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Abstract. Model Order Reduction is an approximation of the main system so that
the simplified system retains important features of the main system. Deep learn-
ing technology is a recent breakthrough in artificial neural networks that can find
more hidden information from the data. In this paper, a non-intrusive reduced or-
der model (NIROM) based on combining deep neural networks (DNNs) and POD
abilities, namely FAE-CAE-LSTM is presented. This method combines the obtained
features based on Fully connected autoencoders (FAE), Convolutional autoencoders
(CAE), and POD and then, a deep Long short-term memory network is trained by ob-
tained features to predict the pressure and velocity fields at future time instances. We
investigate the performance of the proposed methodology by solving two well-known
canonical cases: a strong shear flow exhibiting the Kelvin–Helmholtz instability, and
flow past a cylinder. The performance of the proposed FAE-CAE-LSTM method in fu-
ture state prediction of the flow is compared with other NIROM methods such as CAE-
LSTM, autoencoder-LSTM, autoencoder-DMD and POD-RNN based models. Results
show that the FAE-CAE-LSTM method is considerably capable of predicting fluid flow
evolution and obtains the best results in the prediction of the pressure and velocity
fields in future time instances.

AMS subject classifications: 35Q35, 68T07, 35K40
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1 Introduction

Model order reduction (MOR) is used to reduce the size of the large-scale structure and
the dimensions of the dynamic problem. By obtaining the dominant modes, the dimen-
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sions of the corresponding state space are reduced and the approximation of the original
model is calculated with acceptable accuracy. Model order reduction is used in various
fields, for example, nonlinear large-scale systems [1], ocean modeling [2], sensor position
optimization [3], air pollution model [4], shape optimization [5], aerospace [6], optimal
control [7] and neutron problems [8]. Model order reduction methods are proposed to
achieve the main dynamics of the process through which an efficient approximate com-
putational solution can be obtained [9]. Mathematically, the goal in MOR is to reduce the
model, that is, to represent high-dimensional data in a low-dimensional subspace that is
necessary to reduce data processing and calculation costs [10].

The first model order reduction works discussed that larger matrices can be simplified
to smaller matrices while still having a good approximation [11, 12]. Early MOR methods
were published in the 1980s and 1990s. Subsequently, new methods were proposed, such
as truncated balanced realization [13], Hankel-norm [14], aggregation method [15], Pade
approximation [16], moment matching [17], Routh approximation [18], dynamic mode
decomposition (DMD) [19], Koopman analysis [20], and proper orthogonal decompo-
sition (POD), also known as Karhunen-Loeve decomposition and principal component
analysis (PCA) [21]. In general, the conventional method of reduced order model is POD
because the modes reduced by the POD are mathematically optimal for each dataset. Af-
ter reducing the model, the next step is to use the reduced modes for modeling. The POD
method reduces the number of state variables by mapping the dynamics to a linear sub-
space provided by the principal components of a data matrix. A very popular technique
for this is the Galerkin projection method [22]. The Galerkin method uses spatio-temporal
dynamics obtained by model order reduction methods such as POD which can predict
them in time rather than governing equations. Galerkin models typically do not take
into account spatial variations in flow and become unstable under different conditions,
even in conventional cases. Therefore, significant research efforts have been devoted to
improving the stability of Galerkin models, and some efforts have focused on formulat-
ing without Galerkin. DMD is a method for analyzing the time evolution of a dynamical
system and provides an accurate decomposition of complex systems into coherent spa-
tiotemporal structures that may be used for short-time future state prediction and control.
It was started in the fluid dynamics community and was first presented by Schmid and
Sesterhenn [19]. It is a data-driven equation-free method based on the ability of the singu-
lar value decomposition (SVD), and it has been utilized for modal analysis of a diversity
of fluid flows.

Recently, deep learning has attracted a lot of attention [23,24]. A deep neural net-
work (DNN) is at the core of deep learning and is a computing system inspired by brain
architecture. DNN has shown its strength in overcoming some of the complexities and
challenges of machine vision tasks such as large image classification, speech recognition,
and more. A deep neural network usually consists of an input layer, an output layer, and
several hidden middle layers with several neurons in each layer. In the learning process,
each layer converts its input data into an abstract representation and transmits the signal
to the next layer. Some activation functions, which act as nonlinear transformers on the
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input signal, are used to determine whether a neuron is active or not. Deep learning tech-
nology is a recent advancement in artificial neural networks that can find more hidden
information from data. Deep learning has the advantage of processing data in its raw
form, training the nonlinear system with different levels of representation and predicting
the data [25]. Recently, these advances have been made in areas such as image process-
ing, video and speech recognition, genetics, and disease diagnosis [26,27]. In the review
paper [28], they introduce three typical data-driven methods, including system identifi-
cation, feature extraction and data fusion. System identification is the theory to construct
mathematical models from system measurements, which lays the foundation for system
control and analysis. Feature extraction methods mainly refer to the mode decomposition
methods that identify coherent structures (flow modes) from a large flow dataset. Data
fusion generally refers to the process of combining data and information from multiple
sources, in order to refine, estimate, and achieve a greater understanding of the data. In
particular, the main approaches to improve the performance of data-driven models in
accuracy, stability and generalization capability are reported. The efficacy of data-driven
methods in modeling unsteady aerodynamics is described by several benchmark cases
in fluid mechanics and aeroelasticity.

Reduced order models can be divided into intrusive ROM (IROM) and non-intrusive
ROM (NIROM) groups in terms of the need for governing equations. IROM is depen-
dent on the governing equations used to generate the full order model, such as the Euler
or Navier–Stokes equations, and requires code modification of high-fidelity models. It
retains much of the physical characteristics from the original system due to its intru-
siveness. The most common IROM method is the POD-Galerkin [29,30], in which the
governing equations are projected onto the reduced basis extracted by the POD. How-
ever, the main problems of POD-Galerkin are stability and non-linear inefficiency. To
overcome these challenges, different models have been offered such as discrete empirical
interpolation method [31,32], Petrov-Galerkin projection [33,34,35], the Gauss-Newton
method with approximated tensors [36], L1-norm minimization [37]. Against, NIMOR
is a data-driven approach that is independent of the governing equations and the inter-
polated coefficients across the parameters are obtained without projection on the gov-
erning equation. It does not require access to the full-order model operators. Thus, the
construction of the surrogate model will require only the set of high-fidelity model so-
lutions (snapshots) and no information about the governing equations. Although cubic
interpolation [38] or radial basis functions [39] were originally used for the interpola-
tion, NIROM methods have since embraced machine learning, using a variety of neural
networks for this purpose, including autoencoders in combination with long short-term
memory networks [40,41], multilayer perceptrons [42], and Gaussian process regression
[43,44]. San et al. [45] consider the use of artificial neural networks to stabilize POD based
ROMs for quasi-stationary geophysical turbulent flows. An extreme learning machine
approach is offered for computing an eddy-viscosity closure dynamically to combine the
effects of the truncated modes. Lu et al. [46] introduce a novel NIMOR when an inex-
pensive low-fidelity model and a heavy high-fidelity model are available. The method
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relies on POD to create the high-fidelity reduced basis and a shallow MLP to learn the
high-fidelity reduced coefficients. In the work of Xiao et al. [44] a Gaussian Process Re-
gression (GPR) machine learning method is composed with POD to construct a NIROM,
which is exploited for urban flows. Pawar et al. [47] present a modular deep neural
network model for data-driven ROM of dynamical systems relevant to fluid flows.They
offer different deep neural network models which numerically predict the evolution of
dynamical systems by learning from either using discrete state or slope information of
the system. San et al. [48] suggest a supervised machine learning model for the NIROM
of unsteady fluid flows to prepare accurate predictions of non-stationary state variables
when the control parameter values are unstable. Their method uses a training process
from full-order scale direct numerical simulation data projected on POD modes to get an
ANN model with lower memory requirements.

Today, deep learning in the field of model reduction is also used as one of the im-
portant solutions. In the context of ROM, both dimensionality reduction and future state
prediction could be advanced from deep learning strategies. Recurrent neural networks
are of particular interest to fluid mechanics due to their ability in learning and prediction
of the sequential data. The renewed interest in RNNs has largely been attributed to the
development of the LSTM algorithms. Several studies have been conducted to construct
an NIROM based on POD modes. Autoencoder is an unsupervised learning algorithm
used to representation learning, data compression, data encoding, and to find hidden
factors. This algorithm consists of two parts: encoder and decoder. When a data sample
is considered as the input of the algorithm, this neural network encodes the data with
hidden factors in the hidden layer. It then generates the output with the decoder using
hidden factors. The purpose of this algorithm is to reduce the difference between input
and output. Neural network autoencoders can be built in various structures to achieve
sufficient dimensionality reduction. A standard, fully connected autoencoder (FC-AE) is
a special type of feed-forward neural network that is trained to learn the identity map by
fully connected layers. Moreover, as embedding Convolutional Neural Network (CNN)
can facilitate neural network models to perform powerful feature detection. More re-
cently, the population of a convolutional neural network (CNN)-based AE has also been
increasing thanks to the concept of filter sharing in CNN, which is suitable to handle
high-dimensional fluid data set.

