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Abstract. Although the genuinely two-dimensional HLL-CPS solver holds the inher-
ent multidimensionality property and capability of resolving contact discontinuities,
the conventional low-order (second-order and below) reconstruction methods still lim-
its its application in the two-dimensional complex flows involving shock waves and
shear layers. A fifth-order reconstruction method is proposed for the genuinely two-
dimensional HLL-CPS solver. The conserved variable vectors at the midpoints of in-
terfaces are approximated by the fifth-order 1D WENO reconstruction. Meanwhile,
variables at the corners are evaluated by a dimension-by-dimension reconstruction
method consisting of a number of 1D fifth-order WENO sweeps. To avoid introducing
spurious oscillations, each reconstruction is carried out in the corresponding local char-
acteristic fields. Numerical results of several benchmark tests indicate the higher-order
accuracy and the multidimensionality property of the proposed scheme. Compared
with the 1D HLLE, HLLC and HLL-CPS schemes, the proposed high-order genuinely
two-dimensional HLL-CPS solver provides higher resolution for contact discontinu-
ities and presents better robustness against the shock anomalies.
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1 Introduction

Due to ease of implementation and satisfying physical properties, the Godunov-type nu-
merical methods [26] based on approximated Riemann solver have become very popular
in the simulations of compressible flows. The representatives of Godunov-type numeri-
cal schemes include the Roe’s scheme [44], the AUSM-type schemes [35,41], the flux vec-
tor splitting (FVS) schemes [54, 57], the HLL scheme [29], the HLLC scheme [56] and the
Osher scheme [23]. Among them, the HLL Riemann solver has been widely used to solve
different hyperbolic systems because of its simplicity and satisfying the entropy condi-
tion. However, the conventional HLL solver is incapable of resolving contact waves. In
order to remove the limitation of the HLL solver, Mandal and Panwar [39] proposed
the HLL-CPS scheme, in which flux vectors are split into convective and pressure com-
ponents and the density difference of the dissipation term in the pressure flux term is
replaced by the pressure difference to improve the resolution for contact waves. Fur-
thermore, it has been proved to have the additional advantage of suppressing numerical
shock instability [40].

Although the applicability of Riemann solvers mentioned above has been verified
by a large number of numerical testes, some researchers indicated that the 1D Riemann
solvers lose their efficiency in multidimensional problems since they can not pick up
the flow information traveling along the transverse direction of a local interface. There-
fore, many practitioners have attempted to construct genuinely two-dimensional Rie-
mann solvers. Some of early works included the corner transport method by Collela [20],
the introduction of multidimensionality into 1D solvers [45], the weighted average flux
method proposed by Billet and Toro [16], Leveque’s multidimensional wave propagation
algorithm [36], Wendroff’s HLLE solver for multidimensional hypersonic conservative
laws [59], the multidimensional linearized Roe scheme by Fey [24] and Brio [19]. Com-
pared with the traditional 1D solvers, the multidimensional solvers show some advan-
tages in terms of accuracy. However, the mathematical complexity and high computa-
tional cost have limited their application in the simulations of complex flow problems.

Based on the idea of solving the two-dimensional Riemann problem at corners, Bal-
sara [2] proposed the genuinely two-dimensional HLL Riemann solver. Unlike ear-
lier multidimensional solvers, Balsara’s solver is simple and easy to implement. Then,
the genuinely two-dimensional HLL Riemann solver was extended to the unstructured
mesh [7, 8, 14, 15, 18, 22]. Furthermore, Balsara et al. [4] developed a genuinely three-
dimensional HLLE solver. Inspired by the work of Balsara, a series of effective genuinely
two-dimensional HLL-type solvers have been constructed [17, 42, 48]. However, like
1D HLL solver, the genuinely multidimensional solvers derived from Balsara’s method
can not accurately capture shear waves. In order to overcome this defect, Balsara [3]
constructed a genuinely two-dimensional HLLC solver, but this model is much com-
plex and computationally expensive. Facing the challenge to construct an efficient two-
dimensional solver with the capability of capturing contact discontinuities, Mandal and
Sharma [40] introduced the convective-pressure splitting (CPS) strategy into the Bal-
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sara’s 2D HLL solver to propose the genuinely multidimensional HLL-CPS solver. Since
then, many contact-preserving genuinely multidimensional solvers based on convective-
pressure flux splitting method [30,31,33] were developed. However, the solution depen-
dent weighted least squares (SDWLS) method used to approximate the states of variables
in these genuinely two-dimensional CPS solvers only provides second-order accuracy.

Unlike the SDWLS approach, the weighted essentially non-oscillatory (WENO)
schemes [27, 34, 38, 43, 58] provide a strategy to obtain high-order accuracy. The WENO
schemes are the developed versions of the essentially non-oscillatory (ENO) scheme. The
original philosophy of the ENO scheme was first proposed by Harten et al. [28] and a
more efficient finite difference form was developed by Shu and Osher [52, 53]. The ENO
method chooses the single one with the smallest variation from multiple stencils to re-
construct the values of variable in zone of interest. However, the use of a single stencil
might result in a loss of accuracy. In order to overcome the shortcoming of ENO scheme,
Liu et al. [38] and Jiang and Shu [34] proposed a fifth-order finite-difference weighted
ENO (WENO) scheme, where the use of a nonlinear convex combination of lower order
polynomials associated with each candidate stencil ensured the scheme achieving high-
order accuracy in the smooth areas and capturing shock waves robustly in the discontin-
uous regions. Then, scholars have developed WENO schemes with higher order (over
tenth-order accuracy) [1, 9, 13, 25]. In 2016, Balsara et al. [10] proposed a very compact
expression of reconstruction polynomials and the corresponding smoothness indicators
using the Legendre basis. Since the calculation of smoothness indicators is expensive,
the efficiency of finite difference WENO schemes is significantly improved due to the use
of compact expression. Recently, Balsara et al. [6] presented a fourth-order divergence
constraint-preserving prolongation strategy that is exact analytically. This is a practical
extension of WENO schemes because some PDEs require that vector fields preserve a
divergence constraint.

Due to the distinctive advantages of WENO schemes in stability and high accuracy,
its application in the genuinely two-dimensional Riemann solvers has attracted much
attention. Balsara and his collaborators [5, 7, 11, 12, 15] combined the high-order accu-
racy ADER-WENO scheme with the genuinely two-dimensional HLL Riemann solvers
to solve the magnetohydrodynamics. The numerical results gave evidence of high accu-
racy of the schemes. Following Balsara’s strategy, Zhou et al. [61] proposed two third-
order reconstruction methods for the genuinely two-dimensional HLL solver. However,
limited by the defects of genuinely two-dimensional HLL solver, these schemes exhibited
a high dissipation behavior for contact waves.

