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1 Introduction

In this article, we analyse stochastic gradient descent schemes for C1-objective functions

f : Rd → R with d ∈ N := {1, 2, . . .} being an arbitrary dimension. We denote by

(Ω,F , (Fn)n∈N0
, P) a filtered probability space and consider an Rd-valued stochastic pro-

cess (Xn)n∈N0
that admits a representation

Xn = Xn−1 + γn(Γn + Dn) (1.1)

for n ∈ N, where

• (γn)n∈N is a sequence of strictly positive reals, the step-sizes or learning rates.

• (Γn)n∈N is an (Fn)n∈N0
-predictable sequence of random variables, the drift.

• (Dn)n∈N is an (Fn)n∈N-adapted sequence of random variables, the perturbation.

• X0 is an F0-measurable random variable, the initial value.
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The choice (Γn)n∈N = (−∇ f (Xn−1))n∈N leads to a standard representation of stochastic
gradient descent. However, our results hold for a more general class of dynamical sys-
tems, including momentum stochastic gradient descent (see Section 2), assuming the drift
is comparable in size and direction to the gradient vector field (the precise condition is
given in Definition 1.1). Additional assumptions will be imposed in the theorems below.

Stochastic gradient descent schemes form a subclass of Robbins-Monro schemes which
were introduced in 1951 [63] and have been highly influential since then. Their relevance

stems from their applicability of finding zeros of functions F : R
d → R

d in the case where
one has only simulations at hand which give approximations to the value of F in mean.
Following the original papers a variety of results were derived, and we refer the reader to
the mathematical accounts [9, 23, 41] on stochastic approximation methods.

In this article, we analyse convergence of (Xn)n∈N0
. This problem is intimately re-

lated to understanding the asymptotic behaviour of (∇ f (Xn))n∈N0
. The classical anal-

ysis of Polyak and Tsypkin [60] yields existence of the limit limn→∞ f (Xn) and proves
lim infn→∞ |∇ f (Xn)| = 0 under appropriate assumptions. Later, Walk [70] showed that
in an appropriate setting one has almost sure convergence limn→∞ ∇ f (Xn) = 0. Similar
results were established in various settings, see [10, 26, 30, 43, 47, 49].

We will provide a short proof for limn→∞ ∇ f (Xn) = 0 under weak assumptions. Here,
we include the case where ∇ f is only Hölder continuous and where (Dn)n∈N is an Lp-
martingale difference sequence for a p ∈ (1, 2]. Then, we will conclude that we have
almost sure convergence of (Xn)n∈N0

on the event that (Xn)n∈N0
stays bounded in the

case where the set of critical points of f does not contain a continuum, see Theorem 1.1
below.

In the case where the set of critical points of f contains a continuum of points the sit-
uation is more subtle. In that case, Tadic [68] showed that under a Łojasiewicz-inequality
stochastic gradient descent schemes converge under appropriate additional assumptions.
In this article, our considerations are also based on the validity of certain Łojasiewicz-
inequalities. However, here we allow the drift to be more general so that the new conver-
gence theorem is applicable for a bigger class of optimisation methods such as momentum
stochastic gradient descent (MSGD). We stress that the proofs developed in this article are
significantly different from the ones in [68]. We mention that the asymptotic behaviour of
a stochastic gradient descent scheme is tightly related to that of the first order differential
equation

ẋt = −∇ f (xt) (1.2)

(though many approximation results only hold for a finite time-horizon), see e.g. [50,
Proposition 1]. Convergence for the latter differential equation is a non-trivial issue even
in the case where the solution stays on a compact set: One can find C∞-functions f to-
gether with solutions (xt)t≥0 that stay on compact sets but do not converge, see [54, Ex-
ample 3, page 14]. Counterexamples of this structure have been known for a long time (see
e.g. [16]) and include the famous Mexican hat function [1]. To guarantee convergence (at
least in the case where the solution stays on a compact set), one needs to impose additional
assumptions. An appropriate assumption is the validity of a Łojasiewicz-inequality, see
Definition 1.2 below. This assumption has the appeal that it is satisfied by analytic func-
tions, see [45, 46].
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Recently, there is a growing interest in the case where a Łojasiewicz-inequality holds
with exponent β = 1/2, often referred to as Polyak-Łojasiewicz-inequality (or PŁ-inequa-
lity). The idea first appeared in 1963 in an article of Polyak [57] where linear convergence
in the objective function is shown for non-perturbed gradient descent. In machine learn-
ing, this inequality turns out to be quite effective as a tool to weaken strict convexity
assumptions and allow multiple global minima, see e.g. [7, 27, 29, 37, 69, 72, 76] and the
references therein. We stress that still the respective assumptions are significantly stricter
than the ones we will impose. In particular, the existence of a global PŁ-inequality im-
plies that the objective function f is quasi-strongly convex, see e.g. [4, 62]. In contrast, our
analysis allows the landscape to contain local minima, maxima or saddle points.

In the main result of this article, we prove convergence of (Xn)n∈N0
for objective func-

tions that are Łojasiewicz-functions (i.e. locally satisfy a general Łojasiewicz-inequality)
on the event that the scheme stays bounded, see Theorem 1.2 below. In particular, our re-
sult applies if the objective function is analytic. This generalises the analysis in [1] where
convergence of gradient descent without stochastic noise is considered. We stress that the
limit points may be local minima as well as saddle points. After a preprint version of this
article appeared, there has been a lot of interest in the interplay between stochastic optimi-
sation algorithms and loss landscapes satisfying locally Kurdyka-Łojasiewicz-inequalities
(a slight generalisation of the Łojasiewicz-inequality) and we point to [14,24,34,44,51] for
recent developments in this direction.

As an example we provide a machine learning application: In the case where in a deep
learning representation the activation function is analytic (for instance, softplus, hyper-
bolic tangent, or sigmoid) and the random variables modelling the signal and the response
are compactly supported, the respective objective function is analytic, see Theorem 5.1.
Hence, in that case our results show that a SGD scheme associated with the training of the
network converges almost surely on the event of staying bounded. Concerning the train-
ing of neural networks via SGD we also refer the reader to [5, 6, 11, 19, 22, 25, 28, 35, 36, 42].
Related objective functions (loss landscapes) are analysed in [15, 17, 20, 52, 55, 61].

Our analysis is based on non-asymptotic inequalities and if one has additional informa-
tion about the explicit Łojasiewicz-type inequalities for the objective function to hold our
results entail moment estimates for the objective function value, see Proposition 4.2, and
the distance that can be overcome by the SGD when observing convergence to a particular
critical level, see Proposition 4.4.

Let us summarise the contribution of the present work:

• We show almost sure convergence of ( f (Xn))n∈N0
and (∇ f (Xn))n∈N0

under the as-
sumption that ∇ f is locally Hölder continuous and (Dn)n∈N is an Lp-martingale
difference sequence for a p ∈ (1, 2], see Theorem 1.1.

• We generalise the result in [68] showing almost sure convergence of (Xn)n∈N0
under

the assumption that f is a Łojasiewicz-function, see Definition 1.2, where we weaken
the assumptions on the step-sizes (γn)n∈N and stochastic noise (Dn)n∈N, see Theo-
rem 1.2.

• Both results are shown for a general class of dynamical systems assuming a certain
angle condition between the drift term (Γn)n∈N and the gradient of the objective
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function (∇ f (Xn−1))n∈N, see Definition 1.1. Therefore, our results hold for other
optimisation methods including momentum stochastic gradient descent, see Theo-
rem 2.1.

• We verify the validity of a Łojasiewicz-inequality in the supervised learning setting
using neural networks with analytic activation function, see Theorem 5.1.

We proceed with the central definitions and statements.

Definition 1.1. 1. We denote by L the event that (Xn)n∈N0
stays bounded, i.e.

L =
{

lim sup
n→∞

|Xn| < ∞
}

.

2. We denote by G the event

G =

{

lim inf
n→∞

〈−∇ f (Xn−1), Γn〉
|∇ f (Xn−1)|2

> 0 and lim inf
n→∞

|∇ f (Xn−1)|
|Γn|

> 0

}

,

where we interpret 0/0 as ∞.

3. For q ≥ 1 and a sequence (σn)n∈N of strictly positive reals, we denote by Mσ,q the event1

M
σ,q =

{

lim sup
n→∞

σ−1
n E

[
|Dn|q|Fn−1

] 1
q < ∞,

and E[Dn|Fn−1] = 0 for all but finitely many n
}

.

Remark 1.1. Let us discuss the satisfiability of the latter events. First, for continuously dif-
ferentiable objective functions f with Lipschitz continuous differential satisfying f (x)→∞

as |x| → ∞ the SGD process almost surely stays bounded (see [19, Lemma D.1]). In the
case that f does not necessarily satisfy the latter property, one can add an L2-regularisation
term, i.e. replace f by f̃ given by f̃ (x) = f (x) + a|x|2/2 for a sufficiently large a > 0
(see [19, Remark 2.8]). Next, when considering stochastic gradient descent, i.e. (Γn)n∈N =
(−∇ f (Xn−1))n∈N, we clearly have P(G) = 1. However, the class of optimisation meth-
ods satisfying P(G) = 1 is much broader and include, e.g. line-search methods (see [53,
Chapter 3] and [1, Chapter 4.1]), inexact gradient methods (see, e.g. [39]) and momentum
stochastic gradient descent (see Section 2). The two conditions defining the set G guaran-
tee that the size of the drift Γn and the negative gradient −∇ f (Xn−1) are asymptotically
comparable and the angle between the two vectors stays uniformly below 90◦ at late times.
See [12] for more examples of gradient-based optimisation dynamics satisfying this angle
condition. Last, in stochastic optimisation a common assumption on the perturbation is
the so-called ABC condition, stating that there exist constants A, B, C ≥ 0 such that

E
[
|Dn|2|Fn−1

]
≤ 2A

(
f (Xn−1)− f (x∗)

)
+ B|∇ f (Xn−1)|2 + C,

1Formally, E[Dn|Fn−1] = 0 is to be understood as condition E[D+
n |Fn−1] = E[D−

n |Fn−1] < ∞, where D+
n and D−

n
denote the positive and negative part of Dn. Note that for general non-negative random variables conditional expectations
are always well-defined and, in particular, we do not assume integrability of Dn in this article.
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where x∗ denotes a critical point of f (see, e.g. [29, 38, 43]). Note that, after establishing
boundedness of (Xn)n∈N, the first and second terms on the right-hand side in the latter
inequality can be bounded by a constant depending on the bounds of the objective func-
tion and its differential on the relevant domain. In this work, we allow the size of the
stochastic noise to be comparable to a (possibly unbounded) sequence (σn)n∈N.

Let us state our first main result concerning the convergence of ( f (Xn))n∈N0
as well as

(∇ f (Xn))n∈N0
. We stress that, comparing to classical results, we weaken the assumptions

on the objective function (allowing functions with Hölder continuous differential) and
on the stochastic perturbation (allowing martingale differences in L1+α1 for an α1 > 0).
See [32, 65] for heavy-tailed noises in SGD that are in L1+α1 for an α1 < 1 but have an infi-
nite second moment. Various sequences (σn)n∈N appear in multilevel stochastic gradient
descent algorithms, see [21].

