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Abstract. In this article, we consider convergence of stochastic gradient descent schemes (SGD), including
momentum stochastic gradient descent (MSGD), under weak assumptions on the underlying landscape. More
explicitly, we show that on the event that the SGD stays bounded we have convergence of the SGD if there is
only a countable number of critical points or if the objective function satisfies Lojasiewicz-inequalities around
all critical levels as all analytic functions do. In particular, we show that for neural networks with analytic
activation function such as softplus, sigmoid and the hyperbolic tangent, SGD converges on the event of
staying bounded, if the random variables modelling the signal and response in the training are compactly
supported.
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1 Introduction

In this article, we analyse stochastic gradient descent schemes for C!-objective functions
f:R?Y - Rwithd € N := {1,2,...} being an arbitrary dimension. We denote by
(Q, F, (Fu)uen,, P) a filtered probability space and consider an R?-valued stochastic pro-
cess (Xy)nen, that admits a representation

Xn = Xn-1+ Tn(I'n + Dn) (L1)
for n € N, where
* (Yn)nen is a sequence of strictly positive reals, the step-sizes or learning rates.
* (T'y)nen is an (Fy)uen,-predictable sequence of random variables, the drift.
* (Dy)nen is an (Fy )nen-adapted sequence of random variables, the perturbation.

e X, is an Fy-measurable random variable, the initial value.
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The choice (T'y)pen = (—Vf(Xy-1))nen leads to a standard representation of stochastic
gradient descent. However, our results hold for a more general class of dynamical sys-
tems, including momentum stochastic gradient descent (see Section[2)), assuming the drift
is comparable in size and direction to the gradient vector field (the precise condition is
given in Definition[L.). Additional assumptions will be imposed in the theorems below.

Stochastic gradient descent schemes form a subclass of Robbins-Monro schemes which
were introduced in 1951 [63] and have been highly influential since then. Their relevance
stems from their applicability of finding zeros of functions F : R — R? in the case where
one has only simulations at hand which give approximations to the value of F in mean.
Following the original papers a variety of results were derived, and we refer the reader to
the mathematical accounts [9,2341] on stochastic approximation methods.

In this article, we analyse convergence of (X;),cn,. This problem is intimately re-
lated to understanding the asymptotic behaviour of (Vf(X;))uen,- The classical anal-
ysis of Polyak and Tsypkin [60] yields existence of the limit lim,_,« f(X,) and proves
liminf, ;e |Vf(X,)| = 0 under appropriate assumptions. Later, Walk [70] showed that
in an appropriate setting one has almost sure convergence lim;,_,o Vf(X,) = 0. Similar
results were established in various settings, see [10,26]130,43|147,49].

We will provide a short proof for lim,, .o Vf(X;;) = 0 under weak assumptions. Here,
we include the case where Vf is only Holder continuous and where (Dj,),cnN is an LP-
martingale difference sequence for a p € (1,2]. Then, we will conclude that we have
almost sure convergence of (X;;),enN, on the event that (X, ),cn, stays bounded in the
case where the set of critical points of f does not contain a continuum, see Theorem [I.1]
below.

In the case where the set of critical points of f contains a continuum of points the sit-
uation is more subtle. In that case, Tadic [68] showed that under a Lojasiewicz-inequality
stochastic gradient descent schemes converge under appropriate additional assumptions.
In this article, our considerations are also based on the validity of certain Lojasiewicz-
inequalities. However, here we allow the drift to be more general so that the new conver-
gence theorem is applicable for a bigger class of optimisation methods such as momentum
stochastic gradient descent (MSGD). We stress that the proofs developed in this article are
significantly different from the ones in [68]. We mention that the asymptotic behaviour of
a stochastic gradient descent scheme is tightly related to that of the first order differential
equation

%= —Vf(x) (1.2)

(though many approximation results only hold for a finite time-horizon), see e.g. [50,
Proposition 1]. Convergence for the latter differential equation is a non-trivial issue even
in the case where the solution stays on a compact set: One can find C*-functions f to-
gether with solutions (x;);>¢ that stay on compact sets but do not converge, see [54, Ex-
ample 3, page 14]. Counterexamples of this structure have been known for a long time (see
e.g. [16]) and include the famous Mexican hat function [1]. To guarantee convergence (at
least in the case where the solution stays on a compact set), one needs to impose additional
assumptions. An appropriate assumption is the validity of a Lojasiewicz-inequality, see
Definition [[.2lbelow. This assumption has the appeal that it is satisfied by analytic func-

tions, see [45,46].
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Recently, there is a growing interest in the case where a Lojasiewicz-inequality holds
with exponent = 1/2, often referred to as Polyak-Lojasiewicz-inequality (or PL-inequa-
lity). The idea first appeared in 1963 in an article of Polyak [57] where linear convergence
in the objective function is shown for non-perturbed gradient descent. In machine learn-
ing, this inequality turns out to be quite effective as a tool to weaken strict convexity
assumptions and allow multiple global minima, see e.g. [7,27,129]137,169,[72,[76] and the
references therein. We stress that still the respective assumptions are significantly stricter
than the ones we will impose. In particular, the existence of a global PL-inequality im-
plies that the objective function f is quasi-strongly convex, see e.g. [4/62]. In contrast, our
analysis allows the landscape to contain local minima, maxima or saddle points.

