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Abstract

Superconvergence of differential structure on discretized surfaces is studied in this pa-

per. The newly introduced geometric supercloseness provides us with a fundamental tool

to prove the superconvergence of gradient recovery on deviated surfaces. An algorith-

mic framework for gradient recovery without exact geometric information is introduced.

Several numerical examples are documented to validate the theoretical results.
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1. Introduction

The numerical solution of partial differential equations on manifolds or more general surfaces

has been the subject of much systematic investigation. Many efficient numerical methods have

been developed since the pioneering work of Dziuk [14]. However, their numerical analysis

including the a priori error analysis of surface finite element methods [4,15] and the a posteriori

error analysis [11, 25] usually requires exact information of the surfaces. For instance, many

methods ask that the vertices of discrete surfaces are located on the underlying surfaces and

the exact unit normal vectors at the given vertices are known. This is neither theoretically

complete nor practically available since the exact geometric information is often blind to users

in reality. Therefore, it is of interest and also practically meaningful to investigate the problems

where the exact geometric information is not given. We particularly pay attention to the

cases when solutions contain differential structures of the surfaces. First-order differential

structures involve tangential spaces and normal spaces of the surfaces, while the former is

our focus in this paper. Typical examples are tangential vector fields on surfaces and gradients
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of scalar functions on surfaces. In such situations, it is desired to know the conditions for

geometric discretization to guarantee optimal convergence rates either in the a priori or the

a posteriori error analysis. Fundamental questions here are like (i) to what extent that the

errors of geometric approximations will affect the total errors of the numerical methods, and

(ii) what is the hypothesis on the geometric discretization in order to have optimal convergence

of numerical solutions or superconvergence of the differential structure of surfaces.

This paper aims to provide some insight into these questions. Such problems have been open

in the community for a while. For instance in [25], gradient recovery schemes on general surfaces

have been systematically investigated, and superconvergence rates of several recovery schemes

were proven provided that the exact geometry is given. The supercloseness of the numerical

data has played a crucial role in establishing the theoretical results in [25]. Moreover, the

following two interesting questions arose in [25]:

(i) How to design gradient recovery algorithms given no exact information of the surfaces,

i.e. no exact normal vectors and no exact vertices?

(ii) Is it possible to preserve the superconvergence rates of gradient recovery schemes us-

ing triangulated meshes whose vertices are not located on the exact surfaces but in a O(h2)

neighborhoods of the underlying surfaces? Here h is the scale of the mesh size.

These questions partially motivate the research here. In particular, superconvergence of

gradient recovery on surfaces is connected to the concept of geometric supercloseness which

we propose in this paper. Gradient recovery techniques for data defined in Euclidean domain

have been intensively investigated [1, 3, 16, 17, 19, 26–29], and also find many interesting appli-

cations, e.g. [6, 18, 22, 23]. The methods for data on discretized surfaces have been studied,

e.g., in [13,25]. Using the idea of tangential projection, many of the recovery algorithms in the

setting of the Euclidean domain have been generalized to the setting of surfaces. However, there

are certain restrictions in the existing approaches as many of them require the exact geometry

(exact vertices, exact normal vectors) either for designing algorithms or for proving supercon-

vergent rates. In [11] a novel gradient recovery scheme for data defined on discretized surfaces

was proposed, which is called the parametric polynomial preserving recovery (PPPR) method.

PPPR does not rely on the exact geometry-prior, and it was proven to be able to achieve su-

perconvergence under mildly structured meshes, including high curvature cases. That can be

thought of partially answered the first open question in [25]. However, the theoretical proof for

the superconvergence result in [11] still requires that the vertices are located on the underlying

exact surfaces, though numerically the superconvergence has been observed when this condition

is violated.

In this paper, we first construct some examples to show that there exist cases where the su-

perconvergence of gradient recovery on surfaces is not guaranteed given barely the O(h2) vertex

condition. In particular, the examples show that data supercloseness does not guarantee super-

convergence of the recovered gradient, in contrast to the exact nodal points case. We introduce

a new concept called geometric supercloseness, which gives the property of superconvergence of

differential structure on deviated discretizations of surfaces. Especially, we provide conditions

of the discretized meshes under which the geometric supercloseness property can be proven.

With the tool of superconvergence of differential structure, we provide complete answers to the

two open questions in [25]. To do this, we generalize the idea from [11]. That is the idea of local

parametric polynomials can be further developed to cover other methods, e.g. superconvergence
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patch recovery (SPR), of which their counterparts using exact geometric information have been

discussed in [25]. In this vein, we develop an isoparametric SPR schemes for data on discretized

surfaces. It consists of two-level recoveries: The first is recovering the Jacobian of local geomet-

ric mapping over every parametric domain, and the other is iso-parametrically recovering the

gradient of the solution function with respect to the parametric arguments. Based on such a

two-level scheme, we are able to prove the superconvergence of the resulting gradient recovery,

which require the superconvergence of the differential structure of the surface as well as the

superconvergence of the isoparametric gradient of the function data (i.e. numerical solutions).

The rest of the paper is organized as follows. In Section 2, the general geometric setting

and notations are explained, and some counter examples on the superconvergence of gradient

recovery with arbitrary O(h2) deviated vertex condition are provided. In Section 3, the concept

of geometric supercloseness is introduced and the precise hypothesis on geometric discretization

is provided for proving the superconvergence of differential structure on deviated surfaces.

Section 4 proves the superconvergence of gradient recovery scheme on deviated surfaces given

the geometric supercloseness condition. In Section 5, we show numerical examples which verify

the theoretical findings. Some conclusive remarks are given in Section 6.

2. Geometric Setting and Counter Examples

We start this section by specifying some of the geometrical notations which are frequently

referred in the paper. Then we provide a counter example to show that the superconvergence

of gradient recovery is not guaranteed under general O(h2) perturbation of vertices.

2.1. Geometric setting

M is a general two dimensional C3 smooth compact hypersurface embedded in R
3 which

is endowed with a Riemann metric g, and Mh =
⋃

j∈Jh
τh,j is a triangular approximation

of M, with h = maxj∈Jh
diam(τh,j) being the maximum diameter of the triangles τh,j . Here Jh

and Ih are the index sets for triangles and vertices of Mh, respectively. We denote {τj}j∈Jh
the

corresponding curved triangles which satisfy
⋃

j∈Jh
τj = M. Note that the vertices of Mh do

not necessarily locate onM, therefore τj and τh,j may have no common vertices. In the following

study, we introduce M∗
h to be the counterpart of Mh with the same number of vertices, all of

which are located on M. To obtain M∗
h, we project {xh,i}i∈Ih

the vertices of Mh along unit

normal direction of M to have {x∗h,i}i∈Ih the vertices of M∗
h. Then we connect {x∗h,i}i∈Ih using

the same order as the connection of {xh,i}i∈Ih
, which gives the triangulation of M∗

h. Then

{τ∗h,j}j∈Jh
denote the corresponding triangles on M∗

h. To illustrate the main idea, we focus on

the linear surface finite element method [14]. In that case, the nodal points simply consist of

all the vertices of Mh.

In [13,25], gradient recovery methods have been generalized from planar domain to surfaces,

while they are restricted to the case that the vertices are located on the underlying exact

surface. In other words, they have been only studied in the case that the discretization is

given by, corresponding to our notation, M∗
h. It has been, however, conjectured that the

superconvergence of gradient recovery on general discretized surfaces, like Mh, may be proven

if the vertices of Mh are in a O(h2) neighborhood of the corresponding vertices of M∗
h. That

is the following vertex-deviation condition:

|x∗h,i − xh,i| = O(h2), ∀ i ∈ Ih. (2.1)
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We recall the transform operators between the function spaces on M and on Mh (or sim-

ilarly M∗
h). Let V(M) and V(Mh) be some ansatz function spaces. We define the following

transform operators:

Th : V(M) → V(Mh), v 7→ v ◦ Ph,

(Th)
−1 : V(Mh) → V(M), vh 7→ vh ◦ P−1

h ,
(2.2)

where Ph : {τh,j}j∈Jh
→ {τj}j∈Jh

is a bijective map to have the correspondence between

{τh,j}j∈Jh
and {τj}j∈Jh

. The transform operators (T ∗
h )

± between functions on M and M∗
h

can be defined similarly. Note that in the following, we may abuse a bit of notation for vector

valued functions, i.e. we still use the same Th (or T ∗
h ) for vector valued functions, in which case

Th (or T ∗
h ) is applied to each component of the function.