Theorem 1.1. Let 0 < α1 ≤ α2 ≤ 1 and (σn)n∈N be a sequence of strictly positive reals. Suppose
that ∇ f is locally α2-Hölder continuous, that γn → 0,

∞

∑
n=1

(γnσn)
1+α1 < ∞,

and in the case where α2 < 1 that, additionally,

∞

∑
n=1

γ

1+α2
1−α2
n < ∞.

Then, almost surely, on C := L ∩ G ∩ Mσ,1+α1, the limit limn→∞ f (Xn) exists and, if addition-
ally, ∑

∞
n=1 γn = ∞, one has almost surely, on C, that

lim
n→∞

∇ f (Xn) = 0.

Moreover, in the case where the set of critical points of f , C = {x : ∇ f (x) = 0}, does not contain
a continuum of elements, i.e. there does not exist an injective mapping taking [0, 1] to C, then we
have almost sure convergence of (Xn)n∈N0

on C.

Remark 1.2. Note that in the case where C is countable the set C does not contain a con-
tinuum of elements.

Next we prepare the main result of convergence under Łojasiewicz-type assumptions.

Definition 1.2. We call a function f : Rd → R Łojasiewicz-function, if f is continuously differ-
entiable with locally Lipschitz continuous differential and if for every x ∈ C = ∇ f−1({0}), the
Łojasiewicz-inequality is true on a neighbourhood Ux of x with parameters Ł > 0 and β ∈ [1/2, 1),
i.e. for all y ∈ Ux,

|∇ f (y)| ≥ Ł | f (y)− f (x)|β.

Remark 1.3. Note that for all x /∈ C and β > 0 there trivially exist a neighbourhood Ux and
constant Ł > 0 such that the Łojasiewicz-inequality with parameter Ł and β hold on Ux.
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Theorem 1.2. Let f be a Łojasiewicz-function and q ≥ 2. Suppose that for n ∈ N,

γn = Cγn−γ, σn = nσ,

where Cγ > 0, γ ∈ (1/2, 1] and σ ∈ R. If

2

3
(σ + 1) < γ,

1

2γ − σ − 1
< q,

then, on C := L ∩ G ∩ Mσ,q, the process (Xn)n∈N0
converges, almost surely, to a critical point

of f .

Remark 1.4. In the case where γ > 1, q ∈ [1, 2] and σ ∈ R with q(γ − σ) > 1 we clearly
have almost sure convergence on

C := L ∩ G ∩ M
σ,q.

However, in that case limn→∞ Xn is not necessarily a critical point of f . Indeed, let K be
a compact set and consider the events

A
N,C,K
n =

n⋂

ℓ=N

{
Xℓ ∈ K, |Γℓ+1| ≤ C|∇ f (Xℓ)|, E

[
|Dℓ+1|q | Fℓ

]
≤ Cσ

q
ℓ+1, E[Dℓ+1 | Fn] = 0

}
.

Then, on A
N,C,K
∞ =

⋂

n≥N A
N,C,K
n we have for all n > N,

|Xn − XN | ≤ C‖∇ f‖L∞(K)

n

∑
ℓ=N+1

γℓ +

∣
∣
∣
∣

n

∑
ℓ=N+1

γℓDℓ

∣
∣
∣
∣
.

Moreover,

(Mn)n>N =

( n

∑
ℓ=N+1

1l
A

N,C,K
ℓ−1

γℓDℓ

)

n>N

is a martingale which converges almost surely on A
N,C,K
∞ due to Lemma 3.2. The result

then follows by taking the countable union over such sets.

Remark 1.5. 1. The assumption q > (2γ− σ− 1)−1 in Theorem 1.2 is only a technical con-
dition to control the undershoots of the SGD scheme near a local maximum or saddle
point. If, on L∩Mσ,2, we have almost surely that d(Xn,M) → 0, where M denotes the
set of all local minima of f , then q = 2 is sufficient for all choices of γ and σ satisfying
2(σ + 1)/3 < γ.

2. We consider the case, where (γn)n∈N = (Cγn−γ)n∈N with Cγ > 0 and γ ∈ (1/2, 1] and
(Dn)n∈N is a sequence of martingale differences with size of order O(1). In an earlier
work, Tadic [68] showed almost sure convergence of stochastic gradient descent (see
also [67] for an extended version) for analytic objective functions under the assumption
that there exists an r > 1 such that, almost surely,

lim sup
n→∞

max
k≥n

∥
∥
∥
∥

k

∑
i=n

γit
r
i Di

∥
∥
∥
∥
< ∞,
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where tn = ∑
n
i=1 γi. While this assumption requires γ > 3/4 our analysis allows us to

go as low as γ > 2/3.

3. The SGD scheme shows similar behaviour as the solution to an SDE with a drift term
which is comparable in size and direction to −∇ f plus a diffusion term with vanish-
ing diffusivity. Such SDEs are analysed in [18], where the diffusive term is assumed
to have a bracket process whose magnitude is bounded by t−2ρ dt with ρ ∈ (0, ∞). If
ρ > 1, one can devise a convergence proof for the SDE under analogous assumptions
as imposed here. Conversely, there exists a counterexample with ρ = 1 for which the
SDE diverges and circles around a sphere infinitely often, see [18]. When translating
the SGD problem (with exponent γ < 1) analysed here into the SDE problem the asso-
ciated ρ is

ρ =
γ − 2σ

2 − 2γ
.

Note that 2(σ+ 1)/3 is the largest γ-value for which the respective ρ is smaller or equal
to 1. This suggests that in Theorem 1.2 the assumption γ > 2(σ + 1)/3 is natural and
that the result does in general not hold for smaller γ.

We give two important applications of the main statement above. As found by Rup-
pert [64] and Polyak [58, 59], in many scenarios the running average of a Robbins-Monro
algorithm yields a better performance as the Robbins-Monro algorithm itself. This is even
the case where the potential limit points are non-discrete and form a stable manifold,
see [19]. Convergence of the algorithm seems to be (up to very particular examples) a ne-
cessity for the Ruppert-Polyak-averaging to have a positive effect. Our research suggests
that Ruppert-Polyak-averaging may also have a positive effect in our setting. At least it
entails that the average converges to the same parameter value and thus gives in the limit
the same target value (loss) as the Robbins-Monro algorithm itself.

A promising line of recent research focusses on the implicit bias of gradient descent
algorithms, see e.g. [2, 13, 31, 66, 74] and the references mentioned therein. Although the
model is often trained using a fixed training set, stochastic gradient descent seems to pick
an empirical risk minimiser that generalises well to unseen data. A common state-of-the-
art hypothesis in the machine learning community is that implicit bias might be one of the
reasons for the outstanding performance of stochastic gradient descent in practice. Our
results further motivates the analysis of the implicit bias. In particular, we show that SGD
converges to a limit point and one is left to investigate key properties of the limit that
may be important to achieve a good generalisation error (such as flatness of the minima,
e.g. [73, 75, 77]).

The article is arranged as follows. In Section 2, we apply our results to show con-
vergence of momentum stochastic gradient descent. In Section 3, we provide the proof
of Theorem 1.1. Section 4 proceeds with the proof of Theorem 1.2. Finally, Section 5 dis-
cusses analytic neural networks and, in particular, analyticity of a particular deep learning
network is established in Theorem 5.1. Recall that analyticity of the objective function f
implies that f is a Łojasiewicz-function. Therefore, our main results apply for the objec-
tive functions that arise from a regression task in supervised learning when using analytic
activation functions and an analytic loss function, see Theorem 5.1.
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2 Convergence of momentum stochastic gradient descent

Consider the second order system satisfying

Xn = Xn−1 + γn

(
Vn−1 + D

(1)
n

)
,

Vn = Vn−1 − γn

(
µVn−1 +∇ f (Xn−1)− D

(2)
n

) (2.1)

for n ∈ N, where µ > 0, (D
(1)
n )n∈N and (D

(2)
n )n∈N are (Fn)n∈N-adapted sequences

of random variables, (γn)n∈N is a sequence of strictly positive reals and X0, V0 are F0-
measurable random variables. Set

Γn :=

(
Vn−1

−µVn−1 −∇ f (Xn−1)

)

, Dn :=

(

D
(1)
n

D
(2)
n

)

,

and note that (2.1) can be written as the first order system (1.1).

Theorem 2.1. (i) Let 0 < α1 ≤ α2 ≤ 1 and (σn)n∈N be a sequence of strictly positive reals.
Suppose that f is C2 and Hess f is locally α2-Hölder continuous, that γn → 0,

∞

∑
n=1

γn = ∞,
∞

∑
n=1

(γnσn)
1+α1 < ∞,

and in the case where α2 < 1 that, additionally,

∞

∑
n=1

γ

1+α2
1−α2
n < ∞.

Then we have almost surely on the event L ∩ Mσ,1+α1 that Vn → 0 and ∇ f (Xn) → 0.

(ii) Let f be a C2-Łojasiewicz-function such that Hess f is locally Lipschitz continuous and q ≥ 2.
Suppose that for n ∈ N,

γn = Cγn−γ, σn = nσ,

where Cγ > 0, γ ∈ (1/2, 1] and σ ∈ R. If

2

3
(σ + 1) < γ,

1

2γ − σ − 1
< q,

then, on L ∩ Mσ,q, the process (Xn)n∈N0
converges, almost surely, to a critical point of f .

Proof. (i) Let K ⊂ Rd be a compact set, define LK =
⋂

n∈N0
{Xn ∈ K} and note that it

suffices to show the statement on the event LK ∩ Mσ,1+α1 since L =
⋃

n∈N LKn , where

(Kn)n∈N denotes an increasing sequence of compact sets with
⋃

n∈N Kn = Rd. For a > 0
define the energy function

E(x, v) :=
1

2
‖v‖2 + f (x) + a〈∇ f (x), v〉,
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so that

∇E(x, v) =

(∇ f (x) + a Hess f (x)v

v + a∇ f (x)

)

.

Set C := supx∈K ‖Hess f (x)‖ and note that for all n ∈ N we have

|Γn|2 ≤ (1 + 2µ2)|Vn−1|2 + 2|∇ f (Xn−1)|2

as well as

|∇E(Xn−1, Vn−1)|2 ≥ (1 − 2a + a2)|∇ f (Xn−1)|2 +
(
1 − (C2 + 1)a

)
|Vn−1|2,

|∇E(Xn−1, Vn−1)|2 ≤ (1 + 2a + a2)|∇ f (Xn−1)|2 +
(
1 + (C2 + 1)a + C2a2

)
|Vn−1|2,

and

〈−∇E(Xn−1, Vn−1), Γn〉 ≥
(

µ − aC − a

2
µ2

)

|Vn−1|2 +
a

2
|∇ f (Xn−1)|2.

Thus, for sufficiently small a we have

P

(

L
K ∩

{

lim inf
n→∞

〈−∇E(Xn−1, Vn−1), Γn〉
|∇E(Xn−1, Vn−1)|2

≤ 0 or lim inf
n→∞

|∇E(Xn−1, Vn−1)|
|Γn|

≤ 0

})

= 0.

