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Abstract. In this article, we have developed a new time-marching method to simulate
sound and soliton propagation in homogeneous and heterogeneous media. The pro-
posed time integration scheme can numerically preserve physical dispersion over a
wide wavenumber range and conserve energy while solving wave propagation prob-
lems. Here, the Fourier stability analysis has been used to assess the numerical prop-
erties of the developed method. The proposed numerical method’s dispersion and
dissipation properties have also been compared with the classical fourth-order Runge-
Kutta (RK4) method. Stability property contours for the newly proposed method dis-
play that the maximum allowable time step is at least five times higher than the RK4
method. The Fourier stability analysis also explains the dispersion error associated
with the used spatio-temporal discretization schemes. It is observed that the disper-
sion error is significantly small for the proposed time integration schemes compared
with the RK4 method. The proposed methods simulate sound propagation problems
with fewer computational resources that otherwise demand high computational costs.
The efficacy of the proposed time integration methods has been demonstrated by solv-
ing benchmark sound wave propagation problems. Moreover, to test the developed
method’s efficiency and robustness, we have performed simulations of the sound wave
propagation in a layered media, corner-edge model, and damped sine-Gordon equa-
tion.
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1 Introduction

Engineering problems involving sound wave propagation, reflection, diffraction, and
superposition, are computationally intensive and challenging [36, 43]. Acoustic distur-
bances are pressure fluctuations superimposed on the background atmospheric pressure
field. These pressure fluctuations’ amplitude is usually a few orders smaller than the
background pressure field. The viscous nature of the air does not alter the amplitudes
of these fluctuations when the acoustic wave propagation is considered over a small dis-
tance [24]. The propagation of acoustic waves inside a one-dimensional (1D) domain
displays a non-dissipative and non-dispersive nature. However, most of the traditional
discretization schemes show a dispersive and dissipative nature across a wide wavenum-
ber range. Dispersion and dissipation errors are usually high for the high wavenumber
components when the computations are performed over large CFL (Courant-Friedrichs-
Lewy) numbers. Thus, to keep dispersion and dissipation errors minimal, one is forced
to compute on a highly refined grid with a significantly smaller time-step. Most of the
schemes become unstable at higher CFL numbers. Thus, we have to use very small time-
steps while performing computational aeroacoustic (CAA) simulations, which increases
the computational cost significantly.

Simulations of some of the engineering problems, such as analysis of material de-
fects using sound waves or sound wave propagation in seawater, involve heterogeneous
mediums. Such problems pose further challenges as the medium properties change spa-
tially, causing spatial variation in the speed of sound. One observes sound wave reflec-
tions and diffraction due to spatial gradients or discontinuities present in the medium
properties. So far, we have listed computational challenges associated with linear acous-
tics problems where the frequency of sound waves in the domain is the same as the
excitation or driving frequency. If the amplitude of the sound waves is sufficiently large,
then the nonlinear effects also become important. If the frequency of the sound waves
is sufficiently large, one must also consider the attenuation of sound waves due to the
dissipative nature of the medium. Thus the used discretization scheme should have the
ability to capture complex physical phenomena while solving the governing partial dif-
ferential equations. To address these challenging issues, here we have proposed and used
a new time integration scheme (EDP1) along with the second-order centered (CD2) and
sixth-order compact (C6) [26] spatial discretization schemes. Authors in [9] proposed
the unconditionally positive definite finite difference (UPFD) method, which has been
thoroughly validated [2] for the advection-diffusion-reaction systems. Authors in [34]
developed unconditionally stable methods by utilizing the combination of the hopscotch
spatial structure and leapfrog time integration to solve the time-dependent diffusion
equation. Moreover, by considering odd-even hopscotch structure, authors in [35, 40]
developed novel numerical methods to solve time-dependent diffusion equation. Com-
pact difference schemes on uniform grid spacing have recently gained significant popu-
larity for simulating flow and wave propagation problems on collocated and staggered
grids [1, 19]. Regions with large gradients necessitate fine grid spacing, whereas regions
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with small gradients can be adequately represented with coarser grid spacing. Refer-
ences [7, 21, 22, 32, 42] provide compact schemes designed for non-uniform grids. The
newly proposed time integration scheme’s numerical properties have been compared
with the RK4 method. Solutions to some benchmark problems involving sound wave
propagation in homogeneous and heterogeneous mediums are reported. Solutions for
model problems in which the non-linear aspects are important are also computed using
the newly proposed time integration scheme EDP1.

Sound wave propagation equation with a non-zero point source is frequently used
to model wave propagation in geophysics for underground imaging and seabed explo-
ration. Seismic waves propagate from the earth’s surface and transmit to the stratified
heterogeneous media composed of ocean and atmosphere. Numerical solutions to the
sound wave propagation in such heterogeneous media involve successive reflection and
refraction from the interfaces, which lead to the numerical dispersion [8]. Propagation of
sound waves in a heterogeneous medium brings additional complications as the phase
speed of sound itself changes inside a computational domain at different locations. The
conventional discretization methods introduce severe numerical dispersion. To capture
the sound wave propagation accurately, dispersion relation preserving space-time accu-
rate discretization schemes are required. As the exact solution of a seismic wave equa-
tion is generally unavailable, discretized procedures are the only practical solution for
sound wave propagation in heterogeneous media. In the present study, we have consid-
ered sound wave propagation in two-layered media and the computationally challenging
corner-edge model consists of a three-layered medium [47].

Solitons represent a special wave-like solution to nonlinear partial differential equa-
tions (PDEs), that propagate through the medium without undergoing any deformation
due to dispersion. Furthermore, Soliton does not change its shape while interacting with
other solitons. Solitons have been proven to play a crucial role in the theory of nonlin-
ear PDEs. For a variety of equations, such as the Korteweg-de Vries equation, the sine-
Gordon equation, and the nonlinear Schrödinger equation, soliton solutions have been
discovered. The exact solution to the undamped sine-Gordon equation with zero damp-
ing is discussed in [15], and for the more realistic case with damping effects, analytical so-
lutions do not exist. The presence of the damping coefficient in the sine-Gordon equation
slows the propagation of the solitons without altering their shape. As energy conserva-
tion theoretically holds for the undamped sine-Gordon equation, the numerical solutions
of the undamped sine-Gordon equation are used to show the nonlinear stability of the de-
veloped scheme. It is observed that in the undamped case, energy remains constant as
time advances, while the presence of damping reduces energy due to dissipation as time
advances. In the past, researchers have also paid attention to models admitting solitons
in higher dimensions, and the model discussed in [20] can be mathematically described
by the 2D sine-Gordon equation. Cui [12]used a fourth-order compact ADI scheme to
solve the generalized sine-Gordon equation in 2D rectangular domains with three time-
level algorithm. The error estimate was derived using the method of energy. Deng and
Liang [14] derived two conditionally stable compact ADI schemes having fourth-order
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accuracy in space and time for the general initial-boundary value problem of the non-
linear wave equation. The accuracy of the schemes given in [14] is validated by solving
coupled sine-Gordon and damped wave equations. Moreover, solutions of sine-Gordon
using thin-plate splines radial basis function are given by Dehghan and Shokri [13]. The
numerical solutions are shown for the propagation of line and ring solitons.

