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Abstract. Singularly perturbed problems present inherent difficulty due to the pres-

ence of thin layers in their solutions. To overcome this difficulty, we propose using deep

operator networks (DeepONets), a method previously shown to be effective in approxi-

mating nonlinear operators between infinite-dimensional Banach spaces. In this paper,

we demonstrate for the first time the application of DeepONets to one-dimensional sin-

gularly perturbed problems, achieving promising results that suggest their potential as

a robust tool for solving this class of problems. We consider the convergence rate of the

approximation error incurred by the operator networks in approximating the solution

operator, and examine the generalization gap and empirical risk, all of which are shown

to converge uniformly with respect to the perturbation parameter. By utilizing Shishkin

mesh points as locations of the loss function, we conduct several numerical experiments

that provide further support for the effectiveness of operator networks in capturing the

singular layer behavior.

AMS subject classifications: 65M10, 78A48

Key words: Deep operator network, singularly perturbed problem, Shishkin mesh, uniform conver-

gence.

1. Introduction

Singularly perturbed problems (SPP) are widely employed in diverse areas of applied

mathematics, such as fluid dynamics, aerodynamics, meteorology, and modeling of semi-

conductor devices, among others. These problems incorporate a small parameter ǫ which

typically appears before the highest order derivative term and reflects medium properties.

As ǫ → 0, the derivative (or higher-order derivative) of the solution to the problem be-

comes infinite, leading to the emergence of boundary or inner layers. In these regions, the
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solution (or its derivative) undergoes significant changes, while away from the layers, the

behavior of the solution is regular and slow. Due to the presence of thin layers, conventional

methods for solving this class of problems exhibit either high computational complexity or

significant computational expense. For a comprehensive analysis and numerical treatment

of singularly perturbed problems, refer to the books by Miller et al. [24] and Roos et al. [28].

Deep neural networks possess the universal approximation property, which allows them

to approximate any continuous or measurable finite-dimensional function with arbitrary

accuracy. Consequently, they have become a popular tool for solving partial differential

equations (PDEs) by serving as a trial space. PDE solvers based on neural networks in-

clude Feynman-Kac formula-based methods [2,6,7] and physics-informed neural networks

(PINNs) [27]. Moreover, machine learning techniques can be used for operator learning

(i.e., mapping one infinite-dimensional Banach space to another) to approximate the un-

derlying solution operator of an equation. To accomplish this, new network structures

have been proposed, such as deep operator networks (DeepONets) [21] and neural opera-

tors [14,16].

The broad adoption of machine learning techniques in solving PDEs has introduced

novel approaches for handling singularly perturbed problems. However, the spectral bias

phenomenon [26], which refers to the difficulty of neural networks in capturing sharp

fluctuations of the function, poses a significant challenge for directly applying machine

learning techniques to solve such problems. In [1], it was observed that the traditional

PINNs approach did not produce a satisfactory solution nor capture the singular behavior

of the boundary layer. To overcome this problem, a deformation of the traditional PINN

based on singular perturbation theory is presented in [1].

Operator learning techniques have received little attention in the context of singularly

perturbed problems, leaving an important research gap to be filled. Our focus is on Deep-

Onet, a simple yet powerful model. It originated from the universal approximation theorem

proved by Chen et al. [4], where the shallow network was later extended to a deep net-

work by Lu et al. [21], resulting in the proposal of DeepONets. This theorem was further

extended to more general operators in [15], thereby providing theoretical assurance of

the validity of DeepONet to approximate the solution operator. Specifically, for any error

bound ε, there exists an operator network that can approximate the operator with an accu-

racy not exceeding ε, while also guaranteeing that the size of the network is at most poly-

nomially increasing concerning 1/ε. Theoretical and experimental results [5, 15] support

the polynomially increasing property of DeepONets in some cases. DeepONet has demon-

strated promising performance in various applications, including fractional derivative oper-

ators [21], stochastic differential equations [21], and advection-diffusion equations [5]. To

extend the applicability of DeepONet to more general situations, several deformations have

been proposed, including physics-informed DeepONet [32], multiple-input DeepONet [10],

pre-trained DeepONet for multi-physics systems [3,23], proper orthogonal decomposition-

based DeepONet (POD-DeepONet) [22], and Bayesian DeepONet [17].

In this paper, we employ DeepONets to approximate the solution operator of the con-

vection-diffusion problem, with particular attention to the case of Dirichlet boundary condi-

tions. As it is known that for non-homogeneous Dirichlet boundary conditions, the solution
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u can be obtained by subtracting a linear function satisfying the original boundary condi-

tion to obtain a solution u∗ satisfying the homogeneous boundary condition, we consider

the following one-dimensional singularly perturbed problem:

− ǫu′′ + pu′ + qu= f , x ∈ (0,1),

u(0) = u(1) = 0,
(1.1)

where p(x) ≥ α > 0, and both p and q are assumed to be sufficiently differentiable. The

solution to this problem typically exhibits a boundary layer near x = 1. Define the operator

G : L2([0,1])→ H1
0([0,1]) ∩H2([0,1]), f 7→ u, where u satisfies

ǫ

∫ 1

0

u′v′d x +

∫ 1

0

pu′vd x +

∫ 1

0

quvd x =

∫ 1

0

f vd x for all v ∈ H1
0
. (1.2)

Suppose G is Lipschitz continuous. We utilize DeepONets to approximate G , which is

subject to three sources of error: approximation error, generalization error, and optimiza-

tion error. We focus our attention on the first two sources of error. For singularly perturbed

problems, it is critical to determine whether the error is ǫ-uniform. We adopt a general

framework presented in [15] to estimate the approximation error and analyze the con-

vergence rate of this error. Our analysis shows that the approximation error is ǫ-uniform.

Given the finite nature of the dataset, training a DeepONet is constrained by limited data

availability. Hence, the selection of data assumes critical importance in determining the

performance of the model. Our numerical experiments demonstrate that the performance

of the trained model is significantly affected by the choice of locations in the loss function.

Additionally, the generalization ability of the model — i.e. its capacity to perform well on

data points beyond the training dataset, is of particular interest in our study. We select the

Shishkin mesh points [13] as locations and analyze the generalization gap and empirical

risk of our model. The results show that the model exhibits strong generalization capa-

bility when applied to boundary layer problems, and we present numerical examples to

complement our theoretical findings.

The structure of the paper is organized as follows. In Section 2, we provide a brief in-

troduction to the DeepONets structure and properties of the operator G . Section 3 presents

an analysis of the approximation error that arises when the operator network approximates

the operator G . In Section 4, we investigate the generalization gap and empirical risk. The

Appendix A includes some of the proof procedures. In Section 5, we provide numerical

demonstrations of the efficacy of the proposed method, as well as a comparative analysis

of the model’s performance under different location selections. Finally, we summarize the

work of this study and also discuss potential future work.

2. Preliminaries

2.1. DeepONets

A neural network is a composition of affine functions Al : Rdl−1 → Rdl and activation

functions σ : R→ R. Given an input x ∈ Rd0 , the output of the l-th layer neural network
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is defined as

y l(x ) = σ ◦Al(y l−1) = σ
�
W l yl−1(x ) + bl

�
,

where W l and bl are the weight matrix and bias vector of the affine function. The output

of the last layer of the neural network is the output of the whole neural network and can

be expressed as follows:

Nθ (x ) = y L(x ) =AL ◦σ ◦AL−1 ◦ · · · ◦σ ◦A2 ◦σ ◦A1(x ), (2.1)

where θ = {W l , b l}1≤l≤L is the set of learnable parameters obtained by minimizing the

loss function during the training of the neural network. The size of a neural network is

commonly quantified by its depth L and width maxl dl .

In deep neural networks, the ReLU, Sigmoid, and Tanh activation functions are com-

monly used. Other activation functions, such as Sine [29], SReLU [19], and adaptive acti-

vation functions [9,25], have also been proposed.

A DeepONet comprises two sub-networks in the form of (2.1): one to capture the input

function’s information at a fixed number of points x i, with i = 1, . . . , m (i.e., the branch

net), and another to encode the output functions’ locations (i.e., the trunk net). In this

work, we adopt the form presented in [15] for the purpose of theoretical analysis, where

DeepONet is decomposed into the three operators — viz.

1. Encoder. For a given constant m and m-dimensional vector {x i}mi=1
, x i ∈ D, Encoder

E is defined as

E : L2(D) → Rm, f 7→ { f (x i)}mi=1
.

2. Approximator. Approximator A is a neural network, defined by Eq. (2.1), takes

a specific form given by

A : Rm → Rp, { f j}mj=1 7→ {Ak}pk=1
.

3. Reconstructor. Trunk net τ is a neural network of the form (2.1) with d0 = 1 and

dL = p+1, which can be expressed as τ(x) = (τ0(x),τ1(x), . . . ,τp(x)), and then the

reconstructor R induced by τ can be defined as

R =Rτ : Rp → L2(U), {αk}pk=1
7→ τ0(·) +

p∑

k=1

αkτk(·).

Then the DeepONet, as proposed in [21], can be expressed as

N : L2(D) → L2(U), f 7→ R ◦A ◦ E ( f )(·). (2.2)

A diagram representation of the model’s structure is shown in Fig. 1.

DeepONet is a neural network model with two inputs: a function f and a location x .

Given that neural networks require finite-dimensional inputs, f is evaluated at m-dimen-

sional location vectors through point-wise evaluation E , resulting in an m-dimensional vec-

tor that serves as input for the branch net. As a supervised learning model, DeepONet relies

on a large dataset of input-output pairs to train the network, a process that is performed

offline. Once the network is trained, it can be used as an operator, providing an approxima-

tionN ( f )(x) of the equation’s solution for any reasonable input function f and location x .
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Figure 1: Architecture of DeepONets.