Next, we show that on LK ∩ Mσ,1+α1 we almost surely have lim supn→∞ |Vn| < ∞. For
arbitrary Cσ, CV > 0 and N ∈ N such that supn≥N γn < µ consider the adapted sequence

of events (An)n≥N given by

An =
{
|VN | ≤ CV , Xm ∈ K, E[Dm+1|Fm] = 0,

E
[
|Dm+1|1+α1 |Fm

]
≤ Cσσ1+α1

m+1 , ∀m = N, . . . , n
}

for n ≥ N and set C f := supx∈K |∇ f (x)|. It suffices to show that, for a constant κ ≥ 0, the

process (Ṽn)n≥N given by

ṼN := 1lAN

(

|VN | ∨
C f

µ

)1+α1

,

and

Ṽn := 1lAn−1

(

|Vn| ∨
C f

µ

)1+α1

− κCσ

n

∑
i=N+1

(γnσn)
1+α1 , n > N

is almost surely bounded, since ∑n∈N(γnσn)1+α1 < ∞. Since f (x) = x1+α1 has an α1-Höl-
der continuous gradient there exists a constant κ ≥ 0 such that

|Vn|1+α1 ≤ |(Wn−1)|1+α1 +
〈
(1 + α1)Wn−1|Wn−1|−1+α1 , γnDn

〉
+ κ|γnDn|1+α1 ,

where Wn−1 = (1 − γnµ)Vn−1 − γn∇ f (Xn−1). Thus, Ṽn is integrable for all n > N and

E
[
1lAn |Vn|1+α1 |Fn−1

]

≤ 1lAn−1
|(1 − γnµ)Vn−1 − γn∇ f (Xn−1)|1+α1 + κCσ(γnσn)

1+α1

≤ 1lAn−1
|Vn−1|1+α1 + κCσ(γnσn)

1+α1 ,
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if |Vn−1| > C f /µ, as well as

1lAn−1
E
[
|Vn|1+α1 | |Fn−1

]
≤ 1lAn−1

(
C f

µ

)1+α1

+ κCσ(γnσn)
1+α1 ,

if |Vn−1| ≤ C f /µ. Since (Ṽn)n≥N is almost surely bounded from below, we can apply

Doob’s martingale convergence theorem to deduce that lim supn→∞ |Vn| < ∞ on A∞ :=
⋂

n≥N An and, thus, on LK ∩ Mσ,1+α1. Now, using Theorem 1.1 we get almost surely on

LK ∩ Mσ,1+α1 that ∇E(Xn , Vn) → 0, which for sufficiently small a implies Vn → 0 and
∇ f (Xn) → 0.

(ii) In order to show convergence of (Xn)n∈N0
we need to show that for sufficiently small a

and every x ∈ K there exists a neighbourhood U ⊂ R2d of (x, 0) ∈ R2d satisfying
a Łojasiewicz-inequality for E on U. The proof for the latter statement can be found
in [12, Section 3.2].

3 Proof of Theorem 1.1

In this section, we prove almost sure convergence of ( f (Xn))n∈N0
and (∇ f (Xn))n∈N0

un-

der the assumption that the martingale noise is in L1+α1 and ∇ f is α2-Hölder continuous,
for 0 < α1 ≤ α2 ≤ 1, by analysing the evolution of ( f (Xn))n∈N0

step by step. We use
the classical argument, Lemma 3.2, to show that the influence of the martingale noise is
negligible at late times. Then, we prove that Hölder continuity of ∇ f is sufficient for
the remainder in the Taylor-approximation to have a negligible effect. We conclude that,
for small step-sizes, the system ( f (Xn))n∈N0

has a tendency to decrease and using the
boundedness of f on a compact domain we deduce convergence of ( f (Xn))n∈N0

. The
main technical tool that allows us to consider objective functions with Hölder continuous
gradient is the application of a Hölder inequality, see (3.2), that in a similar form appears
in the analysis of the ODE-method for SGD, see [8, Proposition 4.2]. The convergence of
(∇ f (Xn))n∈N0

and (Xn)n∈N0
(for functions having isolated critical points) follows from

a path-wise analysis using the convergence of ( f (Xn))n∈N0
.

Lemma 3.1. Let N ∈ N, C > 0, K ⊂ Rd be a compact and convex set and denote by (An)n≥N

a decreasing sequence of events such that for every n ≥ N, An ∈ Fn and

An ⊂
{

Xn ∈ K, |∇ f (Xn)|2 ≤ C〈∇ f (Xn),−Γn+1〉, |Γn+1| ≤ C|∇ f (Xn)|
}

.

Further, suppose that γn → 0, there exists 0 < α1 ≤ α2 ≤ 1 such that ∇ f is α2-Hölder continu-
ous on K and there exists a sequence (σn)n∈N of positive reals such that

1. E[1lAn−1
|Dn|1+α1 ]1/(1+α1) ≤ σn for all n = N + 1, . . . .

2. E[1lAn−1
Dn | Fn−1] = 0 for all n = N + 1, . . . .

3. ∑n>N(γnσn)1+α1 < ∞.
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4. In the case where α2 < 1, ∑n>N γ
(1+α2)/(1−α2)
n < ∞.

Then on A∞ =
⋂

n≥N An, almost surely, ( f (Xn))n∈N0
converges and, if additionally,

5. ∑n>N γn = ∞,

then on A∞, almost surely, limn→∞ ∇ f (Xn) = 0.

For the proof of Lemma 3.1 we need the following result.

Lemma 3.2 ([48, Corollary 4.19]). Let (Mn)n∈N0
be a martingale and, for n ∈ N, set ∆Mn =

Mn − Mn−1. If, for a β ∈ (0, 2],

∑
n∈N

E
[
|∆Mn|β

]
< ∞,

then (Mn)n∈N0
converges almost surely.

Proof of Lemma 3.1. In the following C1, C2, . . . , denote finite constants that only depend on
(γn)n∈N, α2, ‖∇ f‖L∞(K) and the Hölder constants of ∇ f on K for the exponents α1 and α2.

Step 1. We prove almost sure convergence of ( f (Xn))n∈N0
on A∞. For n > N we use

a Taylor approximation of first order and write

f (Xn)− f (Xn−1) = f
(

Xn−1 + γn(Γn + Dn)
)
− f (Xn−1)

= γn〈 f (Xn−1), Γn〉
︸ ︷︷ ︸

=:∆An

+ γn〈∇ f (Xn−1), Dn〉
︸ ︷︷ ︸

=:∆Mn

+∆Rn,

where ∆Rn is the remainder term in the Taylor approximation. For n ≥ N we set

An =
n

∑
m=N+1

1lAm−1
γm〈∇ f (Xn−1), Γn〉,

Mn =
n

∑
m=N+1

1lAm−1
γm〈∇ f (Xm−1), Dm〉,

Rn =
n

∑
m=N+1

1lAm−1
∆Rm.

Note that by the Taylor formula, for all n > N, on An, we can write ∆Rn = ∆R
(1)
n + ∆R

(2)
n

with ∣
∣∆R

(1)
n

∣
∣ ≤ C1γ1+α2

n |Γn|1+α2 ,
∣
∣∆R

(2)
n

∣
∣ ≤ C1γ1+α1

n |Dn|1+α1 ,

where C1 only depends on the Hölder-constants of ∇ f on K with respect to the exponents

α1 and α2. We define (R
(1)
n )n≥N and (R

(2)
n )n≥N in analogy to (Rn)n≥N and note that

∞

∑
m=N+1

E
[
1lAm−1

γ1+α1
m |Dm|1+α1

]
≤

∞

∑
m=N+1

(γmσm)
1+α1 < ∞,
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so that (R
(2)
n )n≥N converges, almost surely, to a finite value. Moreover, (Mn)n≥N is a mar-

tingale that converges, almost surely, to a finite value as consequence of Lemma 3.2 and

∞

∑
m=N+1

E
[
1lAm−1

|γm〈∇ f (Xm−1), Dm〉|1+α1
]
≤ C1+α1

2

∞

∑
m=N+1

γ1+α1
m E

[
1lAm−1

|Dm|1+α1
]

with C2 := ‖ f‖L∞(K) < ∞. Finally, we compare the contribution of the first remainder

term (R
(1)
n )n≥N with (An)n≥N . In the case where α2 = 1, we have for all n ≥ N with

C1C3γn ≤ 1/2, on An−1,

∣
∣∆R

(1)
n

∣
∣ ≤ C1C2γ2

n|∇ f (Xn−1)|2 ≤ −C1C3γ2
n〈∇ f (Xn−1), Γn〉 ≤ −1

2
∆An. (3.1)

This is the case for all but finitely many n’s and we conclude that by monotonicity of

(An)n≥N the random variables (An + R
(1)
n )n≥N converge almost surely, possibly to minus

infinity. We note that on A∞

f (Xn) = f (XN) + An + R
(1)
n + Mn + R

(2)
n ,

and by lower boundedness of f on K the latter limit needs to be finite and we proved
convergence of ( f (Xn))n∈N0

. Note that as consequence of (3.1), also (An)n≥N converges
to a finite value on A∞.

It remains to consider the case where α2 < 1. We apply the Hölder inequality with the
adjoint exponents 2/(1 − α2) and 2/(1 + α2) and get that

n

∑
m=N+1

γm
1+α21lAm−1

|∇ f (Xm−1)|1+α2

≤
( ∞

∑
m=N+1

γm

1+α2
1−α2

) 1−α2
2

︸ ︷︷ ︸

<∞

( n

∑
m=N+1

1lAm−1
γm|∇ f (Xm−1)|2

) 1+α2
2

. (3.2)

Since (1 + α2)/2 is less than one we get with monotonicity of (An)n≥N that (An +R
(1)
n )n≥N

converges almost surely, again possibly to an infinite value. We proceed as above to con-
clude that the latter limit is finite and that the sequences ( f (Xn))n≥N and (An)n≥N are
almost surely convergent on A∞ with finite limits.

Step 2. We prove almost sure convergence of (∇ f (Xn))n∈N0
to 0 on A∞ in the case that

∑ γn = ∞. First, note that in analogy to above the process (M̃n)n≥N given by

M̃n =
n

∑
m=N+1

1lAm−1
γmDm

is a martingale that converges, almost surely, as consequence of Lemma 3.2. Consequently,
we get with the first step that

Ω0 :=
{

inf
n≥N

An > −∞
}

∩
{

lim
n→∞

M̃n exists in R
d
}
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is an almost sure event. Suppose now that there exists ω ∈ Ω0 ∩ A∞ for which the se-
quence (∇ f (Xn(ω)))n∈N0

does not converge to zero. Then there exist δ > 0 and a strictly
increasing sequence (nk)k∈N with |∇ f (Xnk

(ω))| > δ for all k ∈ N. Note that |∇ f | is
uniformly bounded over the set K by κ and choose ε > 0 such that

sup
x,y∈K : |x−y|≤ε

|∇ f (x)−∇ f (y)| ≤ δ

2
.

We let (mk)k∈N such that
mk

∑
ℓ=nk+1

γℓ ≤
ε

2Cκ
<

mk+1

∑
l=nk+1

γℓ.

By thinning the original sequence (nk)k∈N we can ensure that ([nk + 1, mk] : k ∈ N) are
disjoint intervals. Moreover, by discarding the first terms from the sequence (nk)k∈N we
can ensure that for all k ∈ N,

sup
m≥nk

∣
∣M̃m(ω)− M̃nk

(ω)
∣
∣ <

ε

2
.

Now note that for ℓ = nk, . . . , mk,

|Xℓ(ω)− Xnk
(ω)| ≤ Cκ

mk

∑
i=nk+1

γi +
∣
∣M̃ℓ(ω)− M̃nk

(ω)
∣
∣ ≤ ε.