The second-order linear wave equation dictates the evolution of sound disturbances
in space and time. Thus it serves as a the model equation to understand sound wave
propagation in different media as well as nonlinear diffusion problems in mathematical
biology [6,11,25]. Generally, numerical solutions of PDEs with second-order derivative in
time are obtained by transforming them into an equivalent first-order systems, in which
time-integration is performed using Runge-Kutta (RK) or linear multistep methods [17].
However, the classical Rung-Kutta-Nyström (RKN) methods can be directly used for the
time integration of the second-order time derivative. Two-derivative implicit-explicit
Rung-Kutta-Nyström method for the sound and soliton propagation in heterogeneous
media is given in [39].

Liao et al. [28] formulated a compact scheme for the simulations of acoustic wave
propagation in a two-dimensional heterogeneous media with the ADI technique to re-
duce the computational cost. Authors in [28] noted that due to variable wave velocity, the
use of the ADI method is arduous and presented a strategy to maintain fourth-order ac-
curacy in space and time. Li et al. [27] extended the methodology discussed in [28] for the
solution 3D acoustic wave equation. The compact difference methods provide substan-
tial advantages over the classical finite difference methods while evaluating the spatial
derivative terms. Although compact schemes have a smaller stencil, these schemes have
a higher resolving ability and help us to compute the solution more accurately [30]. To
avoid the difficulty of implementation of the compact scheme due to the spatially varying
coefficient in the wave equation, Britt et al. [5] suggested shifting the variable coefficients
with the time-derivative term. Thus, it is important to use high-resolution compact spa-
tial difference schemes and suitable time integration schemes to compute accurately and
efficiently.

In this paper, we have formulated a new time-marching method for the simulation of
acoustic and soliton propagation in homogeneous and heterogeneous media. We would
like to mention here that in contrast to the method given in [33], the present method uses
a different approach to get the first-order system of equations having second-order spatial
derivatives. The structure of the present article is as follows. In Section 2, the derivation
for the new time-integration method to simulate sound propagation has been provided.
Section 3 discusses the Fourier stability analysis of the developed method for numerically
solving 1D wave equation. In Section 4, we have discussed results for the simulation of
various test cases for sound wave propagation in a homogeneous media. Section 5 deals
with the simulations of sound wave propagation in 2D heterogeneous media. In Section
6, results of the simulations of the undamped and damped sine-Gordon equation are
given for various solitons cases. Furthermore, the energy conservation in the case of the
damped and undamped sine-Gordon equation is discussed in Section 6. The manuscript
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ends with important conclusions in Section 7.

2 Formulation of new time-integration method

In this section, we have formulated a new time-integration method for accurately and
efficiently simulating the sound wave propagation problems.

2.1 One-dimensional linearized Euler equation

Here, we consider the propagation of a sound disturbance following 1D linearized Euler
equations in a dimensional form. The governing equations in the Cartesian coordinates
are given as [36]

∂u
∂t

=− 1
ρ0

∂p
∂x

,
∂p
∂t

=−γP0
∂u
∂x

, (2.1)

where p (pressure) and u (velocity) are the acoustic variables, ρ0 is the density of air at a
given temperature, P0 is the atmospheric pressure, and γ is the ratio of specific heats for
air. Eq. (2.1) can be rewritten as

∂2 p
∂t2 = c2 ∂2 p

∂x2 , (2.2)

where c is the phase speed of sound given as c=
√

γP0/ρ0. Substituting, z= ∂p
∂t , Eq. (2.2)

can be rewritten as

∂z
∂t

= c2 ∂2 p
∂x2 ,

∂p
∂t

= z, (2.3)

with z representing the pressure variations over time. Finally, the first-order energy and
dispersion relation preserving time-marching method (EDP1) for the system in Eq. (2.3),
is given as

zn+1= zn+c2∆tpn
xx, (2.4a)

pn+1= pn+∆t(c1zn+(1−c1)zn+1). (2.4b)

Here ∆t is the time-step, n is the time-level, and c1 is a free parameter whose optimized
value is obtained by evaluating the numerical properties of the schemes [33]. The consis-
tency analysis of the EDP1 method is given in Appendix.

2.2 Two-dimensional wave equation

To understand the performance of newly proposed numerical methods while solving
CAA problems, we have considered the two-dimensional wave equation as a model
equation which is given as

∂2u
∂t2 = c2(x,y)

(
∂2u
∂x2 +

∂2u
∂y2

)
, (x,y)∈Ω, t∈ (0,T], (2.5)
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where c(x,y) represents the phase speed and indicates sound propagation in an inhomo-
geneous medium. Substituting,

v=
1

c2(x,y)
∂u
∂t

,

Eq. (2.5) can be rewritten as

∂v
∂t

= c2(x,y)
(

∂2u
∂x2 +

∂2u
∂y2

)
, (2.6a)

∂u
∂t

=v. (2.6b)

The first-order energy and dispersion relation preserving method (EDP1) for the system
(2.6) is given as

vn+1=vn+∆tc2(x,y)
(

un
xx+un

yy

)
, (2.7a)

un+1=un+∆t(c1vn+(1−c1)vn+1), (2.7b)

where c1 is a free parameter whose optimum value is dictated by numerical properties of
the chosen discretization schemes [33].

3 Fourier stability analysis of 1D wave equation

To test the stability of the developed method, we have performed Fourier stability anal-
ysis [41, 46] for the system of equations given in Eq. (2.3) with periodic boundary con-
ditions. The unknown u(x,t) can be represented as, u(x,t) =

∫
Ûeikxdk by using the

Fourier-Laplace transform. Here, k indicates wavenumber while Û indicates the spec-
tral amplitude of the variable u(x,t). The first and second-order exact space derivatives
are calculated as

ux(x,t)|exact =
∫

ikÛ(k,t)eikxdk,

uxx(x,t)|exact =
∫
(−k2)Û(k,t)eikxdk.