2.2. Prior estimate

We introduce two lemmas that describe the fundamental properties of this operator.

Lemma 2.2 provides a sufficient condition for the Lipschitz continuity of G .

Lemma 2.1. [cf. Kellogg et al. [12]] Given f ∈ C∞ such that

| f (x ,ǫ)| ≤ K

�
1+ ǫ−1 exp

�
−α(1− x)

ǫ

��
,

the solution G ( f ) to Eq. (1.2) satisfies

|G ( f )(x)| ≤ C ,

where C is a constant that depends only on K.

Lemma 2.2. Under the conditions 0 < ǫ ≪ 1, p(x), q(x) ∈ C∞, p(x) ≥ α > 0, q(x) −
p′(x)/2 ≥ β > 0, with α and β remaining independent of ǫ, and f ∈ L2([0,1]), the weak

solution u to Eq. (1.2) satisfies the inequality

∫ 1

0

u2d x ≤ C

∫ 1

0

f 2d x ,

where C is a constant independent of ǫ.

Proof. To prove the inequality stated in the theorem, we start by setting v = u in the

Eq. (1.2), which gives us

ǫ

∫ 1

0

(u′)2d x +

∫ 1

0

�
q(x)− p′(x)

2

�
u2d x =

∫ 1

0

f ud x .

We can then use the condition q(x) − p′(x)/2 ≥ β > 0, along with the Cauchy-Schwarz

inequality, to obtain the desired inequality.
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3. Approximation Error

In this section, the approximation error generated by the operator network in approxi-

mating the solution operator G is analyzed quantitatively. Given µ as a probability measure

on L2([0,1]), referring to the method in [15], we use L2(µ) norm to measure the error be-

tween the operator N and the operator G , i.e.

bE (N ) = ‖G −N ‖L2(µ) =

�∫

L2([0,1])

‖G ( f )−N ( f )‖2
L2([0,1])

dµ( f )

�1/2

. (3.1)

The universal approximation theorem of T. Chen and H. Chen [4] and its generalized

version [15] both guarantee the existence of a DeepONet of the form (2.2) that can approx-

imate a given nonlinear operator G with an error not exceeding a pre-specified bound ε.

However, these theorems do not provide specific information on determining the config-

uration of a DeepONet, such as the size of the branch and trunk networks. Our goal is

to better understand the performance of DeepONets in approximating nonlinear opera-

tors by conducting a quantitative analysis of their efficiency, specifically investigating how

variations in network size and structure affect their approximation accuracy and computa-

tional efficiency. Lanthaler et al. [15] propose a general framework for error estimation,

which includes results for general operators and several specific examples. Although op-

erator networks have not yet been applied to singularly perturbed problems, the universal

approximation theorem assures the existence of a DeepONet of the form (2.2) that can ap-

proximate the solution operators for this class of problems. Our main focus in this section

is to quantitatively analyze the efficiency of DeepONets in approximating these operators.

3.1. Error estimate

To estimate (3.1), it is necessary to first identify the underlying space. Let µ =N (Eµ, Γ )

be the Gaussian measure on the Hilbert space X , where Eµ =
∫

X
udµ(u) is the mean and Γ

is the covariance operator satisfying that, for any k, l ∈ X and x ∼ µ,

〈k, Γ l〉 = E〈k, x −Eµ〉〈x −Eµ, l〉,

which implies that Γ = E(x −Eµ)⊗ (x −Eµ).
Let {λk,φk}+∞k=1

denote eigenvalue-eigenvector pairs of the operator Γ , where

λ1 ≥ λ2 ≥ · · · ,

and the set {φk}+∞k=1
is orthogonal. Additionally, let {ξk}+∞k=1

be a set of independent identi-

cally distributed (i.i.d.) random variables with ξ1 ∼ N (0,1). We can express x ∼ µ using

the Karhunen-Loève (K-L) expansion [20], i.e.

x = Eµ +

+∞∑

k=1

Æ
λkξkφk.

This series converges in the quadratic mean uniformly on [0,1].
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In this work, we consider the input space to be endowed with a Gaussian measure

µ = N (0,C ), where C is a covariance operator represented as an integral operator with

a kernel, as previously employed in [15,21]. Specifically, the kernel kp(x1, x2) is the peri-

odization of the radial basis function (RBF) kernel kl(x1, x2), where kl(x1, x2) = exp(−|x1−
x2|2/2l2) is a commonly used kernel. The periodization is defined as

kp(x1, x2) =
∑

n∈Z exp

�
−|x1− x2 − n|2

2l2

�
. (3.2)

The parameter l > 0 in the RBF kernel controls the smoothness of the sampled function,

with larger values of l corresponding to smoother functions. The eigenvalues and eigen-

vectors of the covariance operator C are characterized by

λk =
p

2πle−2π2k2 l2

, φk(x) = ei2πkx ,

respectively, where k ∈ Z. This can be confirmed by noting that

∫ 1

0

kp(x , y)φk(y)d y = λkφk(x).

Then by the K-L expansion, any f ∼ µ has the representation as

f =

+∞∑

k=−∞

Æ
λkξkφk, (3.3)

where {ξk}+∞k=−∞ is an i.i.d. sequence of N (0,1) random variables.

We proceed to analyze the approximation error specified by (3.1). We maintain the

notation from Section 2, where m denotes the number of input layer neurons in the branch

network A , and p represents the number of output layer neurons in A . Additionally, we

assume that both m and p are odd numbers and introduce K = (p−1)/2 and M = (m−1)/2.

The following result emerges, with a rigorous proof provided in the subsequent subsection.

Theorem 3.1. Assuming the solution operator for Eq. (1.1) is Lipschitz continuous, for any

fixed, arbitrarily small γ ∈ (0,1) and η > 0 (which may depend on p), there exists a ReLU

Trunk net τ with wid th(τ) = O (max{p, (η/p)1/(γ−2)}) and depth(τ) = 2, and a ReLU

Branch net A with width(A ) = O (max{m, p}) and depth(A ) = 2. These nets yield an

operator network N such that the following estimate holds:

bE (N ) = ‖G −N ‖L2(µ) ® η+ e−π
2 l2K2

+ e−π
2 l2M2

.

Here, K = (p−1)/2, M = (m−1)/2, and l represents the parameter in the RBF kernel (3.2).

Remark 3.1. Here, the width refers to the maximum number of neurons across all layers,

while the depth denotes the total number of layers, including hidden layers and the output

layer, as discussed in Section 2. The conclusion of Theorem 3.1 asserts the existence of

an operator network with a specified width and depth that can approximate the solution

operator of Eq. (1.1) with high accuracy. However, this does not imply that solely operator

networks of this particular size are capable of approximating the solution operator.



8 T. Du, Z. Huang and Y. Li

Theorem 3.1 shows that different choices of η correspond to different sizes of the trunk

network and various error bounds for bE . Notably, by setting η = e−π
2 l2K2

, the approxima-

tion error bE exhibits super-exponential decay with respect to p. However, this comes at

the cost of an exponential growth in the size of the trunk net, which is highly undesirable.

A preferable scenario is for the size of the trunk net to exhibit polynomial growth with re-

spect to p, which can be achieved by setting η = p−n, where n is a fixed, positive constant.

And for notational simplicity, we adopt η = p−n throughout the remainder of this paper. In

other cases, identical reasoning leads to the corresponding conclusions. By applying Theo-

rem 3.1 and introducing the notation size(Φ) to represent the number of neurons in neural

network Φ, we arrive at the following theorem in a straightforward manner.

Theorem 3.2. Under the assumption of Lipschitz continuity of the solution operator for the

Eq. (1.2), a ReLU Branch net A of size(A ) = O (max{m, p}) and a ReLU Trunk net τ of

size(τ) = O (p(n+1)/(2−γ)) can be constructed, for any positive number n and any fixed, arbi-

trarily small constant γ ∈ (0,1). These nets yield an operator network N that satisfies the

following estimate:

bE (N ) = ‖G −N ‖L2(µ) ® p−n + e−π
2 l2K2

+ e−π
2 l2M2

.

Here, K = (p−1)/2, M = (m−1)/2, and l represents the parameter in the RBF kernel (3.2).

3.2. Proof of Theorem 3.1

Following the workflow outlined in [15], we introduce here the operators D and P as

approximations to the inverses of E and R , and employ bEE , bER , and bEA to quantify the

differences between D ◦ E and the identity operator Id : L2([0,1])→ L2([0,1]), between

R ◦P and Id : L2([0,1])→ L2([0,1]), and between A and P ◦G ◦D, respectively. The

formulae for these errors are shown below

bEE =
�∫

L2([0,1])

‖D ◦ E ( f )− f ‖2
L2([0,1])

dµ( f )

�1/2

,

bER =
�∫

L2([0,1])

‖R ◦P (u)− u‖2
L2([0,1])

d(G#µ)(u)

�1/2

,

bEA =
�∫

Rm

‖A (y)−P ◦G ◦D(y)‖2
l2(R p)

d(E#µ)(y)

�1/2

.

Then we can decompose the approximation error (3.1) into the following terms:

Lemma 3.1. [cf. Lanthaler et al. [15]] The approximation error (3.1) associated with G and

the operator network N =R ◦A ◦ E can be bounded as follows:

bE ≤ Lip(G )Lip(R ◦P ) bEE + Lip(R) bEA + bER ,

where Lip(·) denotes the Lipschitz norm.
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According to Lemma 3.1, the approximation error bE can be effectively constrained by

controlling bEE , bEA , and bER . We begin by presenting the result for the error term bEE .