In the following analysis, for each vertex x∗h,i, a local parametrization function ri : Ωi → M
is needed, which maps an open set in the parameter domain Ωi ⊂ R

2 to an open set contains x∗h,i
on the surface. Note that we take Ωi a compact set which is the parameter domain corresponding

to the selected patch on M∗
h around the vertex x∗h,i, or respectively the patch on Mh around

the vertex xh,i. In such a way, we define local parametrization functions rh,i : Ωi → Mh

and r∗h,i : Ωi → M∗
h, respectively. They are piecewise linear maps. In addition, we use

rτh,j
: τh,j → τj and r∗τh,j

: τ∗h,j → τj to denote the local parameterizations from the small

triangle pairs τh,j and τ
∗
h,j to τj , respectively. Due to the smoothness assumption on M, ri, rτh,j

and r∗τh,j
are C3 continuous for every i ∈ Ih and j ∈ Jh. It follows that ri ∈ W 3,∞(Ωi) and

rτh,j
∈ W 3,∞(τh,j) and r∗τh,j

∈ W 3,∞(τ∗h,j). The condition (2.1) indicates that triangulated

surface Mh converges to M as h→ 0.

In Fig. 2.1, we use one set of triangle patches indexed by some j ∈ Jh to help illustrating

the relations. There τj ⊂ M, τ∗h,j ⊂ M∗
h, τh,j ⊂ Mh, and τ̃h,j ⊂ M̃h, are corresponding to

one triangle face on the exact surface, the patch-wise linear interpolation of the exact surface,

an approximation of the exact surface, and a higher-order approximation of the exact surface

(see Proposition 4.1 in Section 4), respectively.

Fig. 2.1. Here τh,j and τ∗

h,j are planar triangles, while τj and τ̃h,j are curved triangles, Ωi is the

parameter domain for the surrounding patches at x∗

n,i, which we show only one triangle part of it. This

parameter domain is used to define the local geometric maps for triangles surrounding the vertex x∗

n,i,

i.e. ri : Ωi → τj , rh,i : Ωi → τh,j , r
∗

h,i : Ωi → τ∗

h,j . On the planar triangles we have the local maps

rτh,j
: τh,j → τj , r

∗

τh,j
: τ∗

h,j → τj and r̃τh,j
: τh,j → τ̃h,j .
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2.2. Examples of O(h2) deviated surfaces where superconvergence fails

In this subsection, we present numerical examples which motivate further study in this paper.

They also illustrate why the concept of geometric supercloseness is needed. Especially, we show

that barely with the condition (2.1), superconvergence rates of the recovered gradient may not

be achieved as conjectured in [25]. Without loss of generality, we test the Laplace-Beltrami

equation whose exact solution is u = x1x2 on the unit sphere. For the discretization, we use

uniform triangulation with nodes located on the sphere to get M∗
h, and then add O(h2) random

perturbation to the vertices of M∗
h in the tangential direction to get M1

h and in the normal

direction to get M2
h. To test the superconvergence property of the recovered gradient, we solve

the Laplace-Beltrami equation on Mi
h, i = 1, 2, and the numerical results are summarized in

Fig. 2.2. We use PPPR scheme [11] for recovery which has been shown to have superconvergence

under mildly structured mesh conditions with exact interpolation of the geometry

‖∇ghuI −∇ghuh‖0,Mi
h

= O(h2), i = 1, 2, (2.3)

where uI is the linear interpolation of exact solution, uh is the finite element solution, and

‖·‖0,Mi
h
denotes the L2 norm on Mi

h. However, there is no superconvergence observed for

the recovered gradient on those O(h2) deviated meshes. In [25], it has been proven that if

the discretization is given by exact interpolation of the geometry, the supercloseness (2.3)

leads to the superconvergence of the recovery of gradient under some shape conditions on

the triangulation. The example here delivers the message that if the discretized geometry

is O(h2) deviated, then (2.3) is not sufficient anymore to guarantee the superconvergence of

the recovered gradient. Instead, we need the superconvergence of differential structure of the

surfaces. Motivated by this, we shall investigate the geometric conditions for superconvergence

in post-processing numerical solutions.

(a) (b)

Fig. 2.2. Counter example of superconvergence of the recovered gradient: (a) random O(h2) in the

tangential direction; (b) random O(h2) in the normal direction.

3. Supercloseness of Geometric Approximation

In this section, we introduce the concept of geometric supercloseness between Mh and M∗
h.

This will provide us the theoretical tool to show superconvergence of differential structure on

deviated surfaces. We begin with some relevant definitions on triangular surface meshes.
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For any two adjacent triangles in Th, we say that the two adjacent triangles form an O(h2)

approximate parallelogram [3] if the lengths of any two opposite edges differ only by O(h2).

Based on the above O(h2) parallelogram condition, we define the O(h2σ) irregular condition

for the surface meshes.

Definition 3.1. A triangular mesh Th is said to satisfy the O(h2σ) irregular condition if there

exist a partition Th,1
⋃ Th,2 of Th and a positive constant σ such that every two adjacent triangles

in Th,1 form an O(h2) parallelogram and

∑

τh⊂Th,2

|τh| = O(h2σ).

A formal definition of O(h2) parallelogram can be found in [11]. To proceed, we introduce

the concept of geometric supercloseness here.

Definition 3.2. Let M∗
h and Mh be the exact interpolation and inexact approximation, respec-

tively. We call Mh is geometrically superclose to M∗
h if the following properties are satisfied:

(i) Let gh and g∗h be the metric tensors associated to Mh and M∗
h respectively, then

‖gh − g∗h‖∞ = O(h2). (3.1)

(ii) The meshes of Mh and M∗
h have the same number of nodes and triangles. For every

triangle on τh,j ⊂ Mh, there exists a one-to-one triangle τ∗h,j ⊂ M∗
h correspondingly,

vice versa, such that we can find local parameterizations defined on the same parametric

domain rh : Ω → τh,j and r∗h : Ω → τ∗h,j respectively, satisfying

‖∂rh − ∂r∗h‖∞,Ω = O(h2). (3.2)

Here and in the following, we use the notation ∂ to denote the Jacobian for vector valued

functions, just to distinguish the gradient operator ∇ for scalar functions.

In fact, (3.2) implies (3.1), however, the reverse is not true. We show in the next section

that (3.2) provides the ingredient for proving the superconvergence of recovered gradient on

deviated discretization of surfaces.

To make the condition more concrete, we consider the following assumptions on the trian-

gulations.

Assumption 3.1. (i) The triangulation Mh is shape regular and quasi-uniform. Moreover,

the O(h2σ) irregular condition holds for Mh.

(ii) Mh and M∗
h have the same amount of triangles and vertices, and every vertex pair of

Mh and M∗
h satisfy the deviation condition that

|xh,i − x∗h,i| = O(h2), ∀ i ∈ Ih. (3.3)

(iii) Denote {τh,j}j∈Jh
∈ Mh and {τ∗h,j}j∈Jh

∈ M∗
h the two sets of triangle meshes. For

each vertex pair (τh,j , τ
∗
h,j)j∈Jh

when we do a parallel shift of the two set of meshes and
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move one vertex pair to a common point, then the new pairs of vertices (denoted by

(ξkj ,h, ξ
∗
kj ,h

)j∈Jh
after the position transformation) satisfy the distance condition that

|Pτ (ξkj ,h − ξ∗kj ,h
)| = O(h3), (3.4)

|Pn(ξkj ,h − ξ∗kj ,h
)| = O(h3), ∀ kj , j ∈ Jh, (3.5)

where Pτ and Pn are the tangential and normal projections to M∗
h respectively. Alter-

natively, one can consider the normal and tangential projections to Mh as well.