However, when the same derivatives are evaluated numerically using difference schemes,
one commits numerical error as higher-order derivative terms in the Taylor series expan-
sion are truncated. Thus numerically estimated spatial derivative differs from the exact
one, and one can express the numerically evaluated first and second-order spatial deriva-
tives as

ux(x,t)|num =
∫

ikeqÛ(k,t)eikxdk,

uxx(x,t)|num =
∫
(−k2

eq)Û(k,t)eikxdk,
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where keq is the equivalent wavenumber and accounts for the difference between the
exact and the numerically computed spatial derivative. By taking Fourier-Laplace trans-
form of Eq. (2.4), we obtained

Ẑn+1= Ẑn−c2∆tk2
eqP̂n, (3.1a)

P̂n+1= P̂n+∆t(c1Ẑn+(1−c1)Ẑn+1), (3.1b)

where, P̂ and Ẑ represent the Fourier transforms of p and z respectively. One can derive
a relation between (n+1)th and (n)th time-levels from Eq. (3.1), as [33, 38]

Ŷn+1=MŶn,

where,

Ŷ=(Ẑ,P̂)T and M=

[
1 −c2∆tk2

eq
∆t 1−c2∆t2(1−c1)k2

eq

]
.

The eigenvalues of the evolution matrix (M) are the amplification factor G=[GN1,GN2]
T

for EDP1 method. Furthermore, by substituting k2
eq=

k[2]eq

∆x2 the eigenvalues of the evolution
matrix M are obtained as

GN1,2= e1±
Nc

2
√

e2 (3.2)

with

e1=
−N2

c k[2]eq

2
+

N2
c k[2]eq c1

2
+1,

e2= k[2]eq

(
k[2]eq N2

c c2
1−2k[2]eq N2

c c1+k[2]eq N2
c −4

)
,

where k[2]eq =φ(k∆x) with φ(k∆x) representing the nondimensional equivalent wavenum-
ber, ∆x is mesh-width and Nc is the CFL number defined as, Nc=c∆t/∆x. Using Eq. (3.2),
the condition for the wave-like solutions for the model system given in Eq. (2.3) is given
as, e2<0. Moreover, the stability condition for the discretized system (2.4) using Eq. (3.2)
is given as, |G|≤1.

Spatial discretization of the second-order derivative is performed using second-order
centered (CD2) and the sixth-order compact (C6) [26] schemes. Stencils for (CD2) and
(C6) schemes are given as

u”
i
∣∣
CD2=

ui−1−2ui+ui+2

∆x2 ,(
2

11
u”

i−1+u”
i +

2
11

u”i+1

)∣∣∣∣∣
C6

=
3
11

(
ui−2−2ui+ui+2

4∆x2

)
+

12
11

(
ui−1−2ui+ui+2

∆x2

)
.
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Nondimensional equivalent wavenumbers for the (CD2) and (C6) schemes are given as

φ(k∆x)CD2=2(1−cos(k∆x)), φ(k∆x)C6=
3cos(2k∆x)+48cos(k∆x)−51

8cos(k∆x)+22
.

We have also compared the numerical properties of the EDP1 method with the RK4
method. The numerical amplification factors for the RK4 method are given as

GN1,2
∣∣

RK4=1−
N2

c (k
[2]
eq )

2

2
+

N4
c (k

[2]
eq )

4

24
±i

(
Nck[2]eq −

N3
c (k

[2]
eq )

3

6

)
.

Numerical phase shift is given as, β=arctan
(

GNi
GNr

)
, where, GNr and GNi represent the

real and imaginary parts of the numerical amplification factor, respectively. The normal-
ized numerical phase speed and group velocity are defined as,

cN

c
=

β

k∆xNc
,

VgN

c
=

1
Nc

dβ

dk∆x
.

Contour plots showing absolute values of amplification factor (|GN |), normalized
phase speed (cN/c) and group velocity (VgN /c) for EDP1-CD2 and EDP1-C6 schemes
are shown in Fig. 1 using indicated schemes. Left-column frames correspond to the
EDP1−CD2 scheme, middle-column frames correspond to the EDP1-C6 scheme and
right-column frames show the numerical properties using the RK4-C6 scheme. The shaded
area in Fig. 1 corresponds to non-hyperbolic regions and the dotted area in the top frames
represents the neutrally stable (|G|= 1) regions for the indicated schemes. Comparison
of the numerical properties shown in middle-column and right-column frames of Fig. 1
confirms that for the EDP1-C6 have neutrally stable region up to Nc=0.7614 while for the
RK4-C6 it is up to Nc =0.1. The developed EDP1 method achieved neutral stability over
a larger value of Nc as compared to the RK4 method, which allows the EDP1 scheme to
compute with a larger time-step. Property contours also confirm that the present EDP1
methods have better stability and dispersion properties with less computational com-
plexity as compared to the RK4 method. From the phase speed and group velocity con-
tours shown in Fig. 1, it is evident that the C6 scheme introduces less dispersion and
phase mismatch errors as compared to the CD2 scheme with a minor reduction in the
neutrally stable region.

3.1 Optimization problem to determine the values for free parameter

An optimization problem, as discussed in [33], is considered to fix the value of the free
parameter present in the EDP1 method to improve stability and dispersion properties.
Here, we have considered the following objective functions given as

Ψ(c1,Nc)=
∫ α

0
|GN−Gexact|2d(kh) (3.3)
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Figure 1: Contour plots showing |GN |, cN/c and VgN/c for Eq. (2.3) using indicated schemes. Here, the dotted
area represents the neutrally stable (|GN |=1) region with vertical dash-dotted line (in the top frames) mark the
corresponding (Nc)cr and the shaded area represents the corresponding non-hyperbolic region. Contour plots

for the EDP1 method correspond to free parameter value c1 =1.48×10−4, as given in Table 1.

where GN is the numerical amplification factor and

Gexact= eiNck∆x

is the exact amplification factor. The objective function given in Eq. (3.3) is also subjected
to the following constraints [33], given as

ψ1(c1,Nc)=
∫ α1

0

∣∣|GN |−1
∣∣d(kh)≤ε1, (3.4a)
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ψ2(c1,Nc)=
∫ α2

0

∣∣∣∣(VgN

c

)
−1
∣∣∣∣d(kh)≤ε2, (3.4b)

ψ3(c1,Nc)=
∫ α3

0

∣∣∣∣( cN

c

)
−1
∣∣∣∣d(kh)≤ε3, (3.4c)

here, αi and εi are the admissible error tolerances. The specific values of εi have been
selected according to the discussion in [33]. This process involves systematically explor-
ing the parameter space while keeping the value of Nc constant at an arbitrary but fixed
value. The inclusion of constraints specified in Eq. (3.4) transforms the optimization prob-
lem described by Eqs. (3.3)-(3.4) into a Pareto front optimization problem. The optimal
values of the free parameter c1 are given in Table 1 corresponding to 1D system of the
equation given by Eq. (2.3).