Pawar et al. [49] introduce a modular hybrid analysis and modeling (HAM) approach
to account for hidden physics in reduced order modeling (ROM) of parameterized sys-
tems relevant to fluid dynamics. They employ POD as a compression tool to construct
orthonormal bases and Galerkin projection (GP) as a model to build the dynamical core
of the system. Their proposed methodology hence compensates structural or epistemic
uncertainties in models and utilizes the observed data snapshots to compute true modal
coefficients spanned by these bases. The GP model is then corrected at every time step
with a data-driven rectification using a LSTM neural network architecture to incorporate
hidden physics. A Grassmannian manifold approach is also adapted for interpolating
basis functions to unseen parametric conditions. The control parameter governing the
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system’s behavior is thus implicitly considered through true modal coefficients as in-
put features to the LSTM network. The effectiveness of the HAM approach is discussed
through illustrative examples that are generated synthetically to take hidden physics into
account.

In [50], an unsteady aerodynamic ROM with varying Mach numbers based on the
LSTM network is proposed. Unlike most of the works in the previous study, the proposed
model is capable of treating a large number of training samples, with the capability of
predicting aerodynamic loads in a wide range of Mach numbers. The performance of the
proposed model is evaluated by predicting the aerodynamic and aeroelastic responses
of a NACA 64A010 airfoil in the transonic flow. It is proved that the results from the
proposed model agree with those of the CFD solver very well.

Wang et al. introduce a new approach for NIROMs which is according to POD and
deep LSTM technique and used to fluid issues [51]. The LSTM is used to create a set of
hypersurfaces that show the reduced fluid dynamic system. In [52], Wang et al. deep au-
toencoder is applied for reduce dimensions of distributed parameter systems. Next, the
reduced representations are applied to make a ROM. Deep learning is exploited to per-
form reduce dimensions, however does not take the superiority of its predictive ability.
Gonzalez et al. [40] suggest a deep learning based method for nonlinear ROM that is de-
rived from projection-based ROM where the purpose is to recognize some optimal low-
dimensional representation and evolve it in time. Their method creates a modular model
including a deep convolutional autoencoder and an improved LSTM network. Ahmed et
al. [53] present an uplifted ROM method by combine of standard projection-based IROM
with LSTM embedding. Their method has three components or layers. In the first layer,
they use a projection-based IROM method to model dynamics represented by the max-
imum modes. The second layer includes a LSTM network to consider residuals outside
this truncation. In the third layer, they enhance their approximation and develop the so-
lution subspace to recover some of the flow’s details by learning a map between the large
and smaller scales. Vlachas et al. [54] suggest a LSTM-based data-driven method for pre-
dict the state obtained by chaotic systems exploiting the short-term record of the reduced
order states. The predicted derivatives are then used for one-step forward prediction
of the high-dimensional dynamics. In addition, they created a composite model incor-
porating LSTM and mean stochastic model for data-driven to develop the predictability
of the suggested model. Mohan and Gaitonde [55] offered a NIROM using LSTM and
POD for flow control applications through a detailed analysis on different ROM LSTM
training and testing hyperparameter tuning parameters. Rahman et al. [56] developed a
NIROM method for large-scale quasistationary systems. Their method uses the time se-
ries prediction ability of deep LSTM network model. Kherad et al. [57] present a NIROM
Framework Based on LSTM and POD/DMD Modes. They consider LSTM architecture
to develop their data-driven ROM. They investigate the performance of the proposed
methodology by solving two well-known canonical cases: a strong shear flow exhibit-
ing the Kelvin–Helmholtz instability, and two-dimensional and unsteady mass diffusion
equation. They use a deep LSTM network to learn the time dynamics of simulated two-
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dimensional and unsteady diffusion equation data and use POD/DMD to generate the
order reduction model.

Eivazi et al. introduce a novel data-driven technique based on the power of deep
neural networks for reduced order modeling of the unsteady fluid flows. An autoen-
coder network is used for nonlinear dimension reduction and feature extraction as an al-
ternative for singular value decomposition (SVD). Then, the extracted features are used
as an input for long short-term memory network (LSTM) to predict the velocity field
at future time instances. The proposed autoencoder-LSTM method is compared with
non-intrusive reduced order models based on dynamic mode decomposition (DMD)
and proper orthogonal decomposition (POD). Results show that the autoencoder-LSTM
method is considerably capable of predicting fluid flow evolution, where higher values
for coefficient of determination R2 are obtained using autoencoder-LSTM compared to
other models [58]. Fukami et al. investigate the capability of neural network-based
model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model,
an AE which comprises of a convolutional neural network and multi-layer perceptrons
is considered in this study. The AE model is assessed with four canonical fluid flows,
namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) sea surface tem-
perature, and (4) y−z sectional field of turbulent channel flow, in terms of a number of
latent modes, a choice of nonlinear activation functions, and a number of weights con-
tained in the AE model. They find that the AE models are sensitive against the choice of
the aforementioned parameters depending on the target flows [59].

Xiang et al. by comparing four types of encoding-decoding models (i.e., the proper
orthogonal decomposition models, autoencoders with linear/ nonlinear fully connected
neural networks and autoencoders with Convolutional Neural Network (AE-CNN)) find
that the AE-CNN model with advantages of portable model size and convenient updat-
ing procedure is capable for high resolution simulations of urban airflow with dynamic
boundary conditions at a low computational cost [60]. Bukka and Magee present two
deep learning-based hybrid data-driven reduced order models for the prediction of un-
steady fluid flows. These hybrid models rely on recurrent neural networks (RNNs) to
evolve low dimensional states of unsteady flow. The first model projects the high-fidelity
time series data from a finite element Navier-Stokes solver to a low-dimensional sub-
space via proper orthogonal decomposition (POD). The time-dependent coefficients in
the POD subspace are propagated by the recurrent net (closed-loop encoder decoder up-
dates) and mapped to a high-dimensional state via the mean flow field and POD basis
vectors. This model is referred as POD-RNN. The second model, referred to as convo-
lution recurrent autoencoder network (CRAN), employs convolutional neural networks
(CNN) (instead of POD), as layers of linear kernels with nonlinear activations, to extract
low-dimensional features from flow field snapshots. Maulik et al. demonstrate that an
encoding using convolutional autoencoders (CAEs) followed by a reduced-space time
evolution by recurrent neural networks overcomes advection-dominated PDEs limita-
tion effectively. They demonstrate that a truncated system of only two latent-space di-
mensions can reproduce a sharp advecting shock profile for the viscous Burgers equation
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with very low viscosities, and a twelve-dimensional latent space can recreate the evolu-
tion of the inviscid shallow water equations. Additionally, the proposed framework is
extended to a parametric reduced-order model by directly embedding parametric in-
formation into the latent space to detect trends in system evolution [61]. Phillips et al.
developed Reduced-order models based on an autoencoder and a novel hybrid SVD-
autoencoder. These methods are compared with the standard POD-Galerkin approach
and are applied to two test cases taken from the field of nuclear reactor physics [62].
Gonzalez and Balajewicz propose a deep learning-based strategy for nonlinear model re-
duction that is inspired by projection-based model reduction where the idea is to identify
some optimal low-dimensional representation and evolve it in time. Their approach con-
structs a modular model consisting of a deep convolutional autoencoder and a modified
LSTM network. The deep convolutional autoencoder returns a low-dimensional repre-
sentation in terms of coordinates on some expressive nonlinear data-supporting mani-
fold. The dynamics on this manifold are then modeled by the modified LSTM network in
a computationally efficient manner. They demonstrate their model on three illustrative
examples each highlighting the model’s performance in prediction tasks for fluid systems
with large parameter-variations and its stability in long-term prediction [40].

In [63,64], the CNN-AE is utilized to map high-dimensional flow fields obtained by
direct numerical simulation (DNS) into a low-dimensional latent space while keeping
their spatially coherent information. The LSTM is then utilized to predict a temporal
evolution of the latent vectors obtained by the CNN-AE.

Hasegawa et al. [65] propose a method to construct a reduced order model with
machine learning for unsteady flows. In their machine-learned reduced order model
(ML-ROM), first, the CNN-AE is trained using direct numerical simulation (DNS) data
so as to map the high-dimensional flow data into low-dimensional latent space. Then, the
LSTM is utilized to establish a temporal prediction system for the low-dimensionalized
vectors obtained by CNN-AE. As a test case, they consider flows around a bluff body
whose shape is defined using a combination of trigonometric functions with random
amplitudes. They also focus on the influence of two main parameters: (1) the latent
vector size in the CNN-AE, and (2) the time step size between the mapped vectors used
for the LSTM. The results show that the ML-ROM works well even for unseen shapes of
bluff bodies when these parameters are properly chosen, which implies great potential
for the present type of ML-ROM to be applied to more complex flows.