In the main result of this article, we prove convergence of (X, ),en, for objective func-
tions that are Lojasiewicz-functions (i.e. locally satisfy a general Lojasiewicz-inequality)
on the event that the scheme stays bounded, see Theorem [.2]below. In particular, our re-
sult applies if the objective function is analytic. This generalises the analysis in [1] where
convergence of gradient descent without stochastic noise is considered. We stress that the
limit points may be local minima as well as saddle points. After a preprint version of this
article appeared, there has been a lot of interest in the interplay between stochastic optimi-
sation algorithms and loss landscapes satisfying locally Kurdyka-Lojasiewicz-inequalities
(a slight generalisation of the Lojasiewicz-inequality) and we point to [14},24)134,144,51] for
recent developments in this direction.

As an example we provide a machine learning application: In the case where in a deep
learning representation the activation function is analytic (for instance, softplus, hyper-
bolic tangent, or sigmoid) and the random variables modelling the signal and the response
are compactly supported, the respective objective function is analytic, see Theorem (.11
Hence, in that case our results show that a SGD scheme associated with the training of the
network converges almost surely on the event of staying bounded. Concerning the train-
ing of neural networks via SGD we also refer the reader to [5,6,[11}19,22]25,28|/35,36}/42].
Related objective functions (loss landscapes) are analysed in [15)17120,52}555)/61].

Our analysis is based on non-asymptotic inequalities and if one has additional informa-
tion about the explicit Lojasiewicz-type inequalities for the objective function to hold our
results entail moment estimates for the objective function value, see Proposition 4.2 and
the distance that can be overcome by the SGD when observing convergence to a particular
critical level, see Proposition 4.4

Let us summarise the contribution of the present work:

* We show almost sure convergence of (f(X;))nen, and (Vf(Xy))nen, under the as-
sumption that Vf is locally Holder continuous and (Dj),eN is an LP-martingale
difference sequence for a p € (1,2], see Theorem [

* We generalise the result in [68] showing almost sure convergence of (X}, ),en, under
the assumption that f is a Lojasiewicz-function, see Definition[I.2] where we weaken
the assumptions on the step-sizes (7, ),en and stochastic noise (Dy,), <N, see Theo-
rem

* Both results are shown for a general class of dynamical systems assuming a certain
angle condition between the drift term (I';),cN and the gradient of the objective
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function (Vf(X;,—1))nen, see Definition [.1l Therefore, our results hold for other
optimisation methods including momentum stochastic gradient descent, see Theo-

rem [2.1]

* We verify the validity of a Lojasiewicz-inequality in the supervised learning setting
using neural networks with analytic activation function, see Theorem 5.1l

We proceed with the central definitions and statements.

Definition 1.1. 1. We denote by IL the event that (X, ),eN, stays bounded, i.e.

L= {limsup | Xn| < oo}.

n—oo

2. We denote by G the event

. A=Vf(Xy 1), ) . V(X)) }
G =< liminf >0 and liminf ——————— >0,
{ n—eo V(X)) ? n—oo Tl

where we interpret 0/0 as 0.

3. Forq > 1and a sequence (0y,),cN Of strictly positive reals, we denote by M the evenf]

M7 = {limsupa,jllE[|Dn|q|Fn_1]% < oo,

n—oo

and E[D,|F,_1] =0 for all but finitely many n}.

Remark 1.1. Let us discuss the satisfiability of the latter events. First, for continuously dif-
ferentiable objective functions f with Lipschitz continuous differential satisfying f(x)—o0
as |x| — oo the SGD process almost surely stays bounded (see [19, Lemma D.1]). In the
case that f does not necessarily satisfy the latter property, one can add an L?-regularisation
term, i.e. replace f by f given by f(x) = f(x) + a|x|?/2 for a sufficiently large a > 0
(see [19, Remark 2.8]). Next, when considering stochastic gradient descent, i.e. (I';),en =
(=Vf(X;-1))nen, we clearly have P(G) = 1. However, the class of optimisation meth-
ods satisfying IP(G) = 1 is much broader and include, e.g. line-search methods (see [53,
Chapter 3] and [1, Chapter 4.1]), inexact gradient methods (see, e.g. [39]) and momentum
stochastic gradient descent (see Section[2). The two conditions defining the set G guaran-
tee that the size of the drift I';, and the negative gradient —V f(X,,_1) are asymptotically
comparable and the angle between the two vectors stays uniformly below 90° at late times.
See for more examples of gradient-based optimisation dynamics satisfying this angle
condition. Last, in stochastic optimisation a common assumption on the perturbation is
the so-called ABC condition, stating that there exist constants A, B, C > 0 such that