Table 1: Optimal values of free parameter c1 for the discretized system in Eq. (2.4) using EDP1-CD2 and
EDP1-C6 schemes. Here, (Nc)cr denotes the threshold value of Nc up to which method (2.4) is neutrally
stable.

c1
EDP1−CD2 EDP1−C6

Min (|G|) Max (|G|) (Nc)cr Min (|G|) Max (|G|) (Nc)cr
-0.001000 0.998000 1.000000 0.486200 0.998000 1.000000 0.380700
0.000148 1.000000 1.000000 1.000700 1.000000 1.000000 0.761400
0.001000 1.000000 1.002000 0.500200 1.000000 1.002000 0.376300
0.010000 1.000000 1.020200 0.150300 1.000000 1.020200 0.122400
0.015000 1.000000 1.030500 0.127000 1.000000 1.030700 0.099000
0.100000 1.000000 1.222200 0.049100 1.000000 1.222200 0.037400

4 Sound propagation in a homogeneous media

Numerical properties of the EDP1-C6 method were shown in the middle-column frames
of Fig. 1 which displayed the ability of the newly proposed time integration scheme to
compute at a higher CFL number without experiencing numerical instability. This is an
interesting feature of the proposed EDP1-C6 scheme over the traditionally used RK4-C6
scheme as it helps to reduce the computational cost significantly. To test the efficiency and
robustness of the proposed method, we have solved several benchmark problems involv-
ing sound wave propagation in a homogeneous medium. Solutions to these benchmark
cases are discussed next.

4.1 Sound wave propagation in 1D domain

Here we have considered a sound wave propagation inside a 1D domain −7.5≤ x and
x≥7.5. The domain has been divided into 1001 equispaced grid points. The mean den-
sity and the background atmospheric pressure have been prescribed as ρ0 =1.225kg/m3
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Figure 2: Solutions of 1D wave equation (2.3) have been shown for the indicated discretization schemes.
Simulations have been performed for the CFL number Nc = 0.2 and non-dimensional wavenumber k∆x= 1.5.
Dashed lines show the exact solution. Solutions with the EDP1 method are computed with free parameter value
c1 =1.48×10−4, as given in Table 1.

and P0 = 101325Pa, respectively. The ratio of the specific heats is γ= 1.4 and the mean
temperature is T=288K. The sound wave in the form of disturbance in pressure has been
centered in the domain (x= 0) initially, and the corresponding initial condition is given
as

p0= e−2x2
cos(k∆x×x/∆x), u0=0, (4.1)

where p0 and u0 provide initial conditions for the disturbance pressure and velocity
fields, respectively. At the boundaries of the domain, reflecting boundary conditions
are applied using Neumann boundary conditions. The parameter kh refers to the non-
dimensional wavenumber, where ∆x is the uniform grid spacing. To check the perfor-
mance of the newly proposed time integration scheme, we have simulated sound wave
propagation in a 1D domain using EDP1-C6 and RK4-C6 schemes. An initial condition
corresponding to the wave packet with wavenumber k∆x=1.5 has been considered, and
solutions are obtained for various CFL numbers Nc=0.01−0.7. The analytical solution of
this problem [36] suggests that the initial condition will split itself into two equal parts,
which will travel in either direction with a constant phase speed (c) and also retain shape
without undergoing any attenuation and amplification.

Fig. 2 displays solutions of 1D wave equation (2.2) using EDP1-C6 and RK4-C6 schemes.
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Figure 3: Solutions of 1D wave equation (2.3) with time is shown for Nc = 0.5 and k∆x = 1.5. Note that
the solution using EDP1-C6 discretization scheme display good agreement with the analytical solution while
RK4-C6 scheme display significant error. Solutions with the EDP1 method are computed with free parameter
value c1 =1.48×10−4, as given in Table 1.

Dashed lines show the exact solution. Eq. (2.1) has been solved using RK4-C6 discretiza-
tion scheme, while Eq. (2.2) has been solved using EDP1-C6 scheme following the algo-
rithm given in Eq. (2.4). As expected, the initial condition is split into two equal parts,
each traveling in either direction. One observes that both EDP1-C6 and RK4-C6 scheme
computes accurately for the given conditions as the solutions match the analytical results
accurately. On increasing the CFL number to Nc= 0.5, the solution obtained by EDP1-
C6 matches the analytical solution as observed from right-hand frames in Fig. 3. When
the wave equation is solved with RK4-C6 with Nc=0.5, we observe dissipation error as
the magnitude of the obtained solution decreases compared to the exact solution as seen
from left-hand frames in Fig. 3. Also, with time, dissipation error increases significantly
as shown in Fig. 3(d).

By solving the 1D wave equations using the introduced EDP1 scheme and RK4 scheme,
we can conclude that for a given wave number, the EDP1 scheme can solve the equations
at a higher CFL number compared to RK4 time integration scheme accurately. Also, the
time taken by the EDP1-C6 scheme is almost 4 times less than the traditionally used RK4-
C6 scheme as shown in Table 2.
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Table 2: Time required in seconds to simulate a particular number of time-steps for various sound propagation
problems using indicated schemes.

Problem CFL No. RK4-C6 EDP1-C6
(in seconds) (in seconds)

1D wave propagation 0.2 ∼2.1 ∼0.5
Scattering of sound from cylinder 0.4 ∼58.5 ∼13.3

Sound radiation by oscillating piston 0.13 ∼99.1 ∼23.1

4.2 Diffraction of a sound wave around a circular cylinder

Sound waves reflect and diffract around the solid object present in their path. Many
engineering problems involve sound diffraction around a solid surface. The resultant
sound field is dependent on the superposition of the incoming sound waves and the
diffracted sound waves. The diffraction of propeller sound from an aircraft fuselage is
one such example. Such a problem can be modeled by considering the diffraction of a
sound wave around a circular cylinder, as discussed here. For the present problem, one
needs to solve the 2D linearized Euler equations in a non-dimensional form given as [44]

∂u
∂t

+
∂p
∂x

=0, (4.2a)

∂v
∂t

+
∂p
∂y

=0, (4.2b)

∂p
∂t

+
∂u
∂x

+
∂v
∂x

=0. (4.2c)

Eq. (4.2) can be rewritten as
∂2 p
∂t2 =

∂2 p
∂x2 +

∂2 p
∂y2 . (4.3)

Substituting, z= ∂p
∂t , Eq. (4.3) can be rewritten as

∂z
∂t

=
∂2 p
∂x2 +

∂2 p
∂x2 , (4.4a)

∂p
∂t

= z. (4.4b)

Algorithm for solving new first-order coupled PDEs in Eqs. (4.4) is given as

zn+1= zn+∆t(pn
xx+pn

yy), (4.5a)

pn+1= pn+∆t(c1zn+(1−c1)zn+1). (4.5b)

The computational domain for this problem consists of a cylinder with a unit diameter
positioned at the origin as shown in Fig. 4. An acoustic source is located at the point
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Figure 4: Schematic for sound scattering from a solid cylinder.