Consequently, for these ℓ,

∣
∣∇ f

(
Xℓ(ω)

)∣
∣ ≥

∣
∣∇ f

(
Xnk

(ω)
)∣
∣− δ

2
≥ δ

2
,

and hence,

mk

∑
ℓ=nk+1

γℓ

∣
∣∇ f

(
Xℓ−1(ω)

)∣
∣2 ≥

(
δ

2

)2 mk

∑
ℓ=nk+1

γℓ →
(

δ

2

)2
ε

2κ
.

Since the intervals ([nk + 1, mk] : k ∈ N) are pairwise disjoint and since ω ∈ A∞ we get
that

∞

∑
k=N+1

γk1lAk−1
(ω)

∣
∣∇ f

(
Xk−1(ω)

)∣
∣2 = ∞,

which contradicts ω ∈ Ω0. Thus we proved that (∇ f (Xn))n∈N0
converges to zero on

Ω0 ∩ A∞.

Proof of Theorem 1.1. Let N ∈ N, C > 0 and K ⊂ Rd compact and consider the sets

(AN,C,K
n : n ≥ N) given by

A
N,C,K
n =

n⋂

ℓ=N

{
Xℓ ∈ K, |∇ f (Xℓ)|2 ≤ C〈∇ f (Xℓ),−Γℓ+1〉, |Γℓ+1| ≤ C|∇ f (Xℓ)|,

E
[
|Dℓ+1|1+α1 | Fℓ

]
≤ Cσ

1+α1
ℓ+1 , E[Dℓ+1 | Fn] = 0

}
.
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The sets satisfy the assumptions of Lemma 3.1 and we thus have on A
N,C,K
∞ = ∩n≥NA

N,C,K
n

almost sure convergence of ( f (Xn))n∈N and, in the case

∑ γn = ∞, lim
n→∞

∇ f (Xn) = 0.

Now the statement follows, since for an increasing sequence of compact sets (KN : N ∈ N)
with

⋃
KN = Rd we have

C =
⋃

N∈N

A
N,N,KN
∞ . (3.3)

It remains to prove almost sure convergence of (Xn)n∈N0
on C in the case where the

set C = {x : ∇ f (x) = 0}, does not contain a continuum of points. By (3.3), it suffices

to show almost sure convergence on A
N,N,KN
∞ for arbitrary N ∈ N. First, we verify that,

almost surely, limn→∞(Xn − Xn−1) = 0. Indeed, as shown in the proof of Lemma 3.1 one

has on A
N,N,KN
∞ that (∑n

ℓ=N+1 γℓDℓ)n≥N converges, almost surely, so that γnDn → 0 on

A
N,N,KN
∞ . Moreover, γn|Γn+1| ≤ γnC|∇ f (Xn)| → 0 on A

N,N,KN
∞ so that (Xn − Xn−1)n∈N

almost surely converges to zero on A
N,N,KN
∞ . Now note that

P
(
{(Xn)n∈N0

diverges} ∩ A
N,N,KN
∞

)

≤
d

∑
i=1

P
((

X
(i)
n

)

n∈N0
diverges,∇ f (Xn) → 0, Xn − Xn−1 → 0, Xm ∈ KN , ∀m ≥ N

)
,

where X
(i)
n denotes the i-th coordinate of the random vector Xn ∈ Rd.

If P({(Xn)n∈N0
diverges} ∩ A

N,N,KN
∞ ) were strictly positive, one of the summands on

the right-hand side would be strictly positive. Suppose that this were true for the i-th
summand. In particular, for this i the respective event does not equal the empty set. We
choose

ω ∈
{(

X
(i)
n

)

n∈N0
diverges,∇ f (Xn) → 0, Xn − Xn−1 → 0, Xm ∈ KN , ∀m ≥ N

}
.

Thus,

a := lim inf
n→∞

X
(i)
n (ω) 6= lim sup

n→∞

X
(i)
n (ω) =: b.

By Xn(ω) − Xn−1(ω) → 0 we also get acc((X
(i)
n (ω))n∈N0

) = [a, b] and the principle
of nested intervals produces for every u ∈ [a, b] an accumulation point of (Xn(ω))n∈N0

with i-th coordinate equal to u. Hence, we defined an injective mapping that maps each
u ∈ [a, b] to a different accumulation point η(u) of (Xn(ω))n∈N0

. By choice of ω, η(u) is
a critical point of f and we thus constructed a continuum of critical points.

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is arranged as follows. In Section 4.1, we provide moment
estimates for the objective function value seen by the SGD where we fix a particular critical
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level and take out realisations that undershoot the critical level by a certain amount (lower
dropdown). In Section 4.2, we provide estimates for the drift term (∑n

ℓ=1 γℓΓℓ)n∈N in the
setting of Section 4.1 on the event that no dropdown occurs. In Section 4.3, we provide
estimates that later allow us to show that when a dropdown occurs for a particular critical
level it is very likely that the limit of the target value of the SGD lies strictly below that
critical level. In Section 4.4, we provide a technical lemma which shows applicability of
the previous results in the context of Theorem 1.2. In Section 4.5, we provide properties
of Łojasiewicz-functions and in Section 4.6 we combine the results to achieve the proof of
Theorem 1.2.

4.1 An estimate for the target value in the case without lower dropdown

Technically, we will analyse the evolution of ( f (Xn))n∈N0
step by step and will thereby

restrict attention to certain nice events. For this we use the concept of compatible events.

Definition 4.1. Let N ∈ N, δ, C > 0, U ⊂ Rd, (σn)n>N a sequence of positive reals and q ≥ 2.
We call events (An)n≥N (U, δ, C, (σn), q)-compatible, if (An)n≥N is a sequence of decreasing
events such that for all n ≥ N:

(i) An ∈ Fn (adaptivity).

(ii) An ⊂ {Xn∈U, |∇ f (Xn)|2≤C〈∇ f (Xn),−Γn+1〉, |Γn+1|≤C|∇ f (Xn)|, δ≥γn+1|Γn+1|}
(boundedness and drift condition).

(iii) E[1lAn Dn+1|Fn] = 0 (martingale condition).

(iv) E[1lAn |Dn+1|q|Fn] ≤ σ
q
n+1 (moment condition).

(v) An+1 ⊂ {γn+1|Dn+1| ≤ δ} (excess condition).

The proof of the main result is based on several preliminary results. At first we pro-
vide an upper bound for the f -value of (Xn)n∈N0

when approaching a critical level with
a lower dropdown, meaning that we only consider realisations of the SGD that do not
undershoot the critical level significantly. We will use the natural time scale associated
with a stochastic approximation scheme which associates the n-th iterate Xn with the time
tn = ∑

n
ℓ=1 γℓ and see that the f -value is bounded from above by a term arising from the

stochastic noise and the function (ΦR
t )t≥0, the worst-case bound for the f -value of the

solution to the ODE (1.2) in a region satisfying a Łojasiewicz-inequality with exponent
β ∈ (1/2, 1) and constant

√
η > 0 starting in R, i.e. the solution to the ODE (see e.g. [33])

Φ̇
(R)
t = −η

(
Φ

(R)
t

)2β
, Φ

(R)
0 = R.

For a subset U ⊂ Rd we denote

‖∇ f‖Lip(U) = sup
x,y∈U, x 6=y

|∇ f (x)−∇ f (y)|
|x − y| .
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Proposition 4.1. Suppose that the following assumptions are satisfied:

Łojasiewicz-assumption. Let U be an open and bounded set containing a critical point x0 and
suppose that the Łojasiewicz-inequality holds on U with parameters Ł > 0 and β ∈ (1/2, 1)
meaning that for all x ∈ U,

|∇ f (x)| ≥ Ł| f (x)− f (x0)|β.

Compatible events. Let N ∈ N0, δ, C > 0, q ≥ 2 and let (σn)n>N and (wn)n≥N be sequences
of positive reals. We denote by (An)n≥N a (U, δ, C, (σn), q)-compatible sequence of events. We let

BN = AN ∩ { f (XN)− f (x0) ≥ −wN},

and for n > N,
Bn = An−1 ∩ {γn|Dn| < δ, f (Xn)− f (x0) ≥ −wn},

and suppose that Bn ⊃ An for n ≥ N.

Main assumptions for asymptotic error term. Let (vn)n≥N and (γn)n∈N be decreasing se-
quences of positive reals that satisfy for a constant κ > 0 for all n > N,

vn−1

vn
− 1 ≤ κγnv

2β−1
n , (4.1)

and

(
δ−1‖∇ f‖L∞(U) + 2‖∇ f‖Lip(U2δ)

)
(γnσn)

2

+
(

‖∇ f‖q

L∞(U)
+
(
2‖∇ f‖Lip(U2δ)

) q
2

)

w
−(q−1)
n (γnσn)

q ≤ γnv
2β
n , (4.2)

where
U2δ = {x ∈ R

d : d(x, U) < 2δ}.

Additional technical assumptions. We assume that for a constant δ′ ∈ (0, 1) we have for all
n > N that 2C3‖∇ f‖Lip(U2δ)γn ≤ δ′ as well as

1

2
wn−1 ≤ wn ≤ vn ∧ 1, (4.3a)

(
(C ∨ C−1)γn + 2‖∇ f‖Lip(U2δ)C

2γ2
n

)
‖∇ f‖2

L∞(U) ≤ wn. (4.3b)

Assumptions for the associated master equation. Let y0 > 0, η > 0 such that for

g : R → R, y 7→ κy − (1 − δ′)C−1Ł2|y|2β + 1

one has for all y ≥ 0,
(

sup
n>N

v
2β
n

v
2β
n−1

)

g(y + y0) ≤ −η|y|2β.
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Associated differential equation. For R ≥ 0 and t ≥ 0 we let

Φ
(R)
t = R

((
(2β − 1)ηR2β−1

)
t + 1

)− 1
2β−1 .

Result. Suppose that the above assumptions hold and that for a R > 0 with

R + (y0 + 8)vN ≤
(
(1 − δ′)2βC−1Ł2γN+1

)− 1
2β−1

one has
E
[
1lBN

(
f (XN)− f (x0)

)]
≤ R.

Then one has, for all n ≥ N,

E
[
1lBn

(
f (Xn)− f (x0)

)]
≤ Φ

(R)
tn−tN

+ (y0 + 8)vn. (4.4)

Proof. We assume without loss of generality that f (x0) = 0 and we write, for n > N,

f (Xn) = f (Xn−1) + γn〈∇ f (Xn−1), Γn + Dn〉+ Rn. (4.5)

Taylor’s formula gives that in the case where the segment joining Xn−1 and Xn lies in

Ũ := U2δ, the remainder satisfies

|Rn| ≤ 2‖∇ f‖Lip(Ũ)γ
2
n

(
|Γn|2 + |Dn|2

)
. (4.6)

We note that this is indeed the case when Bn enters. With ξn := E[1lBn f (Xn)] one has
ξn = I + II, where

I = −E
[
1lAn−1∩{γn|Dn|<δ}∩{ f (Xn)<−wn} f (Xn)

]
,

II = E
[
1lAn−1∩{γn|Dn|<δ} f (Xn)

]
.

We analyse the terms separately.

Analysis of I. On An−1 ∩ {γn|Dn| < δ}, one has that

| f (Xn)− f (Xn−1)| ≤
(
Cγn + 2‖∇ f‖Lip(Ũ)C

2γ2
n

)
‖∇ f‖2

L∞(U)

+ ‖∇ f‖L∞(U)γn|Dn|+ 2‖∇ f‖Lip(Ũ)γ
2
n|Dn|2.