The authors in [66] presented an approach to improve computational fluid dynamics
simulation forecasts of air pollution using deep learning. Once the reduced order model
(ROM) is obtained via POD, a long short-term memory network (LSTM) is adversarially
trained on the ROM to make forecasts. Once trained, the adversarially trained LSTM
outperforms a LSTM trained in a classical way.

For dimensionality reduction, Carlberg et al. [67] propose a novel hierarchical ap-
proach. First, the method reduces the number of degrees of freedom within each element
of the high-order discretization by applying autoencoders. Second, the methodology
applies POD to compress the global vector of encodings. For dynamics learning, they
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propose to apply regression techniques to learn the discrete-time velocity characterizing
the time evolution of this low-dimensional state.

In [68], the authors introduce a technique to construct parametric non-intrusive ROMs
with quantified uncertainty during latent-space time evolution of dynamical systems.
They detail the use of Gaussian processes (GPs) that are customized for the time-evolution
of parametric nonlinear dynamical systems and demonstrate the ability of the proposed
time-evolution algorithm for systems compressed by linear reduced-basis methods such
as POD, as well as nonlinear compression frameworks such as variational and convolu-
tional autoencoders.

In [69], the authors develop a reduced-order model for chaotic electroconvection at
high electric Rayleigh number. Coherent structures (modes) are extracted from tempo-
rally and spatially resolved charge density fields via POD. A nonlinear model is then
developed for the chaotic time evolution of these coherent structures using the sparse
identification of nonlinear dynamics (SINDy) algorithm, constrained to preserve the sym-
metries observed in the original system. Fukami et al. [70] employ the CAE to map a
high-dimensional dynamics into a low-dimensional latent space. The SINDy then seeks
a governing equation of the mapped low-dimensional latent vector. Temporal evolution
of high-dimensional dynamics can be provided by combining the predicted latent vector
by SINDy with the CNN decoder which can remap the low-dimensional latent vector to
the original dimension.

Furthermore, finite-dimensional data-driven approximations based on the Koopman
operator have received considerable attention in recent years, especially for problems in-
volving complex spatio-temporal behaviors such as unstable fluid flows. Standard DMD,
implicitly uses linear observables of the system state. Extended DMD [71] and Hankel-
DMD [72] were introduced to include a richer set of observables that spans a Koopman
invariant subspace. Several works have recently been done to introduce fully data-driven
methods to learning Kopman embedding using DNNs [73,74,75]. Morton et al. [76] pre-
sented a method for learning the forced and unforced dynamics of airflow over a cylinder
directly from CFD data. Their approach, grounded in Koopman theory, is shown to pro-
duce stable dynamical models that can predict the time evolution of the cylinder system
over extended time horizons. However, it has been shown by Khodkar et al. [77] that the
linear composition of a finite number of modes may not precisely reconstruct the non-
linear specifications of chaotic dynamics for an appropriately long term of time. They
indicated that adding nonlinearities to the linear model as a forcing term leads to an ex-
cellent short-term prediction of several well-known prototypes of chaos. Furthermore,
Eivazi et al. [78] indicated that the Koopman framework with nonlinear forcing gives
precise predictions of the dynamical evolution of the coefficients of a low-order model
for near-wall turbulence.

Adding nonlinear to the dimension reduction step using nonlinear activation func-
tions in the autoencoder network can effectively increase the efficiency of the dimension
reduction step. Since fully-connected autoencoders require that the input data be flat-
tened into an 1D array, the local spatial relations between values are eliminated and can
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only be recovered by initially considering dense models. In addition to using a fully-
connected autoencoder directly to complex, high-dimensional simulation or experimen-
tal data, we apply it to a vectorized feature map of a much lower-dimension obtained
from a deep convolutional network acting directly on the high-dimensional data. We
attempt to find to utilize local correlations present in many physics-based data through
convolutional neural networks. Moreover, the good ability of the LSTM network in the
learning of the complex systems dynamic is the reason for implementing the LSTM net-
work for future time prediction rather than a linear mapping of the previous observations
to the future time instances. On the other hand, the power of POD to identify the features
of flow most important for reconstructing a dataset has been shown in previous research.
Therefore, in this paper presents a novel NIROM based on combine deep neural net-
works (DNNs) and POD abilities. A framework for nonlinear dimensionality reduction
and dominant features extraction of different flows by combining the obtained features
based on Fully connected autoencoders (FAE), Convolutional autoencoders (CAE), and
POD is developed, and then, a unified training strategy is introduced that a deep LSTM
model is trained by obtained features from FAE, CAE, and POD for prediction of the flow
evolution. A sequence of features is the input of a LSTM neural network model, and the
output is the flow field in the future time step. The benefit of the proposed method,
in comparison to POD-GP, is the improved compression ratios obtained by the nonlinear
embeddings of the AEs and the equation-free evolution of the state using the LSTM. Train
and test sets are acquired from numerical simulation of a strong shear flow exhibiting the
Kelvin–Helmholtz instability, and flow past a cylinder. The performance of the proposed
FAE-CAE-LSTM method in future state prediction of the flow is compared with other
NIROM methods such as CAE-LSTM [61], autoencoder-LSTM [58], autoencoder-DMD
[58] and POD-RNN [79] based models. The main novelties of this research study are
listed below:

1. Propose a novel data-driven approach based on combining deep fully connected
and convolutional autoencoders, LSTM and POD methods for NIROM of complex
unsteady fluid flows.

2. Implementation of deep fully connected and convolutional autoencoders and POD
method and concatenation of all obtained feature for nonlinear dimensionality re-
duction and feature extraction of the fluid systems.

3. Future state estimation of a nonlinear dynamical system using LSTM network from
it’s the features extracted by the deep fully connected and convolutional autoen-
coders and POD method.

4. Comparison of linear and nonlinear NIROM methods.

Even though the idea of developing nonintrusive ROM based on replacing Galerkin
projection with LSTM is similar to the proposed FAE-CAE-LSTM method, while previous
works use fully connected autoencoder (FAE) or convolutional autoencoder (CAE), or
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POD method separately, not a combination of them for nonlinear dimensionality reduc-
tion and feature extraction of the fluid systems, the proposed FAE-CAE-LSTM method
concatenate the all obtained features from three models (FAE, CAE, and POD) for non-
linear dimensionality reduction. Moreover, other works are mostly focused on exploring
the capability of LSTM in modeling the flow in reduced order space for data sets with
less randomness. Indeed, the data sets with less randomness have more memory in
them, i.e., there are persistent or anti-persistent trends and thus, are more controllable
through LSTM hyper parameters. Whereas, the performance of the proposed method
in future state prediction of the flow was investigated by both convective unsteady flow
problem (the Kelvin–Helmholtz instability), and periodic limit cycle states (flow past a
square cylinder).

In the following, the second section describes POD and DMD methods. Then, in the
third section, the deep autoencoder and LSTM networks are expressed and in the fourth
section, proposed FAE-CAE-LSTM method for NIROM is given. The obtained results are
presented in the fifth section and finally the conclusion is in the sixth section.

2 POD and DMD

Proper orthogonal decomposition (POD) is a widely used technique for feature reduc-
tion. POD tries to find a linear subspace smaller than the original feature space so that
the new features have the most variance. POD can be used to data from experiments and
numerical simulations. In numerical simulations, the numerical data are collected into
a matrix, X, whose rows are individual snapshots relevant to the solution of the high-
fidelity model for a particular set of parameters. For a problem with D spatial degrees of
freedom and N snapshots, the snapshots’ matrix will be:

X={x1 ·x2 ····xN}, (2.1)

where xi∈RD is i-th snapshot of the flow field, and X∈RN×D. POD projects the data onto
a M-dimensional subspace (M<D). Therefore, POD method is applied to the X matrix
in order to obtain the reduced features. According to POD, the projection is denoted as:

y=Ax, where A=
[
uT

1 ,··· ,uT
m

]
and uT

k uk =1 for k=1,··· ,m (2.2)

The goal of POD is to maximize the variance of {yi}, which is the trace of the covariance
matrix of {yi}. Thus:

A∗=argmax
A

tr
(
Sy
)

, (2.3)
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where

Sy =
1
N

N

∑
i=1

(yi− ȳ)(yi− ȳ)T ,

ȳ=
1
N

N

∑
i=1

xi.