The goal of the present work is to propose a simple fifth-order reconstruction method
for the genuinely two-dimensional Riemann solver. For improving the resolution of
contact waves, the genuinely multidimensional HLL-CPS solver [40] is employed to
solve the Riemann problems. In order to obtain high accuracy, the fifth-order WENO
scheme [34, 51] is adopted to evaluate the values of conserved variables at the midpoint
of interfaces and a simple dimension-by-dimension reconstruction consisting of a num-
ber of fifth-order sweeps [21, 55] is employed to approximate states of conserved vari-
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ables at corners. The paper is organized as follows. The governing equations and the
Zha-Bilgen convection-pressure flux split formulation are reviewed in Section 2. The
genuinely multidimensional HLL-CPS solver is presented in section 3 and the recon-
struction procedures are detailedly described in Section 4. In Section 5, a series of test
problems are calculated to exhibit performances of the proposed scheme. Finally, Section
6 summarizes our conclusions.

2 Governing equations

The two-dimensional inviscid compressible flow is considered here, and its governing
equations can be given as

∂tU+∂xF+∂yG=0, (2.1)

where

U=


ρ

ρu
ρv
E

, F(U)=


ρu

ρu2+p
ρuv

u(E+p)

, G(U)=


ρv

ρuv
ρv2+p

v(E+p)

. (2.2)

Here, ρ represents density, u and v are velocities in two directions, E denotes total energy
and p is pressure. The equation of state for ideal gas is considered here

p=(γ−1)
[

E− 1
2

ρ
(
u2+v2)], (2.3)

where the specific heat ratio γ=1.4.
We employ the finite volume method to discretize Eq. (2.1) on a Cartesian mesh. For

a specific cell Ωi,j, the governing equations can be discretized as

dUi,j

dt
=−

Fi+ 1
2 ,j−Fi− 1

2 ,j

∆x
−

Gi,j+ 1
2
−Gi,j− 1

2

∆y
. (2.4)

In (2.4), Ui,j is the average value of U on cell Ωi,j, ∆x and ∆y are space steps. To complete
the design of the numerical method, the temporal discretization of Eq. (2.4) is performed
by the third-order version of the Runge-Kutta scheme [50]

U(1)=Un+∆tL(Un),

U(2)=
3
4

Un+
1
4

U(1)+
1
4

∆tL(U(1)),

Un+1=
1
3

Un+
2
3

U(2)+
2
3

∆tL(U(2)),

(2.5)

where L(∗) is the spatial operator, the superscripts n and n+1 denote the current and the
subsequent time steps, and the superscripts (1) and (2) are the intermediate time-stages
between them.
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3 Genuinely two-dimensional HLL-CPS scheme

In the present work, the flux vectors are split into convective and pressure components
with the Zha-Bilgen splitting formulation [60]

F(U)=F1(U)+F2(U)=u


ρ

ρu
ρv
E

+


0
p
0

pu

, (3.1a)

G(U)=G1(U)+G2(U)=v


ρ

ρu
ρv
E

+


0
0
p

pv

. (3.1b)

Here, F1(U) and G1(U) are convective parts of fluxes in the x and y-directions, F2(U)
and G2(U) are pressure parts of fluxes.

Assuming the Euler equations are solved on a Cartesian mesh shown in Fig. 1(a) and
considering the flux through interface (i+ 1

2 , j), the genuinely multidimensional HLL-
CPS scheme [40] not only solve the 1D Riemann problem at the midpoint (i+ 1

2 , j) but also
consider the 2D Riemann problem at corners (i+ 1

2 , j+ 1
2 ) and (i+ 1

2 , j− 1
2 ). In the following

two subsections, we briefly describe the genuinely multidimensional HLL-CPS scheme.

(a) The Cartesian mesh (b) The 2D Riemann problem at a corner

Figure 1: The Cartesian mesh and two-dimensional Riemann problem at a corner.

3.1 Evaluation of flux at the midpoint of a interface

We use Fmid
1 and Fmid

2 to represent the convective flux and the pressure flux at the mid-
point of a interface. A method similar to the ASUM scheme [37] is employed to evaluate
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the convective numerical flux

Fmid
1 =Mk


ρ

ρu
ρv
E


k

ak, k=

{
L, if ū≥0,
R, if ū<0,

(3.2)

ū is the average value of the local x-direction velocity (uL+uR)/2. The local Mach num-
bers and the sound velocities are calculated as

Mk =


ū

ū−Smid
L

, if ū≥0,

ū
ū−Smid

R
, if ū<0,

ak =

{
uL−Smid

L , if ū≥0,
uR−Smid

R , if ū<0.
(3.3)

The wave speeds of convective flux is evaluated as

Smid
L =min(0,uL−aL,ũL− ãL), Smid

R =max(0,uR+aR,ũR+ ãR). (3.4)

The pressure part of flux vector is calculated by

Fmid
2 =

1
2
(F2L+F2R)+∆U2, (3.5)

where fluxes F2L and F2R are evaluated through left and right states, respectively. Ac-
cording to the isentropic assumption, the numerical diffusion term ∆U2 is given as

∆U2=
Smid

R +Smid
L

2(Smid
R −Smid

L )
(F2L−F2R)−

Smid
R Smid

L

ā2(Smid
R −Smid

L )


pL−pR

(pu)L−(pu)R
(pv)L−(pv)R

E∗L−E∗R

, (3.6)

where the average value of speed of sound is given as ā=(aL+aR)/2 and E∗k is calculated
by

E∗k =
ā2

γ−1
pk+

1
2

pk(u2
k+v2

k), k=L,R.

3.2 Evaluation of two-dimensional flux at corners

As shown in Fig. 1(b), the two-dimensional Riemann problem at the corner C1 (i+ 1
2 , j+ 1

2 )
involves four different states, namely ULD, ULU , URD and URU . The genuinely multidi-
mensional HLL-CPS scheme [40] is adopted to solve the two-dimensional Riemann prob-
lem. We use Fcor

1 and Gcor
1 to denote the convective fluxes in the x- and y-directions at the

corner (i+ 1
2 , j+ 1

2 ) and use Fcor
2 and Gcor

2 to denote the pressure fluxes. In the following
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part of this subsection, we will briefly describe the evaluation of convective and pressure
fluxes at the corner (i+ 1

2 , j+ 1
2 ).