E[|Dul?|Fu-1] < 2A(f(Xu-1) = f(x%)) + BIVf(Xu-1)* + C,

1Formally, E[Dy|F,_1] = 0 is to be understood as condition E[D;|F,_1] = E[D; |F,_1] < oo, where D; and D;;
denote the positive and negative part of D,. Note that for general non-negative random variables conditional expectations
are always well-defined and, in particular, we do not assume integrability of D, in this article.
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where x* denotes a critical point of f (see, e.g. [29,138,43]). Note that, after establishing
boundedness of (X, ),en, the first and second terms on the right-hand side in the latter
inequality can be bounded by a constant depending on the bounds of the objective func-
tion and its differential on the relevant domain. In this work, we allow the size of the
stochastic noise to be comparable to a (possibly unbounded) sequence (0, ) ,cN-

Let us state our first main result concerning the convergence of (f(Xy)),en, as well as
(Vf(Xn))nen,- We stress that, comparing to classical results, we weaken the assumptions
on the objective function (allowing functions with Hélder continuous differential) and
on the stochastic perturbation (allowing martingale differences in L' for an aq > 0).
See [32)/65] for heavy-tailed noises in SGD that are in L% for an a7 < 1 but have an infi-
nite second moment. Various sequences (0y, ),eN appear in multilevel stochastic gradient
descent algorithms, see [21]].

Theorem 1.1. Let 0 < a1 < ap < 1and (0y,),en be a sequence of strictly positive reals. Suppose
that V f is locally ap-Holder continuous, that v, — 0,

oo
Z(’Yn@q)lﬂél < o0,
n=1

and in the case where ay < 1 that, additionally,

o) 1+ay

Yo < oo,

n=1

Then, almost surely, on C := LN GN M2 the limit limy,—eo f(Xy) exists and, if addition-
ally, Y° 1 yn = oo, one has almost surely, on C, that

lim Vf(X,) =0.

n—oo

Moreover, in the case where the set of critical points of f, C = {x : V f(x) = 0}, does not contain
a continuum of elements, i.e. there does not exist an injective mapping taking [0,1] to C, then we
have almost sure convergence of (X,;)uen, on C.

Remark 1.2. Note that in the case where C is countable the set C does not contain a con-
tinuum of elements.

Next we prepare the main result of convergence under Lojasiewicz-type assumptions.

Definition 1.2. We call a function f : R* — R Lojasiewicz-function, if f is continuously differ-
entiable with locally Lipschitz continuous differential and if for every x € C = Vf~1({0}), the
Lojasiewicz-inequality is true on a neighbourhood Uy of x with parameterst > 0and p € [1/2,1),
ie forally € Uy,

IVFW)I =L If(y) - f(2)IP.

Remark 1.3. Note thatfor all x ¢ C and > 0 there trivially exist a neighbourhood U, and
constant £ > 0 such that the Lojasiewicz-inequality with parameter £ and B hold on Uy.
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Theorem 1.2. Let f be a Lojasiewicz-function and q > 2. Suppose that for n € IN,

,)/1’1 - C,yn*')/, 0-1’1 - nO’[

where Co, > 0,7 € (1/2,1] and o € R. If

1

2
z 1 - -
(c+1) <7, o1

3
then, on C := IL NG N M7, the process (Xn)ne]N0 converges, almost surely, to a critical point
of f.

Remark 1.4. In the case where v > 1,4 € [1,2] and ¢ € R with g(y — o) > 1 we clearly
have almost sure convergence on

C.:=LNGnNMA1.

However, in that case lim,, .. X}, is not necessarily a critical point of f. Indeed, let K be
a compact set and consider the events

n
ANCK = N {X, €K, [Tpa| < CIVF(X)|, E[|Desal?| Fo] < Cof 1, E[Dyyq | Fu] = 0}.
(=N

Then, on Ag’C’K =Nu>N A,I;] CK we have for all n > N,

n

X = Xn| S ClIVFlliow) Y. et
(=N+1

n

Y. 1Dy

{=N+1

Moreover,

n
(Mn)n>N = ( Y. TlAN,c,K’MDe>
(=N+1 1 n>N

is a martingale which converges almost surely on ANCK due to Lemma The result
then follows by taking the countable union over such sets.

Remark 1.5. 1. The assumptiong > (27 — ¢ —1)~! in Theorem[T.2is only a technical con-
dition to control the undershoots of the SGD scheme near a local maximum or saddle
point. If, onIL N M2, we have almost surely that d(X,, M) — 0, where M denotes the
set of all local minima of f, then q = 2 is sufficient for all choices of 7y and ¢ satisfying
2(c+1)/3 <.