We emphasis that the condition in Assumption 3.1 might not be the only case that leads to geo-

metric supercloseness. However, it is quite practical to be fulfilled by the surface discretization

algorithms using first order projections.

The first condition of Assumption 3.1 is quite standard, and it is crucial for proving su-

perconvergence in the literature, e.g. [3, 25, 26]. However, in the surface setting, this condition

has been assumed on M∗
h, which is the exact interpolation of M. Note that condition (3.3) is

exactly (2.1). In addition, we show that (3.4) and (3.5) are also required for establishing the

superconvergence on deviate surfaces. In the following, we show that Assumption 3.1 implies

the geometric supercloseness for Mh to approximate M∗
h. To see that, we show some auxiliary

results first.

We consider τh and τ∗h to be an triangle pair taken from Mh and M∗
h. In the following

analysis, we take one of triangle as a parametric domain, e.g. τh, then there exist an linear

map Γ such that τ∗h = Γ(τh). Note that Γ : R2 → R
3, therefore ∂Γ is a 3× 2 constant matrix,

which is invariant with respect to parallel shift of τ∗h . We denote

Id =

(
1 0 0

0 1 0

)⊤

.

We start with establishing the relationship between the edges of the pair of triangles.

Lemma 3.1. Let τh and τ∗h be shape regular triangle pair of diameter h from M∗
h and Mh

respectively, and the distance of each of their vertex pair satisfies condition (3.3), for h ≤ 1

sufficiently small. In addition, if the bound in (3.4) or (3.5) hold, i.e. either the one with

tangential or the one with normal projection. Then the following error bounds hold:

|l∗k − lk| = O(h3),
∣∣(l∗k)2 − (lk)

2
∣∣ = O(h4), ∀ k = 1, 2, 3, (3.6)

where {lk | k = 1, 2, 3} (or {l∗k | k = 1, 2, 3}) denotes the length of the three edges {ek | k = 1, 2, 3}
(or {e∗k | k = 1, 2, 3}) of triangle τh (or τ∗h).

Proof. To show the first inequality, we do parallel and vertical translation of e∗k to a common

point with ek. Then, for sufficiently small h, we have

l∗k ≤
√(

lk + c2,kh3
)2

+ c1,kh4

= lk

√
1 + 2c2,k

h3

lk
+ c22,k

h6

l2k
+ c1,k

h4

l2k

≤ lk

(
1 + C

(
h3

lk
+
h6

l2k
+
h4

l2k

))
.



8 G.Z. DONG, H.L. GUO AND T. GUO

Here both c1,k and c2,k are either positive or negative constants, which are corresponding to

the tangential and normal decomposed distance mismatches respectively. Noticing the fact that

lk ∼ h for all k = 1, 2, 3, we obtain the first estimate in (3.6).

For the second estimate in (3.6), it is sufficient to use a2 − b2 = (a − b)(a + b), take into

account that the edge lengths are of order h, and combine with the first estimate we have the

conclusion. �

Using the above relationship of edges between the two triangles, we can prove the following

result.

Lemma 3.2. Under the same condition as Lemma 3.1, we have

|A(τ∗h)−A(τh)| = O(h4),

∣∣∣∣
A(τ∗h )

A(τh)
− 1

∣∣∣∣ = O(h2), (3.7)

where A is the area function.

Proof. Lemma 3.1 implies there exists ck either being positive or negative such that l∗k =

lk + ckh
3. Using the Heron’s formula, we can calculate the area of τh and τ∗h as

A(τh) =

√
s1
∏

k

(s1 − lk), A(τ∗h ) =

√(
s1 + d0(c)h3

)∏

k

(
s1 − lk + dk(c)h3

)
,

where s1 =
∑

k(lk/2), and c = (c1, c2, c3). Thus, we have

∣∣∣∣
A(τ∗h )

A(τh)
− 1

∣∣∣∣ =
∣∣∣∣∣

√(
1 + d0(c)

h3

s1

)∏

k

(
1 + dk(c)

h3

s1 − lk

)
− 1

∣∣∣∣∣

=

∣∣∣∣∣
√
1 + q0(c)h2

∏

k

√
1 + qk(c)h2 − 1

∣∣∣∣∣

≤
∣∣∣∣∣
(
1 + Cq0(c)h

2
)∏

k

(
1 + Cqk(c)h

2
)
− 1

∣∣∣∣∣

≤ C(q)h2 (3.8)

for some constants q = (q0, q1, q2, q3) depending on c, which gives a constant C dependent of c.

The first estimate in (3.7) is obvious since A(τh) is also of order h2. Multiply with A(τh) on

both side of (3.8) gives the estimate. �

Based on the above two lemmas, we can show the following approximation results for Jaco-

bian matrix and metric tensor.

Proposition 3.1. Assume the same condition as Lemma 3.1. Let Γ : τh → τ∗h be the linear

transformation, and let gΓ := (∂Γ)⊤∂Γ. Then we have the following relations:

(i) The determinate of gΓ satisfies

∣∣√det gΓ − 1
∣∣ = O(h2). (3.9)

(ii) The Jacobian ∂Γ and the metric gΓ have the following estimate:

‖∂Γ− Id‖∞ = O(h), ‖gΓ − I‖∞ = O(h2), (3.10)

respectively, where I = Id⊤ Id is the 2× 2 identity matrix.
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(iii) Let both conditions in (3.4) and (3.5) hold. Then we have an improved error estimate

for the Jacobian matrix

‖∂Γ− Id‖∞ = O(h2). (3.11)

Proof. (i) To show (3.9), notice A(τ∗h ) =
√
det gΓA(τh). The second estimate of (3.7) in

Lemma 3.2 implies
∣∣√det gΓ − 1

∣∣ =
∣∣∣∣
A(τ∗h)

A(τh)
− 1

∣∣∣∣ = O(h2),

which concludes the proof of (3.9).

(ii) For the first one in (3.10), we notice that g = (∂Γ)⊤∂Γ. Since we choose τh to be the

parametric domain of τ∗h , it follows that τ
∗
h = ∂Γτh + x0. Now we transfer the two triangles to

a common vertex, and change the Cartesian coordinate and let the common vertex be at the

origin. Let the position of two other vertices of τh in the new coordinate be ξ1 = (ξ1,1, ξ1,2, 0)

and ξ2 = (ξ2,1, ξ2,2, 0), and the corresponding vertices of τ∗h be ψ1 = (ψ1,1, ψ1,2, ψ1,3) and

ψ2 = (ψ2,1, ψ2,2, ψ2,3). Then we have ψk = ∂Γξk for k = 1, 2, which gives

∂Γ =



ψ1,1 ψ2,1

ψ1,2 ψ2,2

ψ1,3 ψ2,3



(
ξ1,1 ξ2,1
ξ1,2 ξ2,2

)−1

.

It is not hard to see that

∂Γ− Id =





ψ1,1 ψ2,1

ψ1,2 ψ2,2

ψ1,3 ψ2,3


−



ξ1,1 ξ2,1
ξ1,2 ξ2,2
0 0


 p



(
ξ1,1 ξ2,1
ξ1,2 ξ2,2

)−1

. (3.12)

Because (ξi,j)i,j∈{1,2} are all of order h, and (|ξ1,1ξ2,2−ξ2,1ξ1,2|)/2 equals the area of τh ≈ O(h2),

we can conclude that

(
ξ1,1 ξ2,1
ξ1,2 ξ2,2

)−1

=

(
ξ2,2 −ξ1,2
−ξ2,1 ξ1,1

)
(|ξ1,1ξ2,2 − ξ2,1ξ1,2|)−1 =

M

h
, (3.13)

where M is some constant matrix independent of h.