Lemma 3.2. Let x j = j/m, j = 1,2,3, . . . , m with m = 2M + 1 be m equidistant points

on [0,1]. Consider the encoder E : L2([0,1])→ Rm, defined as E ( f ) = ( f (x1), . . . , f (xm)),

then, there exists an operator D : Rm→ L2([0,1]) such that

bEE = ‖D ◦ E − Id‖L2(µ) ® e−π
2 l2M2

.

Remark 3.2. Here the operator D is given by

D( f1, f2, . . . , fm)(x) =

M∑

k=−M

bfkei2πkx ,

where

bfk =
1

m

m∑

j=1

f je
−i2π jk/m.

The proof of this result is omitted for brevity, but for a detailed derivation, we refer the

reader to the proof of [15, Lemma 3.8]. The use of the symbol ‘®’ in the conclusion of

Lemma 3.2 implies that a constant C , which is independent of parameters such as m, p,

ǫ and l, has been omitted from the right-hand side of the inequality. We will adopt this

notation without further explanation in subsequent sections.

We now turn to the analysis of the remaining error terms, namely bER and bEA . To

proceed, we assume that p is an odd integer, specifically p = 2K + 1. For simplicity, we

denote G#µ as ν. We introduce the operator eR , defined as

eR(a−K , a−K+1, . . . , aK) = Eν +

K∑

j=−K

a jeτ j,

where {eτ j}Kj=−K
are obtained from {G (φ j)}Kj=−K

(i.e., {G (ei2π j x )}K
j=−K

) by Gram-Schmidt

orthogonalization. Let P be the operator defined by

P (u) =
�
(u−Eν, eτ−K), . . . , (u−Eν, eτK)

�
,

then the L2(ν) norm of the difference between eR ◦ P and Id can be estimated in the

following way:

∫

L2

‖ eR ◦P (u)− u‖2
L2 dν(u)

=

∫

L2

inf
bu∈ Eν+span{eτ−K ,...,eτK}

‖bu− u‖2
L2 dν(u)

=

∫

L2

inf
bu∈ G (Eµ)+span {G (φ−K),...,G (φK)}

‖bu− u‖2
L2 dν(u)
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=

∫

L2

inf
bf ∈ Eµ+span {φ−K ,...,φK}

‖G (bf )−G ( f )‖2
L2 dµ( f )

≤ Lip(G )2
∫

L2

inf
bf ∈ Eµ+span {φ−K ,...,φK}

‖bf − f ‖2
L2dµ( f )

= Lip(G )2
∫

L2

Eµ +
K∑

j=−K

( f −Eµ,φ j)φ j − f


2

L2

dµ( f )

= Lip(G )2
∑

| j|>K

λ
µ

j
≤ Lip(G )2e−2π2 l2K2

. (3.4)

The bases {eτ j}Kj=−K
in eR are not represented by neural networks. To obtain the de-

sired operator R based on eR , it is reasonable to approximate both Eν and {eτ j}Kj=−K
using

a set of neural networks. Specifically, we aim to approximate G (Eµ) and {G (ei2π j x )}K
j=−K

,

respectively. As Eµ = 0, it follows that Eν = 0, allowing us to set τ0 = 0 as the neural net-

work that approximates Eν. We then demonstrate the existence of a set of neural networks,

which can approximate {eτ j}Kj=−K
with an error that does not exceed a given bound. This

conclusion is supported by the following lemma. For a similar derivation, one can refer to

the proof of [33, Lemma 1]. Therefore, the proof for this case is omitted for brevity.

Lemma 3.3. Consider the Shishkin mesh, a piecewise uniform grid on [0,1], defined by

Ω=

§
x j : x j = jh, 0≤ j ≤ J

2
; x j = 1−σ+

�
j − J

2

�
H,

J

2
≤ j ≤ J

ª
, (3.5)

where h = 2(1 − σ)/J , H = 2σ/J , σ = min{1/2, 2ǫ ln J/α}. Considering a sufficiently

smooth function f , we define the corresponding solution to Eq. (1.1) as u. Then for the piece-

wise linear interpolation function uL(x) on {(x i,u(x i))}Ji=0
, we have the error estimate

|u(x)− uL(x)| ®






1

J2
, x ≤ 1−σ,

ln2 J

J2
, x > 1−σ.

Meanwhile,

uL =

J∑

n=1

��
u(xn)− u(xn−1)

� x − xn

xn − xn−1

+ u(xn)

�
1[xn−1,xn]

=

J∑

n=0

u(xn)Ln(x),

whereLn(x) is the piecewise linear nodal basis supported on the sub-interval [xn−1, xn+1),

which can be represented by a neural network of depth 2 and width 3 as shown in [8], i.e.

Ln(x) =
1

xn − xn−1

ReLU(x − xn−1)−
�

1

xn − xn−1

+
1

xn+1 − xn

�
ReLU(x − xn)

+
1

xn+1 − xn

ReLU(x − xn+1).
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Thus, there exists a neural network τ of width O (J) and depth 2 such that

‖u−τ‖L∞ ≤ ‖u− uL‖L∞ + ‖uL −τ‖L∞ ®
ln2 J

J2
. (3.6)

This inequality holds for all u ∈ {G (ei2π j x )}K
j=−K

. By invoking the definition of eτ j, along

with (3.6), it can be inferred that for a given δ > 0 such that δ ¦ ln2 J/J2, neural networks

τ0 and {τ j}Kj=−K
with a width of O (J), and a depth of 2, can be found to satisfy

max

§
‖τ0 −Eν‖L∞, max

j=−K,...,K
‖τ j − eτ j‖L∞

ª
< δ.

We define the reconstructor, induced by τ = (τ0,τ−K ,τ−K+1, . . . ,τK), as

R :R(a−K , a−K+1, . . . , aK) = τ
0 +

K∑

j=−K

a jτ j,

which can be used to approximate the operator eR. By combining this with the estimate

(3.4), we obtain the following error estimate:

‖R ◦P − Id‖L2(ν) ≤ ‖ eR ◦P − Id‖L2(ν) + ‖R ◦P − eR ◦P ‖L2(ν)

≤ Lip(G )e−π2 l2K2

+

 ∫

L2


K∑

j=−K

(u, eτ j)(τ j − eτ j)


2

L2

dν(u)

!1/2

≤ Lip(G )e−π2 l2K2

+ pLip(G )
�∑

k∈Z
λ
µ

k

�1/2

max
j=−K,...,K

‖τ j − eτ j‖L2

≤ Lip(G )
�
e−π

2 l2K2

+δp
�
.

By assuming the Lipschitz continuity of G , and introducing η = pδ, we can summarize

the above results in the following lemma.

Lemma 3.4. There exists a set of neural networks τ = (τ0,τ−K ,τ−K+1, . . . ,τK) in the form

of (2.1) with width(τ) = O (max{p, (η/p)1/(γ−2)}), depth(τ) = 2, that satisfies

max

§
‖τ0 −Eν‖L∞, max

j=−K,...,K
‖τ j − eτ j‖L∞

ª
<
η

p
,

where {eτ j}Kj=−K
are obtained from {G (ei2π j x )}K

j=−K
by Gram-Schmidt orthogonalization, and

γ ∈ (0,1) is a fixed, arbitrarily small constant. This set of neural networks τ can serve as

a trunk net in a DeepONet. The reconstructor R : Rp → L2([0,1]) (p = 2K + 1) induced by

τ is defined as

R(a−K , a−K+1, . . . , aK) = τ
0 +

K∑

j=−K

a jτ j.

Then there exists an operator P : L2([0,1])→ Rp such that the error term bER satisfies

bER = ‖R ◦P − Id‖L2(ν) ® e−π
2 l2K2

+η.
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The operator P (constructed in Lemma 3.4) and the operator D (constructed in Lem-

ma 3.2) are linear mappings. Hence, P ◦ G ◦ D is a linear mapping from Rm to Rp, then

there exists a matrix A such that P ◦ G ◦ D = A. The network approximator A , as an

approximation of P ◦G ◦ D, can be taken as A : Rm→ Rp, x 7→ Ax or x 7→ ReLU(Ax )−
ReLU(−Ax ), that is, with respect to the error term bEA , we can easily obtain the following

result:

Lemma 3.5. There exists a neural networkA of width(A ) = O (max{m, p}), depth(A ) = 2,

such that

bEA =
�∫

Rm

‖A (x )−P ◦G ◦D(x )‖2
l2(Rp)

d(E#µ)(x )

�1/2

= 0.

We note that the Lipschitz norm of R ◦P is bounded by 2. This observation, coupled

with the fact that the Branch net in DeepONet corresponds toA ◦E , allows us to rigorously

establish the validity of Theorem 3.1. The proof is completed through a careful combination

of several lemmas, namely, Lemma 3.1, Lemmas 3.2 and 3.4, and finally, Lemma 3.5.

4. Generalization Capability

Acquiring the solution operator G for partial differential equations (PDEs) directly

proves challenging in most cases, rendering the computation of the error term (3.1) equally

difficult. Therefore, a proxy measure is necessary to quantify the difference between the op-

erator network and operator G . Numerical techniques are thus implemented to discretize

the integration and estimate the error (3.1). For example, the Monte Carlo method is

commonly used to approximate the integration over L2([0,1]), while both stochastic and

deterministic methods, such as the trapezoidal rule, can be utilized for integration over

[0,1].

For problems with a solution that has a bounded gradient, locations can be randomly

selected from the domain [0,1] or taken as equidistant points. However, for singularly

perturbed problems like (1.1) with relatively small parameter ǫ, the solution exhibits an

exponential boundary layer near x = 1. Within this region, the solution’s gradient is rela-

tively large, and if the aforementioned sampling methods are utilized, a sufficiently large

number of points will be required to capture the boundary layer information accurately.

