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Abstract

In this paper, we introduce the weak Galerkin (WG) method for solving the coupled

Stokes and Darcy-Forchheimer flows problem with the Beavers-Joseph-Saffman interface

condition in bounded domains. We define the WG spaces in the polygonal meshes and

construct corresponding discrete schemes. We prove the existence and uniqueness of the

WG scheme by the discrete inf-sup condition and monotone operator theory. Then, we

derive the optimal error estimates for the velocity and pressure. Numerical experiments

are presented to verify the efficiency of the WG method.
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1. Introduction

In recent years, the coupled model of free fluid and porous medium fluid has received more

and more attention. Such problems have been widely applied in groundwater flows [9, 13, 17],

environmental science [15], flow in vuggy porous media [2, 4] and so on. The classical coupled

Stokes-Darcy model consists of the Stokes equation in fluid region, the Darcy’s law in porous

medium region. The interface conditions in the model are the flow continuity condition, the

force equilibrium condition, and the Beavers-Joseph-Saffman condition [34]. However, Darcy’s

law describes the porous media flow at low speed. In the case of high-speed seepage, porous

media will be turbulent. Forchheimer found through experiments that the pressure gradient

and the Darcy velocity should meet the nonlinear relationship with a coefficient depending

on the soil grain diameter and porosity for the larger values of Reynolds number, which re-

quires the use of the modified Darcy equation in 1901, namely the Forchheimer equation. The

Darcy-Forchheimer model in porous media explains the nonlinear behavior by adding an item

representing the inertial effect, which is used in the exploration and production of oil and gas

in petroleum reservoir [6].
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So far, there are many types of research on the coupling of Stokes flow and Darcy flow,

various numerical methods have been developed for the Stokes-Darcy model [3, 10, 14, 16, 18,

20, 26, 28, 29, 32], and there is a lot of research on the individual Darcy-Forchheimer model

[5, 25, 30, 31, 33]. However, there are relatively few researches on the coupled Stokes-Darcy-

Forchheimer model. Zhang and Rui [42] used the Crouzeix-Raviart element to approximate

the velocity and obtained the optimal-order error estimates when the velocity and pressure

were in [H2]N (N = 2 or 3) and H1 spaces respectively. The authors also derived a discrete

inf-sup condition and establish the existence and uniqueness of the problem. Zhao et al. [45]

proposed the staggered discontinuous Galerkin method for the model problems, which could be

flexibly applied to rough grids such as the highly distorted grids and the polygonal grids. And

they proved optimal convergence estimates by proposing some new discrete trace inequality

and generalized Poincaré-Friedrichs inequality. The fully mixed finite element method was

proposed by A. Almonacid et al. [1]. They considered the Darcy-Forchheimer model by means

of a modified abstract theory for twofold saddle point problems, which could pose the variational

formulation in terms of just Banach spaces, and the optimal-order error estimates were obtained.

The goal of this paper is to investigate the weak Galerkin (WG) method for solving the

coupled Stokes and Darcy-Forchheimer flows problem. The WG method is first proposed for the

second-order elliptic equations by Wang and Ye [36], and further developed in [23,35,37,39,43].

The key idea of the WG method is to use discontinuous piecewise polynomials as basis functions,

and to replace the classical derivative operators by specifically defined weak derivative operators

in the numerical scheme. In the past few years, the WG methods have been widely applied

to [10,21,22,38,40,41,44]. The applications mentioned above are mostly linear problems and the

theoretical analysis and numerical experiments are relatively more complicated for nonlinear

problems.

In this paper, we first establish the WG numerical scheme on polygonal meshes. Due

to the nonlinear and monotonicity of the Forchheimer term, we use Minty-Browder theorem

and discrete inf-sup condition to prove the existence and uniqueness of the numerical scheme.

Furthermore, by using the technical estimate for the Forchheimer term, we obtain the optimal

orders of error estimates when the velocity and pressure are in the [Hk+1]2 space and the Hk

space, respectively. When conducting numerical experiments, we adopted triangular grids, and

the numerical results are consistent with the theoretical estimates.

This paper is organized as follows. In Section 2, we introduce the model problem and some

notations. In Section 3, we define some WG spaces and establish the numerical scheme. In

Section 4, we prove the existence and uniqueness of the WG scheme. The error estimates for

the WG approximations are given in Section 5. Some numerical experiments are presented in

Section 6.

2. Model Problem

In this section, we describe in detail the coupled Stokes and Darcy-Forchheimer model [42].

We consider the coupled flow in a bounded domain Ω ∈ R2, which consists of two subregions,

a free region Ωs and a porous medium region Ωd = Ω\Ωs. Both Ωs and Ωd have Lipschitz

continuous boundaries. Define ΓI = ∂Ωs ∩ ∂Ωd,Γs = ∂Ωs\ΓI ,Γd = ∂Ωd\ΓI . ns and nd are

the outward unit normal vectors on Ωs and Ωd, τ is the unit tangent vector on ΓI , as shown in

Fig. 2.1.
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Fig. 2.1. Domain of the coupled Stokes and Darcy-Forchheimer Flows.

In the whole domain Ω, we denote the fluid velocity by u and the pressure by p. In the

free flow region Ωs, the fluid flow is governed by the Stokes equations. The velocity us and the

pressure ps satisfy

−2µ∇ ·D(us) +∇ps = fs in Ωs, (2.1)

∇ · us = 0 in Ωs, (2.2)

us = 0 on Γs. (2.3)

In the porous medium region Ωd, we use Darcy-Forchheimer equations to describe the flow

motion. Find velocity ud and pressure pd such that

µK−1ud + βρ|ud|ud +∇pd = fd in Ωd, (2.4)

∇ · ud = gd in Ωd, (2.5)

ud · nd = 0 on Γd. (2.6)

On the interface ΓI , we impose the following interface conditions:

us · ns + ud · nd = 0, (2.7)

ps − 2µns ·D(us) · ns = pd, (2.8)

−
√
κ

α
2ns ·D(us) · τ = us · τ , (2.9)

where (2.9) is the Beavers-Joseph-Saffman condition [34].

Here, µ > 0 is the fluid viscosity, β > 0 is the dynamic viscosity, ρ > 0 is the density of the

fluid, fs,fd and gd are in [L2(Ωs)]
2, [L2(Ωd)]

2 and L2(Ωd), respectively, and D is the symmetric

strain tensor defined by

D(u) =
1

2
(∇u +∇u⊤).

Besides, K is the symmetric positive define tensor, which is uniformly bounded and smooth

in Ωd. In (2.9), κ = τ ·K · τ , and α is a parameter determined by the experiment.

3. The Weak Galerkin Scheme

In this section, we establish the WG scheme for model problem (2.1)-(2.9). Throughout the

paper, we follow the usual notations for Sobolev spaces Wm,p(Ω) and norms ‖ · ‖Wm,p(Ω). The

space H(div; Ω) is defined by
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H(div; Ω) = {v : v ∈ [L2(Ω)]2,∇ · v ∈ L2(Ω)}.

Let Th be a polygonal partition of Ω satisfying shape regularity assumptions described in [37].

Ts,h and Td,h are the restriction of Th in Ωs and Ωd, respectively. Denote by Tl (l = s, d)

a cell in Tl,h and by El an edge in Tl,h. For each cell Tl ∈ Tl,h, hTl
is its diameter, and

h = maxT∈Th
hT . Let El,h and EI,h be the set of all the edges in Th ∩ (Ωl ∪ Γl) and Th ∩ ΓI ,

respectively. E0
l,h = El,h \ ∂Ω be the set of all interior edges in Th, Eb

l,h = El,h ∩ Γl be the set of

all exterior edges in Th.
Let Pk(T ) be the space of all polynomials in T with degree no more than k. For a given

integer k > 1, we define the weak Galerkin finite element spaces as follows:

Vs,h =
{
vs,h = {vs,0,vs,b}, vs,0|Ts

∈ [Pk(Ts)]
2, Ts ∈ Ts,h,

vs,b|Es
∈ [Pk(Es)]

2, Es ∈ Es,h ∪ EI,h, vs,b = 0 on Eb
s,h

}
,

Vd,h =
{
vd,h = {vd,0,vd,b}, vd,0|

Td

∈ [Pk(Td)]
2, Td ∈ Td,h,

vd,b|Ed

= vd,bnd, vd,b ∈ Pk(Ed), Ed ∈ Ed,h, vd,b = 0 on Eb
d,h

}
,

Vh = {vh = (vs,h,vd,h) ∈ Vs,h × Vd,h} ,
Ws,h =

{
ps,h : ps,h ∈ L2(Ωs), ps,h|Ts

∈ Pk−1(Ts), ∀Ts ∈ Ts,h
}
,

Wd,h =
{
pd,h : pd,h ∈ L2(Ωd), pd,h|Td

∈ Pk−1(Td), ∀Td ∈ Td,h
}
,

Wh = {ph = (ps,h, pd,h) ∈Ws,h ×Wd,h; (ps,h, 1)Ωs
+ (pd,h, 1)Ωd

= 0} .