Using that by assumption

(
Cγn + 2‖∇ f‖Lip(Ũ)C

2γ2
n

)
‖∇ f‖2

L∞(U) ≤ wn,

we get that on An−1 ∩ {γn|Dn| < δ},

1l{| f (Xn)− f (Xn−1)|≥3wn}
(
| f (Xn)− f (Xn−1)| − 3wn

)

≤ 1l{‖∇ f ‖L∞(U)γn|Dn|≥wn}‖∇ f‖L∞(U)γn|Dn|
+ 1l{2‖∇ f ‖Lip(Ũ)γ

2
n|Dn|2≥wn}2‖∇ f‖Lip(Ũ)γ

2
n|Dn|2.
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Now,

E
[
1lAn−1

1l{‖∇ f ‖L∞(U)γn|Dn|≥wn}‖∇ f‖L∞(U)γn|Dn|
]
≤ ‖∇ f‖q

L∞(U)
w
−(q−1)
n (γnσn)

q,

E
[
1lAn−1

1l{2‖∇ f ‖Lip(Ũ)γ
2
n|Dn|2≥wn}2‖∇ f‖Lip(Ũ)γ

2
n|Dn|2

]

≤
(
2‖∇ f‖Lip(Ũ)

) q
2 w

−(
q
2−1)

n (γnσn)
q.

Setting

C1 = ‖∇ f‖q

L∞(U)
+
(
2‖∇ f‖Lip(Ũ)

) q
2 ,

and using wn ≤ 1 we get

E
[
1lAn−1∩{γn|Dn|<δ,| f (Xn)− f (Xn−1)|≥3wn}

(
| f (Xn)− f (Xn−1)| − 3wn

)]
≤ C1w

−(q−1)
n (γnσn)

q.

Recall that An−1 ⊂ Bn−1 so that, on An−1, f (Xn−1) ≥ −wn−1. Thus, using wn−1 ≤ 2wn

we get

I ≤ E
[
1lAn−1∩{γn|Dn|<δ}∩{ f (Xn)<−wn}

(
| f (Xn)− f (Xn−1)|+ wn−1

)]

≤ 5wn P
(
An−1 ∩ {γn|Dn| < δ} ∩ { f (Xn) < −wn}

)
+ C1w

−(p−1)
n (γnσn)

p. (4.7)

Analysis of II. Again, one has

II = E
[
1lAn−1∩{γn|Dn|<δ}

(
f (Xn−1) + γn〈∇ f (Xn−1), Γn + Dn〉+ Rn

)]
,

where the remainder satisfies inequality (4.6) since on An−1 ∩ {γn|Dn| < δ} the segment
connecting Xn−1 and Xn lies in Ũ. By assumption, 2C3‖∇ f‖Lip(Ũ)γn ≤ δ′ so that

II ≤ E
[
1lAn−1∩{γn|Dn|<δ}

(
f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2

+ γn〈∇ f (Xn−1), Dn〉+ 2‖∇ f‖Lip(Ũ)γ
2
n|Dn|2

)]
.

We note that

E
[
1lAn−1∩{γn|Dn|<δ}〈∇ f (Xn−1), Dn〉

]

= −E
[
1lAn−1∩{γn|Dn|≥δ}〈∇ f (Xn−1), Dn〉

]

≤ δ−1‖∇ f‖L∞(U)γnσ2
n .

Moreover, using that C−1γn‖∇ f‖2
L∞(U) ≤ wn and wn−1 ≤ 2wn we conclude

− E
[
1lBn−1∩(Ac

n−1∪{γn|Dn|≥δ})
(

f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2
)]

≤ P
(
Bn−1 ∩

(
A

c
n−1 ∪ {γn|Dn| ≥ δ}

))(
2wn + C−1γn‖∇ f‖2

L∞(U)

)

≤ 3P(Bn−1\Bn)wn.
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Consequently,

E
[
1lAn−1∩{γn|Dn|<δ}

(
f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2

)]

= E
[
1lBn−1

(
f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2

)]

− E
[
1lBn−1∩(Ac

n−1∪{γn|Dn|≥δ})
(

f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2
)]

≤ E
[
1lBn−1

(
f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2

)]
+ 3P(Bn−1\Bn)wn.

We conclude that altogether

II ≤ E
[
1lBn−1

(
f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2

)]

+ 3P(Bn−1\Bn)wn +
(
δ−1‖∇ f‖L∞(U) + 2‖∇ f‖Lip(Ũ)

)
(γnσn)

2.

Estimating ξn in terms of a difference equation. Combining the estimates for I and II, see
(4.7) above, we get

ξn ≤ E
[
1lBn−1

(
f (Xn−1)− (1 − δ′)C−1γn|∇ f (Xn−1)|2

)]
+ 8wnP(Bn−1\Bn)

+
(
δ−1‖∇ f‖L∞(U) + 2‖∇ f‖Lip(Ũ)

)
(γnσn)

2 + C1w
−(q−1)
n (γnσn)

q

︸ ︷︷ ︸

≤γnv
2β
n

. (4.8)

Using the Łojasiewicz-inequality together with the convexity of x 7→ |x|2β we get

ξn ≤ ξn−1 − (1 − δ′)C−1Ł2γn|ξn−1|2β + 8wnP(Bn−1\Bn) + γnv
2β
n .

By assumption, one has for n > N that

vn−1

vn
− 1 ≤ κγnv

2β−1
n ,

and using that (vn)n≥N is monotonically decreasing and wn ≤ vn for ζn := ξn/vn and

g(y) = κy − (1 − δ′)C−1Ł2|y|2β + 1 we get

ζn ≤ ζn−1 + γnv
2β−1
n g(ζn−1) + 8P(Bn−1\Bn). (4.9)

A comparison argument for the difference equation (4.9). For s > 0, the mapping

Ts : R → R, y 7→ y + s g(y)

is monotonically increasing on (−∞, ((1 − δ′)2βC−1Ł2s)−1/(2β−1)]. We let

(ζ̄n)n≥N =

(

Φ
(R)
tn−tN

vn
+ y0

)

n≥N

,

and note that, for n > N,

(ζ̄n−1 + 8)
(
(1 − δ′)2βC−1Ł2γnv

2β−1
n

) 1
2β−1



J. Mach. Learn., X(X):1-37 20

≤ (vn−1ζ̄n−1 + 8vn−1)
(
(1 − δ′)2βC−1Ł2γn

) 1
2β−1

≤ (vN ζ̄N + 8vN)
(
(1 − δ′)2βC−1Ł2γN+1

) 1
2β−1 ≤ 1,

so that T
γnv

2β−1
n

is monotonically increasing on (−∞, ζ̄n−1 + 8]. We prove by induction

that for all n ≥ N, ζn ≤ ζ̄n + 8 P(BN\Bn). By assumption, ζN = ξN/vN ≤ R/vN ≤ ζ̄N .
Moreover, supposing that the statement is true for n − 1 ≥ N, we conclude that ζn−1 ≤
ζ̄n−1 + 8 so that we get with (4.9) and the monotonicity of T

γnv
2β−1
n

on (−∞, ζ̄n−1 + 8] that

ζn ≤ T
γnv

2β−1
n

(
ζ̄n−1 + 8 P(BN\Bn−1)

)
+ 8P(Bn−1\Bn)

= ζ̄n−1 + γnv
2β−1
n g

(
ζ̄n−1 + 8 P(BN\Bn−1)

)
+ 8P(BN\Bn)

≤
Φ

(R)
tn−1−tN

vn−1
− ηγnv

2β−1
n

(
Φ

(R)
tn−1−tN

vn

)2β

+ y0 + 8P(BN\Bn)

≤ 1

vn

(

Φ
(R)
tn−1−tN

− ηγn

(

Φ
(R)
tn−1−tN

)2β)

+ y0 + 8P(BN\Bn). (4.10)

Noting that

Φ̇
(R)
tn−1−tN

= −η
(

Φ
(R)
tn−1−tN

)2β

we get

−ηγn

(

Φ
(R)
tn−1−tN

)2β
≤
∫ tn−tN

tn−1−tN

Φ̇
(R)
u du = Φ

(R)
tn−tN

− Φ
(R)
tn−1−tN

.

With (4.10) it follows that ζn ≤ ζ̄n + 8P(BN\Bn) which finishes the proof.

By slightly modifying the proof, one can derive a rate of convergence for the approxi-
mation of a local minimum in a neighbourhood that satisfies a Łojasiewicz-inequality. See
also [71] for almost sure convergence rates.

Proposition 4.2. Let β ∈ (1/2, 1), U ⊂ Rd and x0 ∈ U such that ∇ f is Lipschitz continuous
on the convex hull of U, as well as f (x) ≥ f (x0) and |∇ f (x)| ≥ Ł| f (x)− f (x0)|β for all x ∈ U.
Let (vn)n∈N0

and (γn)n∈N be decreasing sequences of positive reals such that γn → 0 and there
exists κ > 0 such that for all n ∈ N,

vn−1

vn
− 1 ≤ κγnv

2β−1
n .

Assume that f (X0) ∈ L1 and there exists a C ≥ 0 such that almost surely, for all n ∈ N0:

(i) Xn ∈ U.

(ii) |∇ f (Xn)|2 ≤ C〈∇ f (Xn),−Γn+1〉 and |Γn+1| ≤ C|∇ f (Xn)|.

(iii) E[Dn+1|Fn] = 0 and E[|Dn+1|2|Fn] ≤ γ−1
n+1v

2β
n+1.
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Then there exists a constant C̃ ≥ 0 such that for all n ∈ N0,

E
[

f (Xn)− f (x0)
]
≤ C̃

(
Φ

(R)
tn

+ vn

)
. (4.11)

The bounds in (4.4) and (4.11) depend on (Φ
(R)
tn

) as well as the additional error term (vn)
that is defined by the size of the stochastic perturbation. In the next proposition we choose

(Φ
(R)
tn

) and (vn) to be of the same order. This can be interpreted as computing a bound
on the stochastic perturbation in order to recover the rate of convergence for the non-
perturbed gradient descent algorithm in (4.4) and (4.11). If the perturbation is larger one
can artificially increase β to satisfy the assumptions in Proposition 4.3.

Proposition 4.3. Let β ∈ (1/2, 1) and (γn)n∈N and (σn)n∈N be sequences of strictly positive
reals such that (γn)n∈N is monotonically decreasing with limn→∞ γn = 0. If

(a) σ2
n = O

(

γ−1
n t

− 2β
2β−1

n

)

,

(b) σ
q
n = O

(

γ
1−q
n t

− 2β+q−1
2β−1

n

)

,

(c) γn = O
(

t
− 1

2β−1
n

)

,

then for every Lipschitz function ∇ f : Rd → Rd, U ⊂ Rd bounded and δ > 0 for sufficiently
large constant Cw there exist constants κ and Cv such that for

vn = Cvt
− 1

2β−1
n , wn = Cwt

− 1
2β−1

n ,

the main and additional assumptions of Proposition 4.1 are satisfied for large N. Moreover, for this
choice of parameters, one can replace in Proposition 4.1, inequality (4.4) by

E
[
1lBn

(
f (Xn)− f (x0)

)]
≤
(

1 + (y0 + 8)
Cv

R

(

(2β − 1)ηR2β−1 +
1

tN

) 1
2β−1

)

Φ
(R)
tn−tN

.