Moreover, in these cases, the discrete form error may depend on 1/ǫ, which is undesirable.

Utilizing the right Riemann sum on a Shishkin mesh [13] allows us to approximate the

original integral by partitioning the interval into subintervals with varying widths. Specif-

ically, the Shishkin mesh employs a dense clustering of points near the boundary layer,

where the solution changes rapidly, to ensure accurate approximation in this critical re-

gion. This technique has been shown to effectively capture the singular layer behavior and

has been widely adopted in numerical simulations and modeling.

We consider N samples F1, F2, . . . , FN drawn independently and identically from a com-

mon distribution µ, and we let {y j}Jj=0
denote the Shishkin mesh points on the interval

[0,1], as defined in (3.5). We approximate two integrals in the error term (3.1) using
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Monte Carlo integration and numerical integration, respectively. Then the empirical risk

EN ,J can be derived, which takes the following form:

EN ,J =

 
1

N

N∑

n=1

J∑

j=0

ω j |G (Fn)(y j)−N (Fn)(y j)|2
!1/2

, (4.1)

where the weights ωi are determined as follows: ω0 = 0, ωi = h for 1 ≤ i ≤ J/2, and

ωi = H for J/2< i ≤ J , with h and H defined in Lemma 3.3.

4.1. Main results

Ensuring that a machine learning model can generalize well to new, unseen data beyond

the training dataset is crucial. In this context, we focus on assessing the generalization

ability of our machine learning model, denoted by cN , which is learned via a given learning

algorithm. To measure the model’s generalization performance, we use the concept of the

generalization gap (see [11]), which quantifies the difference between the approximation

error and the empirical risk on cN

Egen = E
�� bE ( cN )−EN ,J( cN )

�� ¬ Edi f f ( cN ). (4.2)

To control this gap, we first introduce the following assumptions.

Assumption 4.1. There exists q ∈ [4,+∞) such that E f ∼µ‖G ( f )−N ( f )‖qL2 ® 1.

Assumption 4.2. There exists an operator fN : L2([0,1]) → C1([0,1]) such that for any

x ∈ [0,1],

E f∼µ
��N ( f )(x)− fN ( f )(x)

��2 ® 1/N1/2, (4.3)

E f∼µ

����
d

d x

�
G ( f )(x)− fN ( f )(x)

�2
����® 1+ ǫ−1e−α(1−x)/ǫ. (4.4)

Remark 4.1. Activation functions like ReLU are not differentiable everywhere, which means

that the derivative of N ( f )(x) may be undefined at some points, and present challenges

for error estimation. To overcome this issue, we introduce the operator fN , which need

not be an operator network, and put forth Assumption 4.2. The incorporation of Assump-

tion 4.1 permits the error estimation for Monte Carlo integration, while the inclusion of

Assumption 4.2 enables the error estimation for deterministic numerical integration. The

reasonableness of these assumptions can be briefly explained: when E f ∼µ‖ f ‖L2 ® 1, it

follows that E f∼µ‖G ( f )‖L2 ® 1 and for any x ∈ [0,1],

E f ∼µ

����
d

d x
G ( f )2

���� ® 1+ ǫ−1e−α(1−x)/ǫ.

Furthermore, since the operator network N is an approximation of the target operator G ,

it is reasonable to make similar assumptions for G − N . Notably, the operator network

constructed in Theorem 3.1 and Theorem 3.2 satisfy these assumptions.
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These assumptions allow us to obtain an estimate for the generalization gap, which will

be rigorously proved in the next subsection.

Theorem 4.1. Under Assumptions 4.1 and 4.2, and assuming the Lipschitz continuity of G ,

a bound for the generalization gap (4.2) can be established as follows:

Egen = E
�� bE ( cN )−EN ,J( cN )

�� ® 1

N1/4
+

p
ln J

J1/2
. (4.5)

Here, N represents the number of f samples, and J denotes the number of locations on the

interval [0,1].

Remark 4.2. Both error expressions (3.1) and (4.1) involve a square root symbol on the

outside. Therefore, the 1/N1/4 term in Eq. (4.5) corresponds to the standard Monte Carlo

error rate, while
p

ln J/J1/2 corresponds to the error of the numerical integration method.

Theorem 4.1 tells us that increasing the number of sampling points can reduce the gener-

alization gap.

As noted previously, the true error of our operator network N in approximating G is

unavailable. Instead, we rely on the empirical error as a proxy for assessing the quality

of the approximation. Therefore, analyzing this empirical error is crucial. We expect the

existence of an operator network in the form of (2.2), such that the corresponding empirical

risk exhibits convergence properties with various factors that affect the performance of

the neural network, including the dimensions m, p of the input and output spaces, and

the number of sample points N , J . Importantly, we hope this error is independent of the

negative power of the parameter ǫ; otherwise, if ǫ is too small, the corresponding error will

become unacceptably large, rendering the operator network unusable for approximating

the solution operator of Eq. (1.1). To address this issue, we present the following result,

with proof provided in the next subsection.

Theorem 4.2. Assuming Lipschitz continuity of operator G and m ≤ p, we can construct

a ReLU branch network A and a ReLU trunk network τ, with size(A ) ® p and size(τ) ®

p(n+1)/(2−γ) respectively, for an arbitrarily small constant γ ∈ (0,1) and arbitrary constant

n> 0. This results in the corresponding operator network N satisfying the given estimate

E|EN ,J(N )| ®
bE (N )
N1/4

+ p−n +
C
p

ln J

mJ1/2
.

Here, N and J represent the number of f samples and locations, respectively, m refers to the

number of input layer neurons in the branch network, and C is a constant related only to α

and l. Additionally, bE (N ) is provided in Theorem 3.2.

4.2. Proof overview

This section contains the proofs of Theorems 4.1 and 4.2. To simplify notations, we

consider new operators ∆N and I defined by

∆N ( f )(y) := |G ( f )(y)−N ( f )(y)|2, I (g) :=

J∑

j=0

ω j g(y j).
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Assuming that the operator N satisfies Assumption 4.2, we can infer the existence of an

operator fN that satisfies inequalities (4.3) and (4.4). Using this, we can control the differ-

ence Edi f f (N ) with the following four terms:

Edi f f (N ) = E
�� bE (N )−EN ,J(N )

��

≤ E

������
�
E f ∼µ‖∆N ( f )‖L1

�1/2 −
�

1

N

N∑

n=1

‖∆N (Fn)‖L1

�1/2
������

+E

������

�
1

N

N∑

n=1

‖∆N (Fn)‖L1

�1/2

−
�

1

N

N∑

n=1

‖∆ fN (Fn)‖L1

�1/2
������

+E

������

�
1

N

N∑

n=1

‖∆ fN (Fn)‖L1

�1/2

−
�

1

N

N∑

n=1

I
�
∆ fN (Fn)

�
�1/2

������

+E

������

�
1

N

N∑

n=1

I
�
∆ fN (Fn)

�
�1/2

−
�

1

N

N∑

n=1

I
�
∆N (Fn)

�
�1/2

������
¬ I+ II+ III+ IV. (4.6)

This inequality will serve as the basis for proving Theorems 4.1 and 4.2.

4.2.1. Proof of Theorem 4.1

By leveraging this observation, we can now establish a rigorous proof for Theorem 4.1. Let

us start with the estimate of the term I in (4.6).

Lemma 4.1. If G is the solution operator of the Eq. (1.1) and the operator N satisfies As-

sumption 4.1, then

I ®
1

N1/4
.

Proof. Let Xn = ‖G (Fn)−N (Fn)‖2L2 and SN = (
∑N

n=1 Xn)/N , we can get

I = E
��pSN −

p
ESN

�� ≤ E
Æ
|SN −ESN |

≤
�
E|SN −E(SN )|2

�1/4
=

1p
N

 
E

�
N∑

n=1

(XN −EXN)

�2!1/4

=
1p
N

 
E

 
N∑

n=1

(Xn −EXn)
2 +

∑

m 6=n

(Xn −EXn)(Xm −EXm)

!!1/4

=
1p
N

�
N∑

n=1

E(Xn −EXn)
2

�1/4

=
1

N1/4

�
E(X1 −EX1)

2
�1/4
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≤ 1

N1/4

�
(EX 2

1)
1/4 + (EX1)

1/2
�

. (4.7)

The boundedness of EX 2
1 , as expressed in Assumption 4.1, has already been established.

Meanwhile, the result of Theorem 3.2 directly yields the boundedness of the other term,

EX1, then we can directly obtain the desired conclusion from the above inequality (4.7).

Exploiting the relationship captured by inequality (4.3) between the operators fN and

N , we can arrive at a useful estimate by simply manipulating terms II and IV in Eq. (4.6)

II+ IV ≤
�
E f∼µ‖N ( f )− fN ( f )‖2

L2

�1/2
+

 
J∑

j=0

ω jE f∼µ|N ( f )(y j)− fN ( f )(y j)|2
!1/2

®
1

N1/4
. (4.8)

The error denoted by III in (4.6) arises from employing a numerical integration method

to estimate the integral over the interval [0,1]. This can be bounded by

III = E

������

�
1

N

N∑

n=1

‖G (Fn)− fN (Fn)‖2L2

�1/2

−
 

1

N

N∑

n=1

J∑

j=0

ω j|G (Fn)(y j)− fN (Fn)(y j)|2
!1/2

������

≤
 
E

�����
1

N

N∑

n=1

 
‖G (Fn)− fN (Fn)‖2L2 −

J∑

j=0

ω j |G (Fn)(y j)− fN (Fn)(y j)|2
!�����

!1/2

≤
 
E f ∼µ

�����‖G ( f )−
fN ( f )‖2

L2 −
J∑

j=0

ω j |G ( f )(y j)− fN ( f )(y j)|2
�����

!1/2

. (4.9)

To compute this error term, we present a lemma in this regard, and the proof of this lemma

is outlined in Appendix A.1.