Let Sy be the covariance matrix of {yi}. Since tr
(
Sy
)
=tr

(
ASx AT) by using the Lagrangian

multiplier and taking the derivative get:

Sxuk =λkuk, (2.4)

which means that uk is an eigenvector of Sx. Now xi can be represented as:

xi =
D

∑
k=1

(
xT

i uk

)
uk (2.5)

can be also approximated by:

x̃i =
M

∑
k=1

(
xi

Tuk

)
uk. (2.6)

Where, uk is the eigenvector of Sx corresponding to the kth largest eigenvalue.
In fluid dynamics, Dynamic Mode Decomposition (DMD) is one of the well-known

modelfree reduced order modeling techniques and also a method to decompose complex
flows into dominant spatiotemporal coherent structures using the power of the SVD. The
first step for utilizing the DMD analysis is to construct the lagged matrix X′ from the
snapshots’ matrix X:

X′={x2 ·x3 ····xN+1}. (2.7)

The locally linear approximation can be formulated as follows in terms of X and X′ ma-
trices:

X′≈AX. (2.8)

As a result, the best fit operator A is provided by:

A=X′X†, (2.9)

where † is the Moore-Penrose pseudoinverse. The high-dimensional matrix A is not cal-
culated directly; rather, it is projected onto a low-rank subspace using SVD first. The SVD
of X could be determined as follows:

X=U∑V∗. (2.10)
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The matrix A is then derived from:

A=X′V
−1

∑U∗ (2.11)

As a result, Ã matrix could be produced as follows:

Ã=U∗AU=U∗X′VΣ−1, (2.12)

where Ã matrix is the r×r projection of the matrix A onto the low-ranked subspace r
is the truncation rank. Eigen decomposition of A obtain a set of eigenvectors ω and
eigenvalues λ, where:

Ãω=λω. (2.13)

A DMD mode can be defined as:

φ=
1
λ

X′V
−1

∑ω. (2.14)

Finally, the approximate solution of at the future times could be determined using:

x(t)≈
r

∑
k=1

φke(ωkt)bk, (2.15)

where, ωk = ln( λk
∆t ) and b = Φ†x1 is the initial amplitude of each mode. x1 is the initial

snapshot, and Φ is the matrix of DMD eigenvectors.

3 Deep neural networks

In the following subsections, we introduce deep neural network architectures for estab-
lishing NIROM. First, the two types of autoencoder used in this article are described:
a standard, fully connected autoencoder (FAE) and a convolutional autoencoder (CAE).
Then, a type of recurrent neural network called long short-term memory network (LSTM)
is explained.

3.1 Fully connected autoencoder

Autoencoder is a type of artificial neural network that is used as a generative model,
feature extractor, representation learning in unsupervised learning, and to pre-train dis-
criminative multilayer neural networks in supervised learning. Autoencoder was first
introduced by Bourlard [80]. An autoencoder is a neural network that implements two
encoder (x) : Rn→Rk and decoder (x) : Rk→Rn mappings. The goal of autoencoder is to
obtain the kdimensional representation of the data x so that the error measure between
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x and decode (encode(x)) is minimized. Autoencoder is a great tool for Dimensionality
Reduction and can be considered as a generalization of POD. An autoencoder without
non-linear activations and only with code layer should be able to learn POD transforma-
tion in the encoder if trained to optimize mean squared error (MSE) loss.

A fully connected autoencoder is a special type of feed-forward neural network that is
trained to learn the identity map. A bottleneck at its central layer forces the autoencoder
to learn a reduced representation of the data. The simplest autoencoder is fully connected
neural network that has an input layer with n neurons, a hidden layer with m neurons
where m < n, and an output layer with n neurons. These models became widely used
after deep learning. These networks are trained to create a new representation of input
data. During training, it is expected that the data will be restored to the original data
from this new representation. In other words, the goal is to include all the knowledge
contained in the data in the resulting representation.

The number of visible layer neurons is equal to the number of input data. The number
of hidden layer neurons can be greater or less than the number of visible neurons. If the
hidden layer is larger than the visible layer, the model can simply copy all the properties
to the hidden layer. If the number of hidden layer neurons is less, the autoencoder tries
to find the best possible representation. For this purpose, various methods have been
proposed to adjust the parameters of autoencoder. In denoising autoencoder (DAE) [81],
noise is artificially added to the data. The loss function is defined in such a way that the
model eliminates this noise. To do this, the autoencoder must learn the general structure
of the data, and it is not possible to remove the noise just by memorizing the data. Sparse
autoencoder (SAE) [82] may include more (rather than fewer) hidden units than inputs,
but only a small number of the hidden units are allowed to be active at once. This spar-
sity constraint forces the model to respond to the unique statistical features of the input
data used for training. Contractive autoencoder [83] adds an explicit regularizer in their
objective function that forces the model to learn a function that is robust to slight varia-
tions of input values. This regularizer corresponds to the Frobenius norm of the Jacobian
matrix of the encoder activations with respect to the input.

An autoencoder consists of two parts, the encoder and the decoder, which can be
defined as transitions f and g such that:

f : X→Z,
g : X→X,
g( f (x))= x.

(3.1)

The purpose of the autoencoder neural network is to reduce the difference between the
input and output of the network. The following equation shows the loss function of the
autoencoder neural network:

argmin‖(g◦ f )X−X‖2
2. (3.2)

By stacking autoencoder, models with more parameters can be built for more complex
data. Training this stack will also be layer by layer using a greedy algorithm. Autoen-
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Figure 1: A fully connected autoencoder with six layers [62].

coders are often trained with only a single layer encoder and a single layer decoder, but
using deep encoders and decoders offers many advantages. Depth can exponentially re-
duce the computational cost of representing some functions. Depth can exponentially
decrease the amount of training data needed to learn some functions [83]. Experimen-
tally, deep Autoencoders yield better compression compared to shallow or linear Au-
toencoders [84].

Fig. 1 shows an FAE with five hidden layers. Neurons can have connections with
sending neurons from the previous layer and with receiving neurons from the following
layer. In this network, the input and output layers have six neurons each and the latent
space is in dimension one. The input to a neuron is calculated as a weighted sum of the
outputs of the sending neurons to which it is connected and a bias term. The output of
the neuron is the evaluation of the activation function for this weighted sum.

3.2 Convolutional autoencoder

Convolutional neural networks were first introduced as an alternative to fully connected
networks for data structured as multiple arrays e.g., 1D signals and sequences, 2D images
or spectrograms, and 3D video. Local connections, and shared weights are two key prop-
erties of convolutional neural networks [83,25]. In arrayed data, often local groups of
values are highly correlated, assembling into distinct features that can be easily detected
using a local approach. Additionally, weight sharing across the input domain works to
detect location invariant features.

Convolutional Autoencoders (CAE) wrapping the fully-connected autoencoder with
a convolutional neural network that have some convolutional layers. In CAE, rather than
applying a fully-connected network directly to data, apply it to a vectorized feature map
of a much lower-dimension obtained from a deep convolutional network acting directly
on the high-dimensional data. In a convolutional layer, instead of learning a matrix that
connects all m neurons of layer’s input to all n neurons of the layer’s output, learn a set
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Figure 2: Network architecture of the convolutional autoencoder [40].

of filters. Each filter is convolved with patches of the layer’s input. In CAEs, layers are
organized into feature maps, where each unit in a feature map is connected to a local
domain of the previous layer through a filter bank. Consider a 2D input X ∈RNx×Ny ,
a convolutional layer consists of a set of F filters K f ∈Ra×b, f = 1,··· ,F, each of which
generates a feature map Y f ∈RN′x×N′y by a 2D discrete convolution:

Y f =
a−1

∑
k=0

b−1

∑
l=0

K f
a−k,b−lX1+s(i−1)−k,1+s(j−1), (3.3)

where N′x =1+ Nx+a−2
s , N′y =1+ Ny+b−2

s and s≥1 is an integer value called the stride.
As before, the feature map can be passed through an element-wise nonlinear function.

Typically, the dimension of the feature map is reduced by using a pooling layer, in which
a single value is computed from small a′×b′ patch of the feature map either by taking the
maximum value or averaging.

Consider the following 12-layer CAE model showed in Fig. 2. A 2D arrayed input
X ∈RNx×Ny , with Nx×Ny = 128, is first passed through 4-layer convolutional encoder.
Each convolutional encoder layer uses a filter bank K f ∈R5×5, with the first layer having
a dilation rate of 2 and the number of filters f increasing from 4 in the first layer to 32
in the fourth layer using Eq. (2.8). At the opposite end of the convolutional autoencoder
network use a 4-layer decoder network consisting of transpose convolutional layers. Of-
ten erroneously referred to as ”deconvolutional” layers, transpose convolutional layers
multiply each element of the input with a filter K f and sum over the resulting feature
map, effectively swapping the forward and backward passes of a regular convolutional
layer.

3.3 Long short-term memory

THe recursive neural network can improve its performance by understanding the de-
pendencies of the sequence. Memory generated from recursive connections can be con-
strained by algorithms for training recursive neural networks. The major challenge and
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dependencies. Long short-term memory (LSTM)[85] is one of the most popular and common 
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While in LSTM, the iteration module is more complex. Instead of having one layer of neural 
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The LSTM structure consists of a set of recursively connected subnets, called memory blocks.
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Figure 3: The LSTM cell [86].

disadvantage of standard recursive neural networks (RNN) is the inability to work with
long sequence dependencies. Long short-term memory (LSTM) [85] is one of the most
popular and common solutions to this challenge. The LSTM network is a specific type
of recursive neural network capable of learning long-term dependencies. All recursive
neural networks are repeated in the form of chains of modules. In RNNs, this iteration
module usually has a simple structure. While in LSTM, the iteration module is more
complex. Instead of having one layer of neural network, four layers interact. In addition,
it has two states: hidden and cell. In the RNN structure, the range of content available
in practice is very limited. The problem is that the impact of a given input on the hidden
layer, and consequently on the network output, exponentially decreases and disappears.
This problem is known as the vanishing gradient. The LSTM structure consists of a set of
recursively connected subnets, called memory blocks. Each block contains one or more
self-recursive memory cells and three units of multiplication, input, output, and forget
gates, which provide continuous analogs of writing, reading, and rearranging cell func-
tions. Fig. 3 is an example of a cell of this type of network.