Proof. By choice of (vn)n∈N, we get with the Taylor formula

−∆vn

vn
∼ 1

2β − 1
γnt−1

n = O
(
γnv

2β−1
n

)
, (4.12)

so that (4.1) is satisfied for large κ for all large n. Note that (4.2) is satisfied for vn =

Cvt
−1/(2β−1)
n for a sufficiently large Cv for all large n if (γnσn)2 and (w

−(q−1)
n (γnσn)q) are

both of order O(γnt
−2β/(2β−1)
n ). Elementary computations show that the first, respectively

second term is of order O(γnt
−2β/(2β−1)
n ), iff condition (a), respectively (b) holds. For the

Eq. 4.3b, note that wn ≤ vn if Cv ≥ Cw and wn ≤ 1 for large enough n, since (c) implies that
tn = ∑

n
i=1 γi → ∞. The Eq. 4.3a holds for large n since tn = tn−1 + γn ∼ tn−1. Moreover,
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the third inequality holds for large n since γn → 0. The rest follows since by definition of
Φ and (vn)n∈N one has for n ≥ N,

vn ≤ Cv

R

(

(2β − 1)ηR2β−1 +
1

tN

) 1
2β−1

Φ
(R)
tn−tN

.

The proof is complete.

Remark 4.1. (i) In the case γn = Cγn−γ and σn = Cσnσ for γ ∈ (1/2, 1), σ ∈ R and
Cγ, Cσ > 0 assumptions (a), (b) and (c) are satisfied, if

(a’) 2σ ≤ (4β − 1)γ − 2β

2β − 1
,

(b’) σ ≤ 2βγ − 1

2β − 1
− 1

q
,

(c’) γ ≥ 1

2β
.

In that case, we have

tn ∼ Cγ

1 − γ
n1−γ.

(ii) In the case γn = Cγn−1 and σn = Cσnσ for σ ∈ R and Cγ, Cσ > 0 assumptions (a), (b)
and (c) are satisfied if σ < 1/2 and q ≥ 2. In that case, tn ∼ Cγ log(n).

4.2 Bounding the drift term in the case where no dropdown occurs

Proposition 4.4. Assume all assumptions of Proposition 4.1. Additionally assume that the se-

quence (−∆vn/γn)n>N is decreasing and (γn/(−∆ξ̄n))1/2ξ̄n → 0 with

ξ̄n := Φ
(R)
tn−tN

+ (y0 + 8)vn.

Then
√

1 − δ′

C3

∞

∑
n=N+1

γnE[1lBn−1
|Γn|]

≤ γN+1
√

ηRβ +
√

η
∫ ∞

0
(Φ

(R)
u )β du

+
1

√
y0 + 8

∞

∑
n=N+1

√
γn

−∆vn

(
−(y0 + 8)∆vn + γnv

2β
n + 8vnP(Bn−1\Bn)

)
.

Proof. Using that wn ≤ vn with (4.8) we get

(1 − δ′)C−1γnE
[
1lBn−1

|∇ f (Xn−1)|2
]
≤ ξn−1 − ξn + γnv

2β
n + 8vnP(Bn−1\Bn),
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and hence,
√

(1 − δ′)C−1γnE[1lBn−1
|∇ f (Xn−1)|]

≤ √
γn

√

(1 − δ′)C−1γnE
[
1lBn−1

|∇ f (Xn−1)|2
]

≤ √
γn

√

−∆ξn + γnv
2β
n + 8vnP(Bn−1\Bn). (4.13)

With the Cauchy-Schwarz inequality we get that

∞

∑
n=N+1

√
γn

√

−∆ξn + γnv
2β
n + 8vnP(Bn−1\Bn)

≤
( ∞

∑
n=N+1

√

γn(−∆ξ̄n)

) 1
2
( ∞

∑
n=N+1

√
γn

−∆ξ̄n

(
− ∆ξn+γnv

2β
n +8vnP(Bn−1\Bn)

)
) 1

2

(4.14)

with
ξ̄n := Φ

(R)
tn−tN

+ (y0 + 8)vn.

Recall that ξn ≤ ξ̄n by Proposition 4.1.
We use partial summation to get an estimate for (4.14). By assumption, the sequence

(−∆vn/γn)n>N is decreasing. Moreover, for φn := Φ
(R)
tn−tN

we get with the mean value

theorem that there exists un ∈ (tn−1 − tN , tn − tN) with −∆φn/γn = −Φ̇
(R)
un so that

(−∆φn/γn)n>N is also decreasing. Altogether, we thus get that

(an)n>N :=

((
γn

−∆ξ̄n

) 1
2
)

n>N

is increasing so that its differences are non-negative. We conclude with partial summation
that

∞

∑
n=N+1

an(−∆ξn) = aN+1ξN +
∞

∑
n=N+1

∆an+1 ξn

≤ aN+1ξ̄N +
∞

∑
n=N+1

∆an+1 ξ̄n

=
∞

∑
n=N+1

an(−∆ξ̄n),

where we used that an+1ξ̄n tends to zero. Consequently, we get with (4.13) and (4.14) that

√

(1 − δ′)C−1
∞

∑
n=N+1

γnE[1lBn−1
|∇ f (Xn−1)|]

≤
∞

∑
n=N+1

√
γn

−∆ξ̄n

(
−∆ξ̄n + γnv

2β
n + 8vnP(Bn−1\Bn)

)
.
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Note that √
√
√
√Φ

(R)
0 − Φ

(R)
tN+1−tN

γN+1
≤
√

−Φ̇
(R)
0 ≤ √

ηRβ,

and for n > N + 1,

γn

√
√
√
√Φ

(R)
tn−1−tN

− Φ
(R)
tn−tN

γn
≤ γn

√

−Φ̇
(R)
tn−1−tN

≤ √
η
∫ tn−1−tN

tn−2−tN

(
Φ

(R)
u

)β
du,

where we used that −Φ̇(R) and (γn)n>N are monotonically decreasing. Hence, using that

−∆ξ̄n = Φ
(R)
tn−1−tN

− Φ
(R)
tn−tN

+ (y0 + 8)(−∆vn)

we get

∞

∑
n=N+1

γn

√

−∆ξ̄n

γn
≤ γN+1

√
ηRβ +

√
η
∫ ∞

0

(
Φ

(R)
u

)β
du

+
√

y0 + 8
∞

∑
n=N+1

√

γn(−∆vn).

Consequently,

√

(1 − δ′)C−1
∞

∑
n=N+1

γnE[1lBn−1
|∇ f (Xn−1)|]

≤ γN+1
√

ηRβ +
√

η
∫ ∞

0

(
Φ

(R)
u

)β
du

+
1

√
y0 + 8

∞

∑
n=N+1

√
γn

−∆vn

(
−(y0 + 8)∆vn + γnv

2β
n + 8vnP(Bn−1\Bn)

)
.

The proof is complete.

4.3 Technical analysis of lower dropdowns

Roughly speaking, the following two lemmas will later be used to show that for a certain
critical level of the objective function, a lower dropdown (in the sense of the previous two
propositions) entails that the SGD’s target value converges to a value strictly below the
respective critical level with high probability.

Lemma 4.1. Let (Mn)n∈N be a L2-martingale started in zero. Then for every κ > 0,

P

(

sup
ℓ∈N

(Mℓ − 〈M〉ℓ) ≥ κ

)

≤ 4

κ2
+ ∑

n∈N0

2n+3

(2n + κ)2
=: φ(κ).

In particular, for every ε > 0 there exists a κ > 0 such that the above right-hand side is smaller
than ε.
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Proof. For n ∈ N0, let Tn = inf{ℓ ∈ N : 〈M〉ℓ+1 > 2n}. Then,

sup
ℓ=Tn+1,...,Tn+1

(Mℓ − 〈M〉ℓ) ≤ sup
ℓ=1,...,Tn

Mℓ − 2n,

sup
ℓ=1,...,T0

(Mℓ − 〈M〉ℓ) ≤ sup
ℓ=1,...,T0

Mℓ.

We use Doob’s L2-inequality to deduce that

P

(

sup
ℓ=1,...,Tn+1

Mℓ ≥ 2n + κ

)

≤ 4(2n + κ)−2
E
[
M2

Tn+1

]
≤ 2n+3

(2n + κ)2
,

P

(

sup
ℓ=1,...,T0

Mℓ ≥ κ

)

≤ 4

κ2
.

Therefore,

P

(

sup
ℓ∈N

(Mℓ − 〈M〉ℓ) ≥ κ

)

≤ 4

κ2
+ ∑

n∈N0

2n+3

(2n + κ)2
.

The proof is complete.

Lemma 4.2. Let N ∈ N, δ, C > 0, (σn)n>N be a sequence of positive reals and let (An)n≥N be
a sequence of (U, δ, C, (σn), 2)-compatible events. Moreover, suppose that (γnσ2

n)n>N is decreas-
ing and that for δ′ ∈ (0, 1),

2C3‖∇ f‖Lip(U2δ)γn ≤ δ′.

Then one has for T > 0 that

P

(

sup
n>N

1lAn−1∩{γn|Dn|<δ}
(

f (Xn)− f (XN)
)
≥ 2T

)

≤ φ

(
1 − δ′

CγN+1σ2
N+1

T

)

+ 2‖∇ f‖Lip(U2δ)

∞

∑
ℓ=N+1

(γℓσℓ)
2 1

T
,

where φ is as in Lemma 4.1.

Proof. By (4.5) and (4.6) we have on An−1 ∩ {γn|Dn| ≤ δ}

f (Xn) ≤ f (Xn−1)− γn

(
(1 − δ′)C−1|∇ f (Xn−1)|2 + 〈∇ f (Xn−1), Dn〉

)

+ 2‖∇ f‖Lip(U2δ)γ
2
n|Dn|2.

For n ≥ N, we let

Ξn = −
n

∑
ℓ=N+1

1lAℓ−1
γℓ

(
(1 − δ′)C−1| f (Xℓ−1)|2 + 〈 f (Xℓ−1), Dℓ〉

)
,

Ξ′
n = 2‖∇ f‖Lip(U2δ)

n

∑
ℓ=N+1

1lAℓ−1
γ2
ℓ
|Dℓ|2,
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and observe that on An−1 ∩ {γn|Dn| ≤ δ}

f (Xn)− f (XN) ≤ Ξn + Ξ′
n.

Next, we deduce an estimate for the supremum of the process (Ξn)n>N . In terms of the
martingale

Mn = −
n

∑
ℓ=N+1

1lAℓ−1
γℓ〈∇ f (Xℓ−1), Dℓ〉,

we have

〈M〉n =
n

∑
ℓ=N+1

γ2
ℓ
1lAℓ−1

E
[
〈∇ f (Xℓ−1), Dℓ〉2|Fℓ−1

]

≤
n

∑
ℓ=N+1

γ2
ℓ
1lAℓ−1

|∇ f (Xℓ−1)|2σ2
ℓ

.

Using that (γnσ2
n)n>N is monotonically decreasing we deduce that

〈M〉n ≤ γN+1σ2
N+1

n

∑
ℓ=N+1

1lAℓ−1
γℓ|∇ f (Xℓ−1)|2.