Lemma 4.2. Suppose F : L2([0,1])→ C1([0,1]) is an operator such that

E f ∼µ

����
d

d x
F( f )(x)

���� ≤ C
�
1+ ǫ−1e−α(1−x)/ǫ

�
, x ∈ [0,1]

with a constant α > 0. Assuming a piecewise uniform mesh with (J +1) points given by (3.5)

as {x j}Jj=0
, we have

E f∼µ

�����

∫ 1

0

F( f )(x)d x −
J−1∑

j=0

h j F( f )(x j)

����� ≤ 2C

�
1+

2

α

�
ln J

J
,

where h j = x j+1 − x j.
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By setting F = (G − fN )2 in Lemma 4.2, we can directly obtain an estimate for term III

using the conclusion of this lemma, given that inequality (4.4) is satisfied. Specifically, we

have

III ®

�
ln J

J

�1/2

. (4.10)

Combining Lemma 4.1 with formulas (4.8), (4.10), we arrive at the conclusion of Theo-

rem 4.1.

4.2.2. Proof of Theorem 4.2

In Section 3, we construct operators in the form of (2.2) and estimate the error incurred

by these operators in approximating the target operator G . Of particular interest is the

operator defined as

N ( f ) = Eν +
K∑

j=−K

�
G ◦D ◦ E ( f ), eτ j

�
τ j, (4.11)

where operator D is detailed in Remark 3.2, and eτ j, j = −K , . . . , K is obtained by orthogo-

nalizing the set of functions {G (φ j) = G (ei2πkx )}K
j=−K

. Additionally, {τ0, {τ j}Kj=−K
} is a set

of neural networks that satisfies the condition

max

§
‖τ0 −Eν‖L∞, max

j=−K,...,K
‖τ j − eτ j‖L∞

ª
< δ = p−(n+1),

where n is a fixed, arbitrary positive constant.

In the following, we set out to investigate the empirical risk EN ,J(N ) associated with

the operator at hand, and provide proof of Theorem 4.2. While Theorem 3.2 has previ-

ously addressed the estimation of bE (N ), our present focus centers on analyzing Edi f f (N ).
Considering that the activation function of N is not always differentiable, we introduce

a modified operator fN , which is obtained fromN by replacing the bases function. Specif-

ically, fN ( f ) is defined as

fN ( f ) = τ0 +

K∑

j=−K

�
G ◦D ◦ E ( f ), eτ j

�
eτ j. (4.12)

Substituting fN into Eq. (4.6), we can control Edi f f (N ) via the four terms associated with

N and fN , still denoted as I, II, III, and IV. The estimation of terms I, II, and IV is straight-

forward, and we present the results in Lemma 4.3 (with the proof given in Appendix A.2).

Lemma 4.3. Assuming m ≤ p, we can consider the operators N and fN , as defined in

Eqs. (4.11) and (4.12), respectively. For the terms I, II, and IV in Eq. (4.6), an estimate

for their sum can be derived as follows:

I+ II+ IV ®
bE (N )
N1/4

+ p−n,

where bE (N ) is estimated using Theorem 3.2.
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We now focus on the term III, which can be bounded using inequality (4.9). We define

F( f ) = (G ( f )− fN ( f ))2, and according to Lemma 4.2, estimating term III requires only an

estimation of E f ∼µ|(d/d x)F( f )(x)|. We focus on this quantity next. In fact, when M ≤ K

(that is, when m≤ p), we have the following simple form for G ( f )− fN ( f ):

G ( f )(x)− fN ( f )(x) = G ( f )(x)−G ◦D ◦ E ( f )(x). (4.13)

Here, we have used the fact that when m ≤ p,

fN ( f ) =
K∑

j=−K

�
G ◦D ◦ E ( f ), eτ j

�
eτ j = G ◦D ◦ E ( f ).

With this observation, we obtain the estimate for E f ∼µ|(d/d x)F( f )(x)| using the following

lemma (proof provided in Appendix A.3).

Lemma 4.4. When m ≤ p, the following inequality holds:

E f∼µ

����
�
G ( f )(x)− fN ( f )(x)

� d

d x

�
G ( f )(x)− fN ( f )(x)

�����≤
C

m2

�
1+

1

ǫe−α(1−x)/ǫ

�
.

Employing Lemmas 4.2 and 4.4, we derive an upper bound for the term III in the

Eq. (4.6), viz.

III ®

p
ln J

mJ1/2
.

Combining this estimate with Lemma 4.3 enables us to complete the proof of Theorem 4.2.

5. Numerical Experiments

In this section, we demonstrate the effectiveness of DeepONets in solving singularly

perturbed problems through three concrete examples, thereby contributing to the grow-

ing body of theoretical understanding of this model. The model’s trainable parameters in

Eq. (2.2), denoted by θ , are obtained through the minimization of a loss function defined

as follows:

L (θ ) = 1

N (J + 1)

N∑

n=1

J∑

j=0

|un(y j)−Nθ (Fn)(y j)|2. (5.1)

Here, un represents the ground truth, which is typically obtained through numerical meth-

ods of high precision. To obtain un(y j), we utilize an up-winding scheme on the Shishkin

mesh — cf. [31], and interpolate accordingly.

N samples, denoted F1, F2, . . . , FN , are drawn independently and identically from the

common distribution µ. Examples of several pairs (Fi ,ui) are provided in Fig. 2. In general,

locations {yi} can be selected randomly from the domain [0,1] or arranged as equidistant

points. However, as noted previously, due to the presence of a thin boundary layer, the

use of these sampling methods would demand a large number of points to ensure that the
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Figure 2: (a) Examples of random process Fi ∼ µ with parameter l = 1, generating by matrix decom-
position method [18]. (b) Numerical solutions to Eq. (1.1) with p(x) = x + 1, q(x) = 1, ǫ = 0.01, and
right-hand side f = Fi as presented in (a).

trained operator network can capture the relevant boundary layer information accurately.

Conversely, sampling a large number of points far away from the boundary layer is unneces-

sary since the solution’s behavior in this region is regular and slow. Consequently, we adopt

Shishkin mesh points, defined in (3.5), as the locations in (5.1) within the interval [0,1].

Remark 5.1. Although machine learning models are commonly obtained through empirical

risk minimization, where θ is chosen to minimize empirical risk, and an operator network

is determined accordingly. Notably, the solution to the singularly perturbed problem (1.1)

can vary across different length scales. To address this issue, the loss function (5.1) assigns

all weightsω j , where j = 0,1, . . . , J in (4.1), a uniform value of 1/(J+1). This rescales the

microscale and places data at different scales on the same scale. This approach is expected

to mitigate the spectral bias phenomenon. The numerical results presented in the following

sections confirm this conjecture.

Throughout the following examples, we set the positive lower bound α of the function

p(x) to 1. Then the transition point of the Shishkin mesh is σ =min{1/2, 2ǫ ln J}.

Example 5.1. We consider the following boundary layer problem — cf. [31]:

− ǫu′′ + u′ = f , x ∈ (0,1),

u(0) = u(1) = 0.
(5.2)

The Lipschitz continuity of the solution operator that maps f (x) to the ODE solution u(x)

is proved in Appendix A.4. Subsequently, we utilize DeepONets to learn this operator. To

generate the necessary training dataset, we solve the equation using an up-winding scheme

on a Shishkin mesh of 4096 points, and obtain {u(y j)}Jj=0
via interpolation.

We begin by training a DeepONet using 1000 random f samples and 256 y locations

(i.e., N = 1000 and J = 256), resulting in a training dataset of size 2.56 × 105. The

training is conducted over 1000 epochs. Fig. 3 illustrates the predictive capability of the

trained model, displaying its ability to predict solutions for two distinct f that lie beyond
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Figure 3: The trained model’s predictions and reference solutions for Eq. (5.2) (ǫ = 0.001) on Shishkin
mesh. (a) Prediction and reference solution on a random f ∼ µ on a grid of 256 points, with the latter
using an up-winding scheme on Shishkin mesh. (b) Horizontal magnification of the region [1−σ, 1] in (a).
(c) Horizontal magnification of the region [1−σ, 1] in (d). (d) the model’s prediction and exact solution
for f (x) ≡ 1 on a grid of 256 points, the exact solution is given by u(x) = x−(e−(1−x)/ǫ− e−1/ǫ)/(1− e−1/ǫ).

our training dataset. The first is randomly sampled from µ with the parameter l = 1, while

the second is a simple out-of-distribution signal given by f (x)≡ 1.

As previously noted, accurate capture of boundary layer information using a trained

model necessitates taking a sufficient number of data points, particularly when sampling

at equidistant locations. To validate this conjecture, we conducted experimental tests. To

begin with, we train a DeepONet leveraging 1000 random f samples and 256 equidistant

locations y. In Fig. 4, subplot (a) displays the trajectory of the training process. Subplots

(b) and (c) indicate that training the network using equidistant locations is effective in

capturing information beyond the boundary layer; however, it is not as effective in dealing

with behavior within the boundary layer.