2. We consider the case, where (7;)nen = (Cyn™7)en with Cy > 0and v € (1/2,1] and
(Dy)nen is a sequence of martingale differences with size of order O(1). In an earlier
work, Tadic [68] showed almost sure convergence of stochastic gradient descent (see
also [67] for an extended version) for analytic objective functions under the assumption
that there exists an r > 1 such that, almost surely,

lim sup max
n—eo  k>n

< 0o,

k
Y 7itiD;
1=n
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where t, = }I' ; ;. While this assumption requires oy > 3/4 our analysis allows us to
goaslowasy >2/3.

3. The SGD scheme shows similar behaviour as the solution to an SDE with a drift term
which is comparable in size and direction to —V f plus a diffusion term with vanish-
ing diffusivity. Such SDEs are analysed in [18], where the diffusive term is assumed
to have a bracket process whose magnitude is bounded by ¢~2° dt with p € (0,0). If
p > 1, one can devise a convergence proof for the SDE under analogous assumptions
as imposed here. Conversely, there exists a counterexample with p = 1 for which the
SDE diverges and circles around a sphere infinitely often, see [18]. When translating
the SGD problem (with exponent v < 1) analysed here into the SDE problem the asso-
ciated p is

¥ —20
=50y

Note that2(c + 1) /3 is the largest y-value for which the respective p is smaller or equal
to 1. This suggests that in Theorem [[.2] the assumption ¢ > 2(¢ 4 1)/3 is natural and
that the result does in general not hold for smaller -.

We give two important applications of the main statement above. As found by Rup-
pert [64] and Polyak [58,59], in many scenarios the running average of a Robbins-Monro
algorithm yields a better performance as the Robbins-Monro algorithm itself. This is even
the case where the potential limit points are non-discrete and form a stable manifold,
see [19]. Convergence of the algorithm seems to be (up to very particular examples) a ne-
cessity for the Ruppert-Polyak-averaging to have a positive effect. Our research suggests
that Ruppert-Polyak-averaging may also have a positive effect in our setting. At least it
entails that the average converges to the same parameter value and thus gives in the limit
the same target value (loss) as the Robbins-Monro algorithm itself.

A promising line of recent research focusses on the implicit bias of gradient descent
algorithms, see e.g. [2)[13]131}/66]74] and the references mentioned therein. Although the
model is often trained using a fixed training set, stochastic gradient descent seems to pick
an empirical risk minimiser that generalises well to unseen data. A common state-of-the-
art hypothesis in the machine learning community is that implicit bias might be one of the
reasons for the outstanding performance of stochastic gradient descent in practice. Our
results further motivates the analysis of the implicit bias. In particular, we show that SGD
converges to a limit point and one is left to investigate key properties of the limit that
may be important to achieve a good generalisation error (such as flatness of the minima,
e.g. [73[75,[77]).

The article is arranged as follows. In Section 2] we apply our results to show con-
vergence of momentum stochastic gradient descent. In Section[3, we provide the proof
of Theorem [T} Section H proceeds with the proof of Theorem Finally, Section Bl dis-
cusses analytic neural networks and, in particular, analyticity of a particular deep learning
network is established in Theorem 5.l Recall that analyticity of the objective function f
implies that f is a Lojasiewicz-function. Therefore, our main results apply for the objec-
tive functions that arise from a regression task in supervised learning when using analytic
activation functions and an analytic loss function, see Theorem [5.1]
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2 Convergence of momentum stochastic gradient descent

Consider the second order system satisfying

Xn=Xy-1+ ’)’n(Vn—l + D1(11))/

o 2.1)
Vi =V —Tn (anfl + Vf(Xn*1> — Dy )

for n € IN, where u > 0, (Dﬁll))ne]N and (D,(Zz))ne]N are (Fy)nen-adapted sequences
of random variables, (7,),eN is a sequence of strictly positive reals and Xy, Vj are Fo-
measurable random variables. Set

7 D(l)
rn = < " >, Dn = " ’
—uVio1 = Vf(Xy-1) Dy(lz)

and note that (2.J)) can be written as the first order system ([L.T).

Theorem 2.1. (i) Let 0 < aq < ap < 1 and (0y,)neN be a sequence of strictly positive reals.
Suppose that f is C? and Hess f is locally ap-Holder continuous, that v, — 0,

[ee] [ee]
Z Tn = 0, Z ('Yno'n>1+al < 0o,
n=1 n=1

and in the case where ay < 1 that, additionally,

o) 14ag

Yo 2 <o,

n=1

Then we have almost surely on the event I N M1 that V,, — 0and Vf(X,) — 0.

(i) Let f be a C*-Lojasiewicz-function such that Hess f is locally Lipschitz continuous and q > 2.
Suppose that for n € IN,

,)/Tl — C')/n_,y/ ‘771 = nLT,

where Co, > 0,7 € (1/2,1] and o € R. If

1

2
5(‘7+1)<% m<‘%

then, on I N IM?, the process (X )neN, converges, almost surely, to a critical point of f.