Now we introduce some projection operators. For each cell Tl, let Ql,0 be the L2 projection

operator onto [Pk(Tl)]
2, Ql,h be the L2 projection operator onto [Pk−1(Tl)]

2×2, and πl,h be

the L2 projection operator onto Pk−1(Tl). On each edge El, denoted by Ql,b the L2 projection

operator onto [Pk(El)]
2. Combining Ql,0 and Ql,b, we define Ql,h = {Ql,0, Ql,b} the projection

operator onto Vl,h. Then, define Qh = (Qs,h, Qd,h),Qh = (Qs,h,Qd,h) and πh = (πs,h, πd,h).

After that, we denote (v, w)Tl
as
∫
Tl
vwdx and 〈v, w〉∂Tl

as
∫
∂Tl

vwds.

In the weak Galerkin finite element spaces Vh, we define the weak gradient and weak diver-

gence operators as follows.

Definition 3.1 ([37]). For any vh = {v0,vb} ∈ Vh, on each cell T ∈ Th, define ∇wvh and

∇w · vh by

(∇wvh, γ)T = −(v0,∇ · γ)T + 〈vb, γn〉∂T , ∀ γ ∈ [Pk−1(T )]
2×2,

(∇w · vh, q)T = −(v0,∇q)T + 〈vb · n, q〉∂T , ∀ q ∈ Pk−1(T ),

where n is the unit outward normal vector of ∂T .

Define

Dw(u) =
1

2

(
∇wu+∇wu

⊤
)
.

Let uh = (us,h,ud,h),vh = (vs,h,vd,h) ∈ Vh and ph = (ps,h, pd,h) ∈Wh. Now we introduce the

following five bilinear forms:

as(us,h,vs,h) = 2µ
∑

Ts∈Ts,h

(
Dw(us,h),Dw(vs,h)

)
Ts

+
µα√
κ
〈us,b · τ ,vs,b · τ 〉ΓI

,

bs(vs,h, ps,h) = (ps,h,∇w · vs,h)Ωs
,
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bd(vd,h, pd,h) = (pd,h,∇w · vd,h)Ωd
,

ss(us,h,vs,h) = ρs
∑

Ts∈Ts,h

h−1
Ts

〈us,0 − us,b,vs,0 − vs,b〉∂Ts
,

sd(ud,h,vd,h) = ρd
∑

Td∈Td,h

h−1
Td

〈(ud,0 − ud,b) · nd, (vd,0 − vd,b) · nd〉∂Td
,

where ρs and ρd can be any positive number. And we define a nonlinear form on Vd,h

ad(ud,h,vd,h) = µ
(
K−1ud,0,vd,0

)
Ωd

+ (βρ|ud,0|ud,0,vd,0)Ωd
.

Let

ah(uh,vh) = as(us,h,vs,h) + ad(ud,h,vd,h),

bh(vh, ph) = bs(vs,h, ps,h) + bd(vd,h, pd,h),

s(uh,vh) = ss(us,h,vs,h) + sd(ud,h,vd,h).

With these preparations, we introduce the following WG scheme for the problem (2.1)-(2.9).

Algorithm 3.1: Weak Galerkin Algorithm.

Find (uh, ph) ∈ Vh ×Wh such that

{
ah(uh,vh)− bh(vh, ph) + s(uh,vh) = (f ,v0), ∀vh ∈ Vh,

bh(uh, qh) = (g, qh), ∀ qh ∈ Wh,
(3.1)

where (f ,v0) = (fs,vs,0)Ωs
+ (fd,vd,0)Ωd

and (g, qh) = (0, qs,h)Ωs
+ (gd, qd,h)Ωd

.

4. Existence and Uniqueness

In this section, we are concerned with the existence and uniqueness of the WG scheme (3.1).

The key point is to verify the Minty-Browder theorem and the discrete inf-sup condition. First,

we introduce discrete norms in Vh and Wh. For any vh ∈ Vh, ph ∈Wh, define

|||vh||| =
(
2µ

∑

Ts∈Ts,h

‖Dw(vs,h)‖2L2(Ts)
+
µα√
κ
‖vs,b · τ‖2L2(ΓI )

+ ρs
∑

Ts∈Ts,h

h−1
Ts

‖vs,0 − vs,b‖2L2(∂Ts)
+ ρd

∑

Td∈Td,h

h−1
Td

‖(vd,0 − vd,b) · nd‖2L2(∂Td)

+ µ
∥∥K− 1

2vd,0

∥∥2
L2(Ωd)

+ βρ‖vd,0‖2L3(Ωd)
+ ‖∇w · vh‖2L2(Ω)

) 1
2

,

|||vh|||1 =
(
|||vh|||2 − βρ‖vd,0‖2L3(Ωd)

) 1
2 ,

‖ph‖h =
(
‖ps,h‖2L2(Ωs)

+ ‖pd,h‖2L2(Ωd)

) 1
2 .

It is easy to know that ||| · |||1 is a norm in the Vh and ‖ · ‖h is a norm in the Wh. The proof can

be referred to [10, Section 3.1]. Clearly, ||| · ||| is a norm in the Vh, too.

Next, we give the inf-sup condition.
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Lemma 4.1. There exists a constant ̺ > 0 independent h such that

inf
ph∈Wh

sup
vh∈Vh

bh(vh, ph)

‖ph‖h|||vh|||
≥ ̺. (4.1)

Proof. Follow [7], for any ph ∈ Wh, there exists ṽ = (ṽs, ṽd) ∈ [H1
0 (Ωs)]

2 × [H1
0 (Ωd)]

2 such

that ∇ · ṽs = ps,h and ∇ · ṽd = pd,h, satisfying

‖ṽs‖H1(Ωs) + ‖ṽd‖H1(Ωd) ≤ C(‖ps,h‖Ωs
+ ‖pd,h‖Ωd

), (4.2)

where C > 0 is a constant only depending Ω. By setting vh = Qhṽ ∈ Vh, we claim that

|||Qhṽ||| ≤ C
(
‖ṽs‖H1(Ωs) + ‖ṽd‖H1(Ωd)

)
. (4.3)

In fact, from Lemma A.1, we have

∑

Ts∈Ts,h

‖Dw(Qs,hṽs)‖2L2(Ts)
≤ C

∑

Ts∈Ts,h

‖∇w(Qs,hṽs)‖2L2(Ts)

= C
∑

Ts∈Ts,h

‖Qs,h(∇ṽs)‖2L2(Ts)
≤ C‖∇ṽs‖2L2(Ωs)

, (4.4)

and

‖∇w · (Qhṽ)‖2L2(Ω) ≤ ‖πh(∇ · ṽ)‖2L2(Ω) ≤ ‖∇ · ṽ‖2L2(Ω)

≤ ‖∇ṽ‖2L2(Ωs)
+ ‖∇ṽ‖2L2(Ωd)

. (4.5)

Using Lemma A.5, we obtain

‖Qs,bṽs · τ‖2L2(ΓI )
≤ C

∑

Es∈EI,h

‖Qs,bṽs‖2L2(Es)
≤ C

∑

Es∈EI,h

‖ṽs‖2L2(Es)

≤ C‖ṽs‖2L2(∂Ωs)
≤ C‖ṽs‖2H1(Ωs)

. (4.6)

According to the trace inequality (A.3), the projection inequality (A.5) and (A.6), it follows

that

ρs
∑

Ts∈Ts,h

h−1
Ts

‖Qs,0ṽs −Qs,bṽs‖2L2(∂Ts)
≤ C

∑

Ts∈Ts,h

h−1
Ts

‖Qs,0ṽs − ṽs‖2L2(∂Ts)

≤ C‖ṽs‖2H1(Ωs)
. (4.7)

Similarly,

ρd
∑

Td∈Td,h

h−1
Td

‖(Qd,0ṽd −Qd,bṽd) · nd‖2L2(∂Td)
≤ C‖ṽd‖2H1(Ωd)

. (4.8)

From Lemma A.5 and the projection inequality (A.5), we have

∥∥K− 1
2Qd,0ṽd

∥∥2
L2(Ωd)

≤ C‖ṽd‖2L2(Ωd)
≤ C‖ṽd‖2H1(Ωd)

, (4.9)

‖Qd,0ṽd‖2L3(Ωd)
≤ C

(
‖Qd,0ṽd − ṽd‖2H1(Ωd)

+ ‖ṽd‖2H1(Ωd)

)
≤ C‖ṽd‖2H1(Ωd)

. (4.10)
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Thus combining (4.4)-(4.10), we can conclude that

|||Qhṽ|||2 = 2µ
∑

Ts∈Ts,h

‖Dw(Qs,hṽs)‖2L2(Ts)
+
µα√
κ
‖Qs,bṽs · τ‖2L2(ΓI)

+ ρs
∑

Ts∈Ts,h

h−1
Ts

‖Qs,0ṽs −Qs,bṽs‖2L2(∂Ts)

+ ρd
∑

Td∈Td,h

h−1
Td

‖(Qd,0ṽd −Qd,bṽd) · nd‖2L2(∂Td)

+ µ‖K− 1
2Qd,0ṽd‖2L2(Ωd)

+ βρ‖Qd,0ṽd‖2L3(Ωd)
+ ‖∇w · (Qhṽ)‖2L2(Ω)

≤ C
(
‖ṽs‖2H1(Ωs)

+ ‖ṽd‖2H1(Ωd)

)
≤ C

(
‖ṽs‖H1(Ωs) + ‖ṽd‖H1(Ωd)

)2
.