S(4,0). Here, r and θ represent any arbitrary point’s radial and angular positions in the
domain, respectively. The acoustic disturbance originating at the sound source propa-
gates toward the cylinder as time progresses. The surface of the cylinder is considered
to be purely reflecting. Two points A and B with coordinates as A(r = 5, θ = 90◦) and
B(r=5, θ=180◦) are considered to measure the time history of pressure pulse and com-
pare with the analytical results [44]. The initial condition of the sound wave originating
from the sound source is given as,

po =exp
[
−ln2

(
(x−4)2+y2

(0.22)

)]
.

To solve this problem numerically, an O-grid domain with a domain diameter equal
to 15 times the diameter of the cylinder has been considered. There are 201 equispaced
grid points along the radial direction and 201 equispaced grid points in the azimuthal
direction. The used time-step ∆t=0.005 is such that the CFL number is close to∼0.4. The
minimum distance along the cylindrical surface is 0.016 and the minimum distance along
the radial direction is 0.04. At the far field of the domain, radiative boundary conditions
have been implemented while reflecting, and non-penetrating boundary conditions are
implemented at the cylinder surface [44].

Computations have been carried out using the EDP1 scheme for time advancement,
and spatial derivatives are evaluated using the C6 scheme. The problem has also been
solved numerically using the RK4 time-integration scheme to compare computational
performance with that of the new time-integration method (EDP1 ). Fig. 5 displays the
sound pressure contours obtained through present simulations. Fig. 5(a) displays the
instantaneous contours of sound pressure as given in Tam et al. [44] at non-dimensional
time t= 7 while Figs. 5(b) and (c) display the present simulated results using EDP1-C6
and RK4-C6 schemes, respectively at a non-dimensional time t=7. One can observe that
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Figure 5: Qualitative comparison of diffraction of the acoustic pressure pulse from a reflecting cylinder surface.
Frame (a) depicts the results taken from the literature [44]. Frames (b) and (c) display the computational
results obtained using EDP1-C6 and RK4-C6 schemes, respectively.

both the schemes predict similar waveforms given by Tam et al. [44] at the given instant.
The time history of the variations of the sound pressure amplitude at locations A and B
are shown in Figs. 6(a) and (b), respectively. The frame (a) displays two peaks in the time
history of pressure variation. The first pressure peak is observed when the pressure pulse
reaches location A directly from the sound source. Due to the diffraction of the pressure
pulse around the cylinder, the second peak appears. The frame (b) displays only a single
peak in the pressure history for location B, which is due to the diffraction of the sound
wave around a cylinder. Thus, we conclude that the phase and amplitudes of the sound
pressure waves have been predicted accurately by using the EDP1 and RK4 schemes are
in good agreement with the analytical results [44]. As the refined grid has been used for
simulation, the resultant non-dimensional wavenumber is small and both the schemes
display good results. However, the computational time of the EDP1 scheme is 4 times
smaller than the RK4 scheme as displayed in Table 2.
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Figure 6: Quantitative comparison of time histories of sound pressure variation at indicated locations obtained
using EDP1-C6 and RK4-C6 schemes

4.3 Sound radiation by an oscillating circular piston

Here we consider the generation and propagation of sound waves due to an oscillating
piston. The oscillating piston creates disturbances in pressure in the form of alternate
compression and rarefaction regions. These disturbances in pressure travel throughout
the domain in the form of sound waves. The schematic of the computational domain
has been shown in Fig. 7. An oscillating piston is placed at the origin within a domain
identified as −150≤ r≤150 and 0≤ y≤300. The diameter of the piston is considered as
20, and it oscillates about the mean position located at y=0 as shown in Fig. 7. Here, non-
dimensional linearized axisymmetric Euler equations have been solved in the cylindrical
coordinates. These equations are given as [16],

∂u
∂t

+
∂p
∂r

=0,

∂v
∂t

+
∂p
∂y

=0,

∂p
∂t

+
∂u
∂r

+
∂v
∂y

+
u
r
=0.

These equations can be written as,

∂2 p
∂t2 =

∂2 p
∂r2 +

∂2 p
∂y2 +

1
r

∂p
∂r

. (4.6)
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The boundary conditions along y=0 are given as,

v=0, |r|>10,

v=0.0001sin
(

πt
5

)
, −10≤ r≤10.

Substituting, z= ∂p
∂t , Eq. (4.6) can be rewritten as

∂z
∂t

=
∂2 p
∂x2 +

∂2 p
∂r2 +

pr

r
, (4.7a)

∂p
∂t

= z. (4.7b)

Algorithm of new first-order for Eqs. (4.7) method is written as

zn+1= zn+∆t
(

pn
xx+pn

rr+
pn

r
r

)
, (4.8a)

pn+1= pn+∆t(c1zn+(1−c1)zn+1). (4.8b)

The computational domain has been divided into a very fine grid into 400×401 num-
ber of grid points. The system of Eq. (4.8) has been solved using the proposed EDP1 time
advancement scheme with the parameter c1 =0. Computations have been performed at
two different time-steps (∆t= 0.1 and 0.5). Simulation results obtained using the EDP1
time integration scheme have been compared with the results obtained using the RK4
scheme. The spatial discretization has been obtained using the C6 scheme. The pressure
contours are shown at a non-dimensional time t= 100 in Fig. 8 (a) and (b) for EDP1-C6
and RK4-C6 schemes, respectively for ∆t=0.1 and Nc=0.13. The instantaneous pressure
amplitude variation along the line r=0 at time t=100 has also been compared with the
analytical solution given in Fung et al. [16] as shown in Fig. 8(c). It is observed that the
solutions obtained using the EDP1-C6 and RK4-C6 schemes are in good agreement with
the analytical solution of Fung et al. [16]. Figure 9 represents the variations of pressure
for the CFL number Nc= 0.67 and ∆t= 0.5. We can observe dispersion error for the so-
lution obtained using RK4-C6 scheme shown in Fig. 9(c) while EDP1-C6 is still able to
provide good results on comparing with the exact solution.

Next, we have compared the computational cost for the simulations computed us-
ing RK4-C6 and EDP1-C6 schemes for the problems discussed so far. Table 2 shows the
time required in seconds to simulate a particular number of time-steps for various sound
propagation problems using indicated schemes. One observes that the computations
performed using the EDP1-C6 scheme are almost 4 times faster compared to the RK4-C6
scheme. This highlights the computationally efficient nature of the newly derived EDP1
time integration scheme.
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Figure 7: Schematic of domain containing an oscillating piston.