The cell remembers values over arbitrary time intervals and the three gates regulate
the flow of information into and out of the cell. Therefore, the problem of vanishing
gradient is reduced.

Intuitively, the cell is responsible for keeping track of the dependencies between the
elements in the input sequence. The input gate controls the extent to which a new value
flows into the cell, the forget gate controls the extent to which a value remains in the cell
and the output gate controls the extent to which the value in the cell is used to compute
the output activation of the LSTM unit. The activation function of the LSTM gates is often
the logistic sigmoid function. There are connections into and out of the LSTM gates, a
few of which are recurrent. The weights of these connections, which need to be learned
during training, determine how the gates operate.

In the equations below, the lowercase variables represent vectors. Matrices Wq and
Uq contain, respectively, the weights of the input and recurrent connections, where the
subscript q can either be the input gate i, output gate o, the forget gate f or the memory
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cell c, depending on the activation being calculated. In this section, we are thus using
a ”vector notation”. So, for example, ct ∈Rh is not just one cell of one LSTM unit, but
contains h LSTM unit’s cells. The compact forms of the equations for the forward pass of
an LSTM unit are [87]:

ft =σg
(
W f xt+U f ht−1+b f

)
, it =σg (Wixt+Uiht−1+bi), (3.4a)

ot =σg (Woxt+Uoht−1+bo), ct = ft◦ct−1+it◦σc (Wcxt+Ucht−1+bc), (3.4b)
ht = ot◦σh (ct). (3.4c)

Where the initial values are c0 = 0 and h0 = 0 and the operator ◦ denotes the Hadamard
product (element-wise product). The subscript t indexes the time step. ft ∈Rh is forget
gate’s activation vector, it ∈Rh input/update gate’s activation vector, o o ∈Rh output
gate’s activation vector, W∈Rh×d. W∈Rh×h. b∈Rh are weight matrices and bias vector
parameters which need to be learned during training where the superscripts d and h refer
to the number of input features and number of hidden units, respectively. xt∈Rh is input
vector to the LSTM unit and ht∈Rh hidden state vector also known as output vector of
the LSTM unit. ct ∈Rh is cell state vector. σg is sigmoid function, σc. σh are hyperbolic
tangent function.

4 FAE-CAE-LSTM method for ROM

In this study, the ability of deep autoencoder and LSTM networks in nonlinear dimension
reduction and learning of the sequential data and the power of POD to identify the most
important linear features of flow are leveraged for non-intrusive reduced order model-
ing of unsteady flows. In the proposed method, two types of autoencoder networks,
namely fullyconnected autoencoder (FAE) and Convolutional autoencoder (CAE), have
been used to take advantage of the capability of FAE in learn more complicated and
nonlinear patterns and ability of CAE in exploit local correlations in field values simulta-
neously.

The essential and initial component of the proposed method requires a high-fidelity
series of snapshots of the flow field which can be obtained by full-order simulations, ex-
periments or field measurements. Our data-driven surrogate model shall rely on the use
of CAE, FAE and POD for dimensionality reduction and LSTM for latent space tempo-
ral evolution of the state. Let X =

{
xn,xn+1,··· ,xn+p

}
∈RN×M be the flow field data set

where xi ∈Rm is the flow field snapshot at time ti and n is the number of snapshots. m
is the number of data points, for example, number of probes in an experiment or field
measurements or the number of mesh nodes in a numerical simulation? The target is to
predict the future flow fields: xn+1 ·xn+2,··· using the data set X. The schematic of the
proposed method, namely FAE-CAE-LSTM, is presented in Fig. 4. The following are the
steps of the FAE-CAE-LSTM method:

1. The first step is to train FAE and SAE networks and perform POD to obtain the re-
duced features using the snapshot data collected from the flow-field with the aim of
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nonlinear dimension reduction and feature extraction. In this study, the input and
output data of the FAE and SAE networks and POD are the velocity magnitudes V
and pressure magnitudes U on the computational grid points obtained from CFD
simulation of the flow field over the test cases. For train FAE and perform POD,
the flow field snapshot data xi ∈Rm fed to FAE and POD method. For train CAE,
the flow field snapshot data xi ∈Rm is first converted to the two-dimensional xi ∈
Rmx×my and then fed to the network.

2. Then, the features obtained from each of methods FAE, CAE and POD for each time
step data xi, which is a vector of state variables at time t, are mapped to the latent
spaces through the functions as gFAE(t)∈RkFAE , gCAE(t)∈RkCAE and gPCA(t)∈RkPCA

are, kFAE+kCAE+kPCA=k�M. In each of the feature extraction methods (FAE, CAE
and POD), features in latent spaces (gFAE(t),gCAE(t),gPCA(t)) are projected back to
the original space to reconstruct the input data x̃i.

3. The data in the latent space, g(t)= [gFAE(t),gCAE(t),gPOD(t)] include features from
all models, is then used as the input to train the LSTM network with the aim of fu-
ture prediction. g(t) includes features from all models (g(FAE),g(CAE),g(POD)).
The input of the LSTM network is a sequence of g as

[
g(tn),··· ,g

(
tn+p

)]
with the

length of p and the output is the flow field data at the next time step of the input se-
quence x̃n+p+1. Note that in this way, p previous time units are used for prediction
of the next time step.

4. For testing and using the FAE-CAE-LSTM method for reduced order modeling, an
iterative procedure is conducted. An initial sequence is first mapped to the latent
space using the encoder parts of FAE and CAE and modes of POD. The data on the
latent space is fed to the LSTM network to predict the flow field data for the next
time step of the input sequence. The predicted value is then stacked to the input
sequence ignoring the first snapshot data to prepare a sequence one step further in
time. The new sequence is fed again to the network to predict the next time step,
and the procedure is performed iteratively for future prediction.

The autoencoder and LSTM networks are trained by the feedforward and backprop-
agation algorithms. In the FAE and the CAE networks, use a stack version of autoen-
coders and learn a deep architecture with scaled exponential linear units (SELU) [88].The
decoder architectures in both model are symmetrically encoders and thus the number of
parameters is halved. It is very important for the activity function f in hidden layers
of FAE to contain non-zero negative and unbounded positive parts, and for this reason
SELU units are used. Fig. 5 shows the SELU activation function. The following is the
formula for this activation function:

selu(x)=

{
λx, if x>0,
λα(ex−1), if x≤0.

(4.1)
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Figure 4: FAE-CAE-LSTM reduced order modeling framework.

If decoder mirrors encoder architecture as it does in the FAE model, then one can con-
strain decoder’s weights W l

d to be equal to transposed encoder weights W l
e from the cor-

responding layer and has almost two times less free parameters.

If decoder mirrors encoder architecture as it does in the FAE model, then one can
constrain decoder’s weights W l

d to be equal to transposed encoder weights W l
e from the
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Figure 5: The SELU activation function.

corresponding layer and has almost two times less free parameters.
In the FAE-CAE-LSTM method, the root mean square error (RMSE) is used as the loss

function for training of the networks:

RMSE=

[
1
n

n

∑
i=1

(yi− ỹi)
2

]1/2

. (4.2)

Where yi is the real data, ỹi represents the predicted data. In addition, n is the number of
samples, which in this study is the number of points (grids) in the computational domain.

5 Results and discussion

In this work, we use two well-known canonical cases: 1) Kelvin-Helmholtz Instability,
2) flow past a cylinder. Both test cases are based on structured (Cartesian) grids. The
specifications of the datasets used are given in Table 1. Python 3.7 was used to implement
and execute the NIROM using the FAE-CAE-LSTM method in a Spyder environment on
an 8GB computer with a 2.4GHz quad-core processor. For experiments, no pre-training
has been used.

First, the performance of the FAE-CAE-LSTM method was investigated by solving a
strong shear flow exhibiting the Kelvin–Helmholtz instability, known as the Marsigli flow

Table 1: Specifications of the datasets used.

Dataset name # snapshots grid resolution time step (∆t) Reynolds number
Cylinder 470 267×94 0.005 100

Kelvin-Helmholtz 46 800×100 0.0005 7000
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dataset are shown in Figure 6 and Figure 7. The numerical simulation of these convective 

rolling structures in flows that exhibit Kelvin–Helmholtz instabilities is quite challenging and 

requires high resolution to accurately capture the flow dynamics.  
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Figure 7. Evolution of the velocity variable in Kelvin_Helmholtz Dataset. 