It follows from (A.2) and the definition of πs,h, πd,h that

bh(vh, ph) = (ps,h,∇w · vs,h)Ωs
+ (pd,h,∇w · vd,h)Ωd

=
(
ps,h,∇w · (Qs,hṽs)

)
Ωs

+
(
pd,h,∇w · (Qd,hṽd)

)
Ωd

=
(
ps,h, πs,h(∇ · ṽs)

)
Ωs

+
(
pd,h, πd,h(∇ · ṽd)

)
Ωd

= (ps,h,∇ · ṽs)Ωs
+ (pd,h,∇ · ṽd)Ωd

. (4.11)

Consequently, from (4.11), (4.3) and (4.2), we obtain

bh(vh, ph)

‖ph‖h|||vh|||
≥ (ps,h,∇ · ṽs)Ωs

+ (pd,h,∇ · ṽd)Ωd

C‖ph‖h(‖ṽs‖H1(Ωs) + ‖ṽd‖H1(Ωd))

≥ (ps,h, ps,h)Ωs
+ (pd,h, pd,h)Ωd

C(‖ps,h‖Ωs
+ ‖pd,h‖Ωd

)2

=
‖ps,h‖2Ωs

+ ‖pd,h‖2Ωd

C(‖ps,h‖Ωs
+ ‖pd,h‖Ωd

)2
≥ 1

2C
.

The proof is complete. �

Finally, in order to illustrate the existence and uniqueness of the nonlinear system (3.1), we

need to verify the following theorem.

Lemma 4.2 (Minty-Browder Theorem, [12]). Let V be a real separable reflexive Banach

space. Denote a norm in V as ‖ · ‖V , and 〈· , ·〉V is the duality between (V )∗ and V . Let

A : V → V ∗ satisfy the following conditions:

(i) The operator A is coercive:

lim
v∈V,‖v‖V →∞

〈A(v),v〉V
‖v‖V

= ∞.

(ii) A is hemi-continuous: For u,v ∈ V and t ∈ R, t → 〈A(u + tv),v〉V is a continuous

mapping from R to R.

(iii) A is a strictly monotone operator:

〈A(u)−A(v),u − v〉V > 0, u,v ∈ V, u 6= v.
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Then A is a bijection, i.e. given any F ∈ V ∗, there exists u such that

u ∈ V and A(u) = F.

Lemma 4.3. The Weak Galerkin Algorithm 3.1 has a unique solution.

Proof. Since Vh is a real finite dimension Banach space, Vh is separable and reflexive. It is

easy to see that there exists a mapping A : Vh → (Vh)
∗, a functional F ∈ (Vh)

∗ such that

〈A(uh),vh〉Vh
= ah(uh,vh) + s(uh,vh),

〈F,vh〉Vh
= (f ,v0), ∀vh ∈ Vh.

Here (Vh)
∗ denotes the dual space of Vh.

Let

K(g) = {uh ∈ Vh, bh(uh, ph) = (g, ph), ∀ ph ∈ Wh}.

We claim that if vh ∈ K(0), then ∇w ·vh = 0. In fact, by the definition of Vh and Definition 3.1,

we know that for any vh ∈ Vh,

(∇w · vs,h, 1)Ωs
+ (∇w · vd,h, 1)Ωd

= 〈vs,b · ns, 1〉∂Ωs
+ 〈vd,b · nd, 1〉∂Ωd

= 〈vs,b · ns + vd,b · nd, 1〉ΓI
= 0,

which means ∇w · vh ∈ Wh. Take ph = ∇w · vh, thus bh(vh, ph) = (∇w · vh,∇w · vh) = 0, the

assertion holds. Therefore, we see that the WG scheme (3.1) can be written as in the following

way, find uh ∈ K(g) such that

〈A(uh),vh〉Vh
= 〈F,vh〉Vh

, ∀vh ∈ K(0). (4.12)

There exists a mapping B, such that for uh ∈ K(g), Buh = g. From [42, Lemma 3.5] and

the inf-sup condition (4.1), there exists a function u0
h ∈ K(g)/ ker(B) such that |||u0

h||| ≤ ‖g‖/̺.
Consequently, it is clear that the scheme (4.12) is equivalent to the following scheme: Find

ûh = uh − u0
h ∈ K(0) such that

〈
A
(
ûh + u0

h

)
,vh

〉
Vh

= 〈F,vh〉Vh
, ∀vh ∈ K(0). (4.13)

The scheme (4.13) can be written as the operator equation A(ûh + u0
h) = F for ûh ∈ K(0).

According to Lemma 4.2, we need to show that for fixed u0
h ∈ Vh, and ∀ ûh,vh ∈ K(0),

(i) The mapping ûh → A(u0
h + ûh) is coercive

lim
|||ûh|||→∞

〈
A
(
u0
h + ûh

)
, ûh

〉
Vh

|||ûh|||
= ∞. (4.14)

(ii) The mapping A is hemi-continuous in Vh: The mapping

t→
〈
A
(
u0
h + ûh + tvh

)
,vh

〉
Vh

(4.15)

is continuous from R to R.

(iii) The mapping ûh → A(u0
h + ûh) is monotone

〈
A
(
ûh + u0

h

)
−A

(
vh + u0

h

)
, ûh − vh

〉
Vh
> 0, ûh 6= vh. (4.16)
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Next, we divide our proof into three steps. First, we verify the coercivity of A. Let u0
h+ûh = uh,

according to the definition of ||| · ||| and Hölder inequality, it follows that

〈
A
(
u0
h + ûh

)
, ûh

〉
Vh

= ah
(
uh,uh − u0

h

)
+ s
(
uh,uh − u0

h

)
= ah(uh,uh) + s(uh,uh)− ah

(
uh,u

0
h

)
− s
(
uh,u

0
h

)

≥ 2µ
∑

Ts∈Ts,h

‖Dw(us,h)‖2L2(Ts)
+
µα√
κ
‖us,b · τ‖2L2(ΓI)

+
∑

Ts∈Ts,h

h−1
Ts

‖us,0 − us,b‖2L2(∂Ts)

+
∑

Td∈Td,h

h−1
Td

‖(ud,0 − ud,b) · nd‖2L2(∂Td)
+ µ

∥∥K− 1
2ud,0

∥∥2
L2(Ωd)

+ βρ‖ud,0‖3L3(Ωd)

− 2µ

(
∑

Ts∈Ts,h

‖Dw(us,h)‖2L2(Ts)

) 1
2
(

∑

Ts∈Ts,h

∥∥Dw

(
u0
s,h

)∥∥2
L2(Ts)

) 1
2

− µα√
κ

(
‖us,b · τ‖2L2(ΓI)

) 1
2

(∥∥u0
s,b · τ

∥∥2
L2(ΓI)

) 1
2

−
(

∑

Ts∈Ts,h

h−1
Ts

‖us,0 − us,b‖2L2(∂Ts)

) 1
2
(

∑

Ts∈Ts,h

h−1
Ts

∥∥u0
s,0 − u0

s,b

∥∥2
L2(∂Ts)

) 1
2

−
(

∑

Td∈Td,h

h−1
Td

‖(ud,0 − ud,b) · nd‖2L2(∂Td)

) 1
2
(

∑

Td∈Td,h

h−1
Td

∥∥(u0
d,0 − u0

d,b

)
· nd

∥∥2
L2(∂Td)

) 1
2

− µ
∥∥K− 1

2ud,0

∥∥
L2(Ωd)

∥∥K− 1
2u0

d,0

∥∥
L2(Ωd)

− βρ‖ud,0‖2L3(Ωd)

∥∥u0
d,0

∥∥
L3(Ωd)

+ ‖∇w · uh‖2L2(Ω) − ‖∇w · uh‖L2(Ω)

∥∥∇w · u0
h

∥∥
L2(Ω)

≥ min
{
1, ‖ud,0‖L3(Ωd)

}
|||uh|||2 −max

{
1,

1

βρ‖u0
d,0‖L3(Ωd)

}
|||uh||| · |||u0

h|||,

where we have used the fact that

‖∇w · uh‖L2(Ω) ≤
∥∥∇w · u0

h

∥∥
L2(Ω)

+ ‖∇w · ûh‖L2(Ω) =
∥∥∇w · u0

h

∥∥
L2(Ω)

.