Recall that ψ1, ψ2 are vertices of τ∗h , and ξ1, ξ2 are vertices of τh in the new coordinates.

According to the assumption (3.3), we have

|ψi,j − ξi,j | = O(h3), i = 1, 2, j = 1, 2, (3.14)

and the normal part

|ψi,3| = O(h2), i = 1, 2. (3.15)

Plugging the above estimate into (3.12), we obtain

‖∂Γ− Id‖∞ = O(h).

Now we show the second inequality in (3.10). Since gΓ = (∂Γ)⊤∂Γ, it follows that

gΓ −
(
1 0

0 1

)
=

(
ξ1,1 ξ1,2
ξ2,1 ξ2,2

)−T ((
ψ1 · ψ1 ψ1 · ψ2

ψ2 · ψ1 ψ2 · ψ2

)
−
(
ξ1 · ξ1 ξ1 · ξ2
ξ2 · ξ1 ξ2 · ξ2

))

×
(
ξ1,1 ξ2,1
ξ1,2 ξ2,2

)−1

. (3.16)



10 G.Z. DONG, H.L. GUO AND T. GUO

Note that ψi ·ψi for i = 1, 2 are the squared length of the edges of τ∗h and ξi · ξi are squared
length of the edges of τh. Then, Lemma 3.1 implies

|ψi · ψi − ξi · ξi| = O(h4), i = 1, 2.

For the mixed term, the relationship (3.14) and the triangle inequality implies that

|ψi · ψj − ξi · ξj | = |ψi · ψj − ψi · ξj + ψi · ξj − ξi · ξj |
≤ |ψi||ψj − ξj |+ |ψi − ξi||ξj | = O(h4),

where we have used the fact that the length of the edges are of O(h) in the last inequality.

Substituting the above estimates into (3.16) completes the proof of the second result in (3.10).

(iii) For (3.11), notice that the additional condition in (3.4) of normal direction error in-

creases the order of |ψi,3| in (3.15). That is

|ψi,3| = O(h3), i = 1, 2,

which is of the same order as |ψi,j−ξi,j | for i, j = 1, 2 in (3.14). Thus, we conclude the statement

by comparing the proof of the first estimate in (3.10). �

Note that with only assumption (3.3) and either the tangential condition in (3.4) or the one

in (3.5) , it is already able to prove the metric condition (3.9). However, it is not sufficient

to conclude the Jacobian condition (3.11), which is one of the essential ingredients for the

geometric supercloseness.

With the above preparation, we are ready to show that Assumption 3.1 gives us superclose-

ness of the geometric approximation.

Proposition 3.2. Let Mh and M∗
h satisfy Assumption 3.1, then we have

(i) The triangulation M∗
h is also shape regular and quasi-uniform, and the O(h2σ) irregular

condition is fulfilled for M∗
h.

(ii) The local piecewise linear parametrization functions, rh,i and r∗h,i, satisfy

∥∥∂r∗h,i − ∂rh,i
∥∥
∞,Ωi

=
√
A(Mh,i)O(h2), ∀ i ∈ Ih. (3.17)

Here A is the area functional, and Mh,i ⊂ Mh is the patch corresponding to the parameter

domain Ωi. To simplify the discussion, we choose the same Ωi for both Mh,i and M∗
h,i,

which is obtained as in Algorithm 4.1.

Proof. The assertion (i) holds because the triangles of Mh are shape regular and quasi-

uniform, and they satisfy the O(h2σ) irregular condition above. The definition of shape regular

and quasi-uniform can be found in many textbooks of finite element methods [5, 7]. Using the

triangle inequality, we get the conclusion.

Now we proceed to prove the assertion (ii). Let Ωi be the parameter domain for patches

selected around the vertex xh,i. Denote the local index-set associated to vertices of the selected

patch around xh,i to be Ji. We notice that both rh,i and r∗h,i are piecewise linear functions

defined on Ωi. Let Ωi,j be the common parameter domain for the corresponding triangle pairs

τh,j and τ∗h,j for the index j ∈ Ji. Then rh,i and r∗h,i are affine functions on each of the triangle

regions Ωi,j for every j ∈ Ji. Note that due to the construction of Ωi (see Algorithm 4.1), the

change of coordinates from Ωi,j to τh,j or τ∗h,j is done by affine transformation.
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Since the Jacobian ∂rh,i and ∂r
∗
h,i are constant functions, we have

∥∥∂r∗h,i − ∂rh,i
∥∥
∞,Ωi,j

≤
(
sup
i,j

√
A(Ωi,j)

A(τh,j)

)
‖∂Ri,j‖ ‖∂Γj − Id‖∞,τ∗

h,j

≤ ‖∂Γj − Id‖∞,τ∗

h,j

.

Here ∂Ri,j is a 3× 3 matrix to change coordinates from τh,j to Ωi,j , which is a unitary matrix,

and thus ‖∂Ri,j‖ = 1; Γj is the geometric mapping lift τh,j to τ∗h,j , which can be obtained

from rh,i by changing the local coordinates from Ωi,j to τh,j , while the mapping rh,i becomes

identity after the change of coordinates. Due to the shape regularity of Mh and M∗
h, and

M has bounded curvature, thus all the elements of {
√
A(Ωi,j)/A(τh,j)}i∈Ih,j∈Jh

are uniformly

bounded from below and from above on all the parametric domain {Ωi}i∈Ih
and the triangles

{τh,j}j∈Jh
. Typically, we have supi,j

√
A(Ωi,j)/A(τh,j) ≤ 1 due to the fact that Ωi,j is the

projection of τh,j onto Ωi.

Applying the result from Proposition 3.1, we have

∥∥∂rh,i − ∂r∗h,i
∥∥
∞,Ωi,j

≤ ‖∂Γj − Id‖∞,τh,j
≤ C

√
A(τh,j)h

2.

Summing up over j ∈ Ji, we arrive at the following inequality:

∥∥∂rh,i − ∂r∗h,i
∥∥2
∞,Ωi

= O(h4)
∑

j∈Ji

A(τh,j).

Taking square root on both sides gives the conclusion of the second assertion. �

The relation in (3.17) tells some regularity on the approximations of Mh to M. It is similar

to the supercloseness property for the gradient of the finite element solutions to the gradient

of the interpolation of the exact solutions [3, 26]. This leads to the superconvergence of the

differential structure on deviated surfaces. In what follows, we present why the superconver-

gence of the differential structure is crucial for the superconvergence of the gradient recovery

on perturbed surfaces.

4. Superconvergent Gradient Recovery on Deviated Surfaces

4.1. Parametric gradient recovery schemes on surfaces

Here, we generalize the idea of parametric polynomial preserving recovery proposed in [11]

to have a general family of recovery methods in surfaces setting. More precisely, the algorithmic

framework generalizes the methods introduced in [25], which ask for exact geometry-prior, to

the case without exact geometry-prior. To do this, we use the intrinsic definition of gradient

operator on surfaces. Given a local parametric patch, and r : Ω → M the parametrization

function of this patch, define ū := u ◦ r. Then we have

(∇gu) ◦ r = ∇ū(g ◦ r)−1∂r = ∇ū(∂r)† on Ω. (4.1)

Here (∂r)† is the pseudo-inverse of ∂r the Jacobian of the geometric mapping over Ω. For

a small digest of differential operator on surfaces, we refer to the appendix of [12] and also the

background part in [11]. One may refer to the textbooks, e.g. [10, 20] for more comprehen-

sive introduction on differential geometry. Inspired from (4.1), we try to recover the gradient
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on surfaces using a two-level strategy. That is to recover the Jacobian ∂r and also ∇ū iso-

parametrically on every local patch. We call this family of methods the isoparametric gradient

recovery schemes. We shall see that they ask for neither the exact vertices nor the precise tan-

gent spaces. In particular the PPPR method which was introduced in [11] can also be included

into this framework.