In the second numerical example, a flow past a cylinder was simulated. We consider a 

2D flow around a square cylinder [90] which velocity inlet boundary condition is used at the 

Figure 6: Evolution of the pressure variable in Kelvin-Helmholtz dataset.

or the lock-exchange problem. This flow problem is a convective unsteady flow problem
without time periodicity. Thus, the lock-exchange flow is a challenging benchmark prob-
lem for constructing accurate ROMs. The physical process in the Marsigli flow problem
explains how differences in density (i.e., using the Boussinesq approximation, the den-
sity difference can be shown to be inversely proportional to temperature difference) cause
currents to form in the ocean and seas. When waters of two different densities meet, the
higher density water will slide below the lower density water. These varying densities
form a density current in the water. This is one of the primary mechanisms by which
ocean currents are formed [89]. The evolution of the pressure and velocity variables in
Kelvin-Helmholtz dataset are shown in Figs. 6 and 7. The numerical simulation of these
convective rolling structures in flows that exhibit Kelvin–Helmholtz instabilities is quite
challenging and requires high resolution to accurately capture the flow dynamics.

In the second numerical example, a flow past a cylinder was simulated. We consider
a 2D flow around a square cylinder [90] which velocity inlet boundary condition is used
at the domain inlet and Convection condition is applied at the outflow. Furthermore, the
top and bottom boundaries are set to be far away from the cylinder with the slip condition
to prevent the interaction between the cylinder surface and the boundaries. The size of
the computational domain is

(
Lx,Ly

)
=(24.0,20.0), and the cylinder center is located at

(x,y) = (5.5,9.5). The flow equations are solved on the Cartesian grid system with the
grid spacing of ∆x=0.06, ∆y=0.08 and the time interval of flow field data is ∆t=0.005.
The number of grid points used for DNS is

(
Nx,Ny

)
=(267,94) and 470 snapshots were

obtained at regularly spaced time intervals for each of the velocity and pressure solution
variables. The dynamics of the cylinder is considered the limit-cycle states. In Fig. 8, the
coefficient lift versus nondimensional time is shown. The evolution of the pressure and
velocity variables in Cylinder dataset is shown in Fig. 9.
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Figure 7: Evolution of the velocity variable in Kelvin-Helmholtz dataset.

Figure 8: Temporal evolution of coefficient lift (CL) at cylinder dataset.

The CFD snapshots for the flow past a square cylinder test case were generated us-
ing a two-dimensional incompressible Navier-Stokes solver based on a finite volume
method. We show the comparison against reference (i.e., Strouhal number) and mean
Lift Coefficient with Re=100 for the square cylinder in Table 2 to justify the soundness of
the simulation.
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Figure 9. Evolution of the pressure and velocity variables in Cylinder Dataset. 
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CAE and LSTM networks in reconstruction and prediction of the testing data is investigated 

Figure 9: Evolution of the pressure and velocity variables in cylinder dataset.

5.1 Hyperparameter analysis

The number of layers, the number of neurons in the hidden layers and activation func-
tions of the DAE network and the number and size of the filters in each convolution
layer, the size of the stride, and the size of the filters in the pooling layer of CAE network
and number of cells of LSTM network are the hyperparameters of the FAE-CAE-LSTM



24 M. Kherad, M. Moayyedi and F. Fotouhi / Adv. Appl. Math. Mech., xx (2024), pp. 1-41

Table 2: The comparison against reference and mean lift coefficient with Re=100 for square cylinder.

existing literatures Strouhal number Mean Lift Coefficient
Sohankar et al. [91] 0.146 0.15

Cheng et al. [92] 0.144 0.15
Berrone et al. [93] 0.145 0.17

Lam et al. [94] 0.141 0.18
Our simulation 0.141 0.18

method. An analysis of the hyperparameters is conducted, and the results for the most
important ones are presented for the velocity field of the cylinder dataset. Here, the per-
formance of the FAE, CAE and LSTM networks in the reconstruction and prediction of
the testing data is investigated using some of the most popular choices in deep learning:
sigmoid, rectified linear units (RELU), hyperbolic tangent (TANH), exponential linear
units (ELU), leaky relu (LRELU), and scaled exponential linear units (SELU) on the three
hidden layer with 128 nodes in each hidden layer, five different number of hidden lay-
ers, Nh∈ [1,2,3,4,5] for the FAE network, three different number of filters N f ∈ [10,20,30]
in convolution layers with size 3×3, three different size of filters S f ∈ [3×3,5×5,7×7]
in four convolution layers with 30 filters in the CAE network, and four different num-
bers of LSTM cells NLSTM ∈ [10,100,300,500] in the LSTM network. Note that the error
for the DAE and CAE networks are the error in the reconstruction of the flow field from
its dominant features, and the error for the LSTM is the prediction error. As authors re-
ported in [95], a checkerboard artifact can be seen due to the unsuccessful training by
using the transposed convolution with the large filter size. They demonstrated that the
L2 error norm of the models with up-sampling operation gradually decreases as the filter
size increases. In contrast, the model error with the transposed convolutional operation
is reported significantly worse with S f > 9. We note that the proposed model with the
transposed convolution has less size of filters, i.e., S f ≤7.

Figs. 10(a) and (b) show the validation loss versus number of epochs for the FAE and
the LSTM networks, respectively. It can be seen that the SELU activation function per-
forms better for the FAE and the LSTM networks. Here, results are reported for the FAE
network with three hidden layers and kFAE = 50. The first and third hidden layers con-
tain 500 neurons. Note that we use linear activation functions for the Input, output, and
the bottleneck layers and nonlinear activation functions for other layers. There are two
properties which seems to separate activations which perform well from those which do
not: a) non-zero negative part and b) unbounded positive part. Hence, we conclude, that
in this setting these properties are important for successful training. Thus, we use SELU
activation units and tune SELU-based networks for performance. Moreover, Fig. 10(c)
shows the results for the LSTM networks with various numbers of LSTM cells. It can
be seen that the increase in the numbers of LSTM cells leads to better predictions. Also,
the effect of the number of hidden layers of the FAE on the accuracy of the FAE recon-
structions is investigated, and the results are reported in Fig. 10(d). It can be observed
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Figure 10: Results of the hyperparameter analysis; (a) validation loss versus epochs of the reconstruction of
the test data set for SAE network with different activation functions, (b) validation loss versus epochs of the
prediction of the test data set for LSTM network with different activation functions, (c) validation loss versus
epochs of the prediction of the test data set for LSTM network with different numbers of LSTM cells, (d) effect
of the number of hidden layers of the SAE network on the predictions with FAE-CAE-LSTM, (e) validation
loss versus epochs of the reconstruction of the test data set for CAE network with different size of filters, (f)
validation loss versus epochs of the reconstruction of the test data set for CAE network with different number
of filters.

that the FAE with three hidden layers obtains the best results. It also should be noted
that to avoid overfitting, the training process is stopped where more training epochs do
not lead to further reduction of the validation loss. While making layers wider helps
bring training loss down, adding more layers is often correlated with a network’s abil-
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ity to generalize. Going from one layer in the encoder and decoder to three layers in
both provides a good improvement in validation RMSE. After that, blindly adding more
layers does help, however it provides diminishing returns. Figs. 10(e) and (f) show the
validation loss versus number of epochs of the reconstruction of the test data set for the
CEA with different size of filters and with various numbers of filters, respectively. Based
on the comparison Fig. 9(e), we can conclude that smaller filter sizes are and should be a
popular choice over larger sizes. From Fig. 9(f) results, it can be seen that the increase in
the number of filters leads to better reconstructions.

Based on these results, the FAE network with three hidden layers and SELU activa-
tion function and the CAE network with 30 filters 3×3 in four convolution layers and
the LSTM network with one hidden layer containing 500 LSTM cells with SELU activa-
tion function are chosen as the network architectures for the FAE-CAE-LSTM method.
We also observed that these hyperparameters are robust for all the test cases, showing
the possible applicability of the SELU activation function, for dimension reduction and
future prediction in the domain of fluid dynamics.

5.2 Reconstruction comparison

Here, the performance of the proposed NIROM framework, FAE-CAE-LSTM, in the re-
construction of the flow-field from its extracted features of the test cases is compared with
the DMD, POD, FAE and CAE methods. To evaluate the similarity between the flow field
data set (X, snapshot data) and the reconstructed data (X̃) the root mean square error (i.e.,
RMSE) was calculated in this study. Data loss is an inevitable consequence of dimension
reduction, and the amount of compression which leads to a reasonable approximation
error in the reconstructed data is significant. Therefore, the number of neurons at the
bottleneck layer of the autoencoder networks, or the number of dominant modes of the
POD/DMD methods,k, is an important hyperparameter and should be chosen based on
thorough experiments. Since DMD relies on singular value decomposition, we can spec-
ify the number of the largest singular values used to approximate the input data where
the dominant DMD modes are the low-rank structures individuated. Here, methods
with the size of the latent space (extracted features) of 5, 10, 15, 20, and 25 are trained and
tested with the training and testing data set of the Kelvin-Helmholtz dataset and with the
size of the latent space of 10, 20, 30,50, and 100 are trained and tested with the training
and testing data set of Cylinder dataset. For all the models, the CAE and FAE network
parameters are set as in Table 3.