Proof. (i) Let K C RY be a compact set, define LK = Nneny1Xn € K} and note that it
suffices to show the statement on the event LK N IM%1+%1 since I = (J,,cpy LX", where

(Ky)nen denotes an increasing sequence of compact sets with (J,cpn Ky = R¥. Fora > 0
define the energy function

£(x,0) = glloll> + F(x) +a(Vf(x), o),
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so that VF(x) + aHess f(x)
x) +aHess f(x)v
VE(xv) = ( v+aVf(x) >

Set C := sup,..g ||[Hess f(x)|| and note that for all n € IN we have
[Tul? < (14 2p%) [Vt P+ 2|V F(X-1) P

as well as
IVEXu—1,Va1)P > (1 =2a+a*)|Vf(Xy 1) + (1= (C*+1)a) [V, a [,
IVEXp—1,Ve1)> < (1 +2a+a?)|VF(Xu_1) > + (1+ (C* 4+ 1)a + C%a®) |V, 1,
and

a a
<—V5(Xn,1, anl)/rn> 2 (V —aC — EVZ) ’Vn71|2 + E’Vf(xnfl)lz'

Thus, for sufficiently small 2 we have

. A=VEXy—1, V1), Th) .. | VEX 1, V1) })
P lLKﬁ{hmmf< 1 1 <0 or liminf <0%) =0.
< n—eo |VE(Xp—1, Vu1)|>  — n—00 T -

Next, we show that on ILX N M4 we almost surely have limsup,, .., |Vu| < co. For
arbitrary Cy, Cy > 0 and N € N such that sup, .\ 7» < p consider the adapted sequence
of events (Ay),>n given by

Ay = {|Vn| < Cv, Xm € K, E[Dy41|Fm] =0,

E[|Dy1|"" | Fu] < Coop 8l Vm=N,...,n}

forn > N and set C £ 1= SUp,ek |V f(x)|. It suffices to show that, for a constant ¥ > 0, the
process (Vy),,>n given by

_ f 1404
VN = ]IAN<|VN|\/7> ’

and
n

N Cf 1+aq e
Vi:=1a, , <|Vn| v —) —xCo Y (ynow)'™™, n>N
H i=N+1

is almost surely bounded, since ¥, o (7407%) T < o0. Since f(x) = x'*%1 has an a;-Hol-
der continuous gradient there exists a constant x > 0 such that

Va5 < J(Wo )79+ (1 4 @) Wo ot [Woa |71, D) + K|y D[4,
where W, 1 = (1 — y,4)Vy_1 — 7uV f(X,_1). Thus, V,, is integrable for all n > N and
E[1a,|Val' " [Fya]
< Ap, (1 =Y Vi = 1V f (X)) [ 4 5 Co(ynom)

< ]lAn,1|Vn—1|1+al + KCU(’)’n‘Tn)lJralr
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if [V,,—1| > C¢/p, as well as

1+le
]lAn71IE[|Vn|1+al| |-7:n—1] < :“Anfl <7f> + KCU('YH‘Tn)Hal/

if |V,—1| < C¢/p. Since (V)N is almost surely bounded from below, we can apply
Doob’s martingale convergence theorem to deduce that limsup,,_, . [V, < c0o on A 1=
Nusn Ay and, thus, on LXK N M1, Now, using Theorem [Tl we get almost surely on
LK N M7+ that VE(X,, Vi) — 0, which for sufficiently small a implies V,, — 0 and
Vf(X,)— 0.

(ii) In order to show convergence of (X, ),cN, we need to show that for sufficiently small a
and every x € K there exists a neighbourhood U C R of (x,0) € R?? satisfying
a Lojasiewicz-inequality for £ on U. The proof for the latter statement can be found
in [12, Section 3.2]. O

3 Proof of Theorem [I.1]

In this section, we prove almost sure convergence of (f(Xy))nen, and (Vf(Xy))nen, un-
der the assumption that the martingale noise is in L!*% and V f is ap-Holder continuous,
for 0 < a; < ap < 1, by analysing the evolution of (f(X;))nen, step by step. We use
the classical argument, Lemma [3.2] to show that the influence of the martingale noise is
negligible at late times. Then, we prove that Holder continuity of Vf is sufficient for
the remainder in the Taylor-approximation to have a negligible effect. We conclude that,
for small step-sizes, the system (f(Xy))uen, has a tendency to decrease and using the
boundedness of f on a compact domain we deduce convergence of (f(Xy))sen,. The
main technical tool that allows us to consider objective functions with Holder continuous
gradient is the application of a Holder inequality, see (3.2), that in a similar form appears
in the analysis of the ODE-method for SGD, see [8, Proposition 4.2]. The convergence of
(Vf(Xn))nen, and (X;)nen, (for functions having isolated critical points) follows from
a path-wise analysis using the convergence of (f(Xy))nenN,-

Lemma3.1. Let N € N,C > 0,K C R% bea compact and convex set and denote by (Ay)y>N
a decreasing sequence of events such that for everyn > N, A, € F, and

