algorithm,

fitting the boundary is more difficult. In order to make the boundary fit better, α

should be taken relatively small, such as 0.2, 0.1, 0.05, etc.

2. α adaptive [26]. We train Net3 with minimax architecture, which changes the mini-

mization E3 to

min
x

max
w

E3(w, x) = α1(w)E1(x) +α2(w)E2(x), (3.26)

where the weights of different losses α1,α2 are now functions of parameters w =

(w1, w2).

In this article, the weights of different losses are defined as the softmax functions

αi(w) =
exp(wi)

exp(w1) + exp(w2)
, i = 1,2. (3.27)

After applying softmax functions, the range of the weights of different losses αi(w) will be

in the interval [0,1], and they will add up to one, similar to (3.25). Consider the updates

of a gradient descent/ascent approach to this problem:

x k+1 = x k −ηk∇x E3(w, x),

wk+1
1 = w1

k +ρk
1∇w1

E3(w, x),

wk+1
2
= w2

k +ρk
2
∇w2

E3(w, x),

where ηk > 0 is the learning rate for the neural network weights x k at step k, ρk
s > 0 is

a separate learning rate for the self-adaption weights, for s = 1,2. Combining two strate-

gies, we can initialize the Net3 parameters w such that α= 0.2 or a sufficiently small value

in the interval [0,1], and train it with minimax architecture. At this point usually the algo-

rithm has good performance.
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4. Computation of u and Algorithm Summary

The minimization steps from Section 3 are repeated until convergence. As we are inter-

ested in the solution of the Monge-Ampère equation, we derive u from the mapping m by

∇u = m, i.e., we calculate u such that ∇u = m. This u will be the approximate solution of

the Monge-Ampère equation (MA) with boundary condition (BV2). In the ideal situation,

Dm= P and thus di j = d ji. In this case there exists a function u such that∇u= m, because

m is a conservative vector field [30]. However, we will most likely not be in this ideal situ-

ation. Therefore we look for a function which has m as gradient in the least-squares sense,

i.e.,

u= argmin
φ

I(φ), I(φ) =
1

2

∫

X

|∇φ −m|2. (4.1)

4.1. Fully input convex neural networks

According to the previously described Breniers’ theorem, the optimal transport m is the

gradient of a convex function u, which is precisely what we seek. Consequently a fully input

convex neural network (FICNN) [1] which explicitly constraints the function approximated

by the network to be convex naturally lends itself to our proposed requirement. Generally

we consider a k-layer FICNN, shown in Fig. 1.

Figure 1: A fully input convex neural network for Monge-Ampère equation.

This model defines a neural network over the input x . The update rule and final output

are

zi+1 = gi

�
W
(z)

i
zi +W

(x)

i
x + bi

�
, i = 0, . . . , k − 1,

û(x ;θ) = zk.

Here, in the FICNN, the activation function g is a non-decreasing convex function and the

weights W
(z)

i
are constrained to be non-negative. There is no constraints for weights W

(x)

i

(with z0,W
(z)
0
≡ 0). Here, θ refers to all the parameters {W

(y)

0:k−1
,W

(z)

1:k−1
, b0:k−1}. The

following are the facts for deriving the convexity of the network:

1. A linear combination of convex functions with positive coefficients is convex.
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2. If g is a convex function, f is a non-decreasing convex function and R(g) ⊂ D( f ), the

composition f ◦ g will be convex.

Now there is a lack of theoretical proofs to show whether any convex function can be ap-

proximated (to arbitrary accuracy) by FICNN, but numerical experiments have shown good

results in using FICNN to solve the Dirichlet problem for the Monge-Ampère equation [32],

to make structured predictions [1], and so on. Therefore we can construct Net4(FICNN) to

solve u. From (4.1), the loss function used in this case is

E4 :=
1

Ma +Mb

Ma+Mb∑

i=1

�
|∇u−m|2
�

.

Noting that problem (4.1), which obviously has a non-unique solution due to the fact that

it contains only the derivative of u, and is accurate to an additive constant. We add the

constraint

u(x i) = 0,

for some arbitrarily chosen i to make the solution unique. In this case u(x) is expressed as

u(x) = Net4(x) + u(x i)−Net4(x i).