RMSE of the testing data is shown in Fig. 11. As shown in Figs. 11(a)–(d), the RMSE of
each method follows the order of Proposed<CAE<FAE<POD<DMD. Compared with
AE models, the POD/DMD models in this study show larger RMSE on evaluation. Com-
paring the DMD with the POD method, the RMSE of these methods implies that the ca-
pabilities of POD/DMD models with similar model size are almost identical. By contrast,
the CAE model improves the RMSE in the reconstruction of flow field. The improvement
caused by CAE models demonstrates the superiority of convolutional neural networks
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Table 3: CAE and FAE network parameters.

#Hidden
Layers

Batch
size

Learning
Rate #Epochs Activation

function
#Nerouns per

layer
FAE 3 32 0.0001 50 SELU 128

# Hidden
Layers

Batch
size

Learning
Rate #Epochs Flter size #Filter per

layer
CAE 4 32 0.0001 50 3×3 30

in spatial pattern generalizations. We find that the ability of nonlinear methods to re-
produce snapshots is generally better than that of linear methods. In terms of nonlinear
methods, CAE is better than the FAE autoencoder. As it is expected, an increase in the size
of the extracted features leads to an increase in the accuracy of the reconstruction and a
decrease in the approximation error. Since the AE needs to discard the information while
extracting dominant features from high-dimensional flow fields into a limited number of
latent spaces. But the decrease of RMSE slows up with extracted features grow. It can be
seen that even with k=10, the data has been reconstructed with acceptable accuracy by
FAE-CAE-LSTM. Considering that models with smaller hidden dimensions require less
training data and computing resources. It was clearly seen that the mapping ability of
methods highly depend on the target flows, i.e., complexity. Although the strength of the
AEs could be seen through the investigation, one of issues of the present form of the AEs
is the interpretability of latent space. Since the AE-based modes are not orthogonal with
each other, it is still hard to understand the role of each latent vector for reconstruction.

At the latent space, the proposed NIROM framework, FAE-CAE-LSTM, extracts the
main features of the flow-field with concatenate the features obtained from each of meth-
ods FAE, CAE and POD, which is adequate for the reconstruction of the flow field. To
visualize the main features of the flow for the aforementioned test cases, an input array of
g is given to the latent space, and the results are taken from the the original space. Figs. 12
and 13 show the reconstruction contours of the velocity and pressure magnitudes with 15
and 30 features obtained by different methods for a snapshot over Kelvin-Helmholtz and
Cylinder datasets, respectively (22th snapshot of Kelvin-Helmholtz and 235th snapshot
of Cylinder).

It has recently been reported that performing POD for the decoded flow fields by
autoencoders tells us how much POD modal structures are contained in the nonlinear
autoencoder modes [96,97,98]. To this end, we predict the whole of time span of each
test case using models with the latent dimension of five (POD rank truncation of five for
the POD-RNN [68] and five neurons at the bottleneck layer for the autoencoder-LSTM
[55], and the proposed FAE-CAE-LSTM method) and obtain the predicted velocity snap-
shots. We then perform a POD of the predicted snapshots to see how many POD bases
are captured in the predictions. Figs. 14 and 15 present the results of the decomposition
for the predicted and the real data for both Kelvin-Helmholtz and Cylinder datasets, re-
spectively. For the POD-RNN method, the predictions based on five modes only contain
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Figure 11: Results of the relationship between the number of latent space (features) and RMSE; (a) velocity
magnitudes V of Kelvin-Helmholtz dataset, (b) pressure magnitudes U of Kelvin Helmholtz dataset, (c) velocity
magnitudes V of Cylinder dataset, (d) pressure magnitudes U of cylinder dataset.

25 

ruction contours of the velocity magnitude with 15 features 

obtained by (a) FAE-CAE-LSTM, (b) CAE, (c) FAE, (d) POD, (e) DMD methods and 

the pressure magnitude with 30 features obtained by (f) FAE-CAE-LSTM, (g) CAE, (h) 

FAE, (i) POD, (j) DMD methods for 22th snapshot of Kelvin_Helmholtz. 

Figure 12: The reconstruction contours of the velocity magnitude with 15 features obtained by (a) FAE-CAE-
LSTM, (b) CAE, (c) FAE, (d) POD, (e) DMD methods and the pressure magnitude with 30 features obtained
by (f) FAE-CAE-LSTM, (g) CAE, (h) FAE, (i) POD, (j) DMD methods for 22th snapshot of Kelvin-Helmholtz.

five POD basis as is expected. These modes are the same as the ones for the real data,
so they are not depicted in Figs. 14 and 15. For the autoencoder-LSTM and proposed
FAE-CAE-LSTM method, the interesting result is that the predictions based on only five
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Figure 13. The reconstruction contours of the velocity magnitude with 30 features 

obtained by (a) FAE-CAE-LSTM, (b) CAE, (c) FAE, (d) POD, (e) DMD methods and 

the pressure magnitude with 30 features obtained by (f) FAE-CAE-LSTM, (g) CAE, (h) 

FAE, (i) POD, (j) DMD methods for 235th snapshot of Cylinder. 

 

It has recently reported that performing POD for the decoded flow fields by 

autoencoders tell us how much POD modal structures are contained in the nonlinear 

autoencoder modes [96] [97] [98]. To this end, we predict the whole of time span of each test 

Figure 13: The reconstruction contours of the velocity magnitude with 30 features obtained by (a) FAE-CAE-
LSTM, (b) CAE, (c) FAE, (d) POD, (e) DMD methods and the pressure magnitude with 30 features obtained
by (f) FAE-CAE-LSTM, (g) CAE, (h) FAE, (i) POD, (j) DMD methods for 235th snapshot of cylinder.

modes contain more than five POD bases. As it can be observed for the autoencoder-
LSTM method in Fig. 14 for up to mode six and in Fig. 15 for up to mode five and for the
proposed FAE-CAE-LSTM method in Fig. 14 for up to mode eight and in Fig. 15 for up
to mode six. In reality, the autoencoder may compress a greater number of POD modes
into only five modes. Furthermore, the energy of the modes is approximate to that of the
original data, particularly for the higher energy modes.
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Figure 14. POD of the predicted velocity fields by autoencoder-LSTM and FAE-CAE-

LSTM methods and the original data over Kelvin_Helmholtz dataset. 
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Figure 15. POD of the predicted velocity fields by autoencoder-LSTM and FAE-CAE-

LSTM methods and the original data over Cylinder dataset. 
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Figure 15: POD of the predicted velocity fields by autoencoder-LSTM and FAE-CAE-LSTM methods and the
original data over cylinder dataset.

5.3 Prediction performance

In this section, the performance of the proposed NIROM method, FAE-CAE-LSTM, in
the prediction of the future estate of the test cases (Kelvin-Helmholtz Instability, and
flow past a cylinder) is compared with other NIROM methods such as CAE-LSTM [58],
autoencoder-LSTM [55], autoencoder-DMD [55] and POD-RNN [68] based models. Re-
sults are reported for the train and test of Kelvin-Helmholtz Instability, and flow past a
cylinder data sets, where the train data set is reconstructed and the test data set is pre-
dicted by the models. However, the main focus is on the comparison of the prediction
skills of the models. For all the models, the size of the latent space is equal to 15 for
the Kelvin-Helmholtz dataset and 30 for the cylinder dataset and the CAE, FAE, LSTM
network parameters are set as in Tables 3 and 4, respectively.

RMSE obtained from the models in the prediction of the training and testing data sets
are reported in Table 5.

As can be seen in Table 4, the FAE-CAE-LSTM method has achieved lower RMSE
than the other methods in both datasets, which indicates the excellent performance of
this method in the prediction of the future state of the ow, only from past measurements.
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Table 4: LSTM network parameters.

batch-size Number of
Hidden Layers

Number of
Cells

Learning
Rate epochs Input size output-size

32 1 100 0.0005 100 5 5

Table 5: RMSE of the examined models for the prediction of the testing and training datasets.

dataset Kelvin-Helmholtz Cylinder
Method pressure velocity pressure velocity

FAE-CAE-LSTM train 0.000211 0.000249 0.000069 0.000072
test 0.000392 0.000384 0.000085 0.000096

CAE-LSTM train 0.000399 0.000325 0.000091 0.000109
test 0.000541 0.000601 0.000114 0.000152

AE-LSTM train 0.000458 0.000552 0.000101 0.000140
test 0.000598 0.000808 0.000146 0.000186

AE-DMD train 0.000596 0.000899 0.000155 0.000205
test 0.000754 0.001057 0.000190 0.000249

POD-RNN train 0.000622 0.000821 0.000148 0.000192
test 0.000825 0.001004 0.000179 0.000227

From these results, it can be seen that since AE-DMD and POD-RNN do not use LSTM for
the prediction of the future estate, these perform worse than the other methods in both
datasets. Whereas, FAE-CAE-LSTM, CAE-LSTM, and AE-LSTM methods, in addition to
using LSTM, also use Autoencoder to obtain the reduced features, achieve better results
than AE-DMD and POD-RNN. It can be concluded that it is necessary to consider the
LSTM network in the prediction of the transient dynamics of a low-order model and
capability of AE in learn more complicated patterns. On the other hand, the results of
Convolutional-based methods (FAE-CAE-LSTM and CAE-LSTM) are also better than the
other methods which can be concluded that the efficiency of the dimensionality reduction
process with Convolutional AE network also improves prediction of the future estate.
The proposed method (FAE-CAE-LSTM), not only takes the advantages of all the above
approaches but also employs POD technique.