Consequently,

Ξn ≤ Mn −
1 − δ′

CγN+1σ2
N+1

〈M〉n = a

(
1

a
Mn −

〈
1

a
M

〉

n

)

for a := (CγN+1σ2
N+1)/(1 − δ′). With Lemma 4.1 we get

P

(

sup
n>N

Ξn ≥ T

)

≤ P

(

sup
n>N

1

a
Mn −

〈
1

a
M

〉

n

≥ T

a

)

≤ φ

(
T

a

)

. (4.15)

Conversely,

E

[

sup
n>N

Ξ′
n

]

≤ 2‖∇ f‖Lip(U2δ)E

[ ∞

∑
ℓ=N+1

1lAℓ−1
γ2
ℓ
|Dℓ|2

]

≤ 2‖∇ f‖Lip(U2δ)

∞

∑
ℓ=N+1

(γℓσℓ)
2,

and by the Markov inequality

P

(

sup
n>N

Ξ′
n ≥ T

)

≤ 2‖∇ f‖Lip(U2δ)

∞

∑
ℓ=N+1

(γℓσℓ)
2 1

T
.

In combination with (4.15) we obtain the result.
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4.4 Satisfiability of the assumptions

Proposition 4.5. Let γ ∈ (1/2, 1], σ ∈ R and q ≥ 2 with

3γ − 2σ > 2, q >
1

2γ − σ − 1
, (4.16)

and let, for positive constants Cγ and Cσ,

(γn)n∈N =
(
Cγn−γ

)

n∈N
, (σn)n∈N =

(
Cσnσ

)

n∈N
.

Suppose that f satisfies a Łojasiewicz-inequality on a bounded set U. Then there exists β ∈
(1/2, 1) such that for

(vn)n∈N =
(

Cvt
− 1

2β−1
n

)

n∈N

, (wn)n∈N =
(

Cwt
− 1

2β−1
n

)

n∈N

with Cw, Cv > 0 sufficiently large, one has for sufficiently large N and all compatible events
(Bn)n≥N in the sense of Proposition 4.1 that

∞

∑
n=N+1

γn E[1lBn−1
|Γn|] < ∞.

Moreover, as N → ∞,

wN

γN+1σ2
N+1

→ ∞,
∞

∑
ℓ=N+1

(γℓσℓ)
2w−1

N → 0.

Proof. First note that since U is bounded we can conclude that the validity of a Łojasiewicz-
inequality for a β0 ∈ (1/2, 1) entails a Łojasiewicz-inequality for every β ∈ [β0, 1). By
Proposition 4.3 and Remark 4.1, one can choose for every large Cw, appropriate constants
Cv and κ such that all assumptions of Proposition 4.1 are satisfied, if

(a’) 2σ ≤ (4β − 1)γ − 2β

2β − 1
,

(b’) σ ≤ 2βγ − 1

2β − 1
− 1

q
,

(c’) γ ≥ 1

2β
.

By sending β to one, one easily verifies by using (4.16) and γ > 1/2, that (a’), (b’) and (c’)
are satisfied for a β ∈ [β0, 1). In view of Proposition 4.4, it suffices to verify the additional
condition and finiteness of the series appearing in the latter proposition.

We still need to consider the additional conditions imposed in Proposition 4.4. First,
we show that the sequence (−∆vn/γn)n≥2 is eventually decreasing. One has

−∆vn

γn
− −∆vn+1

γn+1
=

−∆vnγn+1 + ∆vn+1γn

γnγn+1
,
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−∆vn =
Cv

2β − 1
t
− 2β

2β−1
n γn +

Cvβ

(2β − 1)2
t
− 4β−1

2β−1
n γ2

n + o
(

t
− 4β−1

2β−1
n γ2

n

)

,

−∆vn+1 =
Cv

2β − 1
t
− 2β

2β−1
n γn+1 −

Cvβ

(2β − 1)2
t
− 4β−1

2β−1
n γ2

n+1 + o
(

t
− 4β−1

2β−1
n γ2

n

)

,

so that

−∆vnγn+1 + ∆vn+1γn =
Cvβ

(2β − 1)2
t
− 4β−1

2β−1
n γnγn+1(γn + γn+1) + o

(

t
− 4β−1

2β−1
n γ3

n

)

,

which is positive for large n.
Further, using (4.12) we get

(
γn

−∆vn

) 1
2

vn = O
((

v−1
n tn

) 1
2 vn

)
= O

(
v

1−β
n

)
,

and with vn ∼ Cv((2β − 1)η)1/(2β−1)Φ
(R)
tn−tN

we have (γn/(−∆ξ̄n))1/2ξ̄n → 0.

Next, we show that the series appearing in Proposition 4.4 is finite. Indeed, we have

√

γn(−∆vn) ∼
√

Cv

2β − 1
γnt

− β
2β−1

n ,

√
γn

−∆vn
γnv

2β
n ∼ C

2β− 1
2

v

√

2β − 1γnt
− β

2β−1
n ,

so that for γ < 1 summability follows with β/(2β − 1) > 1 for all β ∈ (1/2, 1) and in
the case γ = 1 summability follows from Cauchy’s condensation test. Moreover, as stated

before (γn/(−∆vn))1/2vn = O(v
1−β
n ) tends to zero.

It remains to discuss the asymptotic statements in the proposition. The term

wN

γN+1σ2
N+1

∼ Cw

CγC2
σ
(tn)

− 1
2β−1 nγ−2σ

tends to infinity, iff β > (1 − 2σ)/(2γ − 4σ). As consequence of (4.16) the right-hand
side is smaller than 3/4 and for sufficiently large β, wN/(γN+1σ2

N+1) tends to infinity.
Moreover,

∞

∑
ℓ=N+1

(γℓσℓ)
2 = O(N−2γ+2σ+1)

is of order o(wn), iff β > (γ − 2σ)/(4γ − 4σ − 2) with the right-hand side being strictly
smaller than one.

4.5 Properties of Łojasiewicz-functions

We summarise some properties of Łojasiewicz-functions. Note that the proofs only use
that f is C1 but not that the differentials are locally Lipschitz continuous. A similar state-
ment for a uniform Łojasiewicz-inequality around a compact level set can be found in [3,
Lemma 1].
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Lemma 4.3. Let f : Rd → R be a Łojasiewicz-function and K ⊂ Rd be an arbitrary compact set.

(i) The set of critical levels

LK = { f (x) : x ∈ ∇ f−1({0}) ∩ K}

is finite so that f has at most a countable number of critical levels.

(ii) For every critical level ℓ ∈ LK there exists an open neighbourhood U ⊃ f−1({ℓ}) ∩ K,
Ł > 0, β ∈ [1/2, 1) such that for every y ∈ U,

|∇ f (y)| ≥ Ł| f (y)− ℓ|β.

(iii) For a neighbourhood as in (ii), there exists ε > 0 such that

f−1
(
(ℓ− ε, ℓ+ ε)

)
∩ K ⊂ U.

Proof. (i) Let K ⊂ U be a compact set. For every x ∈ ∇ f−1({0}) we can choose an open

neighbourhood Ux of x on which the Łojasiewicz-inequality holds for parameters Ł(x)
> 0

and β(x) ∈ [1/2, 1). By compactness of ∇ f−1({0})∩K we conclude that ∇ f−1({0})∩K ⊂
⋃

x∈∇ f −1({0})∩K Ux has a finite cover, say
⋃

x∈X Ux. We show that LK = f (X ). Indeed,

every y ∈ ∇ f−1({0}) ∩ K lies in a neighbourhood Ux with x ∈ X and one has

0 = |∇ f (y)| ≥ Ł(x)| f (y)− f (x)|β(x)
,

so that f (y) = f (x) ∈ f (X ).

(ii) Let x ∈ K ∩ f−1({ℓ}). If x lies in ∇ f−1({0}), then x admits an open and bounded
neighbourhood Ux on which the Łojasiewicz-inequality holds with appropriate parame-

ters Ł(x)
> 0 and β(x) ∈ [1/2, 1). If x does not lie in ∇ f−1({0}), then |∇ f (x)| > 0 and by

continuity we can choose a neighbourhood Ux so that for every y ∈ Ux,

|∇ f (y)| > |∇ f (x)|
2

,

| f (y)− f (x)| 1
2 <

|∇ f (x)|
2

.

Thus the Łojasiewicz-inequality holds on Ux with parameters 1 and 1/2. By compactness
of K ∩ f−1({ℓ}) there exists a finite set X ⊂ K ∩ f−1({ℓ}) with f−1({ℓ}) ∩ K ⊂ ⋃

x∈X Ux.

We let β := maxx∈X β(x) and assuming that on U :=
⋃

x∈X Ux, | f − ℓ| is bounded by R we
conclude that for every y ∈ U there exists x ∈ X with y ∈ Ux so that

|∇ f (y)| ≥ Ł(x)| f (y)− ℓ|β(x) ≥ Ł(x)

Rβ−β(x)
| f (y)− ℓ|β,

and the Łojasiewicz-inequality holds on U with parameters minx∈X Ł(x)/Rβ−β(x)
and β.
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(iii) Suppose that for every ε > 0, K ∩ f−1((ℓ− ε, ℓ+ ε)) 6⊂ U. Then we can pick a K ∩ Uc-
valued sequence (xn)n∈N with | f (xn) − ℓ| ≤ 1/n. Since K is compact we can assume
without loss of generality that (xn)n∈N converges (otherwise we choose an appropriate
subsequence). Then by continuity of f , f (xn) → f (x) = ℓ and x ∈ K ∩ f−1({ℓ}). But
this entails that all but finitely many of the entries of (xn)n∈N have to lie in U since U is
an open neighbourhood of f−1({ℓ}) ∩ K causing a contradiction.

4.6 Proof of Theorem 1.2

Let K be a compact set and Υ ∈ LK a critical level of f on K. By Lemma 4.3 we can choose
an open and bounded set U ⊃ f−1({Υ}) ∩ K and parameters Ł0 > 0 and β0 ∈ (1/2, 1)
such that f admits the Łojasiewicz-inequality on U, i.e. that for all y ∈ U,

|∇ f (y)| ≥ Ł0| f (y)− Υ|β0 .

Again by Lemma 4.3 we can pick ε > 0 with U ⊃ f−1((Υ− ε, Υ+ ε)). Based on parameters
N ≥ N0 and C > 0 we consider events (An)n≥N given by

AN =
{

XN ∈ U, |∇ f (XN)|2 ≤ C〈∇ f (XN),−ΓN+1〉, |ΓN+1| ≤ C|∇ f (XN)|,
E
[
|DN+1|q|FN

]
≤ Cσ

q
n and E[DN+1|FN ] = 0

}
,

and for n > N,

An = An−1 ∩
{

Xn ∈ U, |∇ f (Xn)|2 ≤ C〈∇ f (Xn),−Γn+1〉, |Γn+1| ≤ C|∇ f (Xn)|
γn|Dn| < δ, E

[
|Dn+1|q|Fn

]
≤ Cσ

q
n and E[Dn+1|Fn] = 0

}
.