By utilizing the definition of the generalization gap, empirical risk can serve as an ef-

fective tool for assessing a model’s generalization ability. A comparison of Figs. 3 and 4

reveals that the network trained on equidistant locations is inferior to the network trained

on Shishkin mesh points in describing the boundary layer behavior. Fig. 5 provides a more
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Figure 4: Performance of a trained model using equidistant location points (ǫ = 0.001). (a) The training
trajectory of a DeepONet with equidistant location points. Here “epochs” refers to the number of steps
that the Adam optimizer performs. (b) Prediction using the trained model and reference solution on
a random f ∼ µ on a Shishkin mesh of 256 points. (c) Horizontal magnification of the region [1−σ, 1]
in (b).
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Figure 5: Models trained on a different number of Shishkin mesh points and equidistant points are
compared in terms of empirical risk, evaluated on a 212 location point mesh. The subplots display
empirical risk against the parameter (ǫ) on a 1/ǫ scale, with the dashed black line running parallel to
1/ǫ. (a) The empirical risk performance of models trained on different numbers of Shishkin mesh points.
(b) The performance of models trained on different numbers of equidistant points.

comprehensive analysis, using both 1000 f samples. The comparison between subplots

(a) and (b) in Fig. 5 shows that the network trained on Shishkin mesh points exhibits con-

sistent generalization ability across various values of ǫ. Conversely, the network trained

on equidistant points demonstrates a significant correlation with 1/ǫ, indicating a reduc-

tion in its generalization ability as ǫ decreases. Moreover, these figures demonstrate that

the model’s generalization ability improves with the increase in the number of locations y,

i.e. J .

Example 5.2. Consider a singularly perturbed problem with variable coefficients given by

− ǫu′′ + (x + 1)u′ + u = f , x ∈ (0,1),

u(0) = u(1) = 0.
(5.3)

The solution operator mapping from f to the solution u is known to be Lipshitz, according

to Lemma 2.2. We use DeepONets to approximate this operator. We construct a DeepONet

by training it on a dataset comprising 2.56× 105 triplets ( f , y,u) over 1000 epochs. The

input data consists of 1000 randomly sampled f and 256 distinct locations y (specifically,

a Shishkin mesh of 256 points), while the corresponding output data, u, is obtained using

an up-wind scheme on the Shishkin mesh. Fig. 6 demonstrates the network’s ability to

accurately estimate the output solution u, not only for a randomly sampled input f but

also for an out-of-distribution input f (x) = ex .

Based on Theorem 4.2, it can be observed that the empirical loss showcases a negative

correlation with the quantity of f samples as well as the number of Shishkin locations y.

Importantly, this relationship holds irrespective of 1/ǫ. Subsequently, we endeavor to es-

tablish the validity of this relationship for Eq. (5.3). The results obtained from pertinent

experiments are illustrated in Fig. 7.

Figs. 3 and 6 illustrate DeepONets’ effectiveness in capturing the boundary layer behav-

ior near x = 1 and performing remarkably accurate out-of-distribution predictions. These
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Figure 6: The trained model’s predictions and reference solutions for Eq. (5.3) (ǫ = 0.001) on Shishkin
mesh. (a) Prediction and reference solution on a random f ∼ µ on a grid of 256 points, with the latter
using an up-winding scheme on Shishkin mesh. (b) Horizontal magnification of the region [1−σ, 1] in
(a). (c) Horizontal magnification of the region [1−σ, 1] in (d). (d) the model’s prediction and reference
solution for f (x) = ex on a grid of 256 points.
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Figure 7: The generalization ability of trained models with varying factors. (a) Impact of varying f
sample numbers on model generalization with a fixed set of 512 Shishkin locations. Empirical risk is
calculated over a sample of 221 pairs ( f , y) consisting of 4096 randomly selected f samples and 512
locations y. (b) Impact of different numbers of locations y on model generalization with a fixed set of
1000 f samples. Empirical risk was calculated over 1000× 212 sample pairs ( f , y).

experimental findings suggest that DeepONets can serve as a reliable approximator for ap-

proximating the solution operator of one-dimensional singular perturbation problems. As

we extend our focus to the two-dimensional problem, it is important to note that theoreti-

cal results currently exist only for the one-dimensional problem. However, we expect that

DeepONet is also suitable for solving the two-dimensional singular perturbation problem,

and subsequent numerical results validate this conjecture.

Example 5.3. Consider the 2D singularly perturbed problem

− ǫ∆u+ ux + uy + u = f , x ∈ Ω= (0,1)× (0,1),

u|∂Ω = 0.
(5.4)

In this study, we employ DeepONets to learn the solution operator for this problem with

ǫ = 0.001, i.e. to map f to the solution u of Eq. (5.4). As the dimensionality of the problem

increases, the size of the training data set needs to be significantly increased due to the
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(a) (b) (c) (d)

Figure 8: Comparison of performance between models trained on Shishkin and equidistant locations.
(a) The reference solution for a Gaussian random field f ∼ G (0, kRBF ) achieved through an up-winding
scheme on the Shishkin mesh. (b) The predictions of the trained models on f , where the upper subfigure
displays the prediction of the model trained on the Shishkin positions and the lower subfigure shows
the prediction of the model trained on the equidistant positions. (c) The errors between the predicted
results of the trained models and the reference solution. (d) An enlargement of the [1−σ, 1]× [1−σ, 1]
region in the corresponding subfigures of (c).

heightened demand for locations. To facilitate better learning of the equation information

by the operator network, penalization of certain locations may be necessary, especially

when the network cannot be trained on enough data. In our study, we chose to penalize

the boundary points in the loss function, giving rise to a loss function of the following form:

L (θ ) = 1

N Jr

N∑

n=1

Jr∑

j=1

|un(y j)−Nθ (Fn)(y j)|2 +
λ

N Jb

N∑

n=1

Jb∑

j=1

|un(y j)−Nθ (Fn)(y j)|2,

where λ is the positive penalizing parameter.

Subsequently, we proceed to train DeepONets utilizing a dataset of 1000 × 64 × 64

triples ( f , y ,u), consisting of 1000 Gaussian random fields f ∼ G (0, kRBF ) and 64 × 64

locations y , with kRBF denoting the radial basis function kernel. The training process is

conducted over 2000 epochs, during which the penalizing parameter is set to λ = 0.1.

We conduct training on both equidistant and Shishkin locations, with a comparison of their

performance shown in Fig. 8. Our findings indicate that the network trained on equidistant

locations effectively captures the behavior of the solution outside the boundary layer, but

falls short in characterizing the behavior inside the boundary layer. In contrast, the network

trained on Shishkin locations proves adept at capturing the behavior of the solution within

the boundary layer.

6. Conclusion and Future Directions

In this paper, we present a novel application of DeepONets for solving singular perturba-

tion problems, specifically the one-dimensional convection-diffusion equation. We conduct
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a thorough analysis of the approximation error generated by the operator network when

approximating the target solution operator and provide proof of its convergence rate with

respect to the input and output dimensions of the branch net. Importantly, we demonstrate

that this error is independent of ǫ, which is a notable finding. Since this error cannot be

calculated directly, the empirical risk serves as a surrogate. Notably, the Shishkin mesh

points are employed as samples on the interval [0,1]. We analyze the empirical risk and

the corresponding generalization gap, both of which exhibit ǫ-uniform convergence with

respect to the number of samples. Additionally, the Shishkin mesh points are utilized as

locations for the loss function, and numerical experiments showcase the effectiveness of

DeepONets in capturing the boundary layer behavior of solutions to singular perturbation

problems. Our findings provide a novel approach to addressing this type of problem.

We examine one-dimensional steady-state singular perturbation problems, anticipating

that our methodology could extend to higher-dimensional problems or those with time de-

pendence. Additionally, employing ǫ as an input and utilizing DeepONets to obtain a more

general operator, which requires an input ( f ,ǫ) and produces the corresponding solution u,

presents a valuable avenue for further exploration. Despite their effectiveness as purely

data-driven models, DeepONets fail to fully exploit the information encapsulated within

the governing equation, leading to inefficiencies. A promising avenue for further develop-

ment is to incorporate singular perturbation theory, as demonstrated in previous works such

as [1]. Such improvements have the potential to enhance the performance of traditional

models significantly.

Appendix A

A.1 Proof of Lemma 4.2

Utilizing the condition

E f ∼µ

����
d

d x
F( f )(x)

���� ≤ C

�
1+

1

ǫ
e−α(1−x)/ǫ

�
,

we derive

E f∼µ

�����

∫ 1

0

F( f )(x)d x −
J∑

j=1

h j−1F( f )(x j)

�����

= E f∼µ

�����

J∑

j=1

∫ x j

x j−1

F( f )(x)− F( f )(x j)d x

�����

= E f∼µ

�����

J∑

j=1

∫ x j

x j−1

∫ x j

x

d

ds
F( f )(s)dsd x

�����

≤
J∑

j=1

∫ x j

x j−1

∫ x j

x

E f∼µ

����
d

ds
F( f )(s)

���� dsd x
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≤ C

J∑

j=1

∫ x j

x j−1

∫ x j

x

�
1+

1

ǫ
e−α(1−s)/ǫ

�
dsd x .

We consider two cases for specifying σ, based on its definition. If σ = 2ǫ ln J/α, i.e.

2ǫ ln J/α≤ 1/2, we obtain the following result for x j ≤ 1−σ:

∫ x j

x j−1

∫ x j

x

�
1+

1

ǫ
e−α(1−s)/ǫ

�
dsd x

=
h2

j−1

2
− ǫ
α2

�
e−α(1−x j)/ǫ − e−α(1−x j−1)/ǫ

�
+

h j−1

α
e−α(1−x j)/ǫ

≤
h2

j−1

2
+

h j−1

α
e−α(1−x j)/ǫ

≤
h2

j−1

2
+

h j−1

αJ2
≤ 2

�
1+

1

α

�
1

J2
.