To illustrate the performance of the models in the prediction of the flow field, con-
tours of velocity and pressure magnitudes at the testing data for last snapshot over
Kelvin-Helmholtz and Cylinder datasets are shown in Figs. 16 and 17 (46th snapshot
of Kelvin-Helmholtz and 470th snapshot of Cylinder). It can be seen that the FAE-CAE-
LSTM method, can acquire trustworthy results in the prediction of the time evolution of
a complex fluid system.

To depict the performance of CAE-LSTM and FAE-CAE-LSTM models in the predic-
tion of velocity and pressure evolution through time, we selected a point in each dataset
that has the most changes during all snapshots and predictions of CAE-LSTM and FAE-
CAE-LSTM models against the real data are presented in Fig. 18. It can be seen that for
Cylinder test case, which is periodic dynamical system, the proposed FAE-CAE-LSTM
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Figure 16. The prediction contours of the velocity magnitude with 15 features obtained 

by (a) FAE-CAE-LSTM, (b) CAE-LSTM, (c) autoencoder-LSTM, (d) autoencoder-

DMD, (e) POD-RNN methods and the pressure magnitude with 15 features obtained by 

(f) FAE-CAE-LSTM, (g) CAE-LSTM, (h) autoencoder-LSTM, (i) autoencoder-DMD, (j) 

POD-RNN methods for 46th snapshot of Kelvin_Helmholtz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: The prediction contours of the velocity magnitude with 15 features obtained by (a) FAE-CAE-LSTM,
(b) CAE-LSTM, (c) autoencoder-LSTM, (d) autoencoder-DMD, (e) POD-RNN methods and the pressure
magnitude with 15 features obtained by (f) FAE-CAE-LSTM, (g) CAE-LSTM, (h) autoencoder-LSTM, (i)
autoencoder-DMD, (j) POD-RNN methods for 46th snapshot of Kelvin-Helmholtz.

model provides accurate results and for Kelvin Helmholtz test case, the FAE-CAE-LSTM
method performs much better than the CAE-LSTM method in prediction of velocity and
pressure magnitudes. Furthermore, the time history in the latent space obtained by FAE-
CAE-LSTM for real and the reconstructed flow fields over Kelvin-Helmholtz and Cylin-
der datasets are shown in Fig. 19.

5.4 Time cost comparison

Here, we investigate the computational efficiency of the proposed NIROM method, FAE-
CAE-LSTM, and compare it with CAE-LSTM [58], autoencoder-LSTM [55], autoencoder-
DMD [55] and POD-RNN [68] based models. The essential time cost of the proposed
NIROM is the online computation required for the training of the CAE, FAE, and LSTM
neural networks. In Table 6, we report the needed time for both training (online) and
prediction (offline) computations for each method. We note that the computing time
assessments documented in this table are based on Python executions and for the ex-
periments, the CAE, FAE, and LSTM network parameters are set as in Tables 3 and 4,
respectively. The size of the latent space is equal to 15 for the Kelvin-Helmholtz dataset
and 30 for Cylinder datasets. As can be seen in the table, FAE-CAE-LSTM is the slowest.
However, we can observe that the computation time of FAE-CAE-LSTM is acceptable
and comparable and the performance of FAE-CAE-LSTM implementation is better than
other approaches. On other hand, with the advancement of hardware computing power,
this amount of time can be saved by using more powerful hardware.
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Figure 17. The prediction contours of the velocity magnitude with 30 features obtained 

by (a) FAE-CAE-LSTM, (b) CAE-LSTM, (c) autoencoder-LSTM, (d) autoencoder-

DMD, (e) POD-RNN methods and the pressure magnitude with 30 features obtained by 

(f) FAE-CAE-LSTM, (g) CAE-LSTM, (h) autoencoder-LSTM, (i) autoencoder-DMD, (j) 

POD-RNN methods for 470th snapshot of Cylinder. 

 

Figure 17: The prediction contours of the velocity magnitude with 30 features obtained by (a) FAE-CAE-LSTM,
(b) CAE-LSTM, (c) autoencoder-LSTM, (d) autoencoder-DMD, (e) POD-RNN methods and the pressure
magnitude with 30 features obtained by (f) FAE-CAE-LSTM, (g) CAE-LSTM, (h) autoencoder-LSTM, (i)
autoencoder-DMD, (j) POD-RNN methods for 470th snapshot of Cylinder.

6 Conclusions

The global approximation properties of neural networks have been studied in many re-
cent studies, which show that deep networks are powerful and comprehensive in ap-
proximating a wide class of functions. According to studies and research, deep learning
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Figure 18: Comparison between time history of the values predictions of CAE-LSTM and FAE-CAE-LSTM
models against the real data for a) pressure magnitude in Kelvin-Helmholtz, b) velocity magnitude in Kelvin-
Helmholtz, c) pressure magnitude in Cylinder, d) velocity magnitude in Cylinder Dataset at a point with the
most changes. Blue lines represent the results for the real data, and red and green shows the results obtained
from the predictions of the FAE-CAE-LSTM and CAE-LSTM methods, respectively.

has been able to solve many challenges in the field of model order reduction. This ap-
proach has been able to overcome the challenge of nonlinear problems and provide the
appropriate accuracy and speed to reduce order model. Unlike conventional neural net-
works, deep learning networks have the ability to work with labeled and unlabeled data,
and because they can also automatically extract features, they have the ability to do so.

In this paper, a data-driven NIROM method based on the ability of the autoencoder
neural network in dimensionality reduction and feature extraction and the ability of
the LSTM network in the prediction of the sequential data is presented. The proposed
method trains FAE and SAE networks and performs POD to obtain the reduced features.
Then, it concatenates the all obtained feature and predicts future state of a nonlinear
dynamical system using LSTM network from it’s the features obtained. The proposed
method was compared with other NIROM methods i.e., CAE-LSTM, autoencoder-LSTM,
autoencoder-DMD, and POD-RNN based models and the results showed that the pro-
posed method with a lower number of modes, offers higher accuracy in input recon-
struction and the prediction of the flow field in future time instances.

There are a number of natural extensions and future directions suggested by this
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Figure 19: Time history of the latent vector obtained by FAE-CAE-LSTM for real and the reconstructed flow
fields at a) pressure magnitude in Kelvin-Helmholtz, b) velocity magnitude in Kelvin-Helmholtz, c) pressure
magnitude in Cylinder, d) velocity magnitude in cylinder. The latent vector obtained by FAE-CAE-LSTM for
real data is shown by r=(r0,r1) and for reconstructed flow fields is shown by Rec=(r0Rec,r1Rec) .

work. Three-dimensional flows and experimental observations would put the approach
to the test and may reveal weaknesses that need to be addressed further. Although the
present work only considered input from velocity and pressure fields, incorporating in-
formation and parameters of fluid flow e.g., angle of attack, Reynolds number, the Mach
number, the diameter ratio of two cylinders, distance between two cylinders, and bluff
body shapes is the subject of ongoing research. Applications of CNN to unstructured
mesh fluid flow data are one of the remaining challenges of the present work. For many
fluid flow studies, such as flows around an airfoil at practical Reynolds values, we fre-
quently face unstructured data. Unfortunately, the standard CNN utilized in the pro-
posed method cannot be directly applied to these unstructured mesh data. Several ap-
proaches, such as PhyGeoNet [99], graph CNN [100], Voronoi-tessellation aided [101]
and, PointNet [102] have recently been presented to address this issue. One of the draw-
backs in the current NIROM creation toward applications to more complicated flows,
such as higher Reynolds number turbulence, is the requirement for a large number of
latent modes. To address this issue, Fukami et al. [97] have created a hierarchical autoen-
coder, which can accomplish more efficient low-dimensionalization than traditional AEs
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Table 6: Computing time (in seconds) required for training and prediction computations of FAE-CAE-LSTM,
CAE-LSTM, autoencoder-LSTM, autoencoderDMD, and POD-RNN methods.

Datasets Kelvin-Helmholtz Cylinder
Methods Training time Prediction time Training time Prediction time

FAE-CAE-LSTM 298.53 62.45 596.82 91.52
CAE-LSTM 172.08 47.53 407.19 77.16

Autoencoder-LSTM 153.76 34.21 381.92 70.85
Autoencoder-DMD 86.44 24.63 240.19 54.43

POD-RNN 59.71 20.49 209.98 47.19

and POD. Although their experiment was with a two-dimensional sectional velocity of
turbulent flow, this approach could be integrated with the proposed NIROM technique.
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