Provided that N is sufficiently large such that, on An,

γn+1|Γn+1| ≤ γn+1C‖∇ f‖L∞(U) ≤ δ

for all n ≥ N, the family (An)n≥N is (U, δ, C, (Cσn), q)-compatible.
Now for every β ∈ [β0, 1) there exists a Ł > 0 such that f also admits the Łojasiewicz-

inequality with parameters β and Ł on U and we can choose a quadruple (N0, β, Cv, Cw)
which satisfies the statement of Proposition 4.5 for σn = Cnσ. We assume without loss of
generality that Υ = 0 mentioning that we could consider f̄ = f − Υ instead of f and fix
a sufficiently large N ≥ N0, so that (An)n≥N is (U, δ, C, (Cσn), q)-compatible.

Additionally, we let BN = AN ∩ {−wN ≤ f (XN)} and for n > N,

Bn = Bn−1 ∩ An−1 ∩ {γn|Dn| < δ,−wn ≤ f (Xn)}.

We note that (Bn)n≥N satisfies a representation as in Lemma 4.1 for (A′
n)n≥N given by

A′
N = AN and for n > N,

A
′
n = Bn ∩

{
Xn ∈ U, |∇ f (Xn)|2 ≤ C〈∇ f (Xn),−Γn+1〉, |Γn+1| ≤ C|∇ f (Xn)|,

E[|Dn+1|q|Fn] ≤ Cσ
q
n and E[Dn+1|Fn] = 0

}
.
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In particular, one has A′
n ⊂ An and (A′

n)n≥N is (U, δ, C, (Cσn), q)-compatible if this is the
case for (An)n≥N . Note that for B∞ =

⋂

n≥N Bn (and respectively for A∞ and A′
∞) we

have that
B∞ = A

′
∞ = A∞ ∩ {F(Xn) ≥ −wn, ∀ n ≥ N}.

By Propositions 4.4 and 4.5, one has that on A′
∞, almost surely, ∑n>N γn|Γn| < ∞. More-

over, the L2-martingale (M̄n)n≥N = (∑n
ℓ=N+1 γℓ1lAℓ−1

Dℓ)n≥N converges, almost surely
since

E[〈M̄〉∞] ≤
∞

∑
ℓ=N+1

C2(γℓσℓ)
2.

Hence, we have almost sure convergence of (Xn)n∈N0
on A′

∞. Now consider the stopping
time T given by

T(ω) = inf
{

n ≥ N : f
(

Xn(ω)
)
< −wn, ω ∈ An

}
.

For fixed N′ ≥ N we apply Lemma 4.2 to estimate the probability

P

(

sup
n≥N ′

f (Xn)− f (XN ′) ≥ wN ′
∣
∣T = N′

)

.

Note that (A′′
n)n≥N ′ with A

′′
n = {T = N′} ∩ An is (U, δ, C, (Cσn), 2)-compatible under the

conditional distribution P( · |T = N′). Recall that 2C3‖∇ f‖Lip(U2δ)γn ≤ δ′ so that

P

(

sup
n>N ′

1lAn−1∩{γn|Dn|<δ}
(

f (Xn)− f (XN ′ )
)
≥ wN ′

∣
∣T = N′

)

≤ φ

(
1 − δ′

2C3γN ′+1σ2
N ′+1

wN ′

)

+ 4C2‖∇ f‖Lip(U2δ)

∞

∑
ℓ=N ′+1

(γℓσℓ)
2 1

wN ′
=: ρN ′ .

By Proposition 4.5, ρN ′ → 0 as N′ → ∞ so that also ρ̄N := supn≥N ρn converges to zero.
We conclude that

P
(
(A∞\B∞) ∩

{
lim

n→∞
f (Xn) = 0

})

= P
(
A∞ ∩

{
T < ∞, lim

n→∞
f (Xn) = 0

})

≤
∞

∑
N ′=N

P(T = N′)P
(

sup
n>N ′

1lAn−1∩{γn|Dn|<δ}( f (Xn)− f (XN ′ )) ≥ wN ′
∣
∣
∣T = N′

)

≤ ρ̄N .

We recall that A∞ and B∞ depend on the choice of N and in the following we write ĀN

and B̄N for the respective events. Moreover, we denote

M̄
C,σ,q
N :=

∞⋂

n=N

{
|∇ f (Xn)|2 ≤ C〈∇ f (Xn),−Γn+1〉, |Γn+1| ≤ C|∇ f (Xn)|,

E
[
|Dn+1|q|Fn

]
≤ (Cσn+1)

q and E[Dn+1|Fn] = 0
}

,

M̄
C,σ,q =

⋃

N∈N

M̄
C,σ,q
N , UN :=

∞⋂

n=N

{Xn ∈ U}, U :=
⋃

N∈N

UN .
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We note that
(
M̄

C,σ,q
N ∩ UN

)
\ĀN = M̄

C,σ,q
N ∩ UN ∩ {∃n > N : γn|Dn| ≥ δ},

and estimate

P
(
M̄

C,σ,q
N ∩ UN ∩ {∃n > N : γn|Dn| ≥ δ}

)

≤
∞

∑
n=N+1

P
(
γn|Dn| ≥ δ

∣
∣E
[
|Dn|2|Fn−1

]
≤ (Cσn)

2
)
≤ δ−1

∞

∑
n=N+1

C2(γnσn)
2.

By Theorem 1.1, we have almost surely convergence of ( f (Xn))n∈N0
on M̄

C,σ,q
N ∩ UN and

since f has a unique critical level on U we thus have f (Xn) → 0, almost surely on M̄
C,σ,q
N ∩

UN . We conclude that

P
(
M̄

C,σ,q
N ∩ UN ∩ {(Xn) does not converge}

)

≤ P
((

M̄
Cσ,q
N ∩ UN

)
\ĀN

)
+ P(ĀN\B̄N)

≤ δ−1
∞

∑
n=N+1

C2(γnσn)
2 + ρ̄N → 0, as N → ∞.

Thus we obtain almost sure convergence of (Xn)n∈N0
on the monotone limit

M̄
Cσ,q ∩ U =

⋃

N∈N

M̄
C,σ,q
N ∩ UN .

Obviously, this is also true on G ∩ M
σ,q ∩ U since

G ∩ M
σ,q =

⋃

C∈N

M̄
C,σ,q.

Now note that there is only a finite number of distinct critical levels on K, say ℓ1, . . . , ℓJ ,
and for each critical level ℓj, j = 1, . . . , J, we can choose an open Łojasiewicz-neighbour-

hood Uj as above. By elementary analysis it follows that for all sequences (xn)n∈N0
with

(a) all but finitely many xn lie in K, (b) limn→∞ f (xn) exists and (c) limn→∞ ∇ f (xn) = 0,
one has that ( f (xn))n∈N0

converges to one of the critical levels ℓ1, . . . , ℓJ and all but finitely
many of its entries are in the respective open set Uj. By Theorem 1.1, we have that in the

case where G ∩ Mσ,q enters and all but finitely many of the entries (Xn)n∈N0
lie in K that

all but finitely many entries of (Xn)n∈N0
lie in a single set Uj and we thus obtain with the

above that (Xn)n∈N0
converges almost surely. Since this is true for every compact set K

we obtain the result.

5 Analytic neural networks

In this section, we discuss neural networks that satisfy the assumptions of Theorem 1.2.
We use similar notation as in [56]. Let ρ : R → R denote a function, the activation function.
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We fix a depth L ∈ N and the number of neurons din := N0, . . . , NL =: dout in each of the
layers and we denote by

PN :=
L

∏
ℓ=1

(
R

Nℓ×Nℓ−1 × R
Nℓ
)
,

the set of all parametrizations of networks with architecture N = (N0, . . . , NL). The archi-

tecture N is related to the realization map RN : PN → C(Rdin , R
dout) given by

Θ = (Aℓ, bℓ)
L
ℓ=1 7→ RN(Θ) = AffAL,bL

◦ ρ⊗NL−1 ◦ AffAL−1,bL−1
◦ · · · ◦ ρ⊗N1 ◦ AffA1,b1

,

where for p, q ∈ N for each A ∈ Rp,q and b ∈ Rp, AffA,b : Rq → Rp, x 7→ Ax + b and
ρ⊗p : Rp → Rp is the mapping that applies ρ component-wise.

Proposition 5.1. If ρ : R → R is analytic, then the mapping

PN × R
din → R

dout , (Θ, x) 7→ RN(Θ, x) = RN(Θ)(x)

is analytic.

Proof. Note that for each ℓ = 1, . . . , L the mapping

PN × R
Nℓ−1 → PN × R

Nℓ , (Θ, x) 7→ (Θ, Aℓx + bℓ)

with (Aℓ, bℓ) being the ℓ-th entry of Θ is analytic. Moreover, for each ℓ = 1, . . . , L − 1 the
mapping

PN × R
Nℓ → PN × R

Nℓ , (Θ, x) 7→
(
Θ, ρ⊗Nℓ(x)

)

is analytic. The mapping in the proposition may be written as composition of the above
analytic functions. Hence, it is also analytic.

We give sufficient conditions that imply analyticity and, thus, the existence of local
Łojasiewicz-inequalities for the objective function f (Θ) = E[L(R(Θ, X), Y)], where X
and Y are compactly supported random variables. In practice, the expectation is often
taken as an empirical average over a finite data set, so that X and Y are clearly compactly
supported.

Theorem 5.1. We assume the above setting and let ρ : R → R and L : Rdout × Rdout → R

be analytic functions. Then for compactly supported R
din- and R

dout-valued random variables X
and Y, the function

f : PN → R, Θ 7→ E
[
L
(
R(Θ, X), Y

)]

is analytic.

Proof. As consequence of Proposition 5.1 the mapping

PN × R
din × R

dout → R, (Θ, x, y) 7→ L
(
R(Θ, x), y

)

is analytic. We prove that generally for p, q ∈ N, an analytic function G : Rp+q → R and
a compactly supported Rq-valued random variable Z, the function Rp ∋ x 7→ E[G(x, Z)]
is analytic. This then implies the statement of the theorem.
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We will use that a function is analytic if and only if it is C∞ and satisfies locally an esti-
mate as (5.1) below, see for instance [40, Proposition 2.2.10]. Pick x0 ∈ Rp and a compact
set K ⊂ Rq on which Z is supported. Then there exists for each z0 ∈ Rq, an open set
Uz0

⊃ {(x0, z0)}, Cz < ∞ and Rz0
∈ (0, 1] such that for all (x, z) ∈ Uz0

one has for every
multiindex µ,

∣
∣
∣
∣

∂|µ|G
∂xµ (x, z)

∣
∣
∣
∣
≤ Cz0

· µ!

R
|µ|
z0

. (5.1)

Now
Ūz0

:=
{

z ∈ R
q : (x0, z) ∈ Uz0

}
⊃ {z0}

is open and there is a finite cover (a finite subset Z ⊂ Rq) with
⋃

z′∈Z Ūz′ ⊃ K. We let
R := minz′∈Z Rz′ > 0 and C = maxz′∈Z Cz′ and note that for every (x, z) ∈ ⋃z′∈Z Uz′ one
has ∣

∣
∣
∣

∂|µ|G
∂xµ (x, z)

∣
∣
∣
∣
≤ C · µ!

R|µ| .

Now
⋃

z′∈Z Uz′ is open and covers {x0} × K so that there exists an open neighbourhood V
of x0 with V ×K ⊂ ⋃

z′∈Z Uz′ and we observe that for every x ∈ V and every multiindex µ,

E

[
∂|µ|G
∂xµ (x, Z)

]

≤ C · µ!

R|µ| .

Using that G(·, z) is C∞ for every z ∈ Rq we obtain the result.
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