Algorithm 4.1 consists of two main parts, and describes a family of recovery methods as

the planar recovery scheme can be varied. The generality should also cover higher dimensional

problems, but for simplicity, we focus on 2-dimensional case only. For selecting a concrete pla-

nar recovery method in both Steps (3) and (4), actually, almost all the local recovery methods

for functions in the Euclidean domain can be applied. This will include many of the meth-

ods which have been discussed in [25]. Though the preferred candidates will be ZZ-scheme

Algorithm 4.1: Isoparametric Gradient Recovery Scheme.

Input: Discretized triangular surface Mh with vertices set (xh,i)i∈Ih and the data

(FEM solutions) (uh,i)i∈Ih . Then we suggest two-stage recovery steps for all i ∈ Ih.

• Geometric recovery:

(1) At every xh,i, select a neighboring patch Mh,i ∈ Mh around xh,i with sufficient

vertices. Compute the unit normal vectors of every triangle faces in Mh,i. Compute

the simple (weighted) averaging of the unit normal vectors, and normalize it to be φ3i .

Take the orthogonal space to φ3i to be the parametric domain Ωi. Shift xh,i to be the

origin of Ωi, and choose (φ1i , φ
2
i ) the orthonormal basis of Ωi.

(2) Project all selected vertices of Mh,i around xh,i onto the parametric domain Ωi from

Step (1), and record the new coordinates as ζij .

(3) Use a planar recovery scheme Rk
h to recover the surface Jacobian with respect to Ωi.

Typically, this is considered every surface patch as local graph of some function s, that

is ri = (Ωi, si(Ωi)). Then the recovered Jacobian at the selected patch is

Jr,i = (I, Rk
hsi,j)

⊤, where I is the identity matrix according to the dimension of Ωi.

• Function gradient recovery:

(4) Let (ūh,j)j∈Ii be the values of (uh,j)j∈Ii associated to vertices of Mh,i

isoparametrically defined on the parameter domain Ωi. Then using the same planar

recovery scheme Rk
h to recover gradient from (ūh,j)j∈Ii with respect to parameter

domain Ωi.

(5) In the spirit of (4.1), use the results from Steps (3) and (4) to get the recovered surface

gradient at xh,i
Gk

huh,i = Rk
hūh,i(Jr,i)

†
(
φ1i , φ

2
i , φ

3
i

)
, (4.2)

where (Jr,i)
† = (Jr,iJ

⊤
r,i)

−1Jr,i. The orthonormal basis {φ1i , φ2i , φ3i } is multiplied to

unify the coordinates from local ones to a global one in the ambient Euclidean space.

Output: The recovered gradient at selected nodes {Gk
huh,i}i∈Ih . For x being not

a vertex of triangles, we use linear finite element basis to interpolate the values

{Ghuh,i}i∈Ih at vertices of each triangle.
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(superconvergence patch recovery by Zienkiewicz and Zhu) and PPR (polynomial preserving

recovery). The latter gives then the PPPR method proposed in [11]. In view of (4.2), one

can see clearly that the proposed scheme is an approximation of (4.1) at every nodes: Rk
hūh,i

recovers ∇ū, and (Jr,i)
† recovers (∂r)†. Moreover, it gives the intuition that why the result

in (3.17) is required, in order to match the superconvergence of the function gradient recov-

ery and the superconvergence of the geometric structures simultaneously. Next, we prove the

superconvergence property of the recovery scheme.

4.2. Superconvergence analysis on deviated geometry

Even though a general algorithmic framework is described, which can cover several different

methods under the same umbrella, we will focus on PPPR scheme for the theoretical analysis.

The reason is that PPPR asks for minimum requirements on the meshes in comparison with

several other methods. For instance, the simple (weighted) average method, or the generalized

ZZ-scheme, both of which require an additional O(h2)-symmetric condition on the meshes.

However, the general idea of the proof should be able to cover these methods giving the necessary

mesh conditions.

We take the following Laplace-Beltrami equation as our model problem to conduct the

analysis:

−∆gu = f, where

∫

M

u dvol = 0. (4.3)

The weak formulation of Eq. (4.3) is given as follows: Find u ∈ H1(M) with
∫
M
u dvol = 0

such that ∫

M

∇gu · ∇gv dvol =

∫

M

fv dvol, ∀ v ∈ H1(M). (4.4)

The regularity of the solution has been proven in [2, Chapter 4]. In the surface finite element

method, the surface M is approximated by the triangulation Mh which satisfy Assumption 3.1,

and the solution is simulated in the continuous piecewise linear function space Vh defined

over Mh, i.e.
∫

Mh

∇ghuh · ∇ghvh dvolh =

∫

Mh

fhvh dvolh, ∀ vh ∈ Vh(Mh). (4.5)

We first show that there exists an underlying smooth surface denoted by M̃h so that Mh

can be thought as an interpolation of it. This intermediate surface is not needed practically in

the algorithm, but it is helpful for our error analysis. For such purpose, we recall a fundamental

result in differential topology attributed to Whitney (see, e.g. [20, Theorem 6.21]).

Theorem 4.1 (Whitney Approximation Theorem). Suppose M is a smooth surface with

or without boundary, and F : M → R
d+1 is a continuous map. Given any positive continuous

function ǫ : M → R
+, there exists a smooth function Fǫ : M → R

d+1 that is ǫ-close to F . If F

is smooth on a closed subset A ⊂ M, then Fǫ can be chosen to be equal to F on A.

Here ǫ-close means |F (p)−Fǫ(p)| ≤ ǫ(p) for all p ∈ M. Since ǫ is any positive function, and

it can be arbitrarily close to 0. F and Fǫ can be considered as mappings between M and other

geometric objectives embedded in R
d+1.

Proposition 4.1. Let M be the precise surface, and Mh and M∗
h satisfy Assumption 3.1.

Then the following statements hold true:
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(i) There exists a C3 (in fact C∞) smooth surface M̃h, so that Mh is a linear interpolation

of M̃h at the vertices.

(ii) Let rτh,j
and r̃τh,j

be the parametrization of the curved triangular surfaces τj ⊂ M and

τ̃h,j ⊂ M̃h from the triangle τh,j, respectively. Then there is the estimate

∥∥∂r̃τh,j
− ∂rτh,j

∥∥
∞,τh,j

≤ Ch2, (4.6)

where C is a constant independent of h.

(iii) Let v : M → R be functions in W k,p(M), and ṽh be the pullback of v to M̃h, then we

have

C1 ‖ṽh‖Wk,p(M̃h)
≤ ‖v‖Wk,p(M) ≤ C2 ‖ṽh‖Wk,p(M̃h)

(4.7)

for some constants 0 < C1 ≤ C2.

Proof. (i) For the first statement, we construct in the following the smooth surface M̃h

which is needed for the error analysis.

• We construct a piece-wise cubic polynomial patch on M∗
h. These polynomial patches

are able to preserve the surface Jacobian at the vertices over the parametric trian-

gles {τ∗h,j}j∈Jh
. To have this, we subdivide M by {τj}j∈Jh

which are parametrized by

{τ∗h,j}j∈Jh
, i.e. τj = r∗τh,j

(τ∗h,j), where r∗τh,j
= (γ1, γ2, γ3)

⊤. Then we reconstruct a cubic

polynomial by using the value of γk and the directional derivatives of γk along the edges

of τ∗h,j for k = 1, 2, 3 at the three vertices, and also the value of γk at the barycenter

of τ∗h,j . With these 10 linear independent equations for each γk, we reconstruct three

cubic polynomial functions γh,k which approximate γk on every τ∗h,j , respectively. This

reconstruction is done for every j ∈ Jh, then we have a closed surface which consists

of piece-wise cubic polynomial patches, we denote it to be M∗

h. The closeness can be

judged by the uniqueness of the cubic polynomial functions given the same interpolation

condition (after unifying the coordinates) over every edge of τ∗h,j.