Since u0
h is fixed, the factor

min
{
1, ‖ud,0‖L3(Ωd)

}
|||uh||| −max

{
1,

1

βρ‖u0
d,0‖L3(Ωd)

}
|||u0

h|||

is nonnegative for |||uh||| large enough. In this case, when |||ûh||| → ∞, (4.14) holds, which

completes the proof of the coercivity.

Next, we prove the hemi-continuity of A. Let

u0
h + ûh + tvh = wh, u0

h + ûh + t0vh = w0
h.

By the definition of ||| · ||| and the Hölder inequality, we have

as(wh,vh) + s(wh,vh)− as
(
w0

h,vh

)
− s
(
w0

h,vh

)

= as
(
wh −w0

h,vh

)
+ s
(
wh −w0

h,vh

)

≤ 2µ

(
∑

Ts∈Ts,h

∥∥Dw

(
ws,h −w0

s,h

)∥∥2
L2(Ts)

) 1
2
(

∑

Ts∈Ts,h

‖Dw(vs,h)‖2L2(Ts)

) 1
2
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+

(
ρs
∑

Ts∈Ts,h

h−1
Ts

∥∥(ws,0−w0
s,0

)
−
(
ws,b−w0

s,b

)∥∥2
L2(∂Ts)

) 1
2
(
ρs
∑

Ts∈Ts,h

h−1
Ts

‖vs,0 − vs,b‖2L2(∂Ts)

) 1
2

+

(
ρd

∑

Td∈Td,h

h−1
Td

∥∥((wd,0 −w0
d,0

)
−
(
wd,b −w0

d,b

))
· nd

∥∥2
L2(∂Td)

) 1
2

×
(
ρd

∑

Td∈Td,h

h−1
Td

‖(vd,0 − vd,b) · nd‖2L2(∂Td)

) 1
2

+
µα√
κ

(∥∥(ws,b −w0
s,b

)
· τ
∥∥2
L2(ΓI )

) 1
2
(
‖vs,b · τ‖2L2(ΓI)

) 1
2

≤ C
∣∣∣∣∣∣wh −w0

h

∣∣∣∣∣∣
1
|||vh|||1 ≤ C

∣∣∣∣∣∣wh −w0
h

∣∣∣∣∣∣ · |||vh|||. (4.17)

From the proof of [27, Lemma 3.16] and Hölder inequality, we have

∣∣βρ
(
|wd,0|wd,0 −

∣∣w0
d,0

∣∣w0
d,0,vd,0

)
Ωd

∣∣

≤ βρ

∫

Ωd

∣∣wd,0 −w0
d,0

∣∣(|wd,0|+
∣∣w0

d,0

∣∣)|vd,0|ds

≤ βρ
∥∥wd,0 −w0

d,0

∥∥
Lp1(Ωd)

(
‖wd,0‖Lp2(Ωd) +

∥∥w0
d,0

∥∥
Lp2(Ωd)

)
‖vd,0‖Lp3(Ωd)

≤ βρ
∥∥wd,0 −w0

d,0

∥∥
Lp1(Ωd)

(∥∥wd,0 −w0
d,0

∥∥
Lp2(Ωd)

+ 2
∥∥w0

d,0

∥∥
Lp2(Ωd)

)
‖vd,0‖Lp3(Ωd). (4.18)

where pi > 1, i = 1, 2, 3, satisfying 1/p1 + 1/p2 + 1/p3 = 1. Let p1 = 2, p2 = 6, p3 = 3. We

obtain

ad(wh,vh)− ad
(
w0

h,vh

)

= µ
(
K−1

(
wd,0 −w0

d,0

)
,vd,0

)
Ωd

+
(
βρ|wd,0|wd,0 −

∣∣w0
d,0

∣∣w0
d,0,vd,0

)
Ωd

≤ µ
∥∥K− 1

2

(
wd,0 −w0

d,0

)∥∥
L2(Ωd)

∥∥K− 1
2vd,0

∥∥
L2(Ωd)

+ βρ
∥∥wd,0 −w0

d,0

∥∥
L2(Ωd)

(∥∥wd,0 −w0
d,0

∥∥
L6(Ωd)

+ 2
∥∥w0

d,0

∥∥
L6(Ωd)

)
‖vd,0‖L3(Ωd)

≤ C
∣∣∣∣∣∣wd,0 −w0

d,0

∣∣∣∣∣∣ · |||vh|||
(
1 +

∥∥wd,0 −w0
d,0

∥∥
L6(Ωd)

+ 2
∥∥w0

d,0

∥∥
L6(Ωd)

)
. (4.19)

Hence, when t→ t0, according to the continuity of the norm ||| · |||, (4.17) and (4.19), we have

lim
t→t0

(〈
A
(
u0
h + ûh + tvh

)
,vh

〉
Vh

−
〈
A
(
u0
h + ûh + t0vh

)
,vh

〉
Vh

)

= lim
t→t0

(
ah(wh,vh) + s(wh,vh)− ah

(
w0

h,vh

)
− s
(
w0

h,vh

))
= 0.

Therefore, the mapping (4.15) is continuous for t ∈ R. Furthermore, A is a hemi-continuous

operator.

Finally, we prove the (4.16). Obviously, h(x) = |x|x is increasing in R2, then it follows that

〈
A
(
ûh + u0

h

)
−A

(
vh + u0

h

)
, ûh − vh

〉
Vh

= as(ûh − vh, ûh − vh) + s(ûh − vh, ûh − vh)

+ µ
(
K−1(ûd,0 − vd,0), ûd,0 − vd,0

)
Ωd

+
(
βρ(|ûd,0|ûd,0 − |vd,0|vd,0), ûd,0 − vd,0

)
Ωd

≥ 0.
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Let us assume that 〈
A
(
ûh + u0

h

)
−A

(
vh + u0

h

)
, ûh − vh

〉
Vh

= 0.

It is easy to see that |||ûh − vh||| = 0 and ûb − vb = 0 on ∂Ω. This implies that ûh − vh = 0,

which is contradict to ûh 6= vh. Thus we conclude that A is a strictly monotone operator.

According to Lemma 4.2, it follows that the scheme (4.13) has a unique solution. We complete

the proof. �

5. Error Analysis

In this section, we derive the error equation and the order of convergence for Weak Galerkin

Algorithm 3.1.

5.1. Error equation

Let the exact solution u = (us,ud), p = (ps, pd) for (2.1)-(2.9). uh = {u0,ub} and ph be

the weak Galerkin finite element solution arising from (3.1). Define the error functions by

eh = Qhu− uh = {Q0u− u0, Qbu− ub}, εh = πhp− ph. (5.1)

Lemma 5.1 ([26]). For any ws ∈ H1(Ωs), ρl ∈ H1(Ωl) (l = s, d) and vh = (vs,h,vd,h) ∈ Vh.

It follows that

(
∇w(Qs,hws),∇wvs,h

)
Ωs

= (∇ws,∇vs,0)Ωs
−

∑

Ts∈Ts,h

〈vs,0 − vs,b, (Qs,h∇ws) · ns〉∂Ts
,

(∇w · vl,h, πl,hρl)Ωl
= (∇ · vl,0, ρl)Ωl

−
∑

Tl∈Tl,h

〈vl,0 − vl,b, (πl,hρl) · nl〉∂Tl
.

With the help of the above lemma, we now present the following error equations.