Ay € {Xn € K [VF(Xn)P < COVF(Xn), ~Tpa), [Tia| < CIVF(X)] )

Further, suppose that vy, — 0, there exists 0 < ay < ap < 1such that V f is ap-Holder continu-
ous on K and there exists a sequence (0, )N 0f positive reals such that

1. E[la, Dy )V 04%) < g foralln = N +1,....
2. E[1a, ,Dp| Fy-1] =0foralln =N+1,....

3. Zn>N(’)/n0-n>1+‘xl < 00,
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4. In the case where ay < 1,Y <N fy,(qH”‘Z)/(l_”‘Z) < oo,

Then on A = >N An, almost surely, (f(Xy))nen, converges and, if additionally,
5. Yn>NTn =09,

then on A, almost surely, lim,_,. V f(X,) = 0.
For the proof of Lemma [B.Jlwe need the following result.

Lemma 3.2 ([48, Corollary 4.19]). Let (My)neN, be a martingale and, for n € IN, set AM,, =
M, — M, _1.If fora p € (0,2],

Y. E[|AM,|F] < o,
nelN

then (My)neN, converges almost surely.

Proof of Lemma[3.1] In the following Cy, Cy, ..., denote finite constants that only depend on
(Yn)neN, @2, [|V f]| = (k) and the Holder constants of V f on K for the exponents a; and a;.

Step 1. We prove almost sure convergence of (f(Xy))nen, on Aw. For n > N we use
a Taylor approximation of first order and write

f(XTl) _f<Xn71) = f(anl + ')’n(rn + Dn)) _f(Xn71>
= Y f(Xu—1),Tn) + ¥u(Vf(Xy—1), Dn) +ARy,
=:AA, =AM,

where AR, is the remainder term in the Taylor approximation. For n > N we set

n

An = Z ]1A71171r)/m<vf(X1’l—1)/rn>/

m=N+1
n
Mn - Z ]1A71171rym<vf(xm—1)/ Dm>,
m=N+1
n
Rn - Z ]1A71171ARm.
m=N+1

Note that by the Taylor formula, for all n > N, on A, we can write AR, = AR,(}) + AR,(E)
with

AR < Crp PR T2, AR | < Crosy Dy T,
where C; only depends on the Holder-constants of V f on K with respect to the exponents
«1 and ap. We define (R,(}) Jn>nN and (R,(qz))nZN in analogy to (R;),>n and note that

[e ] o0
1
Y E[la, 7w Dn"T] <Y (rmom) T < oo,
m=N-+1 m=N+1
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so that (R,(qz) )n>nN converges, almost surely, to a finite value. Moreover, (Mj,),,>n is a mar-
tingale that converges, almost surely, to a finite value as consequence of Lemma[B.2land

Y E[la, [V (Xmo1), D)) < O Y 90 M E[1a,, Dl
m=N+1 m=N+1

with Cp := || f||L~(x) < co. Finally, we compare the contribution of the first remainder

(1

term (R, ))nZN with (A,),>n. In the case where ay = 1, we have for all n > N with
C1C3’)’n S 1/2/ on Ai’l—ll

1
AR < CICRIVI(Xy 1) 2 < —CICHRVI(Xpo1), T € —58An (BD)

This is the case for all but finitely many n’s and we conclude that by monotonicity of

(An)n>n the random variables (A, + R,(}) )n>nN converge almost surely, possibly to minus
infinity. We note that on A

F(Xn) = F(XN) + An+ RY + M, + RP,

and by lower boundedness of f on K the latter limit needs to be finite and we proved
convergence of (f(Xy))uen,- Note that as consequence of (3.1), also (A;),>n converges
to a finite value on A.

It remains to consider the case where a; < 1. We apply the Holder inequality with the
adjoint exponents 2/ (1 — ap) and 2/(1 + ay) and get that

n

Y w2, |V F(Xpo1) [P

m=N+1
11—« 1+ay
00 1+ay 7 n ’ 2
<(r W) (X Y R) (62)
m=N+1 m=N+1

<00

Since (1 + ap) /2 is less than one we get with monotonicity of (A, ),>n that (A, + Rg,l) Jn>N
converges almost surely, again possibly to an infinite value. We proceed as above to con-
clude that the latter limit is finite and that the sequences (f(Xy)),>n and (Ay),>N are
almost surely convergent on A, with finite limits.