The x-directional convective flux at the corner C1 is calculated as

Fcor
1 =

ū
SU−SD

SU


ρ

ρu
ρv
E


k1

−SD


ρ

ρu
ρv
E


k2

,

{
k1=LU, k2=LD, if ū≥0,
k1=RU, k2=RD, if ū<0.

(3.7)

The averaged value of x−directional velocities at corner C1 is given as

ū=
uLUSU−uLDSD+uRUSU−uRDSD

2(SU−SD)
.

Similarly, the y-directional convective flux at the corner is evaluated as

Gcor
1 =

v̄
SR−SL

SR


ρ

ρu
ρv
E


k1

−SL


ρ

ρu
ρv
E


k2

,

{
k1=RD, k2=LD, if v̄≥0,
k1=RU, k2=LU, if v̄<0.

(3.8)

The averaged value of y−directional velocity at corner C1 is defined as

v̄=
vRUSR−vLUSL+vRDSR−vLDSL

2(SR−SL)
.

At the corner C1(i+ 1
2 , j+ 1

2 ), the two-dimensional pressure flux is calculated as [40]

Fcor
2 =

1
2
(F̂2L+F̂2R)+∆U2x−

2SRSL(G2RU−G2LU+G2LD−G2RD)

(SR−SL)(SU−SD)
, (3.9a)

Gcor
2 =

1
2
(Ĝ2D+Ĝ2U)+∆U2y−

2SUSD(F2RU−F2LU+F2LD−F2RD)

(SR−SL)(SU−SD)
, (3.9b)

where

F̂2L =
F2LUSU−F2LDSD

SU−SD
, F̂2R =

F2RUSU−F2RDSD

SU−SD
,

Ĝ2D =
G2RDSR−G2LDSR

SR−SL
, Ĝ2U =

G2RUSR−G2LUSR

SR−SL
.

According to the isentropic condition, the expressions of the numerical diffusion terms
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in Eqs. (3.9a) and (3.9b) are given as

∆U2x =
SR+SL

2(SR−SL)
(F̂2L−F̂2R)

+

SRSL


SU(pRU−pLU)−SD(pRD−pLD)

SU [(pu)RU−(pu)LU ]−SD[(pu)RD−(pu)LD]
SU [(pv)RU−(pv)LU ]−SD[(pv)RD−(pv)LD]

SU(E∗RU−E∗LU)−SD(E∗RD−E∗LD)


ā2(SR−SL)(SU−SD)

, (3.10a)

∆U2y =
SU+SD

2(SU−SD)
(Ĝ2D−Ĝ2U)

+

SUSD


SR(pRU−pRD)−SL(pLU−pLD)

SR[(pu)RU−(pu)RD]−SL[(pu)LU−(pu)LD]
SR[(pv)RU−(pv)RD]−SL[(pv)LU−(pv)LD]

SR(E∗RU−E∗RD)−SL(E∗LU−E∗LD)


ā2 (SR−SL)(SU−SD)

, (3.10b)

where the average sound velocity ā and the total energy E∗k are respectively defined as

ā=
aLD+aLU+aRD+aRU

4
, E∗k =

ā2

γ−1
pk+

1
2

pk (u2
k+v2

k),

k=LU, RU, LD, RD.

The wave speeds travelling along four directions at the corner are evaluated as
SL =min(0, λ0

x(ULU), λ0
x(ULD), λ̃0

x(ULU ,URU), λ̃0
x(ULD,URD)),

SR =max(0, λ1
x(URU), λ1

x(URD), λ̃1
x(ULU ,URU), λ̃1

x(ULD,URD)),
SD =min(0, λ0

y(URD), λ0
y(ULD), λ̃0

y(URD,URU), λ̃0
y(ULD,ULU)),

SU =max(0, λ1
y(URU), λ1

y(ULU), λ̃1
y(URD,URU), λ̃1

y(ULD,ULU)),

(3.11)

where λ0
x(ULU) is the minimum x-directional wave speed in the state ULU , λ1

x(ULU) is
the maximum x-directional wave speed in the state ULU , λ̃0

x (ULU , URU) is the Roe’s
averaged value of the minimum x-direction wave speed between states ULU and URU , λ̃1

x
(ULU , URU) is the Roe’s averaged value of the maximum x-direction wave speed between
states ULU and URU .

3.3 Evaluation of total flux through an interface

As illustrated in Fig. 1(a), the two-dimensional fluxes at corners C1 (i+ 1
2 , j+ 1

2 ) and C4

(i+ 1
2 , j− 1

2 ) and the flux at the midpoint (i+ 1
2 , j) constitute the total x-directional flux

through the interface (i+ 1
2 , j). The Simpson’s integral formula is adopted to assemble

these fluxes to obtain the total flux

Fi+ 1
2 ,j =

1
6

Fcor
i+ 1

2 ,j+ 1
2
+

4
6

Fmid
i+ 1

2 ,j +
1
6

Fcor
i+ 1

2 ,j− 1
2
. (3.12)
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4 Fifth-order reconstruction method

In this paper, a fifth-order method consisting of a number of WENO sweeps is employed
to approximate the values of conservative variables vector. Some researches have re-
ported that to reconstruct conservative variables may introduce spurious oscillations
near material interfaces [21, 55]. Therefore, the one-dimensional WENO sweep in the x-
direction is always performed on characteristic fields defined by AF = ∂F/∂U, while the
one-dimensional WENO sweep in the y-direction is carried out on characteristic fields
defined by AG =∂G/∂U in this work.

For the convenience of reader, we give a brief explanation of the symbols used in this
section. W is the vector of characteristic variables. L and R are the left and right char-
acteristic matrices, respectively. Superscript F (or G) of a variable denotes it is relevant
with AF (or AG). Superscripts L,R, D and U respectively denote the ’left’, ’right’, ’down’
and ’up’ states of variables. Similarly, LD,LU,RD and RU represent the ’left-down’, ’left-
up’, ’right-down’ and ’right-up’ states of variables at a corner (see Fig. 1). In addition,
subscript (i, j) indicates a variable is defined at the center of cell, and subscripts (i+ 1

2 , j)
and (i+ 1

2 , j+ 1
2 ) respectively indicate the variables are defined at mid-point and corner of

interface.