Figure 8: Acoustic pressure fields are displayed in Frames (a) and (b) for the mentioned schemes at t=100 and
∆t=0.1. Pressure variation with time is displayed in frame (c) and compared with the exact solutions provided
by Fung et al. [16].
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Figure 9: Frames (a) and (b) are showing the comparison of acoustic pressure fields at time t=100 obtained
using EDP1-C6 and RK4-C6 schemes respectively for ∆t=0.5. (c) Pressure variation along the line r=0 at time
t=100 obtained using indicated numerical schemes are compared with the exact solutions of Fung et al. [16].

4.4 Noise attenuation by thin reflecting barriers

This particular benchmark problem has been derived from earlier experimental works of
Kawai [23]. This benchmark problem is designed to study the variations in diffraction
and propagation of acoustic waves in the presence of a thin reflecting barrier placed in
the domain. A reflecting barrier of rectangular shape with finite-thickness is placed in the
computational domain as shown in Fig. 10. The range of the computational domain has
been considered as −7.5m≤ x≤7.5m along the x-direction and −3.4m≤ y≤4.1m along
the y-direction. The height of the reflecting barrier has been considered as 3.4m, and the
thickness has been considered as 0.17m. The origin has been located at the top left corner
of the reflecting barrier as shown in Fig. 10.

The governing equations for the propagation of acoustic waves in a dimensional form
are given in [37] as

∂u
∂t

+
1
ρ0

∂p
∂x

=0, (4.9a)

∂v
∂t

+
1
ρ0

∂p
∂y

=0, (4.9b)
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∂p
∂t

+γP0

(
∂u
∂x

+
∂v
∂y

)
=0. (4.9c)

Eq. (4.9) can be rewritten as

∂2 p
∂t2 =

γP0

ρ0

(
∂2 p
∂x2 +

∂2 p
∂y2

)
. (4.10)

Substituting, z= ∂p
∂t , Eq. (4.10) can be rewritten as

∂z
∂t

=
γP0

ρ0

(
∂2 p
∂x2 +

∂2 p
∂y2

)
,

∂p
∂t

= z. (4.11)

Algorithm of new first-order for Eqs. (4.11) method is written as

zn+1= zn+
∆tγP0

ρ0
(pn

xx+pn
yy), (4.12a)

pn+1= pn+∆t(c1zn+(1−c1)zn+1). (4.12b)

The values of parameters in the governing Eq. (4.9) are considered as ρ0 = 1.225kg/m3,
p0 = 101325N/m2 and γ = 1.4. The Eq. (4.10) is solved using the EDP1-C6 method fol-
lowing the algorithm given by Eq. (4.12). The value of the free parameter is chosen as,
c1 = 1.48×10−4. The time-step used for these simulations is ∆t = 10−6s. A monochro-
matic sound source with a frequency of 500Hz whose disturbance velocity, as given by

Figure 10: Schematic of the domain containing a thin reflecting barrier.
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Figure 11: Acoustic pressure field obtained by the EDP1-C6 scheme at a dimensional time of t=0.009s.

Eq. (4.13), is placed near the left top corner of the barrier at a distance of 0.17m from the
top edge of the reflecting barrier to meet the conditions followed in the experiments of
Kawai [23].

u(y,t)=10−6sin(2π500t)exp
[
−32(y+0.17)2

]
. (4.13)

The acoustic pressure field obtained numerically at time t = 0.09s is shown in Fig. 11.
Since the sound source is placed on the left side of the reflecting barrier, there is an acous-
tic shadow region on the right side of the barrier, as shown in Fig. 11. From the obtained
acoustic pressure field, the values of sound pressure levels (SPL) in decibels (dB) are com-
puted between the time period of 0.03s to 0.04s by considering 100 samples at different
heights (y=−1.0,−0.6, 0.8, and1.2). The obtained results are compared with the experi-
mental results [23] in Fig. 12. The present numerical results obtained using the EDP1-C6
scheme are in good agreement with the experimental results [23].

5 Sound propagation in 2D heterogeneous media

Sound propagation in heterogeneous media is further computationally challenging as
the sound propagation speed varies throughout the domain. In addition, depending on
the individual medium characteristics such as density and sound propagation speed in
a medium, part of the incident sound energy can reflect from the boundary separating
two mediums. A fraction of incident sound energy can transmit across the boundary
separating two mediums. Any inaccuracy associated with a numerical method will be
visible from the computed solutions of such challenging problems. Thus, simulations of
2D sound wave propagation in two- and three-layered heterogeneous media have been
discussed next.
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Figure 12: Sound pressure levels (in dB) obtained at different heights. Frames (a) and (b) depict the SPL
values obtained below the line y=0, while frames (c) and (d) represent the SPL values obtained above the line
y=0. Experimental data is reproduced from Kawai [23].

5.1 Sound propagation in two-layered media

For wave propagation in a layered medium, we have considered solving the 2D inho-
mogeneous wave equation given in Eq. (2.5) in the domain [0,5000m]×[0,5000m] with



S. Kumar et al. / Adv. Appl. Math. Mech., xx (2024), pp. 1-35 23

Figure 13: Schematic diagram for two-layered sound wave propagation model consisting of two homogeneous
layers. Corresponding phase velocity has been indicated in respective layers. The star indicates position of the
sound source.

the zero Dirichlet boundary conditions. The source function is chosen as the Ricker’s
wavelet [28], given as

f (x,y,t)=δ(x−x0,y−y0)
[
1−2π2 f 2

p(t−dr)
2
]

e−π2 f 2
p (t−dr)2

,

where, δ(x−x0,y−y0) is the Dirac distribution and fp=10Hz is the peak frequency. Fig. 13
shows a schematic diagram corresponding to this case. Homogeneous (zero) Dirichlet
boundary conditions are applied on the four sides of the computational domain shown
in Fig. 13, and no boundary condition is required at the layer interface. Here, we would
like to mention that zero boundary conditions will produce reflections from the bound-
aries for longer simulations. In more realistic situations, the boundary reflections can be
avoided by using absorbing perfectly matched layers [4, 29]. To ensure the zero Dirichlet
boundary condition, we have used dr =0.5/ fp. Here, we have performed the numerical
simulation of sound wave propagation in two-layered medium using EDP1-C6 scheme
with ∆x=∆y=12.5m and ∆t=0.001s.