4.2. Algorithm summary

The numerical algorithm is summarized as follows. We discretize the source domain X

and the boundary ∂ X . The initial guess m0 is given by (2.2). Subsequently, we construct

three neural networks to repeatedly perform the steps given by (2.3a)-(2.3c). The first

step is a minimization for b and is to update the parameters of Net1 by minimization loss

function E1 about all the boundary points. The second step is a minimization procedure for

P and is to update the parameters of Net2 by minimization loss function E2 about all the

interior points. The third and last step is a minimization procedure for m and is to update

the parameters of Net3 by minimization loss function E3. The three steps are repeated

until the functional J(m, b, P) is no longer decreasing. If needed, the convex function u is

computed from m by updating the parameters of Net4 (FICNN).

5. Numerical Examples

In this section, we apply the algorithm introduced before to six concrete examples: in

the first test problem, we map a square with uniform density into a circle with uniform

density; in the second, a circle to a square; in the third, a square to target-distributions

on non-convex domains; in the fourth, we challenge our algorithm to design a special lens

mapping a uniform, square parallel beam of light to a projection of a famous Netherlands

painting on a wall; in the fifth, we use our algorithm to move the grid adaptively under

a given monitoring function M ; in the sixth, we map a cube of uniform density into a ball

of uniform density as an illustration of the potential of the algorithm to expand to higher

dimensions.
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In our numerical calculations, all derivatives (our algorithm contains only first-order

derivatives) and the gradient of the loss functions with respect to the parameters (weights

and biases) has been calculated using automatic differentiation in Pytorch [34]. We train

these networks, i.e. minimize the loss functions, using the Adam algorithm [23] from

Pytorch.

The number of outer iterations of the algorithm is denoted as T . The number of inner

iterations for updating the parameters of Neti is denoted as t i , i = 1,2,3,4. For a fixed T ,

Adam needs an initial learning rate l r0. Inspired by the Learning Rate Annealing [43]

(Noam Decay [40], Cosine Annealing Decay [28]), we can set the l r0 as a decay function

with respect to T , for example

l r0(T ) = l r0(T − 1) ∗ d−0.5
out ∗min
�
T−0.5, T ∗ T−1.5

warmup

�
, (5.1)

where dout is the output dimension of the neural networks, Twarmup is the number of pre-

heating steps which is equal to 10 in this article, and l r0(T ) is the initial learning rate of

the neural networks at T outer iterations.

The activation functions are all chosen as tanh. Initial values for weights are chosen

by Xavier uniform [16] and initial values for biases are zero. In the case of FICNN, some

parameters w need to remain nonnegative. This issue has been resolved by expressing these

parameters in the form w = v2 and we train with respect to v rather than w.

The scattering methods in this paper all use the Quasi-Monte Carlo method based on

Sobol sequences [22] from the SciPy library [42]. In contrast to common pseudo-random

numbers, it is a Low Discrepancy Sequence [24] and more uniformly distributed in high-

dimensional space.

The value of α taken during training affects the performance of the algorithm. It is not

good to compare J in the case of different α. Therefore, to unify the evaluation criteria

with different α, J of all the graphs in the following examples are denoted as:

J(m, P, b) =
1

2

�
Jb(m, b) + JI(m, P)

�
.

5.1. From a square to a circle

In our first test problem, the source domain is given by X = [−1,1]2, and the target

domain by Y = {(p,q) ∈ R2 | p2 + q2 ≤ 1}. We have f (x , y) = 1/4 and g(p,q) = 1/π.

In our numerical illustrations we use 4096 randomly distributed collocation points in-

side the domain, and 512 uniformly distributed points on the boundary. We construct Net1

with 6 hidden layer and 50 hidden nodes, Net2 with 8 hidden layer and 50 hidden nodes

and Net3 with 12 hidden layer and 50 hidden nodes. Because the boundaries of the target

domain have smooth analytic expressions, the E1 function is taken as (3.2), and we take

the factor Λ1 = 102 in front of the term which penalizes the degree of deviation from the

boundary.

We calculate the mapping on the collocation points using T = 400 outer iterations

in (2.3). In each outer iteration, the neural networks corresponding to each update step
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(2.3a)-(2.3c) will be trained with Adam for t i = 400 inner iterations. The initial learning

rate of each neural network at each outer iteration is given by (5.1), where l r0(0) = 10−3.

When Net3 is training with minimax architecture (3.26), at each outer iteration the initial

learning rates ρ1
2 ,ρ1

1 for w = (w1, w2) are set to 10−3.