4.1 The reconstruction of conserved variables vectors at midpoint

In order to implement reconstruction on local characteristic fields, the conservative vari-
ables at six cells near interface (i+ 1

2 , j) are projected onto characteristic fields

WF
k,j =LF

i+ 1
2 ,jUk,j, k= i−2,.. .,i+3, (4.1)

where LF
i+1/2,j is the local left characteristic matrix of AF and it is evaluated through

Ui+1/2,j =(Ui,j+Ui+1,j)/2. Three stencils are arranged as

s(0)=
{

WF
i,j,W

F
i+1,j,W

F
i+2,j

}
, (4.2a)

s(1)=
{

WF
i−1,j,W

F
i,j,W

F
i+1,j

}
, (4.2b)

s(2)=
{

WF
i−2,j,W

F
i−1,j,W

F
i,j

}
. (4.2c)

The smooth indicators of these stencils are calculated as
β(0)=

13
12

(
WF

i,j−2WF
i+1,j+WF

i+2,j

)2
+

1
4

(
3WF

i,j−4WF
i+1,j+WF

i+2,j

)2
,

β(1)=
13
12

(
WF

i−1,j−2WF
i,j+WF

i+1,j

)2
+

1
4

(
WF

i−1,j−WF
i+1,j

)2
,

β(2)=
13
12

(
WF

i−2,j−2WF
i−1,j+WF

i,j

)2
+

1
4

(
WF

i−2,j−4WF
i−1,j+3WF

i,j

)2
.

(4.3)
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For the fifth order WENO scheme [51], the ideal weights for the left states at interface
(i+ 1

2 , j) are given as

d(0)=
3
10

, d(1)=
3
5

, d(2)=
1
10

. (4.4)

With the definition of nonlinear weights

α(r)=
d(r)

(β(r)+ε)2
, ω(r)=

α(r)

∑2
s=0 α(s)

, r=0,1,2, (4.5)

the left states of characteristic variables at interface (i+ 1
2 , j) are approximated as

W(L),F
i+ 1

2 ,j
=ω(0)

(
1
3

WF
i,j+

5
6

WF
i+1,j−

1
6

WF
i+2,j

)
+ω(1)

(
−1

6
WF

i−1,j+
5
6

WF
i,j+

1
3

WF
i+1,j

)
+ω(2)

(
1
3

WF
i−2,j−

7
6

WF
i−1,j+

11
6

WF
i,j

)
. (4.6)

The stencils for obtaining the right state of characteristic variables at interface (i+ 1
2 , j) are

arranged as

s(0)=
{

WF
i+1,j,W

F
i+2,j,W

F
i+3,j

}
, (4.7a)

s(1)=
{

WF
i,j,W

F
i+1,j,W

F
i+2,j

}
, (4.7b)

s(2)=
{

WF
i−1,j,W

F
i,j,W

F
i+1,j

}
. (4.7c)

Three smooth factors are calculated as
β(0)=

13
12

(
WF

i+1,j−2WF
i+2,j+WF

i+3,j

)2
+

1
4

(
3WF

i+1,j−4WF
i+2,j+WF

i+3,j

)2
,

β(1)=
13
12

(
WF

i,j−2WF
i+1,j+WF

i,j

)2
+

1
4

(
WF

i,j−WF
i+2,j

)2
,

β(2)=
13
12

(
WF

i−1,j−2WF
i,j+WF

i+1,j

)2
+

1
4

(
WF

i−1,j−4WF
i,j+3WF

i+1,j

)2
.

(4.8)

The ideal weights are evaluated as

d(0)=
1
10

, d(1)=
3
5

, d(2)=
3
10

. (4.9)
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Evaluating nonlinear weights through Eq. (4.5), then, the right states of characteristic
variables at interface (i+ 1

2 , j) are given as

W(R),F
i+ 1

2 ,j
=ω(0)

(
11
6

WF
i+1,j−

7
6

WF
i+2,j+

1
3

WF
i+3,j

)
+ω(1)

(
1
3

WF
i,j+

5
6

WF
i+1,j−

1
6

WF
i+2,j

)
+ω(2)

(
−1

6
WF

i−1,j+
5
6

WF
i,j+

1
3

WF
i+1,j

)
. (4.10)

Once the left and right states of characteristic variables at the midpoint of interface (i+
1
2 , j) are obtained, the left and right states of conserved variables vector are evaluated as

U∗i+ 1
2 ,j =RF

i+ 1
2 ,jW

(∗),F
i+ 1

2 ,j
, ∗=L,R. (4.11)

In order to obtain up and down states of the characteristic variables at interface (i, j+ 1
2 ),

the conservative variables are projected onto the local characteristic fields

WG
i,h =LG

i,j+ 1
2
Ui,h, h= j−2,··· , j+3, (4.12)

Three stencils for the reconstruction of down states of characteristic variables at interface
(i, j+ 1

2 ) are formed as

s(0)=
{

WG
i,j,W

G
i,j+1,WG

i,j+2

}
, (4.13a)

s(1)=
{

WG
i,j−1,WG

i,j,W
G
i,j+1

}
, (4.13b)

s(2)=
{

WG
i,j−2,WG

i,j−1,WG
i,j

}
. (4.13c)

The smooth indicators are calculated as
β(0)=

13
12

(
WG

i,j−2WG
i,j+1+WG

i,j+2

)2
+

1
4

(
3WG

i,j−4WG
i,j+1+WG

i,j+2

)2
,

β(1)=
13
12

(
WG

i,j−1−2WG
i,j+WG

i,j+1

)2
+

1
4

(
WG

i,j−1−WG
i,j+1

)2
,

β(2)=
13
12

(
WG

i,j−2−2WG
i,j−1+WG

i,j

)2
+

1
4

(
WG

i,j−2−4WG
i,j−1+3WG

i,j

)2
.