Lemma 5.2. Let eh and εh be the error defined in (5.1). Then, for any vh ∈ Vh and qh ∈Wh,

we have

as(eh,vh) + ad(Qhu,vh)− ad(uh,vh) + s(eh,vh)− bh(vh, εh)

= ϕu,p(vh) + s(Qhu,vh) +Ku(vh) + lI(vh), (5.2)

bh(eh, qh) = 0, (5.3)

where

ϕu,p(vh) = 2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts

+
∑

Td∈Td,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td
,

Ku(vh) = µ
(
K−1(Qd,0ud − ud),vd,0

)
Ωd

+ βρ(|Qd,0ud|Qd,0ud − |ud|ud,vd,0)Ωd
,

lI(vh) =
µα√
κ
〈(Qs,bus − us) · τ ,vs,b · τ 〉ΓI

.
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Proof. First, testing (2.1) by vs,0 of vh = ({vs,0,vs,b}, {vd,0,vd,b}) ∈ Vh, we arrive at

(fs,vs,0) = −2µ
∑

Ts∈Ts,h

(
∇ ·D(us),vs,0

)
Ts

+
∑

Ts∈Ts,h

(∇ps,vs,0)Ts

= −2µ
∑

Ts∈Ts,h

〈D(us) · ns,vs,0〉∂Ts
+ 2µ

∑

Ts∈Ts,h

(
D(us),∇vs,0

)
Ts

+
∑

Ts∈Ts,h

〈psns,vs,0〉∂Ts
−

∑

Ts∈Ts,h

(ps,∇ · vs,0)Ts

= −2µ
∑

Ts∈Ts,h

〈D(us) · ns,vs,0 − vs,b〉∂Ts
− 2µ

∑

Ts∈Ts,h

〈D(us) · ns,vs,b〉∂Ts

+ 2µ
∑

Ts∈Ts,h

(
D(us),∇vs,0

)
Ts

+
∑

Ts∈Ts,h

〈psns,vs,0 − vs,b〉∂Ts

+
∑

Ts∈Ts,h

〈psns,vs,b〉∂Ts
−

∑

Ts∈Ts,h

(ps,∇ · vs,0)Ts
. (5.4)

According to Lemma 5.1, we obtain

− 2µ
∑

Ts∈Ts,h

〈D(us) · ns,vs,0 − vs,b〉∂Ts
+ 2µ

∑

Ts∈Ts,h

(
D(us),∇vs,0

)
Ts

= −2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

− 2µ
∑

Ts∈Ts,h

〈(
Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+ 2µ
∑

Ts∈Ts,h

(
D(us),∇vs,0

)
Ts

= −2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+ 2µ
∑

Ts∈Ts,h

(
Dw(Qs,hus),Dw(vs,h)

)
Ts
, (5.5)

∑

Ts∈Ts,h

〈psns,vs,0 − vs,b〉∂Ts
−

∑

Ts∈Ts,h

(ps,∇ · vs,0)Ts

=
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts
+

∑

Ts∈Ts,h

〈(πs,hps)ns,vs,0 − vs,b〉∂Ts

−
∑

Ts∈Ts,h

(ps,∇ · vs,0)Ts

=
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts
−

∑

Ts∈Ts,h

(πs,hps,∇w · vs,h)Ts
. (5.6)

Due to the Eqs. (2.8) and (2.9), we have

− 2µ
∑

Ts∈Ts,h

〈D(us) · ns,vs,b〉∂Ts
+

∑

Ts∈Ts,h

〈psns,vs,b〉∂Ts

= −2µ
∑

Es∈EI,h

〈D(us) · ns,vs,b〉Es
+

∑

Es∈EI,h

〈psns,vs,b〉Es

= −2µ
∑

Es∈EI,h

〈ns ·D(us) · ns,vs,b · ns〉Es
− 2µ

∑

Es∈EI,h

〈ns ·D(us) · τ ,vs,b · τ 〉Es
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+
∑

Es∈EI,h

〈ps,vs,b · ns〉Es
+

∑

Es∈EI,h

〈psns · τ ,vs,b · τ 〉Es

=
∑

Es∈EI,h

〈pd,vs,b · ns〉Es
+
µα√
κ

∑

Es∈EI,h

〈us · τ ,vs,b · τ 〉Es

=
∑

Es∈EI,h

〈pd,vs,b · ns〉Es
+
µα√
κ

∑

Es∈EI,h

〈(us −Qs,bus) · τ ,vs,b · τ 〉Es

+
µα√
κ

∑

Es∈EI,h

〈(Qs,bus) · τ ,vs,b · τ 〉Es
, (5.7)

where we have used the fact that
∑

Es∈E0
s,h

∪Eb
s,h

〈D(us) · ns,vs,b〉Es
= 0,

∑

Es∈E0
s,h

∪Eb
s,h

〈psns,vs,b〉Es
= 0.

Substituting (5.5)-(5.7) into (5.4), we get

(fs,vs,0) = −2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+ 2µ
∑

Ts∈Ts,h

(
Dw(Qs,hus),Dw(vs,h)

)
Ts

+
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts

−
∑

Ts∈Ts,h

(πs,hps,∇w · vs,h)Ts
+

∑

Es∈EI,h

〈pd,vs,b · ns〉Es

+
µα√
κ

∑

Es∈EI,h

〈(us −Qs,bus) · τ ,vs,b · τ 〉Es

+
µα√
κ

∑

Es∈EI,h

〈(Qs,bus) · τ ,vs,b · τ 〉Es

= as(Qs,hus,vs,h)− bs(vs,h, πhps)

− 2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts
+

∑

Es∈EI,h

〈pd,vs,b · ns〉Es

+
µα√
κ

∑

Es∈EI,h

〈(us −Qs,bus) · τ ,vs,b · τ 〉Es
. (5.8)

Next, testing the nonlinear boundary condition (2.4) by vd,0, we have

(fd,vd,0) = µ
∑

Td∈Td,h

(
K−1ud,vd,0

)
Td

+ βρ
∑

Td∈Td,h

(|ud|ud,vd,0)Td
+

∑

Td∈Td,h

(∇pd,vd,0)Td

= µ
∑

Td∈Td,h

(
K−1(Qd,0ud),vd,0

)
Td

+ µ
∑

Td∈Td,h

(
K−1(ud −Qd,0ud),vd,0

)
Td

+ βρ
∑

Td∈Td,h

(|Qd,0ud|Qd,0ud,vd,0)Td
+βρ

∑

Td∈Td,h

(|ud|ud−|Qd,0ud|Qd,0ud,vd,0)Td

+
∑

Td∈Td,h

〈pdnd,vd,0−vd,b〉∂Td
+
∑

Td∈Td,h

〈pdnd,vd,b〉∂Td
−
∑

Td∈Td,h

(pd,∇ · vd,0)Td
. (5.9)
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From Lemma 5.1, we obtain
∑

Td∈Td,h

〈pdnd,vd,0 − vd,b〉∂Td
−

∑

Td∈Td,h

(pd,∇ · vd,0)Td

=
∑

Td∈Td,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td
+

∑

Td∈Td,h

〈(πd,hpd)nd,vd,0 − vd,b〉∂Td

−
∑

Td∈Td,h

(pd,∇ · vd,0)Td

=
∑

Td∈Ts,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td
−

∑

Td∈Td,h

(πd,hpd,∇w · vd,h)Td
. (5.10)

According to the fact ∑

Ed∈E0
d,h

∪Eb
d,h

〈pdnd,vd,b〉Ed
= 0,

it is clear that
∑

Td∈Td,h

〈pdnd,vd,b〉∂Td
=

∑

Es∈EI,h

〈pd,vd,b · nd〉Es
. (5.11)

Substituting (5.10) and (5.11) into (5.9), we have

(fd,vd,0) = µ
∑

Td∈Td,h

(
K−1(Qd,0ud),vd,0

)
Td

+ µ
∑

Td∈Td,h

(
K−1(ud −Qd,0ud),vd,0

)
Td

+ βρ
∑

Td∈Td,h

(|Qd,0ud|Qd,0ud,vd,0)Td
+βρ

∑

Td∈Td,h

(|ud|ud − |Qd,0ud|Qd,0ud,vd,0)Td

+
∑

Td∈Ts,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td
−

∑

Td∈Td,h

(πd,hpd,∇w · vd,h)Td

+
∑

Es∈EI,h

〈pd,vd,b · nd〉Es

= ad(Qh,dud,vd,h)− bd(vd,hπd,hpd) +
∑

Es∈EI,h

〈pd,vd,b · nd〉Es

+ µ
∑

Td∈Td,h

(
K−1(ud −Qd,0ud),vd,0

)
Td
+βρ

∑

Td∈Td,h

(|ud|ud−|Qd,0ud|Qd,0ud,vd,0)Td

+
∑

Td∈Ts,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td
. (5.12)

Combining (5.4), (5.12), and (2.7), we obtain

(f ,v0) = ah(Qhu,vh)− bh(vh, πhp)− 2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts
+
µα√
κ

∑

Es∈EI,h

〈(us −Qs,bus) · τ ,vs,b · τ 〉Es

+ µ
∑

Td∈Td,h

(
K−1(ud−Qd,0ud),vd,0

)
Td
+βρ

∑

Td∈Td,h

(|ud|ud − |Qd,0ud|Qd,0ud,vd,0)Td

+
∑

Td∈Ts,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td

= ah(Qhu,vh)− bh(vh, πhp)− ϕu,p(vh)−Ku(vh)− lI(vh). (5.13)
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Subtracting (5.13) from (3.1) and adding s(Qhu,vh) to both sides, we yield the following error

equation:

as(eh,vh) + ad(Qhu,vh)− ad(uh,vh) + s(eh,vh)− bh(vh, εh)

= ϕu,p(vh) + s(Qhu,vh) +Ku(vh) + lI(vh).