• We turn to Mh for a similar reconstruction. This can be done easily now. For every

triangle τh,j with j ∈ Jh, we define an affine mapping Γj : τh,j → τ∗h,j . Note that

polynomials composed with affine mappings are still polynomials. Therefore we can have

the polynomial patches over τh,j by composing the previously reconstructed polynomial

function on every τ∗h,j with the corresponding Γj function. This then gives another piece-

wise cubic polynomial patches which we denote by Mh. It is again closed due to the

interpolation property of the affine mapping on every edge τh,j , that is a unique affine map

which results a unique cubic polynomial with the composition on every edge. Therefore,

Mh is also a closed piece-wise cubic polynomial surface.

The above construction of Mh shows that it is a C0 surface. Now we apply Whitney Ap-

proximation Theorem 4.1 to have a smooth approximation of Mh. For this we define the map

F : M → Mh ⊂ R
3 which is a C0 isomorphism, i.e. it gives a triangulation of M such that

every triangle on Mh has a unique triangle on M as the pre-image of F . All these triangles are

non-intersect and give a partition of M. Then there exists compatible Ck (for any k ∈ [1,∞])

smooth approximation which can be arbitrarily close to F , i.e. for all ǫ > 0 there exists a family

of C∞ isomorphism Fǫ : M → M̃ǫ
h which approximates F . For every fixed h, we choose a open

set denoted by Eδ ⊂ M which consists of the narrow band in the neighbourhood of all the edges
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of the curved triangles on M. Here δ denotes the width of every band, and note that δ can

be arbitrarily small. Since Mh is buildup by piece-wise polynomial patches, F is C∞ smooth

in M\Eδ. Then from Theorem 4.1 we have that Fǫ = F over the set M\Eδ. In fact we can

choose δ = ǫ. As ǫ can be arbitrarily close to 0, and we use the notation M̃h for the smoothed

version of Mh. Note that when ǫ approaching 0, all the vertices on Mh are almost located on

the smoothed surface M̃h, and F = Fǫ almost everywhere as the measure of Eδ is vanishing

when ǫ→ 0.

(ii) For the second statement, we notice the following relation:

∥∥∂rτh,j
− ∂r̃τh,j

∥∥
∞,τh,j

≤
∥∥∂rτh,j

− ḠhΓ
∗
j

∥∥
∞,τh,j

+
∥∥ḠhΓ

∗
j − ḠhΓj

∥∥
∞,τh,j

+
∥∥ḠhΓj − ∂r̃τh,j

∥∥
∞,τh,j

. (4.8)

Here we take τh,j the parameter domain for both rτh,j
and r̃τh,j

. Γ∗
j and Γj are the local

geometric transformations which are obtained from the linear interpolations of the geometric

mappings rτh,j
and r̃τh,j

at the vertices of τh,j , respectively. Note that here we always chose τh,j
to be the parameter domain, therefore Γj ≡ Id for all j ∈ Jh. Ḡh is the local PPR gradient

recovery operator.

The first and the third terms on the right-hand side of (4.8) can be estimated using poly-

nomial preserving properties of Ḡh and the smoothness of the functions rτh,j
and r̃τh,j

defined

on every triangle τh,j , which gives

∥∥∂rτh,j
− ḠhΓ

∗
j

∥∥
∞,τh,j

≤ c1‖rτh,j
‖W 3,∞(τh,j)h

2,
∥∥ḠhΓj − ∂r̃τh,j

∥∥
∞,τh,j

≤ c2‖r̃τh,j
‖W 3,∞(τh,j)h

2.
(4.9)

Here Ḡh is realized using planar gradient recovery schemes componentwisely to rτh,j
(e.g. poly-

nomial preserving or patch recovery methods) based on the local coordinates on τh,j . The

second term on the right-hand side of (4.8) can be estimated from Proposition 3.1 and the

boundedness result of the planar recovery operator Ḡh [21, Theorem 3.2]

∥∥ḠhΓ
∗
j − ḠhΓj

∥∥
∞,τh,j

≤ C
∥∥∂Γ∗

j − ∂Γj

∥∥
∞,τh,j

≤ c3h
2. (4.10)

Since ‖rτh,j
‖3,τh,j

and ‖r̃τh,j
‖3,τh,j

both are uniformly bounded, combining (4.9) and (4.10), we

return to (4.8) to have the estimate

‖∂rτh,j
− ∂r̃τh,j

‖∞,τh,j
= O(h2).

(iii) For the equivalence (4.7) we can use the results in [8, p. 811], which is helpful to show

the equivalence on each triangle pairs of Mh and M̃h, that is

cj,1 ‖ṽh‖Wk,p(τ̃h,j)
≤ ‖vh‖Wk,p(τh,j)

≤ cj,2 ‖ṽh‖Wk,p(τ̃h,j)

for some constants {cj,1}j∈Jh
> 0 and {cj,2}j∈Jh

> 0. The equivalence for functions defined on

triangle pairs of τj and τh,j is similarly shown. Then we arrive the following:

c̃j,1 ‖ṽh‖Wk,p(τ̃h,j)
≤ ‖v‖Wk,p(τj)

≤ c̃j,2 ‖ṽh‖Wk,p(τ̃h,j)

with constants {c̃j,1}j∈Jh
> 0 and {c̃j,2}j∈Jh

> 0. SinceMh → M as h→ 0, we have M̃h → M
as well. This tells that c̃j,1, c̃j,2 → 1 as h → 0, which indicates that the constants {c̃j,1}j∈Jh

and {c̃j,2}j∈Jh
are uniformly bounded. Then we derive the equivalence in (4.7). �
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In order to prove the superconvergence in the case when the vertices of Mh are not located

exactly on M, but in a h2-neighborhood around it, we use the following estimate.

Lemma 4.1. Let Assumption 3.1 hold, and let M̃h be constructed from Proposition 4.1. Let

v ∈ W 3,∞(M), and let ṽh := T̃hv be pullback of v from M to M̃h: ṽh(r̃h,i(ζ)) = v(ri(ζ)) for

every ζ ∈ Ωi and all i ∈ Ih, where r̃h,i : Ωi → M̃h,i and ri : Ωi → Mi. Then the following

estimate holds: ∥∥∇gv − (T̃h)
−1∇g̃h ṽh

∥∥
0,M

. h2 ‖∇gv‖0,M . (4.11)

Proof. Recall (4.1) for the definition of gradient in the local parametric domain, particularly,

we take the local parametric domain to be τh,j . Then we have for every j ∈ Jh the following

estimates:

∥∥∇gv − (T̃h)
−1∇g̃h ṽh

∥∥2
0,τj

=

∫

τh,j

∣∣∇v̄
(
(∂rτh,j

)† − (∂r̃τh,j
)†
)∣∣2
√
det
(
∂rτh,j

(∂rτh,j
)⊤
)

≤
∥∥I−∂rτh,j

(∂r̃τh,j
)†
∥∥2
∞,τh,j

∫

τh,j

∣∣∇v̄(∂rτh,j
)†
∣∣2
√
det
(
∂rτh,j

(∂rτh,j
)⊤
)

=
∥∥I−∂rτh,j

(∂r̃τh,j
)†
∥∥2
∞,τh,j

‖∇gv‖20,τj . (4.12)

Using the estimate (4.6) from Proposition 4.1 and the fact that r̃τh,j
is regular thus ∂r̃τh,j

and

its inverse are uniformly bounded, we derive the following:

∥∥I−∂rτh,j
(∂r̃τh,j

)†
∥∥
∞,τh,j

. ‖∂rτh,j
− ∂r̃τh,j

‖∞,τh,j
= O(h2), ∀ j ∈ Jh.

We go back to (4.12) with the above estimate. Then (4.11) is proven by adding all the terms

of j ∈ Jh and taking the square root. �

Now we are ready to show the superconvergence of the gradient recovery on Mh, which is

considered to be an answer to the open question in [25].