For x j−1 > 1−σ, we have

∫ x j

x j−1

∫ x j

x

�
1+

1

ǫ
e−α(1−s)/ǫ

�
dsd x ≤ 2

ǫ

∫ x j

x j−1

∫ x j

x

dsd x =
h2

j−1

ǫ
≤ 4 ln J

αJ2
,

which implies that

C

J∑

j=1

∫ x j

x j−1

∫ x j

x

�
1+

1

ǫ
e−α(1−s)/ǫ

�
dsd x ≤ 2C

�
1+

2

α

�
ln J

J
.

The case σ = 1/2 is straightforward, and we directly obtain that

C

J∑

j=1

∫ x j

x j−1

∫ x j

x

�
1+

1

ǫ
e−α(1−s)/ǫ

�
dsd x

≤ 2C

ǫ

J∑

j=1

∫ x j

x j−1

∫ x j

x

dsd x =
C

ǫJ
< 2C

�
1+

2

α

�
ln J

J
.

The lemma is proven.

A.2 Proof of Lemma 4.3

To facilitate our proof procedure, we first establish a lemma that is essential to our

subsequent analysis.

Lemma A.1 (cf. Stuart [30]). If N (0,C ) is a Gaussian measure on a Hilbert spaceH , then

for any integer q there is a constant C = Cq ≥ 0 such that for x ∼N (0,C ), we have

E‖x‖2q ≤ Cq

�
E‖x‖2

�q
.
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Let Xn = ‖G (Fn)−N (Fn)‖2L2 , and define SN = (
∑N

n=1 Xn)/N . Using basic inequalities

such as the Hölder inequality, we obtain

I = E
��pSN −

p
ESN

�� ≤
�
E|SN −E(SN )|2

�1/4
=

1

N1/4

�
E(X1 −EX1)

2
�1/4

. (A.1)

The term EX1 is closely related to the approximation error for N , viz. EX1 = bE (N )2.

Besides,

EX 2
1 =

∫

L2

‖G ( f )−N ( f )‖4
L2 dµ( f ) =

∫

L2

‖ f ‖4
L2 d(G −N )#µ( f ),

where (G − N )#µ is the push-forward measure of µ under G − N . As G and N are

bounded linear operators, (G −N )#µ is a Gaussian measure. Applying Lemma A.1 to the

above equation and combining it with (A.1) gives

I ®
bE (N )
N1/4

.

The term II can be estimates as follows:

II ≤ E
�

1

N

N∑

n=1

‖N (Fn)− fN (Fn)‖2L2

�1/2

= E

 
1

N

N∑

n=1



K∑

q=−K

�
G ◦D ◦ E (Fn), eτq

��
τq − eτq

�


2

L2

!1/2

≤ ηE
�

1

N

N∑

n=1

‖G ◦ D ◦ E (Fn)‖2L2

�1/2

≤ ηLip(G )
�
E‖D ◦ E (F1)‖2L2

�1/2
.

Note that

D ◦ E (e2πikx) = e2πikx
�
|k| ≤ M

�
,

where PM is the projection operator onto span{e2πikx : |k| ≤ M}. Thus, we haveD◦E◦PM =

PM , and since D ◦ E is linear, we get

D ◦ E = D ◦ E ◦ PM +D ◦ E ◦ P⊥M = PM +D ◦ E ◦ P⊥M .

Hence,

�
E‖D ◦ E (F1)‖2L2

�1/2 ≤
�
E‖PM F1‖2L2

�1/2
+
�
E‖D ◦ E ◦ (P⊥

M
F1)‖2L2

�1/2

≤
�
E‖F1‖2L2

�1/2
+

√√√
∑

|k|>M

λk
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=

√√∑

k∈Z
λk +

√√√
∑

|k|>M

λk

≤ 2

√√∑

k∈Z
λk ≤ 2.

Combining the above results gives II ® η = p−n.

Similarly, the estimate of IV follows the same procedure as for II, yielding

IV ® η = p−n.

The final result follows from the above estimates for I, II and IV.

A.3 Proof of Lemma 4.4

The proof of this theorem relies on a series of lemmas, which we will now present along

with their corresponding proofs.

Lemma A.2. Let f drawn from the measure µ, and let bfk and ck denote the Fourier coefficients

and discrete Fourier coefficients of f , respectively. Specifically, we have,

bfk =

∫ 1

0

f (x)e−i2πkx d x , ck =
1

m

m∑

j=1

f (x j)e
− i2π jk

m .

For 0≤ k ≤ M, it can be shown that

�
E f∼µ|bfk|2

�1/2 ≤ Ce−π
2 l2k2

,
�
E f∼µ|ck|2

�1/2 ≤ Ce−π
2 l2k2

,

�
E f∼µ|bfk − ck|2

�1/2 ≤ C

m
e−π

2 l2k2

,

where C is a constant that solely depends on l.

Proof. Using the K-L expansion, we represent f ∼ µ as

f (x) =

∞∑

n=−∞

Æ
λnξnφn(x),

where λn =
p

2πle−2π2n2 l2

, φn(x) = ei2πnx and ξn ∼ N (0,1) are i.i.d. Gaussian random

variables. Then

�
E f ∼µ|bfk|2

�1/2
=
�
E|
Æ
λkξk|2

�1/2
=
Æ
λk =

�p
2πl

�1/2
e−π

2k2 l2

.
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On the other hand, we can obtain

�
E f∼µ|bfk − ck|2

�1/2
=

 
E f ∼µ

�����
bfk −

1

m

m∑

j=1

f (x j)e
−i2π jk/m

�����

2!1/2

=

 
E f ∼µ

�����
bfk −

1

m

m∑

j=1

∞∑

n=−∞
bfnei2π jn/me−i2π jk/m

�����

2!1/2

=

 
E f ∼µ

�����
bfk −

∞∑

n=−∞
bfk+nm

�����

2!1/2

® l1/2
∞∑

n=1

e−π
2 l2(k+nm)2 + e−π

2 l2(k−nm)2 ,

where

∞∑

n=1

e−π
2 l2(k+nm)2 ≤

∫ +∞

0

e−π
2 l2(k+xm)2d x =

1

πlm

∫ +∞

kπl

e−y2

d y ®
1

ml
e−π

2 l2k2

,

and considering that 0≤ k ≤ M , we have

∞∑

n=1

e−π
2 l2(k−nm)2 ≤ e−π

2 l2k2
∞∑

n=1

e−π
2 l2nm ≤ e−π

2 l2k2

∫ +∞

0

e−π
2 l2 xmd x =

1

π2l2m
e−π

2 l2k2

,

thus �
E f∼µ|bfk − ck|2

�1/2
®

1

m

�
l−1/2 + l−3/2

�
e−π

2 l2k2

.

Furthermore, ck can be bounded by

(E f ∼µ|ck|2)1/2 ≤
�
E f ∼µ|bfk − ck|2

�1/2
+ (E f ∼µ|bfk|2)1/2 ≤ Ce−π

2 l2k2

,

where C is a constant that depends only on l.

The next result follows directly from Lemma A.2.

Corollary A.1. Under the conditions of Lemma A.2, we have

 
E f∼µ

����� f −
k∑

q=−k

cqφq(x)

�����

2!1/2

≤ C

k
,



E f∼µ

�����G
 

f −
k∑

q=−k

cqφq(x)

!�����

2



1/2

≤ C

k
,

where C depends solely on l.
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Proof. To establish the first inequality, we proceed as follows:

 
E f∼µ

����� f −
k∑

q=−k

cqφq(x)

�����

2!1/2

=

 
E f∼µ

�����

∞∑

q=−∞
bfqφq −

∑

|q|≤k

cqφq

�����

2!1/2

=

 
E f∼µ

�����
∑

|q|≤k

(bfq − cq)φq +
∑

|q|>k

bfqφq

�����

2!1/2

≤
∑

|q|≤k

�
E f ∼µ|bfq − cq|2

�1/2
+
∑

|q|>k

�
E f ∼µ|bfq|2

�1/2

≤ C

m

∑

|q|≤k

e−π
2 l2q2

+ C
∑

|q|>k

e−π
2 l2q2 ≤ C

k
.

Based on Lemma 2.1, it follows that |G (φk)| ® 1. Moreover, by repeating the aforemen-

tioned proof, we can derive the second inequality stated in this corollary.

We present our final lemma, the proof of which closely follows that of [12].

Lemma A.3. Let u= G ( f ) be the solution to the equation

− ǫu′′ + p(x)u′ + q(x)u= f , x ∈ (0,1),

u(0) = u(1) = 0,

and h = f − qu. Then

|u′(1)| ® 1

ǫ2

∫ 1

0

∫ 1

t

e−α(s−t)/ǫ|h(s)|dsd t.

Proof. The function u satisfies

u(x) = up(x) + K1 + K2

∫ 1

x

e−(
∫ 1

t
p(s)ds)/ǫd t, (A.2)

where K1 = u(1), K2 = u′(1), and

up(x) = −
∫ 1

x

∫ 1

t

1

ǫ
e−(

∫ s

t
p(w)dw)/ǫh(s)dsd t.

Choosing x = 0 in (A.2) yields

u(0) = up(0) + K1 + K2

∫ 1

0

e−(
∫ 1

t
p(s)ds)/ǫd t.
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Since u(0) = u(1) = 0 and p(x) ≥ α > 0 is bounded on [0,1], we have

ǫ|K2|® |K2|
∫ 1

0

e−c(1−t)/ǫd t ≤ |up(0)| ≤
∫ 1

0

∫ 1

t

1

ǫ
e−α(s−t)/ǫ|h(s)|dsd t,

which implies that

|u′(1)| = |K2|®
1

ǫ2

∫ 1

0

∫ 1

t

e−α(s−t)/ǫ|h(s)|dsd t.