Step 2. We prove almost sure convergence of (Vf(X;))nen, to 0 on A in the case that
Y vn = oo. First, note that in analogy to above the process (M,),>x given by

n

MTl - Z ]lAm717mDm
m=N+1

is a martingale that converges, almost surely, as consequence of Lemma[3.2l Consequently,
we get with the first step that

O := {leZ{lAn > —oo} N {ng;omn exists in ]Rd}
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is an almost sure event. Suppose now that there exists w € g N Ay for which the se-
quence (Vf(Xy(w)))nen, does not converge to zero. Then there exist § > 0 and a strictly
increasing sequence (1 )xeN With |V f(X,, (w))| > 6 for all k € IN. Note that |V f]| is
uniformly bounded over the set K by x and choose ¢ > 0 such that

sup  |Vf(x) - Vi)l < 3

xyeK: |x—y|<e

We let (1 )xen such that

my € mk+1
Z Yo < Ck < Z Ve
(=mp+1 I=mg+1

By thinning the original sequence (1 )ren We can ensure that ([n, + 1, my] : k € IN) are
disjoint intervals. Moreover, by discarding the first terms from the sequence (1y)ren We
can ensure that for all k € IN,

sup | My (w) — My, (w)| <

m>ny

N[ ™

Now note that for £ = ny, ..., my,

Xe(@) = X (@) < Cx T i+ [ ¥y () — By ()] < .
i=n+1

Consequently, for these /,

V(@) 2 |V ()| - 53 > 5

and hence,

3 vsxa@)Pz (3) 3 )
Y|V (X1 (w)) | 2 (—) Yo — <—> —.
l=n+1 2 (=np+1 2 2k

Since the intervals ([ng + 1,my] : k € IN) are pairwise disjoint and since w € A we get
that

5 lla (@) V(X1 (@) [ = oo,
k=N-+1

which contradicts w € g. Thus we proved that (Vf(X;)),en, converges to zero on
0Oy N Ac. ]

Proof of Theorem[LD} Let N € N, C > 0 and K C RY compact and consider the sets
(ANCK . > N) given by

n
ANCK = X, € K |VF(X) > < C(VF(Xe), —Tos1), Tral < CIVE(X0)],
(=N

1
E[|Dp " | F] < Coy ", E[Dgr | Fu = 0}



J. Mach. Learn., X(X):1-37 14

The sets satisfy the assumptions of Lemma[3.Jland we thus have on ANCK = N> NANCK
almost sure convergence of (f(Xy))nen and, in the case

Y rn=00, lim Vf(Xy)=0.

Now the statement follows, since for an increasing sequence of compactsets (Ky : N € IN)
with | Ky = R we have
c= |y aSN. (3.3)
NeN
It remains to prove almost sure convergence of (X;),en, on C in the case where the
set C = {x : Vf(x) = 0}, does not contain a continuum of points. By @3.3), it suffices
to show almost sure convergence on /Ag’N’KN for arbitrary N € IN. First, we verify that,
almost surely, lim,, ;00 (X — X;;—1) = 0. Indeed, as shown in the proof of Lemma 3.1l one
has on ANNAY that (X/—n117¢D¢)n>N converges, almost surely, so that 7,D, — 0 on
ANNEN Moreover, vu|Tpst| < 1CIVF(Xa)| = 0 on AZNEN o that (X, — Xp_1)nen
almost surely converges to zero on ANNEN Now note that

P ({(Xn)nen, diverges} N /Ang,KN)

d .
< ;JP((XS:))%NO diverges, V£(X,) — 0,X, — X,_1 — 0,X, € Ky, Vm > N),
1=

where X,(f) denotes the i-th coordinate of the random vector X, € R¥.

If P({(Xn)nen, diverges} N ANNAN ) were strictly positive, one of the summands on
the right-hand side would be strictly positive. Suppose that this were true for the i-th
summand. In particular, for this i the respective event does not equal the empty set. We
choose

we {(x)

neN, diverges, Vf(X,) — 0,Xy —X,-1 — 0,X;y € Ky, V> N}.

Thus, _ '
a:= limian,(f)(w) # limsup X,(f) (w) =:b.
n—oo n—s00
By Xu(w) — X;—1(w) — 0 we also get acc((X,(f)(w))ne]No) = [a,b] and the principle
of nested intervals produces for every u € [a,b] an accumulation point of (X, (w))nen,
with i-th coordinate equal to 1. Hence, we defined an injective mapping that maps each
u € [a,b] to a different accumulation point #(u) of (X, (w))nen,. By choice of w,#(u) is
a critical point of f and we thus constructed a continuum of critical points. O

4 Proof of Theorem

The proof of Theorem [1.2] is arranged as follows. In Section 4.1} we provide moment
estimates for the objective function value seen by the SGD where we fix a particular critical
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level and take out realisations that undershoot the critical level by a certain amount (lower
dropdown). In Section 4.2, we provide estimates for the drift term (1j_; 7/I'¢)sen in the
setting of Section 4.1l on the event that no dropdown occurs. In Section 4.3} we provide
estimates that later allow us to show that when a dropdown occurs for a particular critical
level it is very likely that the limit of the target value of the SGD lies strictly below that
critical level. In Section [£.4] we provide a technical lemma which shows applicability of
the previous results in the context of Theorem In Section 4.5 we provide properties
of Lojasiewicz-functions and in Section 4.6l we combine the results to achieve the proof of
Theorem

4.1 An estimate for the target value in the case without lower dropdown

Technically, we will analyse the evolution of (f(X))uen, step by step and will thereby
restrict attention to certain nice events. For this we use the concept of compatible events.