Theorem 4.2. Let Assumption 3.1 hold, and u ∈W 3,∞(M) be the solution of (4.4), and uh be

the solution of (4.5). Then using the isoparametric gradient recovery scheme in Algorithm 4.1,

we have

∥∥∇gu− T−1
h Ghuh

∥∥
0,M

≤ Ch2
(√

A(M)D(g, g−1) ‖u‖3,∞,M + ‖f‖0,M
)

+ Ch1+min{1,σ}
(
‖u‖3,M + ‖u‖2,∞,M

)
, (4.13)

where A is the area function, and D(g, g−1) is some constant which depends on the Riemann

metric tensor.

Proof. This is readily shown using the triangle inequality

∥∥∇gu− T−1
h Ghuh

∥∥
0,M

≤
∥∥∇gu− (T̃h)

−1∇g̃h ũh
∥∥
0,M

+
∥∥(T̃h)−1∇g̃h ũh − T−1

h Ghuh
∥∥
0,M

. (4.14)

The first part on the right-hand side of (4.14) is estimated using Lemma 4.1

∥∥∇gu− (T̃h)
−1∇g̃h ũh

∥∥
0,M

. h2 ‖∇gu‖0,M . (4.15)
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Assumption 3.1, Propositions 3.2 and 4.1 ensure that the geometric conditions of [11, The-

orem 5.3] is satisfied, i.e. the O(h2σ) irregular condition, and the vertices of Mh is located

on M̃h which is C3 smooth. Then the second term on the right-hand side of (4.14) is estimated

using [11, Theorem 5.3]. That gives

∥∥∇g̃h ũh − T̃hT
−1
h Ghuh

∥∥
0,M̃h

≤ C̃h2
(√

A(M̃h)D̃(g̃, g̃−1) ‖ũh‖3,∞,M̃h
+ ‖f̃‖

0,M̃h

)

+ C̃ h1+min{1,σ}
(
‖ũh‖3,M̃h

+ ‖ũh‖2,∞,M̃h

)
.

The equivalence relation from (4.7) in Proposition 4.1 gives the estimate on M, which is

∥∥(T̃h)−1∇guh − T−1
h Ghuh

∥∥
0,M

≤ Ch2
(√

A(M)D(g, g−1) ‖u‖3,∞,M + ‖f‖0,M
)

+ C h1+min{1,σ}
(
‖u‖3,M + ‖u‖2,∞,M

)
. (4.16)

Using embedding theorem that the right-hand side of (4.15) can actually be bounded by the

first term on the right-hand side of (4.16). The proof is concluded by putting (4.15) and (4.16)

together. �

5. Numerical Results

In this section, we present numerical examples to verify the theoretical results. Two types

of surfaces are tested as benchmark examples. The first type is the unit sphere, where we add

artificial O(h2) perturbation to the discretized mesh in order to match exactly our assumptions.

With this, we are able to show the geometric approximation of Mh to M∗
h. The second one is

a more general surface, where the vertices of its discretization mesh do not necessarily locate

on the exact surface.

We shall consider two different members in the family of Algorithm 4.1: (i) Parametric poly-

nomial preserving recovery denoted by Gpppr
h , generalized from PPR method, and (ii) Paramet-

ric superconvergent patch recovery method denoted by Gpspr
h , a generalization of the renowned

ZZ-scheme. For the sake of simplifying the notation, we define

De∗ = ‖Th∇gu−∇ghuh‖0,M∗

h

, De = ‖Th∇gu−∇ghuh‖0,Mh
,

De∗I = ‖∇ghuI −∇ghuh‖0,M∗

h

, DeI = ‖∇ghuI −∇ghuh‖0,Mh
,

De∗r =
∥∥Th∇gu−Gpppr

h uh
∥∥
0,M∗

h

, Der =
∥∥Th∇gu−Gpppr

h uh
∥∥
0,Mh

,

De∗r2 =
∥∥Th∇gu−Gpspr

h uh
∥∥
0,M∗

h

, Der2 =
∥∥Th∇gu−Gpspr

h uh
∥∥
0,Mh

,

where uh is the finite element solution, u is the analytical solution and uI is the linear finite

element interpolation of u. We also remind that M∗
h denotes the exact interpolation of M.

5.1. Examples on a sphere with deviations

We test with numerical solutions of the Laplace-Beltrami equation on the unit sphere. This

is a good toy example since we can artificially design the deviations to the discretization and

compare it to the adhoc results. The right-hand side function f is chosen to fit the exact solution

u = x1x2. For the unit sphere, it is relatively simple to generate interpolated triangular meshes,

denoted by M∗
h.
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5.1.1. Verification of geometric supercloseness

In this test, we firstly artificially add O(h2) perturbation along both normal and tangential

directions at each vertex of M∗
h and the resulting deviated mesh is denoted by M3

h. The

magnitude of the perturbation is chosen as h2. We firstly to verify the geometric supercloseness

property. To do this, we take each triangular element in M∗
h as the reference element and

compute the linear transformation from the reference element to the corresponding triangular

element in M3
h. The numerical errors are displayed in Table 5.1. Clearly, all the maximal norm

errors decay at rates of O(h) and there is no geometric supercloseness. The observed first-order

convergence rates match well with the theoretical result in the Proposition 3.2 since we add

O(h2) perturbations in the tangential direction and Assumption 3.1 is not fulfilled.

Then, we construct a deviated discrete surface that satisfies Assumption 3.1. To do this,

we add O(h2) perturbation along with normal directions and O(h3) perturbation along with

tangential directions at each vertex of M∗
h and the resulting deviated mesh is denoted by Mh.

Similarly, we can compute the Jacobian ∂Γ, metric tensor gΓ, and the determinant
√
det gΓ.

The numerical results are documented in Table 5.2. As predicted by the Proposition 3.2, we

can observe the superconvergence of the geometric approximations in the above quantities.

We also want to emphasize that the condition in (3.4) is essential for Jacobian supercloseness.

To demonstrate this, we consider a deviated mesh M4
h which is constructed by adding rand×h2

perturbation along with normal directions and h3 perturbation along with tangential directions

at each vertex of M∗
h. We repeat the same computation and report the numerical results in

Table 5.3. Clearly, we can observe the O(h2) geometric supercloseness in both metric tensor and

Table 5.1: Difference of geometric quantities between the M∗

h and M3
h.

Dof ‖∂Γ− Id ‖∞ Order ‖
√
det gΓ − 1‖∞ Order ‖gΓ − I ‖∞ Order

162 6.09e-01 – 1.07e+00 – 1.07e+00 –

642 4.09e-01 0.58 6.57e-01 0.71 6.57e-01 0.71

2562 2.07e-01 0.98 3.32e-01 0.99 3.32e-01 0.99

10242 1.00e-01 1.05 1.55e-01 1.09 1.55e-01 1.09

40962 4.96e-02 1.01 7.54e-02 1.04 7.54e-02 1.04

163842 2.48e-02 1.00 3.73e-02 1.02 3.73e-02 1.02

655362 1.24e-02 1.00 1.85e-02 1.01 1.85e-02 1.01

2621442 6.21e-03 1.00 9.21e-03 1.01 9.21e-03 1.01

Table 5.2: Difference of geometric quantities between the M∗

h and Mh.

Dof ‖∂Γ− Id ‖∞ Order ‖√det gΓ − 1‖∞ Order ‖gΓ − I ‖∞ Order

162 2.02e-01 – 3.44e-01 – 3.44e-01 –

642 8.61e-02 1.24 1.34e-01 1.36 1.34e-01 1.36

2562 2.18e-02 1.99 3.60e-02 1.90 3.60e-02 1.90

10242 5.48e-03 1.99 8.98e-03 2.01 8.98e-03 2.01

40962 1.37e-03 2.00 2.25e-03 2.00 2.25e-03 2.00

163842 3.43e-04 2.00 5.63e-04 2.00 5.63e-04 2.00

655362 8.59e-05 2.00 1.41e-04 2.00 1.41e-04 2.00

2621442 2.15e-05 2.00 3.52e-05 2.00 3.52e-05 2.00
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Table 5.3: Difference of geometric quantities between the M∗

h and M4
h.