Subsequently we test the algorithm with different α. The influence of α on the con-

vergence of the algorithm is shown in Fig. 3. It is obvious that the choice of α strongly

influences the performance of the algorithm. If α is a fixed constant value, experiments

are the only method to determine a suitable value for α. The value of α between 0.1 and

0.5 results in good performance. Fortunately, one of the best choice of α can be adaptively

determined by the minmax structure (3.26). From Fig. 2(a), the slower training at α = 0.5

may be due to the issue of gradient pathologies arising from imbalanced loss terms [43].

And the adaptive modification of α makes it simple to train the two components JI and Jb

by balancing them.

For α adaptive case, we selected 101×101 grids as a test set. After 400 outer iterations,

the value of J , JI , Jb are 1.31 ·10−6, 1.42 ·10−6, 1.19 ·10−6 respectively. The distribution of

the test set after mapping is shown in Fig. 4(a). The error plot on the test set with respect

to J is shown in Fig. 4(b).

(a) α= 0.5 (b) α adaptive

Figure 2: Values of JI and JB for the square to a circle problem as function of the iteration number.

Figure 3: Value of J as a function of the number of iterations for mapping a square to a circle with
various values of α.
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(a) The mapping for the square to a circle problem after 400

iterations on the test set, and α adaptive

(b) Value of J for mapping a square to a circle on the test

set, α adaptive

Figure 4: The distribution of the final mapping for α adaptive and the error map about J .

5.2. From a circle to a square

In the second test instance, a circle is mapped to a square. We have

f (x , y) =

( 1
π

, if x2 + y2 ≤ 1,

0, otherwise.

And we have g(p,q) = 1/4 for target domain [−1,1]2 ∈ R2.

In our numerical illustrations we use 4000 randomly distributed collocation points in-

side the domain, and 500 uniformly distributed points on the boundary.

The structures of Net1, Net2, Net3 are the same as Section 5.1. Because the boundary

of the target domain is a square, the E1 function is taken as (3.3). In addition to the

l r0(0) = 10−4, other initial parameters such as the number of outer and inner iterations,

and the learning rate decay strategy are all the same as Section 5.1.

We also compared the performance of the algorithm for different choices of α. The

results are shown in Fig. 5. When α is between 0.05 and 0.2, the algorithm have better

performance. When the α adaptive strategy is chosen, the algorithm is very close to the

best, although not the best performance. In the absence of a priori experience, it is usually

a good approach to adopt the α adaptive strategy.

We selected 101×101 grids as a test set. After mapping, the distribution of the different

values of α in the test set is shown in Fig. 6. Corners frequently presented difficulties with

mapping convergence. Selecting the proper value of α lessens the severity of this issue.

5.3. A non-convex target

In the third test case, the source domain is a uniform square source distribution on the

square [−1,1]2 with f (x , y) = 1/4. The target domain non-convex with uniform distribu-

tion, and the target boundary is defined by

ρ(θ) = 1+ C cos(3θ), (5.2)
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Figure 5: Value of J as a function of the number of iterations for mapping a circle to a square with
various values of α.

(a) α= 0.9 (b) α = 0.6

(c) α= 0.1 (d) α= 0.1, value of J for final mapping on the test set

Figure 6: Final mapping after 400 iterations on a 101× 101 grid for the second test case.

where the ρ coordinate represents the distance from the pole, and the θ coordinate repre-

sents the polar axis. The larger the C, the stronger the convexity. We test the algorithm for

C ∈ {0.1,0.2,0.3,0.4}.
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(a) C = 0.1 (b) C = 0.2

(c) C = 0.3 (d) C = 0.4

Figure 7: Mapping after 200 iterations for target domains with boundary defined by (5.2).

In our numerical illustrations we use 10000 randomly distributed collocation points

inside the domain, and 1000 uniformly distributed points on the boundary.

We construct Net1 with 8 hidden layer and 50 hidden nodes, Net2 with 10 hidden

layer and 50 hidden nodes and Net3 with 12 hidden layer and 50 hidden nodes. The other

parameters settings are the same as in the second test case except that the t1 ( Net1 iteration

period) is increased appropriately to equal 600 or 800.

The value of J on the test set after 200 iterations are 3.28 · 10−6, 3.71 · 10−6, 1.47 ·

10−5, 6.32 · 10−5 as shown in Fig. 8. It is shown in Fig. 7 that convergence issues exist for

target domains that greatly deviate from a convex shape, but when the shape deviates just

somewhat the technique performs satisfactorily.