Finally, testing (2.2) by qs,h and testing (2.5) by qd,h, qh = (qs,h, qd,h) ∈ Wh. Then, it

follows from Lemma A.1 that

(g, qh) = (∇ · u, qh) =
(
πh(∇ · u), qh

)
= (∇w ·Qhu, qh). (5.14)

From the WG scheme (3.1) we know

(∇w · uh, qh) = (g, qh). (5.15)

Combining (5.14) and (5.15), it leads to

bh(eh, qh) =
(
∇w · (Qhu− uh), qh

)
= 0.

This completes the proof of the lemma. �

5.2. Error estimate

Next, we derive the order of convergence for the WG approximation in ||| · |||1 for eh and in

‖ · ‖h for εh. It has been proved in [19, Lemma 1] that

(|a|γa− |b|γb)(a− b) ≥ |a− b|γ+2, ∀ a, b ∈ R2, γ > 0.

It is straightforward to show that

(|a|a− |b|b) · (a− b) ≥ |a− b|3, ∀a, b ∈
[
L3(Ωd)

]2
. (5.16)

Let vh = eh, therefore bh(eh, εh) = 0. According to (5.16), it follows that

βρ
∑

Td∈Td,h

(|Qd,0ud|Qd,0ud − |ud|ud, ed,0)Td

≥ βρ
∑

Td∈Td,h

‖Qd,0ud − ud,h‖3L3(Td)

= βρ
∑

Td∈Td,h

(|ed,0|ed,0, ed,0)Td
.

Thus we conclude that

as(eh, eh) + ad(Qhu, eh)− ad(uh, eh) + s(eh, eh)− bh(eh, εh)

≥ ah(eh, eh) + s(eh, eh) = |||eh|||21 + ‖ed,0‖3L3(Ωd)
. (5.17)

Lemma 5.3. Assume that Th is shape-regular. For u = (us,ud) ∈ [Hk+1(Ωs)]
2×[Hk+1(Ωd)]

2,

p = (ps, pd) ∈ Hk(Ωs)×Hk(Ωd) and vh = ({vs,0,vs,b}, {vd,0,vd,b}) ∈ Vh, it follows that

|ϕu,p(vh)| ≤ Chk
(
‖us‖Hk+1(Ωs) + ‖ps‖Hk(Ωs) + ‖pd‖Hk(Ωd)

)
|||vh|||1, (5.18)



16 M.Z. QIN, H. PENG AND Q.L. ZHAI

|s(Qhu,vh)| ≤ Chk
(
‖us‖Hk+1(Ωs) + ‖ud‖Hk+1(Ωd)

)
|||vh|||1, (5.19)

|Ku(vh)| ≤ Chk+1
(
‖ud‖Hk+1(Ωd) + ‖ud‖2Hk+1(Ωd)

)
|||vh|||, (5.20)

|lI(vh)| ≤ Chk+1‖us‖Hk+1(ΓI)|||vh|||1, (5.21)

where

ϕu,p(vh) = 2µ
∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

+
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts
+
∑

Td∈Td,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td
,

Ku(vh) = µ
(
K−1(Qd,0ud − ud),vd,0

)
Ωd

+ βρ(|Qd,0ud|Qd,0ud − |ud|ud,vd,0)Ωd
,

lI(vh) =
µα√
κ
〈(Qs,bus − us) · τ ,vs,b · τ 〉ΓI

.

Proof. First, we estimate ϕu,p(vh). According to Lemmas A.2 and A.4, it follows that
∣∣∣∣∣2µ

∑

Ts∈Ts,h

〈(
D(us)−Qs,hD(us)

)
· ns,vs,0 − vs,b

〉
∂Ts

∣∣∣∣∣

≤ C

(
∑

Ts∈Ts,h

hTs
‖D(us)−Qs,hD(us)‖2L2(∂Ts)

) 1
2
(

∑

Ts∈Ts,h

h−1
Ts

‖vs,0 − vs,b‖2L2(∂Ts)

) 1
2

≤ C

(
∑

Ts∈Ts,h

hTs

(
h−1
Ts

‖∇us −Qs,h∇us‖2L2(Ts)
+ hTs

‖∇us −Qs,h∇us‖2H1(Ts)

)
) 1

2

×
(

∑

Ts∈Ts,h

h−1
Ts

‖vs,0 − vs,b‖2L2(∂Ts)

) 1
2

≤ Chk‖us‖Hk+1(Ωs)|||vh|||1,

and ∣∣∣∣∣
∑

Ts∈Ts,h

〈(ps − πs,hps)ns,vs,0 − vs,b〉∂Ts

∣∣∣∣∣

≤ C

(
∑

Ts∈Ts,h

hTs
‖ps − πs,hps‖2L2(∂Ts)

) 1
2
(

∑

Ts∈Ts,h

h−1
Ts

‖vs,0 − vs,b‖2L2(∂Ts)

) 1
2

≤ Chk‖ps‖Hk(Ωs)|||vh|||1.

Similarly, ∣∣∣∣∣
∑

Td∈Td,h

〈(pd − πd,hpd)nd,vd,0 − vd,b〉∂Td

∣∣∣∣∣ ≤ Chk‖pd‖Hk(Ωd)|||vh|||1.

Thus we arrive at the conclusion that

|ϕu,p(vh)| ≤ Chk
(
‖us‖Hk+1(Ωs) + ‖ps‖Hk(Ωs) + ‖pd‖Hk(Ωd)

)
|||vh|||1.

Next, we estimate s(Qhu,vh). According to Lemmas A.2 and A.4, it is easy to see that
∣∣∣∣∣ρs

∑

Ts∈Ts,h

h−1
Ts

〈Qs,0us −Qs,bus,vs,0 − vs,b〉∂Ts

∣∣∣∣∣
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≤ C

(
∑

Ts∈Ts,h

h−1
Ts

‖Qs,0us −Qs,bus‖2L2(∂Ts)

) 1
2
(
ρs

∑

Ts∈Ts,h

h−1
Ts

‖vs,0 − vs,b‖2L2(∂Ts)

) 1
2

≤ C

(
∑

Ts∈Ts,h

h−1
Ts

(
‖Qs,0us − us‖L2(∂Ts) + ‖Qs,bus − us‖L2(∂Ts)

)2
) 1

2

|||vh|||1

≤ 2C

(
∑

Ts∈Ts,h

h−1
Ts

‖Qs,0us − us‖2L2(∂Ts)

) 1
2

|||vh|||1

≤ 2C

(
∑

Ts∈Ts,h

h−1
Ts

(
h−1
Ts

‖Qs,0us − us‖2L2(Ts)
+ hTs

‖∇(Qs,0us − us)‖2L2(Ts)

)) 1
2

|||vh|||1

≤ 2Chk‖us‖Hk+1(Ωs)|||vh|||1.

Similarly,
∣∣∣∣∣ρd

∑

Td∈Td,h

h−1
Td

〈(Qd,0ud −Qd,bud) · nd, (vd,0 − vd,b) · nd〉∂Td

∣∣∣∣∣ ≤ Chk‖ud‖Hk+1(Ωd)|||vh|||1.

Consequently, we infer that

|s(Qhu,vh)| ≤ Chk
(
‖us‖Hk+1(Ωs) + ‖ud‖Hk+1(Ωd)

)
|||vh|||1.

Another step in the proof is to estimate Ku(vh). By Lemma A.4, it follows that
∣∣µ
(
K−1(Qd,0ud − ud),vd,0

)
Ωd

∣∣ ≤ C‖Qd,0ud − ud‖L2(Ωd)

∥∥K− 1
2 vd,0

∥∥
L2(Ωd)

= C

(
∑

Td∈Td,h

‖Qd,0ud − ud‖2L2(Td)

) 1
2

|||vh|||1

≤ Chk+1‖ud‖Hk+1(Ωd)|||vh|||1. (5.22)

From the (4.18), if p1 = 2, p2 = 6, p3 = 3, using Lemmas A.4 and A.5, we obtain
∣∣βρ(|Qd,0ud|Qd,0ud − |ud|ud,vd,0)Ωd

∣∣

≤ βρ‖Qd,0ud − ud‖L2(Ωd)

(
‖Qd,0ud‖L6(Ωd) + ‖ud‖L6(Ωd)

)
‖vd,0‖L3(Ωd)

≤ Chk+1‖ud‖Hk+1(Ωd)

(
‖Qd,0ud − ud‖H1(Ωd) + 2‖ud‖H1(Ωd)

)
|||vh|||

≤ Chk+1‖ud‖2Hk+1(Ωd)
|||vh|||.