Dof ‖∂Γ− Id ‖∞ Order ‖√det gΓ − 1‖∞ Order ‖gΓ − I ‖∞ Order

162 2.66e-01 – 2.95e-01 – 4.12e-01 –

642 2.12e-01 0.33 1.30e-01 1.20 1.66e-01 1.32

2562 9.98e-02 1.09 3.49e-02 1.89 5.07e-02 1.71

10242 5.79e-02 0.79 9.11e-03 1.94 1.24e-02 2.04

40962 2.86e-02 1.02 2.24e-03 2.02 3.31e-03 1.90

163842 1.45e-02 0.98 5.71e-04 1.97 8.25e-04 2.00

655362 7.31e-03 0.99 1.46e-04 1.96 2.06e-04 2.01

2621442 3.68e-03 0.99 3.71e-05 1.98 5.25e-05 1.97

determinant of the metric tensor. However, only O(h) approximation results can be observed

for the Jacobian ∂Γ which again confirms the Proposition 3.2.

5.1.2. Superconvergence of gradient recovery on deviated sphere

Now, we show the superconvergence of gradient recovery on the deviated sphere with the

property of geometric supercloseness. We solve the Laplace-Beltrami equation on both M∗
h

and Mh and the numerical performances are tabulated in Table 5.4. For the finite element

gradient error, the expected optimal convergence rate O(h) can be observed on both the meshes

M∗
h and Mh. We concentrate on the finite element supercloseness error. We can observe O(h2)

supercloseness on M∗
h and O(h1.94) supercloseness Mh. It gives solid evidence that the O(h2σ)

irregular condition also holds true for the perturbed mesh Mh. For the recovered gradient

error, we observed almost the same O(h2) superconvergence rates on both discretized surfaces

using isoparametric gradient recovery schemes, which validates Theorem 4.2.

Table 5.4: Numerical results of solving Laplace-Beltrami equation on the sphere.

Dof De∗ Order De∗I Order De∗r Order De∗r2 Order

162 5.13e-01 – 9.71e-01 – 5.25e-01 – 5.25e-01 –

642 1.96e-01 1.40 9.58e-03 6.71 5.41e-02 3.30 5.40e-02 3.30

2562 9.83e-02 1.00 2.60e-03 1.88 1.37e-02 1.98 1.37e-02 1.98

10242 4.92e-02 1.00 6.97e-04 1.90 3.45e-03 1.99 3.48e-03 1.98

40962 2.46e-02 1.00 1.85e-04 1.92 8.67e-04 1.99 8.86e-04 1.97

163842 1.23e-02 1.00 4.86e-05 1.93 2.17e-04 2.00 2.29e-04 1.95

655362 6.15e-03 1.00 1.27e-05 1.93 5.45e-05 2.00 6.05e-05 1.92

2621442 3.07e-03 1.00 3.32e-06 1.94 1.37e-05 2.00 1.67e-05 1.86

Dof De Order DeI Order Der Order Der2 Order

162 4.87e-01 – 7.89e-01 – 4.75e-01 – 4.74e-01 –

642 2.12e-01 1.21 1.06e-01 2.91 2.11e-02 4.53 2.14e-02 4.50

2562 1.00e-01 1.08 2.66e-02 2.00 5.21e-03 2.02 5.32e-03 2.01

10242 4.94e-02 1.02 6.67e-03 1.99 1.32e-03 1.99 1.39e-03 1.93

40962 2.46e-02 1.01 1.68e-03 1.99 3.34e-04 1.98 3.83e-04 1.86

163842 1.23e-02 1.00 4.20e-04 2.00 8.50e-05 1.98 1.11e-04 1.79

655362 6.15e-03 1.00 1.05e-04 2.00 2.16e-05 1.98 3.41e-05 1.70

2621442 3.07e-03 1.00 2.63e-05 2.00 5.48e-06 1.98 1.10e-05 1.63
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The numerical results of using isoparametric SPR show superconvergence rate O(h1.9) and

O(h1.7) on M∗
h and Mh, respectively, which indicates that it is also a valid algorithm.

5.2. The Laplace-Beltrami equation on general surface

In this example, we consider a general surface which can be represented as the zero level-set

of the following function:

Φ(x) = (x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 − 1.05.

We solve the Laplace-Beltrami type equation

−∆gu+ u = f

with the exact solution u = exp(x2+ y2+ z2). The right-hand side function f can be computed

from u.

The initial mesh of the general surface was generated using the three-dimensional surface

mesh generation module of the Computational Geometry Algorithms Library [24]. To get

meshes in other levels, we first perform the uniform refinement. Then we project the newest

vertices onto M. In the general case, there is no explicit projection map available. Hence we

adopt the first-order approximation of projection map as given in [9]. Therefore, the vertices

of the meshes are not on the exact surface M but in a O(h2) neighborhood along the normal

vectors.

The first level of mesh is plotted in Fig. 5.1. The history of numerical errors is documented in

Table 5.5. As expected, we can observe the O(h) optimal convergence rate for the finite element

gradient. The rate of O(h1.9) can be observed for the error between the finite element gradient

and the gradient of the interpolation of the exact solution. Again, it means the mesh Mh

satisfies the O(h2σ) irregular condition. As depicted by Theorem 4.2, the recovered gradient

using parametric polynomial preserving recovery is superconvergent to the exact gradient at

the rate of O(h2) even though the vertices are not located on the exact surface. For parametric

superconvergent patch recovery, it deteriorates a litter bit but we can still observe O(h1.86)

superconvergence.

Fig. 5.1. Initial mesh on a general surface.
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Table 5.5: Numerical results of solving Laplace-Beltrami equation on a general surface.

Dof De Order DeI Order Der Order Der2 Order

701 1.32e+01 – 5.67e+00 – 1.12e+01 – 1.19e+01 –

2828 6.93e+00 0.93 1.67e+00 1.75 3.66e+00 1.61 3.68e+00 1.69

11336 3.52e+00 0.98 4.89e-01 1.77 1.04e+00 1.81 1.06e+00 1.80

45368 1.77e+00 0.99 1.34e-01 1.87 2.76e-01 1.91 2.88e-01 1.87

181496 8.86e-01 1.00 3.54e-02 1.92 7.12e-02 1.96 7.77e-02 1.89

726008 4.43e-01 1.00 9.21e-03 1.94 1.81e-02 1.98 2.15e-02 1.86

6. Conclusion

In this paper, we have established a new concept called geometric supercloseness which

is fundamental for analyzing the superconvergence of differential structure on surfaces. It

is important for the numerical analysis on deviated surfaces, particularly when there has no

information of the exact geometry. In such cases, the vertices are typically not necessarily

located on the underlying exact surfaces, and the exact normal vectors (or tangent spaces) are

not known. We focused on investigating the post-processing of numerical solutions, where an

algorithmic framework for superconvergent gradient recovery methods on deviated discretized

surfaces is proposed and analyzed. It concluded some open questions existing in the literature.

Although we have only studied the condition for piece-wise linear approximations, the

higher-order cases are of course interesting and meaningful to investigate as well, particu-

larly the discretization assumptions that lead to higher-order geometric supercloseness. On the

other hand, we have concentrated on scalar functions in this paper. For those problems whose

solutions are tangent vector fields on surfaces, we would wish to have similar error analysis

with deviated surfaces as well. In that case, we need to investigate the superconvergence of

curvature terms involving higher-order differential structures, then the higher-order geometric

supercloseness would be interesting for future study.

The datasets generated and/or analyzed during the current study are available from the

authors on reasonable request.
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1992.

[11] G. Dong and H. Guo, Parametric polynomial preserving recovery on manifolds, SIAM J. Sci.

Comput., 42:3 (2020), A1885–A1912.
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