5.4. Design of lens

Considering the problem of designing a free-form lens or free-form mirror that, when

illuminated by a parallel beam of light with an arbitrary light distribution, produces a given

illumination pattern on the target. Both problems can be modeled by strongly nonlinear

second-order partial differential equations of Monge-Ampère type. Such optical systems

have a wide range of technological applications, such as spotlights with predetermined

lighting patterns used in street lamps or automotive headlights [2, 37]. In this article, we
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Figure 8: Value of J as function of the iteration number with different values of C for the third test
case.

will push our algorithm to its limits by designing a lens that transforms a square uniform

parallel beam of light into a target distribution comparable to a well-known Dutch artwork.

In this case, we have a parallel beam of light in the z-direction with radiant exitance

M(x , y)[W/m2] given by

M(x , y) =

¨
1, if (x , y) ∈ [−1,1]2,

0, otherwise,

and an irradiance on the plane P given by L(x , y)[W/m2]. Because the source density

is uniformly distributed, it is easy to derive that source density f (x , y) = M(x , y)/4. The

lens that redistributes the parallel beam in the target region such that the irradiance of the

target region is L(x , y)[W/m2] can be expressed by u(x , y) which is the convex solution

of the Monge-Ampère equation (MA) with boundary condition (BV2). To get the target

density g(p,q) (shown in Fig. 9(a)) of the painting “Girl with a Pearl Earring” by the Dutch

painter Johannes Vermeer, we convert it into grayscale values. The range of grayscale

values is 0 to 255. In order to avoid g(p,q) for some (p,q) which gives division by 0 in the

Monge-Ampère equation, we increase the minimum illuminance of the picture to be 5% of

the maximum illuminance. Images are made up of blocks of pixels, and the conversion of

pixels to grayscale values means that the image can be viewed as a piecewise function to

find its density distribution g(p,q). The width of the image is 53.2 and the height is 63, so

we put the target field in [−0.532,0.532]× [−0.63,0.63].

Because the picture details are many, in our numerical illustrations we use 40000 ran-

domly distributed collocation points inside the domain, and 2000 uniformly distributed

points on the boundary.

We construct Net1 with 8 hidden layer and 80 hidden nodes, Net2 with 12 hidden layer

and 80 hidden nodes and Net3 with 16 hidden layer and 80 hidden nodes. Except t i = 600

inner iterations, other initial parameters are all the same as Section 5.2. The graphs in this

subsection are all for α = 0.2.
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(a) The target distribution. Note that the target domain is

not convex

(b) The mapping after the algorithm

has converged

Figure 9: The target distribution and mapping for the lens.

Figure 10: Values of JI and JB for the painting test case as function of the iteration number.

We stop the algorithm after 160 outer iterations, because JI and Jb no longer appear

to decline considerably. The values of JI and Jb as function of the iteration number are

plotted in Fig. 10. We select 401× 401 grids as a test set. The resulting mapping on the

test set is shown in Fig. 9(b). The higher the gray value of the area, the lighter the color

and the greater the density of the corresponding test points.

In this problem we are more interested in u(x , y). So we construct Net4 with 8 hidden

layer and 100 hidden nodes to compute u(x , y). We first iterate 15000 times with the

Adam optimizer with an initial learning rate of 8 · 10−4, and then 3800 times with LBFGS

optimizer with a learning rate of 1 and history size = 20. All parameter choices for the

LBFGS are referenced in [31]. The function u(x , y) representing the lens surface on the

same test set is shown in Fig. 11.
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Figure 11: The function u(x , y) representing the lens-surface.

5.5. Moving mesh generation

Our another interest in the Monge-Ampère equation comes from the field of a moving

mesh which is suitable for the numerical solution of partial differential equations. One of

the three approaches to mesh adaptivity [38], the r-adaptivity, aims to get the maximum

possible accuracy for a given problem and number of mesh points (with fixed connectivity).

The core of r-adaptivity is to find a mapping m from the computational domain X to the

physical domain Y so that generated mesh in the physical domain can be close to one

which equidistributes a suitable monitor M of the properties of the underlying solution,

computational errors, and/or of the regularity of the grid.

But the mapping m which equidistributes the respective monitor function M is not

unique. In [6], by adding constraints where the map m should minimize the distance that

the uniformly distributed mesh points in the X have to move to the associated points in

the Y , which not only uniquely determine the mapping m, but m is the optimal transport

satisfying

det (Dm) =

∫
Y

M(m(ξ, t), t)dη

M(m(ξ, t), t)
∫

X
dξ

,

m(∂ X ) = ∂ Y,

where ξ and η are computational coordinate and physical coordinate.