(4.14)

The nonlinear weights are evaluated using Eq. (4.5), then, the down states of characteris-
tic variables at interface (i, j+ 1

2 ) are obtained as

W(D),G
i,j+ 1

2
=ω(0)

(
1
3

WG
i,j+

5
6

WG
i,j+1−

1
6

WG
i,j+2

)
+ω(1)

(
−1

6
WG

i,j−1+
5
6

WG
i,j+

1
3

WG
i,j+1

)
+ω(2)

(
1
3

WG
i,j−2−

7
6

WG
i,j−1+

11
6

WG
i,j

)
. (4.15)
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Similarly, the up states of characteristic variables at interface (i, j+ 1
2 ) are approximated

as

W(U),G
i,j+ 1

2
=ω(0)

(
11
6

WG
i,j+1−

7
6

WG
i,j+2+

1
3

WG
i,j+3

)
+ω(1)

(
1
3

WG
i,j+

5
6

WG
i,j+1−

1
6

WG
i,j+2

)
+ω(2)

(
−1

6
WG

i,j−1+
5
6

WG
i,j+

1
3

WG
i,j+1

)
. (4.16)

Then, the down and up states of conserved variables vector at interface (i, j+ 1
2 ) are ob-

tained as

U∗i,j+ 1
2
=RG

i,j+ 1
2
W(∗),G

i,j+ 1
2

, ∗=U,D. (4.17)

It should be noted that the reconstruction of characteristic variables on different in-
terfaces is independent of each other. In the procedure to reconstruct variables at an
interface, same left and right characteristic matrices defined at this interface are adopted
to calculate characteristic variables in near six cells. For instance, LF

i+1/2,j in Eq. (4.1) is
defined at interface (i+ 1

2 , j) and it is evaluated through Ui+1/2,j = (Ui,j+ Ui+1,j)/2. In
addition, RF

i+1/2,j in Eq. (4.11) is still defined at the interface (i+ 1
2 , j).

4.2 The reconstruction of conserved variables vectors at corner

A dimension-by-dimension WENO reconstruction method consisting of a number of
one-dimensional WENO sweeps in x and y-direction is adopted to calculate four states
of conserved variable vectors at corners. Now, we give the approximate procedure to
obtain the values of conserved variable vectors at corner C1 (i+ 1

2 , j+ 1
2 ) shown in Fig. 1.

The dimension-by-dimension reconstruction is a two-step process. In the first step,
twelve one-dimensional WENO sweeps in x-direction are carried out to approximate
the left and right states of characteristic variables at interface (i+ 1

2 ,h), h= j−2,··· , j+3.
As illustrated in Fig. 2, the characteristic variables in 36 cells around the corner C1 are
calculated through projecting the conservative variables onto characteristic fields

WF
k,h =LF

i+ 1
2 ,j+ 1

2
Uk,h, k= i−2,.. .,i+3, h= j−2,.. ., j+3, (4.18)

where LF
i+1/2,j+1/2 is the left characteristic matrix defined by AF at corner C1. Then, the

left and right states of characteristic variables at six interfaces (i+ 1
2 ,h), h= j−2,··· , j+3 are

obtained through performing the one-dimensional WENO reconstruction in x-direction.
For instance, after forming the stencils like Eq. (4.2) (as shown in Fig. 2) with WF

k,j+1,
k= i−2,.. .,i+2 and calculating smooth indicators as Eq. (4.3) and nonlinear weights as
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Figure 2: Illustration of the characteristic variables in 36 cells and the stencils of one-dimensional WENO
reconstruction in x direction used in the first step of dimensional-by-dimensional reconstruction.

Eq. (4.4), the left states of characteristic variables at interface (i+ 1
2 , j+1) are given as

W(L),F
i+ 1

2 ,j+1
=ω(0)

(
1
3

WF
i,j+1+

5
6

WF
i+1,j+1−

1
6

WF
i+2,j+1

)
+ω(1)

(
−1

6
WF

i−1,j+1+
5
6

WF
i,j+1+

1
3

WF
i+1,j+1

)
+ω(2)

(
1
3

WF
i−2,j+1−

7
6

WF
i−1,j+1+

11
6

WF
i,j+1

)
. (4.19)

Similarly, following the procedure of Eq. (4.7c) to (4.10), the right states of characteristic
variables at interface (i+ 1

2 , j+1) are calculated as

W(R),F
i+ 1

2 ,j+1
=ω(0)

(
11
6

WF
i+1,j+1−

7
6

WF
i+2,j+1+

1
3

WF
i+3,j+1

)
+ω(1)

(
1
3

WF
i,j+1+

5
6

WF
i+1,j+1−

1
6

WF
i+2,j+1

)
+ω(2)

(
−1

6
WF

i−1,j+1+
5
6

WF
i,j+1+

1
3

WF
i+1,j+1

)
. (4.20)

In the second step, the four states of characteristic variables at corner C1 are calcu-
lated. Because one-dimensional WENO reconstructions in y-direction are carried out on
the characteristic fields defined by AG, the left and right states of characteristic variables
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defined by AG need to be obtained through following two step

U(∗)
i+ 1

2 ,h
=RF

i+ 1
2 ,j+ 1

2
W(∗),F

i+ 1
2 ,h

, W(∗),G
i+ 1

2 ,h
=LG

i+ 1
2 ,j+ 1

2
U(∗)

i+ 1
2 ,h

, h= j−2,.. ., j+3. (4.21)

Here, (∗)=(L),(R). As illustrated in Fig. 3, stencils for one-dimensional WENO sweep in
y-direction are arranged like Eq. (4.13), and smooth indicators and nonlinear weights are
respectively evaluated as Eq. (4.3) and Eq. (4.5). Then, the down states of characteristic
variables at corner C1 are obtained as

W(∗D),G
i+ 1

2 ,j+ 1
2
=ω(0)

(
1
3

W(∗),G
i+ 1

2 ,j
+

5
6

W(∗),G
i+ 1

2 ,j+1
− 1

6
W(∗),G

i+ 1
2 ,j+2

)
+ω(1)

(
−1

6
W(∗),G

i+ 1
2 ,j−1

+
5
6

W(∗),G
i+ 1

2 ,j
+

1
3

W(∗),G
i+ 1

2 ,j+1

)
+ω(2)

(
1
3

W(∗),G
i+ 1

2 ,j−2
− 7

6
W(∗),G

i+ 1
2 ,j−1

+
11
6

W(∗),G
i+ 1

2 ,j

)
, (4.22)

where (∗D)=(LD),(RD). Similarly, the up states of characteristic variables at corner C1
are approximated as

W(∗U),G
i+ 1

2 ,j+ 1
2
=ω(0)

(
11
6

W(∗),G
i+ 1

2 ,j+1
− 7

6
W(∗),G

i+ 1
2 ,j+2

+
1
3

W(∗),G
i+ 1

2 ,j+3

)
+ω(1)