Fig. 14 shows the computed sound fields at the indicated instants for a two-layered
medium. Solutions at t= 0.3s suggest that the computed wavefront forms a perfect cir-
cular shape before hitting the interface between two-layers. Moreover, by t= 0.65s, the
wavefront hits the interface, and part of the incident sound energy gets reflected while
the other part gets transmitted in the bottom layer. As both layers are homogeneous, the
reflected as well as refracted wavefronts are of the perfect circular form in the left half and
the right half regions of the domain. Furthermore, both the reflected and refracted wave-
fronts propagate away as time advances, and the distance covered by the pressure pulse
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Figure 14: Development of sound fields in the two-layer medium at indicated instants using EDP1-C6 scheme.

in the bottom layer is larger than the top layer. This is because the bottom layer’s wave
propagation speed is twice that of the top layer. It is also observed that the amplitude
of the refracted wave in the bottom layer is relatively weaker than the reflected wave in
the top layer. The wavelength associated with the sound wavefront in the bottom layer
is twice that in the top layer, as the phase speed in the bottom layer is twice that in the
top layer. Finally, we would like to emphasize that here the computed solutions are not
able to reach the domain’s boundary for the used time, thus we do not observe reflections
from the boundaries in the present case.

5.2 Sound propagation in three-layered media

To further demonstrate the application of the EDP1 time integration scheme in solving
complex sound wave propagation problems in a heterogeneous medium, the corner-edge
model [45] problem has been simulated. The 2D wave propagation in a heterogeneous
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Figure 15: Schematic diagram for the corner edge model. The star indicates a sound source which has been
located at the center of the domain.

medium as given by Eq. (2.5) has been solved in a domain that consists of three regions,
I, II, and III. The phase speed of sound propagation in region I is 2.0km/s, 3.0km/s in
region II, and 4.0km/s in region III. For performing simulation, we have considered a
domain (0,12000m)×(0,12000m). The sound source has been prescribed as

f (t)=−5.76 f 2
0
[
1−16(0.6(0.6 f0t−1)2)

]
e(0.6 f0t−1)2

.

The sound source has a peak frequency of f0=20Hz and is located at the center of the do-
main. Homogeneous (zero) Dirichlet boundary conditions are applied on the four sides
of the computational domain shown in Fig. 15 and no boundary conditions are required
at the layer interfaces. Here also we would like to mention that for large-time integra-
tion, zero boundary conditions will produce reflections from the boundaries, and in more
realistic situations, the boundary reflections can be avoided using absorbing perfectly
matched layers [4, 29].

For simulations, we have chosen a time-step of ∆t = 0.006s and the spatial steps of
∆x=∆y=40m. Fig. 15 shows a schematic diagram corresponding to this case. Simulations
have been performed using the EDP1-C6 method, and the computed solutions at the
indicated instants are shown in Fig. 16. The snapshot at t= 0.5s shows the propagation
of a sound wave with no reflections as the sound wave propagates inside an isotropic
homogeneous region III. At t = 0.8s, one observes the reflected and transmitted waves
from the horizontal and vertical inner interfaces. The snapshots at t=1.2s and 1.5s display
more complex wave fields than the previous snapshots. One observes the reflection and
the transmission of sound waves from different inner interfaces. The four snapshots in
Fig. 16 clearly show wave propagation phenomena, including reflection and transmission
at horizontal and vertical interfaces in the corner-edge model without visible numerical



26 S. Kumar et al. / Adv. Appl. Math. Mech., xx (2024), pp. 1-35

Figure 16: Development of sound fields in the three-layers medium with time has been shown using EDP1-C6
scheme.

dispersion. As for the used time, computed solutions are not able to reach the domain’s
boundary, thus in the present case also, we do not see the reflections from the boundaries.

6 Simulations of 2D sine-Gordon equation

A soliton represents wave-like solutions to nonlinear dynamical systems that move across
the medium without deforming due to dispersion. Moreover, a model representing
the Josephson junction [20] can be described by the 2D sine-Gordon equation admit-
ting soliton solution [10]. Solitons have been demonstrated to play a pivotal role in
nonlinear PDEs, and they appear as a solution for a variety of equations such as the
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Korteweg–de Vries equation, the sine-Gordon equation, and the nonlinear Schrödinger
equation. Condensed-matter physics, optical fibers, shallow-water waves, and Josephson-
junction oscillators are just a few of the physical applications where solitons have been
discovered. Moreover, solitons are also thought to be fundamental excitations in a class
of fully integrable Hamiltonian systems described by nonlinear dispersive PDEs. The re-
view article [18] provides an in-depth look at the soliton solutions for several well-known
PDEs.

This section deals with numerical simulations of the 2D undamped sine-Gordon equa-
tion. Numerical solutions are considered for a Josephson junction described by a 2D
damped sine-Gordon equation [31], given as

∂2u
∂t2 +β

∂u
∂t
− ∂2u

∂x2−
∂2u
∂y2 =F(x,y)sinu, β≥0, (6.1)

where u represents the phase of the soliton. Here, we have chosen the computational
domain, as, Ω = {(x,y), −a < x < a, −b < y < b} and t > 0, were β > 0 is the damping
coefficient and F(x,y) denotes Josephson current density. We have considered Eq. (6.1)
having β= 0 and F(x,y)=−1 with initial and Neumann boundary conditions, as given
in [15],

u(x,y,0)=4tan−1(e(x+y)), (x,y)∈ (−7,7), (6.2a)

∂u
∂t

(x,y,0)=− 4e(x+y)

1+e(2x+2y)
, (x,y)∈ (−7,7), (6.2b)

and
∂u
∂x

(y,t)
∣∣∣

x=−7,7
=

4(e(x+y+t))

e(2t)+e(2x+2y)
, y∈ (−7,7), t>0, (6.3a)

∂u
∂y

(x,t)
∣∣∣
y=−7,7

=
4(e(x+y+t))

e(2t)+e(2x+2y)
, x∈ (−7,7), t>0. (6.3b)

The exact solution of the Eq. (6.1) with initial and boundary conditions given in Eqs. (6.2)-
(6.3) for zero damping coefficient (β=0) is given as [15]

u(x,y,t)=4tan−1(e(x+y−t)).

For numerical simulations, we have chosen mesh-step size ∆x=∆y=0.25 and time-step
size ∆t=0.001. Spatial discretization is performed using the C6 scheme. Fig. 17 shows the
comparison of numerical and exact solutions of the Eq. (6.1) at indicated instants. From
Fig. 17 it is observed that numerical results match very well with the exact solution.

6.1 Numerical simulations of the superposition of two orthogonal
line solitons

As soliton solutions exist in various nonlinear PDEs, physical applications of solitons
have been found in shallow water waves, optical fibers, and Josephson junction oscilla-
tors. Furthermore, analytical solutions are no longer attainable in more realistic systems
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Figure 17: Comparison of numerical solutions obtained using EDP1−C6 scheme with the exact solutions of
undamped sine-Gordon equation given in Eq. (6.1) at indicated instants with initial and Neumann boundary
conditions given by Eqs. (6.2)-(6.3), respectively. The value of damping coefficient β= 0, Josephson current

density F(x,y)=−1, ∆x=0.25, ∆t=0.1 and c1 =1.48×10−4.

with a damping effect from external forces, necessitating the use of numerical methods.
The same holds for solitons or soliton-like formations in 2D or 3D, where the solitary
waves’ behaviors are mainly dependent on the number of space dimensions [3].