Using the above lemmas, we can now provide the proof of Lemma 4.4.

Proof. Let

u(x) = G
�

f −D ◦ E ( f )
�
(x), h(x) = f −D ◦ E ( f )− q(x)u.

Then z(x) = du/d x satisfies

z(x) = z(1)e−(
∫ 1

x
p(s)ds)/ǫ +

1

ǫ

∫ 1

x

h(t)e−(
∫ t

x
p(s)ds)/ǫd t.

Employing the Eq. (4.13), Lemma A.3, and the estimate p(x) ≥ α > 0 gives

E f ∼µ

����
�
G ( f )(x)− fN ( f )(x)

� d

d x

�
G ( f )(x)− fN ( f )(x)

�����

= E f ∼µ

�����G
�

f −D ◦ E ( f )
�
(x)

�
z(1)e−(

∫ 1

x
p(s)ds)/ǫ +

1

ǫ

∫ 1

x

h(t)e−(
∫ t

x
p(s)ds)/ǫd t

������

≤ e−(
∫ 1

x
p(s)ds)/ǫE f ∼µ |G ( f −D ◦ E ( f ))(x)z(1)|

+
1

ǫ

∫ 1

x

e−(
∫ t

x
p(s)ds)/ǫE f∼µ |G ( f −D ◦ E ( f ))(x)h(t)| d t

®
1

ǫ2
e−α(1−x)/ǫ

∫ 1

0

∫ 1

t

e−α(s−t)/ǫE f ∼µ |G ( f −D ◦ E ( f ))(x)h(s)| dsd t

+
1

ǫ

∫ 1

x

e−α(t−x)/ǫE f∼µ |G ( f −D ◦ E ( f ))(x)h(t)| d t. (A.3)

Substituting the expression for h(x) into E f∼µ|G ( f −D◦E ( f ))(x)h(s)| and using the bound-

edness of q(x) on [0,1] and Corollary A.1 leads to the estimate

E f∼µ |G ( f −D ◦ E ( f ))(x)h(s)| ≤
C

m2
.

After substituting this into (A.3), the required inequality can be obtained via a straightfor-

ward integration calculation.
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A.4 Lipschitz continuity of the operator in Example 5.1

Lemma A.4. Let G : f 7→ u denote the solution operator for the following boundary value

problem:

− ǫu′′(x) + u′(x) = f (x), x ∈ (0,1),

u(0) = u(1) = 0,

if 0< ǫ ≤ 1/2, then the operator G is Lipschitz continuous.

Proof. As G is linear, it suffices to show that ‖u‖L2 ® ‖ f ‖L2. To achieve this, we substi-

tute v = e−xu into (1.2). Utilizing uu′ = (u2)′/2 and u(0) = u(1) = 0, we obtain

∫ 1

0

ǫ(u′)2e−x d x +
1− ǫ

2

∫ 1

0

e−xu2d x =

∫ 1

0

e−xuf d x .

Next we obtain the inequality

1− ǫ
2e

∫ 1

0

u2d x ≤ ‖u‖L2‖ f ‖L2 .

Notably, since 0 < ǫ ≪ 1, we can reasonably posit that ǫ ≤ 1/2 and thereby complete the

proof of the lemma.

Acknowledgments

Z.Y. Huang was partially supported by the NSFC Projects No. 12025104 and 81930119.

Y. Li was partially supported by the NSFC Project No. 62106103 and by the Fundamental

Research Funds for the Central Universities No. ILA22023.

References

[1] A. Arzani, K.W. Cassel and R.M. D’Souza, Theory-guided physics-informed neural networks for

boundary layer problems with singular perturbation, J. Comput. Phys. 473, Paper No. 111768

(2023).

[2] C. Beck, S. Becker, P. Grohs, N. Jaafari and A. Jentzen, Solving stochastic differential equations

and Kolmogorov equations by means of deep learning, arXiv:1806.00421 (2018).

[3] S. Cai, Z. Wang, L. Lu, T.A. Zaki and G.E. Karniadakis, DeepM&Mnet: Inferring the electro-

convection multiphysics fields based on operator approximation by neural networks, J. Comput.

Phys. 436, Paper No. 110296 (2021).

[4] T. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with

arbitrary activation functions and its application to dynamical systems, IEEE Trans. Neural Net-

works 6, 911–917 (1995).

[5] B. Deng, Y. Shin, L. Lu, Z. Zhang and G.E. Karniadakis, Convergence rate of DeepONets for

learning operators arising from advection-diffusion equations, arXiv:2102.10621 (2021).

[6] W. E, J. Han and A. Jentzen, Deep learning-based numerical methods for high-dimensional

parabolic partial differential equations and backward stochastic differential equations, Commun.

Math. Stat. 5, 349–380 (2017).



32 T. Du, Z. Huang and Y. Li

[7] J. Han, A. Jentzen and W. E, Solving high-dimensional partial differential equations using deep

learning, Proc. Natl. Acad. Sci. USA 115, 8505–8510 (2018).

[8] J. He, L. Li, J. Xu and C. Zheng, ReLU deep neural networks and linear finite elements, J. Comput.

Math. 38, 502-–527 (2020).

[9] A.D. Jagtap, K. Kawaguchi and G.E. Karniadakis, Adaptive activation functions accelerate con-

vergence in deep and physics-informed neural networks, J. Comput. Phys. 404, Paper No.

109136 (2020).

[10] P. Jin, S. Meng and L. Lu, MIONet: Learning multiple-input operators via tensor product, SIAM

J. Sci. Comput. 44, A3490–A3514 (2022).

[11] K. Kawaguchi, L.P. Kaelbling and Y. Bengio, Generalization in deep learning, arXiv:1710.05468

(2017).

[12] R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation

problem without turning points, Math. Comp. 32, 1025–1039 (1978).

[13] N. Kopteva and E. O’Riordan, Shishkin meshes in the numerical solution of singularly perturbed

differential equations, Int. J. Numer. Anal. Model. 7, 393–415 (2010).

[14] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart and A. Anandkumar,

Neural operator: Learning maps between function spaces, arXiv:2108.08481 (2021).

[15] S. Lanthaler, S. Mishra and G.E. Karniadakis, Error estimates for DeepONets: A deep learning

framework in infinite dimensions, Trans. Math. Appl. 6, tnac001 (2022)

[16] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart and A. Anandkumar,

Fourier neural operator for parametric partial differential equations, arXiv:2010.08895 (2020).

[17] G. Lin, C. Moya and Z. Zhang, Accelerated replica exchange stochastic gradient Langevin diffu-

sion enhanced Bayesian DeepONet for solving noisy parametric PDEs, arXiv:2111.02484 (2021).

[18] Y. Liu, J. Li, S. Sun and B. Yu, Advances in Gaussian random field generation: A review, Comput.

Geosci. 23, 1011–1047 (2019).

[19] Z. Liu, W. Cai and Z.Q.J. Xu, Multi-scale deep neural network (MscaleDNN) for solving Poisson-

Boltzmann equation in complex domains, Commun. Comput. Phys. 28, 1970–2001 (2020).

[20] M. Loève, Probability Theory II, Springer-Verlag (1978).

[21] L. Lu, P. Jin, G. Pang, Z. Zhang and G.E. Karniadakis, Learning nonlinear operators via Deep-

ONet based on the universal approximation theorem of operators, Nat. Mach. Intell. 3, 218–229

(2021).

[22] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang and G.E. Karniadakis, A comprehen-

sive and fair comparison of two neural operators (with practical extensions) based on fair data,

Comput. Methods Appl. Mech. Engrg. 393, Paper No. 114778 (2022).

[23] Z. Mao, L. Lu, O. Marxen, T.A. Zaki and G.E. Karniadakis, DeepM&Mnet for hypersonics: Pre-

dicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network

approximation of operators, J. Comput. Phys. 447, Paper No. 110698 (2021).

[24] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods for Singular Pertur-

bation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two

Dimensions, World Scientific (1996).

[25] S. Qian, H. Liu, C. Liu, S. Wu and H.S. Wong, Adaptive activation functions in convolutional

neural networks, Neurocomputing 272, 204–212 (2018).

[26] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio and A. Courville,

On the spectral bias of neural networks, in: International Conference on Machine Learning,

pp. 5301–5310, PMLR (2019).

[27] M. Raissi, P. Perdikaris and G.E. Karniadakis, Physics-informed neural networks: A deep learn-

ing framework for solving forward and inverse problems involving nonlinear partial differential

equations, J. Comput. Phys. 378, 686–707 (2019).



DeepONets’ Approximation and Generalization for Learning Operators in SPP 33

[28] H.G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Dif-

ferential Equations: Convection-Diffusion-Reaction and Flow Problems, Springer-Verlag (2008).

[29] V. Sitzmann, J. Martel, A. Bergman, D. Lindell and G. Wetzstein, Implicit neural representa-

tions with periodic activation functions, in: Advances in Neural Information Processing Systems,

pp. 7462–7473, Morgan Kaufmann (2020).

[30] A.M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer. 19, 451–559 (2010).

[31] M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 445–508 (2005).

[32] S. Wang, H. Wang and P. Perdikaris, Learning the solution operator of parametric partial differ-

ential equations with physics-informed DeepONets, Sci. Adv. 7, eabi8605 (2021).

[33] A.I. Zadorin, Refined-mesh interpolation method for functions with a boundary-layer component,

Comput. Math. Math. Phys. 48, 1634–1645 (2008).