(
1
3

W(∗),G
i+ 1

2 ,j
+

5
6

W(∗),G
i+ 1

2 ,j+1
− 1

6
W(∗),G

i+ 1
2 ,j+2

)
+ω(2)

(
−1

6
W(∗),G

i+ 1
2 ,j−1

+
5
6

W(∗),G
i+ 1

2 ,j
+

1
3

W(∗),G
i+ 1

2 ,j+1

)
. (4.23)

Here, (∗U)=(LU),(RU). Eventually, conservative variables at corner C1 are obtained as

U∗i+ 1
2 ,j+ 1

2
=RG

i+ 1
2 ,j+ 1

2
W(∗),G

i+ 1
2 ,j+ 1

2
, (4.24)

where ∗=LD,LU,RD,RU.
It should be noted that the reconstruction of conservative variables at different cor-

ners is independent of each other, and the reconstruction procedure of Eqs. (4.18) to (4.23)
should be repeated at each corner. In addition, as shown in Eq. (4.18), an identical left
characteristic matrix is used to calculate characteristic variables in 36 cells around the
corner to form the stencils. In fact, in the dimension-by-dimension reconstruction pro-
cedure, the characteristic matrices in Eqs. (4.18), (4.21) and (4.24) are always defined at
corner (i+ 1

2 , j+ 1
2 ), and they are evaluated through Ui+ 1

2 ,j+ 1
2
. Here, Ui+ 1

2 ,j+ 1
2

is defined as

Ui+ 1
2 ,j+ 1

2
=
(
Ui,j+1+Ui,j+Ui+1,j+Ui+1,j+1

)
/4.

As shown in Eq. (4.18), although the repeated calculation of characteristic variables
required for reconstruction of variables at different corners is slightly expensive, it might
be necessary in order to avoid spurious oscillations. Therefore, the algorithm described
in Eqs. (4.18) to (4.24) is adopted to obtain conservative variables at corners in numerical
tests in Section 5.
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Figure 3: Illustration of the stencils of one-dimensional WENO reconstruction in y direction to approximate

characteristic variables at corner (i+ 1
2 , j+ 1

2 ).

5 Numerical results

The update steps of conservative variables

1) Calculate the values of characteristic variables at the midpoints of interfaces through
Eqs. (4.6), (4.10), (4.15) and (4.16), respectively. Obtain the values of conserved variable
vectors at the midpoints of interfaces using Eq. (4.11).

2) Calculate fluxes at midpoints of interfaces using Eq. (3.2) and (3.5).

3) Evaluate the states of characteristic variables at corners using Eq. (4.22) and (4.23),
respectively. Then, calculate the values of the conserved variable vectors at corners
through Eq. (4.24).

4) Evaluate fluxes at corners using Eqs. (3.7), (3.8), (3.9a) and (3.9b).

5) Obtain the total flux through an interface using Eq. (3.12).

6) Substitute total flux through an interface into Eq. (2.4) and update conserved variable
vectors according to Eq. (2.5).

A series of 1D and 2D test problems are calculate to validate the performance of the
genuinely multidimensional HLL-CPS solver (GM-HLL-CPS) based on the fifth-order
WENO reconstruction method.
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5.1 1D Riemann problem

Three one-dimensional Riemann problems are calculated to show the performance of
the proposed scheme. The parameter settings of the three problems are presented in
Table 1, in which x0 is the location of discontinuity and T is the computing time. The
numerical results calculated by the GM-HLL-CPS scheme are compared with the results
obtained from the one-dimensional HLL-CPS scheme. The fifth-order WENO reconstruc-
tion method is used to approximate the values of conservative variables. In addition, we
also show the solutions of the GM-HLL-CPS scheme based on the SDWLS method. The
domain [0,1] is uniformly divided into 200 cells.

The results in Fig. 4 show that two types of fifth-order schemes have higher reso-
lution for contact discontinuity and shock wave than the second-order scheme. In ad-
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Figure 4: Numerical results of case1.
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Figure 5: Numerical results of case2 and case3.
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Table 1: The initial parameters of three 1D Riemann problems.

Cases (ρ,u,p)L (ρ,u,p)R x0 T
Case1 (1.0,0.75,1.0) (0.125,0.0,0.1) 0.3 0.2
Case2 (1.4,0.0,1.0) (1.0,0.0,1.0) 0.5 2
Case3 (1.4,0.1,1.0) (1.0,0.1,1.0) 0.5 2

dition, due to no flow feature propagating along the transverse direction in the purely
one-dimensional problems, the numerical results calculated by the one-dimensional and
two-dimensional HLL-CPS solvers with fifth-order reconstruction are similar. The solu-
tions of case2 and case3 are plotted in Fig. 5, from which it can be clearly observed that
the fifth-order schemes provide higher resolution than the second-order scheme.

The numerical results of three one-dimensional test problems demonstrate two types
of fifth-order schemes have higher accuracy than the second-order scheme and in the sim-
ulations of one-dimensional problems, the 1D solver and the genuinely 2D solver with
the same reconstruction method have similar performances, which is in good agreement
with the expectation. All of these indicate that the reconstruction methods carried out in
the present work are reasonable.

5.2 2D Riemann problems

Three two-dimensional Riemann problems are simulated in this section and we adopt
the notation used in [49] to name these problems.

Firstly, a two-dimensional Riemann problem described by Brio et al. [19] is solved to
examine the resolution of the present method. Its initial conditions are given as

(ρ, u, v, p)=


(1.0, 0.7276, 0.0, 1.0), if x<0.0, y>0.0,
(0.5313, 0.0, 0.0, 0.4), if x>0.0, y>0.0,
(1.0, 0.0, 0.7276, 1.0), if x>0.0, y<0.0,
(0.8, 0.0, 0.0, 1.0), if x<0.0, y<0.0.

The initial state consists of two contact discontinuities and two forward shock waves,
namely, ~S21 J32 J34~S41. The computational domain [−1,1]×[−1,1] is divided into 400×400
uniform cells. The density contours obtained from three one-dimensional solvers with
CFL= 0.4 and GM-HLL-CPS solver with CFL= 0.8 at t = 0.5 are plotted in Fig. 6. The
numerical solution consists of two Mach reflection stems and two contact waves at the
intersection of the four shock waves [3]. It can be obviously observed that there is no non-
physical oscillation in the solutions obtained from these four solvers. Compared with the
HLLE solver, other three solvers produce solutions with higher resolution due to their
desirable ability of capturing contact waves. The higher order accuracy from the WENO
method makes the advantage of the GM-HLL-CPS solver to be unconspicuous for this
test case. But the GM-HLL-CPS solver permits a larger CFL number up to 0.8, while the
CFL number for one-dimensional solvers should be less than 0.5.
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 6: Density contours of the first 2D Riemann problem at t=0.5.