In the fifth test case, the source domain is a uniform square source distribution on the

square [0,1]2 with f (x , y) = 1 ( f = 1/
∫

X
dξ), the target domain is also the square [0,1]2

with

g =
M(m(ξ, t), t)
∫

Y
M(m(ξ, t), t)dη

.
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The monitor function is given by

M1(x , y, t) = 1+ 5 exp
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�2
+

�
y −

1

2
−

sin(2πt)

2

�2
− 0.01

����

�
.

This is stated in [8] as a harsh test of a moving mesh approach, and the meshes produced

using the (velocity-based) geometric conservation law (GCL) method [8] show a significant

degree of skewness.

In our numerical illustrations, we use 80×80 grids as test set and training set, because

we only care about the movement of the grid points.

We construct Net1 with 8 hidden layer and 80 hidden nodes, Net2 with 12 hidden

layer and 80 hidden nodes and Net3 with 15 hidden layer and 80 hidden nodes. The

other parameters settings are the same as in the first test case except T = 100, because an

accurate solution of the underlying PDE may not necessarily require an exact solution of

the mesh equation.

From Fig. 12, it inherits the advantages of the original algorithm [6]. The mesh gen-

erated has excellent regularity and has no evidence of skewness. And the generated grid

(a) t = 0 (b) t = 0.25

(c) t = 0.5 (d) t = 10

Figure 12: The fifth test example, the distribution of 80× 80 grid points in Y .
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moves closely with the movement of the circle

M1(x , y, t) = 1+ 5 exp

�
−50

����
�

x −
1

2
−

cos(2πt)

4

�2
+

�
y −

1

2
−

sin(2πt)

2

�2
− 0.01

����

�
.

In addition, this algorithm also gives the possibility to generate mesh in higher dimensional

spaces.

5.6. From a cube to a ball

In the sixth test instance, a cube is mapped to a unit ball. We have

g(p,q, s) =






3

4π
, for p2 + q2 + s2 ≤ 1,

0, otherwise.

And we have f (x , y, z) = 1/8 for target domain [−1,1]3 ∈ R3.

In our numerical illustrations we use 215 randomly distributed collocation points inside

the domain, and 3072 uniformly distributed points on the boundary.

We construct Net1 with 10 hidden layer and 80 hidden nodes, Net2 with 15 hidden

layer and 80 hidden nodes and Net3 with 18 hidden layer and 80 hidden nodes. Other

parameters are the same as Section 5.1 except that all the t i = 1000. The E1 function is

taken as (3.2), and we take the factor Λ1 = 102.

After 400 outer inter of training, we stop training. We select 40×40×40 grids as a test

set. On the test set the value of J , JI , JB are 4.11 · 10−4, 6.90 · 10−4, 1.32 · 10−4. The

resulting mapping on the test set is shown in Fig. 14. The values of JI and Jb as function

of the iteration number are plotted in Fig. 13.

Figure 13: Values of JI and JB for the from a cube to a ball test case as function of the iteration number.
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Figure 14: The final mapping for the cube to unit ball test case.

6. Conclusions

We design a new algorithm based on machine learning to solve the solution of optimal

mass transport and the corresponding convex solution of the Monge-Ampère equation with

the transport boundary conditions. The method builds on the work of Prins et al. [36],

Glowinski et al. [7]. We use a relaxation approach to construct three neural networks to

minimize b, P, m. It not only reduces the size of the problem but also makes each subprob-

lem easy to solve. In particular, when the problem is a two-dimensional case, the point-

wise minimization of P can be solved analytically so that we can construct the modified

loss function of Net2 (3.24) which can make Net2 easy to train.

Unlike most algorithms that directly calculate the solution of the Monge-Ampère equa-

tion, we first find the optimal transport which is the gradient of the solution, and then

compute the solution by input convex neural network so that the solution can maintain

convexity. Selection of α for Net3 affects the performance of the algorithm. We make it

easy to select α based on the two strategies we have proposed rather than experimenting

so that the algorithm often performs well.

There are extremely few numerical methods for the Monge-Ampère equation with trans-

port boundary conditions, cf. [3,4,13,19]. Our algorithm has the ability to handle optimal

transport problems where the target domain is non-convex. It is also able to solve high

dimensional problems.
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