Thus, (5.20) holds, and the following equation also holds:
∣∣βρ(|Qd,0ud|Qd,0ud − |ud|ud,vd,0)Ωd

∣∣ ≤ Chk+1‖ud‖2Hk+1(Ωd)
‖vd,0‖L3(Ωd). (5.23)

Finally, we estimate (5.21). From Lemma A.4, it follows that

|lI(vh)| =
∣∣∣∣
µα√
κ
〈(Qs,bus − us) · τ ,vs,b · τ 〉ΓI

∣∣∣∣

≤ C‖Qs,bus − us‖L2(ΓI )‖vs,b‖L2(ΓI)

≤ Chk+1‖us‖Hk+1(ΓI)|||vh|||1.

This completes the proof of Lemma 5.3. �

Now we are ready to estimate the error |||eh|||1, ‖ed,0‖L3(Ωd) and ‖εh‖h.
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Theorem 5.1. Let uh ∈ Vh and ph ∈ Wh be the solution of (3.1). Assume that the exact

solution u ∈ [Hk+1(Ωs)]
2×[Hk+1(Ωd)]

2 and p ∈ Hk(Ωs)×Hk(Ωd). Then there exists a constant

C such that

|||eh|||21 + ‖ed,0‖3L3(Ωd)
≤ Chmin{2k, 3

2
k+ 3

2
}
(
‖us‖2Hk+1(Ωs)

+ ‖ud‖2Hk+1(Ωd)
+ ‖ud‖3Hk+1(Ωd)

+ ‖ps‖2Hk(Ωs)
+ ‖pd‖2Hk(Ωd)

)
,

‖εh‖h ≤ Chmin{k, 3
4
k+ 3

4
}
(
‖us‖Hk+1(Ωs) + ‖ud‖Hk+1(Ωd) + ‖ud‖2Hk+1(Ωd)

+ ‖ps‖Hk(Ωs) + ‖pd‖Hk(Ωd)

)
.

Proof. According to Lemma 5.3, (5.22), (5.23), and Lemma A.6, we have

|ϕu,p(eh)| ≤ ǫC|||eh|||21 +
C

4ǫ
h2k
(
‖us‖2Hk+1(Ωs)

+ ‖ps‖2Hk(Ωs)
+ ‖pd‖2Hk(Ωd)

)
,

|s(Qhu, eh)| ≤ ǫC|||eh|||21 +
C

4ǫ
h2k
(
‖us‖2Hk+1(Ωs)

+ ‖ud‖2Hk+1(Ωd)

)
,

|Ku(eh)| ≤ ǫC
(
|||eh|||21 + ‖ed,0‖3L3(Ωd)

)
+
C

4ǫ
h2k+2‖ud‖2Hk+1(Ωd)

+
2C

3
√
3ǫ
h

3
2
k+ 3

2 ‖ud‖3Hk+1(Ωd)
,

|lI(eh)| ≤ ǫC|||eh|||21 +
C

4ǫ
h2k+2‖us‖2Hk+1(ΓI)

.

Consequently, from Lemma 5.2 and (5.17),

|||eh|||21 + ‖ed,0‖3L3(Ωd)
≤ Chmin{2k, 3

2
k+ 3

2
}
(
‖us‖2Hk+1(Ωs)

+ ‖ud‖2Hk+1(Ωd)
+ ‖ud‖3Hk+1(Ωd)

+ ‖ps‖2Hk(Ωs)
+ ‖pd‖2Hk(Ωd)

)
.

Next, to estimate ‖ε‖h, we have from Lemma 5.2 that

|bh(vh, εh)| =
∣∣as(eh,vh) + ad(Qhu,vh)− ad(uh,vh) + s(eh,vh)

−
(
ϕu,p(vh) + s(Qhu,vh) +Ku(vh) + lI(vh)

)∣∣,

According to (4.18) and Lemma A.7, if p1 = 2, p2 = 6, p3 = 3, then

|ad(Qhu,vh)− ad(uh,vh)|
≤
∣∣µ
(
K−1(Qd,0ud − ud,0),vd,0

)
Ωd

∣∣+ |βρ(|Qd,0ud|Qd,0ud − |ud,0|ud,0,vd,0)Ωd
|

≤ C|||eh|||1|||vh|||+ C‖Qd,0ud − ud‖L2(Ωd)

(
‖Qd,0ud‖L6(Ωd) + ‖ud,0‖L6(Ωd)

)
‖vd,0‖L3(Ωd)

≤ C|||eh|||1|||vh|||+ C|||eh|||1
(
2‖Qd,0ud‖L6(Ωd) + ‖ed,0‖L6(Ωd)

)
|||vh|||

≤ C|||eh|||1|||vh|||+ C|||eh|||1
(
2‖ud‖Hk+1(Ωd) + h

− 2
3

Td
‖ed,0‖L2(Ωd)

)
|||vh|||

≤ C|||eh|||1|||vh|||+ C|||eh|||1
(
2‖ud‖Hk+1(Ωd) + h−

2
3 |||eh|||1

)
|||vh|||. (5.24)

Using the Eqs. (4.17), (5.24) and Lemma 5.3, we arrive at

|bh(vh, εh)| ≤ C
(
1 + 2‖ud‖Hk+1(Ωd) + h−

2
3 |||eh|||1

)
|||eh|||1|||vh|||

+ Chk
(
‖us‖Hk+1(Ωs) + ‖ud‖Hk+1(Ωd) + ‖ud‖2Hk+1(Ωd)

+ ‖ps‖Hk(Ωs) + ‖pd‖Hk(Ωd)

)
|||vh|||.
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Combining the above estimate with the inf-sup condition (4.1) gives

‖εh‖h ≤ bh(vh, ph)

̺|||vh|||
≤ Chmin{k, 3

4
k+ 3

4
}
(
‖us‖Hk+1(Ωs) + ‖ud‖Hk+1(Ωd) + ‖ud‖2Hk+1(Ωd)

+ ‖ps‖Hk(Ωs) + ‖pd‖Hk(Ωd)

)
,

which completes the proof of Theorem 5.1. �

6. Numerical Experiments

In this section, we present two numerical results to demonstrate the proposed theoretical

results. We explore the phenomenon of convergence-order reduction in different norms. We

note that all experiments are tested for k = 1 on triangle meshes. The Picard iteration is used

to solve the nonlinear system, and the iteration error is set to be 10−8.

Example 6.1. In this example, we consider the problem (2.1)-(2.2) on Ωs = (0, π) × (0, 1),

Ωd = (0, π)× (−1, 0) and the interface be ΓI = {0 < x < π, y = 0}. We set K to be the identity

tensor in R2×2, µ = β = ρ = 1. The exact solution u = (us,ud), p = (ps, pd) are set to be

us =

[
2

π
sin(πy) cos(πy) cos(x);

((sin(πy)
π

)2
− 2
)
sin(x)

]
, ps = sin(x) sin(y),

ud = −[(ey − e−y) cos(x); (ey + e−y) sin(x)], pd = (ey − e−y) sin(x).

Let the first component of u is u1 and the second component of u is u2. From the error

analysis in Theorem 5.1, we expect |||eh|||1 ≈ O(h1), ‖ed,0‖L3(Ωd) ≈ O(h2/3) and ‖εh‖h ≈ O(h1).

We do not have a theoretical error estimate for ‖es,0‖L2(Ωs) and ‖ed,0‖L2(Ωd), but we expect

‖es,0‖L2(Ωs) ≈ O(h2) and ‖ed,0‖L2(Ωd) ≈ O(h2). The result is shown in Figs. 6.1-6.4 and

Table 6.1, where “Iter” represents the number of nonlinear iteration steps. For the sake of

brevity in tables, we drop the subscript L2 and Ωl(l = s, d) without affecting understanding. In

Fig. 6.4, we conveniently denote the norms |||eh|||1, ‖e0‖L2(Ω), ‖εh‖h, ‖es,0‖L2(Ωs), ‖ed,0‖L2(Ωd),

‖εs,h‖L2(Ωs) and ‖εd,h‖L2(Ωd) by “H1-tri”, “L2u”, “L2p”, “L2us”, “L2ud”, “L2ps” and “L2pd”,

respectively.

We can see that |||eh|||1 ≈ O(h1) and ‖εh‖h ≈ O(h1), which are consistent with our theoretical

results. However, we note that the order of ‖εd,h‖L2(Ωd) and ‖ed,0‖L3(Ωd) are approximately

equal to O(h2), which are higher than O(h1). The ‖es,0‖L2(Ωs) and ‖ed,0‖L2(Ωd) also consistent

with our expectation.

Fig. 6.1. u1 of Example 6.1. Fig. 6.2. u2 of Example 6.1. Fig. 6.3. p of Example 6.1.
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Fig. 6.4. Convergence rates of Example 6.1.