The initial conditions of the second 2D Riemann problem are given by

(ρ, u, v, p)=


(2.0,0.75,0.5,1.0), if x<0.5, y>0.5,
(1.0,0.75,−0.5,0.4), if x>0.5, y>0.5,
(3.0,−0.75,−0.5,1.0), if x>0.5, y<0.5,
(1.0,−0.75,0.5,1.0), if x<0.5, y<0.5.

It can be named as ~J21 ~J32 ~J34 ~J41. The wave configurations are composed of four mov-
ing contact waves. Although the mathematical model of this problem is inviscid, the
numerical viscosity introduced by numerical schemes is capable of triggering the shear
instability [32]. Therefore, the numerical results of this case can reveal the capacity of
schemes to resolve the contact discontinuities and shear layers. The computation is run
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 7: Density contours of the second 2D Riemann problem at t=0.7.

on a 1600×1600 uniform mesh which covers a domain of [0,1]×[0,1] and it ends till time
t= 0.7. The density contours at the final time are shown in Fig. 7. Due to the high ac-
curacy of the WENO scheme, it can be clearly observed that all of four solvers resolve
the shear layers accurately and capture the complex vortex-type structures caused by
the Kelvin-Helmholtz instability [32]. However, compared with the three 1D solvers, the
GM-HLL-CPS scheme produces the solution with more details. Numerical results indi-
cate that the GM-HLL-CPS scheme improves the ability to resolve accurate solution for
2D problems owing to considering the flow information traveling along the transverse
direction.
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 8: Density contours of the third 2D Riemann problem at t=0.8.

The initial conditions of the third 2D Riemann problem are set as

(ρ, u, v, p)=


(0.5323,1.206,0.0,0.3), if x<0.8, y>0.8,
(1.5,0.0,0.0,1.5), if x>0.8, y>0.8,
(0.5323,0.0,1.206,0.3), if x>0.8, y<0.8,
(0.138,1.206,1.206,0.029), if x<0.8, y<0.8.

During its evolution, the initial configuration results in a double Mach reflection and
a shock propagating at a 45◦ angle to the grid lines. The numerical simulation is run
on a computational domain [0,1]×[0,1] covered by a 800×800 uniform Cartesian mesh.
The density distributions obtained from the HLLE, HLLC, HLL-CPS and GM-HLL-CPS
solvers at t=0.8 are shown in Fig. 8. With the help of the fifth-order WENO reconstruc-
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tion, four solvers accurately resolve the vortical structures at the Mach stem. However,
the solution resolved by the HLLC solver is not symmetric. In addition, although both
of the HLLE and HLL-CPS schemes obtain symmetry solutions, the greater details in
the Mach stem resolved by GM-HLL-CPS solver still imply that the multidimensionality
greatly improves the resolution of the scheme. Meanwhile, the GM-HLL-CPS scheme
can select a larger CFL number. Specifically, in this test, the CFL number can set to 0.85
for the GM-HLL-CPS solver while it can not exceed 0.5 for one-dimensional solvers.

5.3 Radial Riemann problem

Here, we consider a radial Riemann problem. At the initial moment, the stationary high-
pressure gas is located in a circular region in the center of domain [0,1]×[0,1], and the rest
of the domain is filled with stationary, low-pressure gas. The initial states in the whole
domain are set as

(ρ, u, v, p)=

{
(2, 0, 0, 15), if r<0.13,
(1, 0, 0, 2), otherwise,

where r is the radius. The problem is run on a uniform mesh with 200×200 cells. The
density contours of this problem resolved by three one-dimensional solvers with a CFL
number of 0.45 and the GM-HLL-CPS solver with a CFL number of 0.85 at t= 0.13 are
plotted in Fig. 9. It can be observed that there is no obvious non-physical oscillation in
the solutions and the outward shock fronts are very sharp and clear. The CFL number
is usually limited to 0.5 for 1D solvers while it can be up to 0.85 for the GM-HLL-CPS
solver. This test case verify again that the multidimensionality of the genuinely multi-
dimensional solver permits a larger CFL number in simulations of 2D flow problems.

5.4 Random numerical noises problem

In the computational domain [0,300]×[0,30], a Mach 10 plane right-moving shock ini-
tially located at x= 5 propagates along the x-direction. A uniform Cartesian mesh with
300×30 cells is used to cover the domain. The upstream condition is chosen to be
(ρ,u,v,p) = (1.4,0,0,1) on the left boundary while the downstream condition obtained
through the exact shock relations is used on the right boundary. The reflective condition
is used at the top and bottom boundaries. In order to trigger the multidimensionality,
random perturbations ranging from −10−5 to 10−5 are initially introduced into the up-
stream region as follows

(ρ,u,v,p)i,j =(1.4,0,0,1)+(α1,α2,α3,α4)i,j ·10−5, x>5,

where αk (k=1,2,3,4) are random numbers between −1.0 and 1.0. The CFL number for
1D solvers are set to 0.3 while the CFL number of the GM-HLL-CPS solver is chosen as
0.85. Fig. 10 plots the density contours at t= 20, from which it is clearly observed that
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 9: Results of the radial Riemann problem at t=0.13.

the solution obtained from the HLLC scheme displays severe instabilities, while other
schemes eliminate the shock anomalies and exhibit the clear shock fronts.

5.5 Double Mach reflection problem

In the domain [0,4]×[0,1], a Mach 10 oblique shock, making a 60 angle with the bottom
wall, interacts with the bottom wall at x=1/6. The initial configurations are set as

(ρ, u, v, p)=


(1.4,0,0,1), if y<

√
3
(

x− 1
6

)
,(

8,
33
√

3
8

,−4.125,116.5
)

, else.
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 10: Density contours of the random numerical noises problem at t=20.

(a) HLLE

(b) HLLC

(c) HLL-CPS

(d) GM-HLL-CPS

Figure 11: Results of the double Mach reflection problem at t=0.2.