The superposition of two orthogonal line solitons is simulated using Eq. (6.1) with
β 6=0 and F(x,y)=−1. The initial and boundary conditions [15] are chosen as,

u(x,y,0)=4tan−1(e(x))+4tan−1(e(y)), (x,y)∈ (−6,6), (6.4a)
∂u
∂t

(x,y,0)=0, (x,y)∈ (−6,6), (6.4b)
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Figure 18: Breakdown of two orthogonal line solitons with initial and Neumann boundary condition given
by Eqs. (6.4)-(6.5) at indicated instant using EDP1-C6 scheme. Here, β = 0.05, Josephson current density

F(x,y)=−1, ∆x=0.25, ∆t=0.1 and c1 =1.48×10−4.
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and

∂u
∂x

(y,t)
∣∣∣

x=−6,6
=0, y∈ (−6,6), t>0, (6.5a)

∂u
∂y

(x,t)
∣∣∣
y=−6,6

=0, x∈ (−6,6), t>0. (6.5b)

Computations are performed with ∆x =∆y= 0.25, ∆t= 0.001 and β= 0.05. Spatial dis-
cretization of the derivatives and homogeneous Neumann boundary conditions are ac-
complished using the C6 scheme. Numerical results shown in Fig. 18 indicate that the
line solitons are moving away from each other along the y= x line. The small value of
damping coefficient (β) slows down the movement of orthogonal line solitons, which is
also observed in the solutions shown in the bottom frames of Fig. 18 at t= 7 with β= 0
and β=0.05, respectively.

Moreover, taking the inner product of Eq. (6.1) with ut and using the homogeneous
Neumann boundary condition given by Eqs. (6.4)-(6.5), we have

∂

∂t

[
1
2

∫∫
Ω

(
u2

t +|∇u|2+2(1−cosu)
)

dxdy
]
=−β

∫∫
Ω
(ut)

2dxdy, (6.6)

where ∇u represent the gradient of u. From Eq. (6.6) it is evident that for the undamped
(β=0) sine-Gordon equation, the total (kinetic and potential) energy (E) given by

E=
1
2

∫∫
Ω

(
u2

t +|∇u|2+2(1−cosu)
)

dxdy (6.7)

remains conserved. However for damped case (β> 0), the total energy (E) is not con-
served, and this term signifies the dissipation of energy from the system. The initial
energy (at t= 0) is calculated over Ω by substituting initial conditions given in Eq. (6.4)
into Eq. (6.7). The resulting expression for the initial energy (E0) is given as

E0=8

[
b(ea−e−a)

ea+e−a +
a
(
eb−e−b)

eb+e−b

]
+8
[

1
1+e−2a−

1
1+e2a

][
1

1+e2b−
1

1+e−2b +b
]

+8
[

1
1+e−2b−

1
1+e2b

][
1

1+e2a−
1

1+e−2a +a
]

+4
[
sin2tan−1(ea)−sin2tan−1(e−a)

][
sin2tan−1(eb)−sin2tan−1(e−b)

]
.

Fig. 19 shows the energy conservation for damped and undamped sine-Gordon equation
given in Eq. (6.1). In Fig. 19, frame (i) shows that the energy remains conserved for the
undamped (β=0) case and frame (ii) shows that energy decays for the positive value of
the damping coefficient (β=0.05).



S. Kumar et al. / Adv. Appl. Math. Mech., xx (2024), pp. 1-35 31

Time

E
n

er
g

y

1 2 3 4
155

160

165

170

175

180

185

Numerical Energy

Initial Energy

(i) β = 0

Time

E
n

er
g

y

0 1 2 3 4
155

160

165

170

175

180

185

Numerical Energy

Initial Energy

(ii) β = 0.05

Figure 19: Energy conservation using EDP1−C6 scheme for damped sine-Gordon equation with initial and
Neumann boundary condition given by Eqs. (6.4)-(6.5). Here, β=0.05, Josephson current density F(x,y)=−1,

∆x=0.25, ∆t=0.1 and c1 =1.48×10−4.

7 Summary and conclusions

This paper has developed new dispersion relation preserving methods for sound and
nonlinear wave equations having second-order derivatives in time. The Fourier stability
analysis is used to assess the numerical properties of the present techniques. We have
also compared the numerical properties of the developed method with the classical RK4
method, which confirms that the current methods outperform the RK4 method. Fur-
thermore, we have also proved that the proposed method preserves energy, validated
numerically by solving the damped and undamped sine-Gordon equation. Furthermore,
to test the efficiency and robustness of the developed methods, we have also performed
numerical simulations of sound wave propagation in homogeneous and two- and three-
layered heterogeneous media. Numerical sound wave simulations show that the devel-
oped methods introduce less dispersion, phase-mismatch, and stability errors. Finally,
numerical simulations of the damped sine-Gordon equation are performed for the case
of line solitons, which validate that the proposed methods can depict the physical behav-
ior of solitons in a very efficient manner.

Appendix: Consistency analysis

For the consistency analysis of the EDP1 method, we have considered Eq. (2.3) in matrix
form as

∂

∂t

[
z
p

]
+A

[
z
p

]
=O, (A.1)
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where, A=

[
0 −c2 ∂2

∂x2

−1 0

]
and O is a zero column matrix. By denoting φ=

[
z
p

]
, Eq. (A.1)

can be written as

Lφ≡ ∂φ

∂t
+Aφ=O. (A.2)

Next, using CD2 for spatial discretization in the semi-discretized system given in Eq. (2.4),
we have

zn+1
i −zn

i
∆t

− c2

∆x2

(
pn

i+1−2pn
i +pn

i−1
)
=0, (A.3a)

pn+1
i −pn

i
∆t

−
(

c1zn
i +(1−c1)zn+1

i

)
=0, (A.3b)

By using Taylor series expansion, Eq. (A.3) can be represented as[
zt−c2 pxx

]n
i +O(∆t)+O(∆x2)=0,

[pt−z]ni +O(∆t)=0,

using vector notations, the above system can be represented as

∂

∂t

[
zn

i
pn

i

]
+A

[
zn

i
pn

i

]
+O(∆t)+O(∆x2)=O. (A.4)

Let φ∆t,∆x2 =

[
zn

i
pn

i

]
, then Eq. (A.4) can be written as

Lφ∆t,∆x≡
∂φ∆t,∆x

∂t
+Aφ∆t,∆x+O(∆t,∆x)=O.

Finally, from Eqs. (A.2) and (A.4) it is evident that Lφ−Lφ∆t,∆x→0 as (∆t,∆x)→0. This
proves that the EDP1-CD2 method is consistent.
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