Table 6.1: The errors and the orders of convergence for Example 6.1.

h Iter |||eh|||1 Order ‖e0‖ Order ‖εh‖h Order ‖ed,0‖L3 Order

4.121e-1 11 1.746e+0 1.053e-1 2.087e-1 5.292e-2

2.061e-1 10 8.579e-1 1.025 2.771e-2 1.926 8.683e-2 1.265 1.380e-2 1.939

1.030e-1 9 4.290e-1 0.998 7.039e-3 1.977 3.661e-2 1.246 3.337e-3 2.048

5.151e-2 9 2.142e-1 1.002 1.767e-3 1.994 1.683e-2 1.121 8.287e-4 2.010

2.576e-2 8 1.069e-1 1.003 4.422e-4 1.999 8.181e-3 1.041 2.081e-4 1.993

h Iter ‖es,0‖ Order ‖ed,0‖ Order ‖εs,h‖ Order ‖εd,h‖ Order

4.121e-1 11 2.162e-2 6.071e-2 1.144e-1 4.902e-2

2.061e-1 10 5.598e-3 1.949 1.586e-2 1.937 3.822e-2 1.581 1.274e-2 1.944

1.030e-1 9 1.421e-3 1.978 4.009e-3 1.984 1.333e-2 1.520 3.224e-3 1.983

5.151e-2 9 3.573e-4 1.992 1.005e-3 1.997 5.191e-3 1.360 8.088e-4 1.994

2.576e-2 8 8.947e-5 1.998 2.512e-4 1.999 2.246e-3 1.209 2.024e-4 1.999

Example 6.2. In this example, we consider (2.1)-(2.2) on Ωs = (0, 1)×(1, 2),Ωd = (0, 1)×(0, 1)

and the interface be ΓI = {0 < x < 1, y = 1}. We also set K to be the identity tensor in R2×2,

µ = β = ρ = 1. The exact solution u = (us,ud), p = (ps, pd) are set to be

us = [− cos(πx) sin(πy); sin(πx) cos(πy)] , ps = sin(πx);

ud = −[π(y − 1) cos(πx); sin(πx)], pd = y sin(πx).

The results are shown in Figs. 6.5-6.8 and Table 6.2. Same as Example 6.1, there is a good

agreement between the theoretical results and the numerical results. What is more, ‖εd,h‖L2(Ωd)

and ‖ed,0‖L3(Ωd) seem higher than theoretical results.

Fig. 6.5. u1 of Example 6.2. Fig. 6.6. u2 of Example 6.2. Fig. 6.7. p of Example 6.2.
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Fig. 6.8. Convergence rates of Example 6.2.

Table 6.2: The errors and the orders of convergence for Example 6.2.

h Iter |||eh|||1 Order ‖e0‖ Order ‖εh‖h Order ‖ed,0‖L3 Order

1.768e-1 11 1.096e+0 6.445e-2 1.303e-1 4.902e-2

8.839e-2 10 5.362e-1 1.031 1.682e-2 1.938 4.180e-2 1.640 1.274e-2 1.944

4.419e-2 10 2.745e-1 0.966 4.253e-3 1.983 1.406e-2 1.572 3.224e-3 1.983

2.210e-2 8 1.356e-1 1.017 1.066e-3 1.996 5.318e-3 1.402 8.088e-4 1.995

1.105e-2 7 6.882e-2 0.979 2.667e-4 1.999 2.265e-3 1.231 2.024e-4 1.999

h Iter ‖es,0‖ Order ‖ed,0‖ Order ‖εs,h‖ Order ‖εd,h‖ Order

1.768e-1 11 2.162e-2 6.071e-2 1.144e-1 6.240e-2

8.839e-2 10 5.598e-3 1.949 1.586e-2 1.937 3.822e-2 1.581 1.962e-2 1.883

4.419e-2 10 1.421e-3 1.978 4.009e-3 1.984 1.333e-2 1.520 4.469e-3 1.921

2.210e-2 8 3.573e-4 1.992 1.005e-3 1.997 5.191e-3 1.360 1.153e-3 1.955

1.105e-2 7 8.947e-5 1.998 2.512e-4 1.999 2.246e-3 1.209 2.930e-4 1.976

7. Conclusion

We have applied the WG method to solve the coupled Stokes and Darcy-Forchheimer model.

We established the WG scheme and proved the existence and uniqueness of the scheme by

the discrete inf-sup condition and Minty-Browder theorem. When the exact solution u ∈
[Hk+1(Ωs)]

2× [Hk+1(Ωd)]
2 and p ∈ Hk(Ωs)×Hk(Ωd), we prove that the orders of convergence

for |||eh|||1, ‖εh‖h, and ‖ed,0‖L2(Ωd) are O(hmin{k,3k/4+3/4}), and the order of convergence for

‖ed,0‖L3(Ωd) is O(hmin{2k/3,k/2+1/2}). The numerical results for u and p are optimal, which are

in agreement with our theoretical analysis.

The main difficulty in the theoretical analysis of WG method is to derive the orders of error

estimates when the true solution in [Hk+1]2 and Hk space. From our numerical results, when

k = 1, the order of ‖εd,h‖L2(Ωd) are approximately O(h2), which is higher than the results

O(h1) in [1, 42, 45]. There are also further questions worth analyzing:

• extension of the results to 3D problems,

• derivation of the convergence estimates of ‖es,0‖L2(Ωs),

• further analysis of the influence of the nonlinearity on the order of convergence of the

method.
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Appendix A

In the appendix, we present some technical preparations for the proof of the existence and

uniqueness of the numerical solution and the optimal error estimate.

Lemma A.1 ([10]). The projection operators Qh,Qh and πh satisfy

∇w(Qhw) = Qh(∇w), ∀w ∈ [H1(Ω)]2, (A.1)

∇w · (Qhw) = πh(∇ ·w), ∀w ∈ H(div,Ω). (A.2)

On the regular polygonal partition, from [37], we know the following trace inequality and

inverse inequality also holds.

Lemma A.2 (Trace Inequality, [24]). Assume that the partition Th is shape-regular. Sup-

pose ϕ ∈ H1(T ), then there exists a constant C such that the following inequality holds on each

cell T ∈ Th:
‖ϕ‖2L2(∂T ) ≤ C

(
h−1
T ‖ϕ‖2L2(T ) + hT ‖∇ϕ‖2L2(T )

)
. (A.3)

Lemma A.3 (Inverse Inequality, [43]). Assume that the partition Th is shape-regular. Sup-

pose ψ ∈ Pk(T ), then there exists a constant C such that on each cell T ∈ Th,

‖∇ψ‖L2(T ) ≤ Ch−1
T ‖ψ‖L2(T ). (A.4)

The vector version of the trace inequality and the inverse inequality are trivial.

Lemma A.4 ([38]). Let Th be a polygonal partition of Ω satisfying the shape-regular assump-

tions. φ ∈ [Hr+1(Ω)]2 and q ∈ Hr(Ω) with 0 ≤ r ≤ k. Then, On each cell T ∈ Th, for

0 ≤ s ≤ 1, there exists a constant C such that

∑

T∈Th

h2sT ‖φ−Q0φ‖2Hs(T ) ≤ Ch2(r+1)‖φ‖2Hr+1(Ω), (A.5)

∑

T∈Th

h2sT ‖∇φ−Qh(∇φ)‖2Hs(T ) ≤ Ch2r‖φ‖2Hr+1(Ω), (A.6)

∑

T∈Th

h2sT ‖q − πhq‖2Hs(T ) ≤ Ch2r‖p‖2Hr(Ω), (A.7)

∑

T∈Th

‖φ−Qbφ‖2L2(∂T ) ≤ Ch2(r+1)‖φ‖2Hr+1(∂Ω). (A.8)

Lemma A.5 ([11]). Suppose m and l are non-negative integers, Ω is a smooth domain in Rn.

When mp = n, we have

Wm,p(Ω) →֒ Wm− 1
p
,p(∂Ω) →֒ Lq(∂Ω), ∀ 1 ≤ q <∞,

and if 0 ≤ l ≤ m, then

Wm,p(Ω) →֒ W l,p(Ω).

Lemma A.6 (Young’s Inequality). For a, b ∈ R and p, q > 1 satisfying 1/p+ 1/q = 1, we

have

ab ≤ ǫap + C(ǫ)bq,

where ǫ is sufficiently small and C(ǫ) = (pǫ)−q/p/q.
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Lemma A.7 ([8]). Assume that the partition Td,h is shape-regular. Then for each p, q ∈
[1,∞), there exists a constant C > 0 independent of hTd

such that for any Td ∈ Td,h,

h
− 2

p

Td
‖vd,0‖Lp(Ωd) ≤ Ch

− 2
q

Td
‖vd,0‖Lq(Ωd), ∀vd,h = {vd,0,vd,b} ∈ Vd,h. (A.9)
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