The downstream condition is imposed at the left boundary while the values of the ghost
cells at the right boundaries are directly extrapolated from the adjacent interior cells with
zero gradient. For the bottom boundary, downstream conditions are used from x= 0 to
x=1/6 while reflective conditions are adopted for the rest cells. The boundary conditions
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at the top are adjusted to follow the motion of the shock. The simulation is implemented
on a 960×480 Cartesian mesh and ended at t=0.2. The density profiles at the final time
are displayed in Fig. 11. It is clear observed that the solutions calculated by the HLLE,
HLL-CPS and GM-HLL-CPS solvers are free from any non-physical oscillation, while the
HLLC solver produces a relatively unstable solution due to its low dissipation property.

5.6 Forward facing step problem

In the domain [0,3]×[0,1], a Mach 3 flow travels through a channel including a step with
the corner locating at (x,y)= (0.6,0.2). A uniform Cartesian mesh with 480×160 cells is
employed to cover the domain. The initial values of entire domain is set to (ρ0,u0,v0,p0)=
(1.4,3.0,0.0,1.0). The inflow conditions are imposed at the left boundary while the values
of the ghost cells at the right boundary are directly extrapolated from the adjacent interior
cells with zero gradient. At the inviscid walls of the top and bottom boundaries, the
reflective conditions are used. Fig. 12 shows the density profiles. It is clearly observed
that three 1D solvers give solutions with severe kinked stems in the reflective waves
while the GM-HLL-CPS solver produces a shock profile without visible instabilities and
eliminates the notorious kink.

(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 12: Results of the forward facing step problem at t=4.

5.7 Richtmeyer-Meshkov instability problem

In the domain of [0,4]×[0,1], a perturbed interface is initially located at

xp =2.9−0.1sin(2π(y+0.25)).

Two fluids with different densities are separated by the perturbed interface. On the right
of the perturbed interface, a left-moving shock is placed. The initial conditions are given
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 13: Results of the Richtmeyer-Meshkov instability problem at t=9.

as

(ρ, u, v, p)=


(5.04,0,0,1), if 0≤ x< xp,
(1,0,0,1), if xp≤ x<3.2,
(1.4112,−665/1556,0,1.628), if 3.2≤ x.

The periodic boundary conditions are employed at the bottom and top boundaries and
the non-reflective conditions are used at the left and right boundaries. The 640×160
uniform mesh is used to cover the domain and the computation is ended at t= 9. The
density contours calculated by four solvers are plotted in Fig. 13. It is evident that the
HLLE and HLLC solvers produce solutions with visible numerical oscillation at the left
side of the density interface while the density interfaces obtained from the HLL-CPS and
GM-HLL-CPS solvers are smooth enough.

5.8 Rayleigh-Taylor instability problem

In order to investigate the inherent numerical dissipation of the proposed scheme, the
famous Rayleigh-Taylor instability problem is considered here. The specific heat ratio
γ=5/3 in this test case. The initial states are given as

(ρ, u, v, p)=

{
(2,0,−0.025a0cos(8πx),1+2y), if 0≤y<0.5,
(1,0,−0.025a0cos(8πx),1.5+y), if 0.5< y≤1.0,

where a0 =
√

γp0/ρ0 is the initial speed of sound. The state at the top boundary
is assigned as (ρ,u,v,p) = (1,0,0,2.5) and the state on the bottom boundary is set to
(ρ,u,v,p) = (2,0,0,1). Under the drive of the gravity effect, the heavier fluid falls into
the lighter one and the bubble rises to the heavier fluid. Reflective conditions are em-
ployed for the left and right boundaries. This test case is run on a 256×1024 uniform
Cartesian mesh. Fig. 14 shows the density contours at t=1.95. Numerical results clearly
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(a) HLLE (b)HLLC (c) HLL-CPS (d) GM-HLL-CPS

Figure 14: Density contours of the Rayleigh-Taylor instability problem at t=1.95.

indicate that the GM-HLL-CPS solver is able to resolve small scale structures with higher
resolution.

5.9 Kelvin-Helmholtz instability problem

In a square domain [−0.5,0.5]×[−0.5,0.5] which is covered by a 640×640 uniform mesh,
fluids with different densities are separated by two interfaces located at y =−0.25 and
y = 0.25. The initial linear perturbation of the velocity in the y direction triggers vor-
texes emerging at the sharp density interfaces owing to the Kelvin-Helmholtz instabil-
ity [47]. The growth of vortexes and the interaction between them will form a turbulence
regime [46]. The initial states are given as

(ρ, u, v, p)=


(1,0.5,0.01sin(2πx),2.5), if y<−0.25,
(2,−0.5,0.01sin(2πx),2.5), if −0.25<y<0.25,
(1,0.5,0.01sin(2πx),2.5), if 0.25<y.

Periodic boundary conditions are employed at all boundaries. Fig. 15 plots the density
contours obtained from four solvers at time t = 2. It can be clearly observed that the
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(a) HLLE (b) HLLC

(c) HLL-CPS (d) GM-HLL-CPS

Figure 15: Density contours of the Kelvin-Helmholtz instability problem.

HLLC scheme produces the most accurate result with complex vortex structures. Com-
paring with the 1D HLL-CPS solver, the GM-HLL-CPS solver obtains a relatively accurate
solution with more vortexes structures nearby the density interfaces.

6 Conclusions

In this work, a high-order reconstruction method is presented for the genuinely multi-
dimensional HLL-CPS Riemann solver. The conservative vectors at midpoints of inter-



28 S. Tan, H. Yuan and L. Hu / Adv. Appl. Math. Mech., xx (202x), pp. 1-31

faces are reconstructed by the fifth-order WENO reconstruction. Meanwhile, variables
at corners are evaluated by a dimension-by-dimension reconstruction method consisting
of a number of one-dimensional fifth-order WENO reconstruction sweeps in the x and
y-directions. To ensure numerical stability, each reconstruction step is carried out in the
corresponding characteristic field. A series of benchmark numerical experiments are con-
ducted to demonstrate the performance of the proposed scheme in accuracy, resolution
and robustness. Numerical results of the 1D test cases give fully proof that, with the help
of the proposed reconstruction method, the present genuinely multidimensional HLL-
CPS solver is more accurate than its low-order version. It is demonstrated by the 2D Rie-
mann problems that the multidimensionality property of the high-order GM-HLL-CPS
scheme brings higher accuracy and resolution in resolving sharp contact discontinuities
over the HLLE, HLLC and the 1D HLL-CPS schemes. And more importantly, the pro-
posed high-order genuinely multidimensional HLL-CPS solver presents better robust-
ness against the shock anomalies.
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