Definition 4.1. Let N € N,5,C > 0,U C RY, () n>N a sequence of positive reals and q > 2.
We call events (An)y,>N (U,9,C, (04),q)-compatible, if (A,),>N is a sequence of decreasing
events such that for alln > N:

(i) A, € Fy (adaptivity).

(i) Ap C {Xp€U, |Vf(X0) P<C(VF(Xn), =Ti1), [Taia | <CIVF(Xn) ], 6> 7n11 Tpa |}
(boundedness and drift condition).

(iii) E[1p, Dyt1|Fn] = 0 (martingale condition).

(iv) E[1p, |Dyy1|7|Fa] < 0 (moment condition).

(v) Ayi1 C {Yn+1|Dnr1| < 0} (excess condition).

The proof of the main result is based on several preliminary results. At first we pro-
vide an upper bound for the f-value of (X;),cn, when approaching a critical level with
a lower dropdown, meaning that we only consider realisations of the SGD that do not
undershoot the critical level significantly. We will use the natural time scale associated
with a stochastic approximation scheme which associates the n-th iterate X, with the time
tn = Yy_1 7¢ and see that the f-value is bounded from above by a term arising from the
stochastic noise and the function (®R)>0, the worst-case bound for the f-value of the
solution to the ODE (L.2) in a region satisfying a Lojasiewicz-inequality with exponent
B € (1/2,1) and constant ,/77 > 0 starting in R, i.e. the solution to the ODE (see e.g. [33]))

o) = —p(@™*, o® =R

For a subset U C R we denote

Vi) = Vi)
v . = Su .
H fHLlp(U) x,yeU,I:zc;é]/ |x _ y|
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Proposition 4.1. Suppose that the following assumptions are satisfied:
Lojasiewicz-assumption. Let U be an open and bounded set containing a critical point xy and
suppose that the Lojasiewicz-inequality holds on U with parameters £ > 0 and B € (1/2,1)

meaning that for all x € U,
V()] = £lf(x) = f(x0)IP.

Compatible events. Let N € Ny, 6,C > 0, q > 2 and let (0,),~n and (wy),>nN be sequences
of positive reals. We denote by (Ay)y>na (U,6,C, (o), q)-compatible sequence of events. We let

By = An N {f(Xn) — f(x0) > —wn},

and forn > N,
By = An—10{vn|Dn| <6, f(Xn) — f(x0) = —wn},
and suppose that B,, O A, forn > N.

Main assumptions for asymptotic error term. Let (v,),>n and (yn)neN be decreasing se-
quences of positive reals that satisfy for a constant x > 0 for alln > N,

Uy ,2P-1

o -1 <xy,0, -, 4.1)
and
6NV iy + 20 flspues)) (raon)?
+ (19 Ay + @IV lupan) )i O D rao)? < i, @)
where

2 —{x e R :d(x,U) < 26}.

Additional technical assumptions. We assume that for a constant &' € (0, 1) we have for all
n > N that 2C3HVfHLip(u25)’Yn < ¢ as well as

%wnfl <wy <oy A1, (4.3a)
((€VC v+ 20V fllip e Cr IV Al s 1) < wn. (4.3b)

Assumptions for the associated master equation. Let yo > 0,7 > 0 such that for
¢g:R - R, y — xy—(1-58)CHE2y[*P +1
one has for all y > 0,

o2
(sup % )g(y+yo)§—nlylzﬁ.

n>N 0,1
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Associated differential equation. For R > 0 and t > 0 we let

1
261

&) = R(((2p = 1)yR¥ 1)t +1)

Result. Suppose that the above assumptions hold and that for a R > 0 with

.
R+ (yo+8)on < ((1—6")2BC B2 yny41) P
one has
E[1p,, (f(Xn) = f(x0))] <R.
Then one has, for alln > N,
E[ts, (f(Xn) — f(x0))] < @ + (0 + 8)on. (44)
Proof. We assume without loss of generality that f(xg) = 0 and we write, forn > N,
f(XTl) = f(Xn71> + 'Yn<vf<Xn71>/ In+ Dn> + Ry (4.5)

Taylor’s formula gives that in the case where the segment joining X, 1 and X, lies in
U := U%, the remainder satisfies

[Ru| < 2HVfHLip(CI)%21(|Fn|2 +[Dnl?). (4.6)

We note that this is indeed the case when B, enters. With ¢, := E[lp, f(X,)] one has
¢p = I+ 11, where

I=—E[la, \n{y0|Du|<s}{f(X0)<—wn} f (Xn)],
M =E[Ia, \n{y,D,<spf (Xn)]-
We analyse the terms separately.

Analysis of . On A,,_1 N {y4|Dy| < 6}, one has that
£(%0) = FXa)| < (Crn + 21V o C72) IV 2
+ IV fll sy Yl Dl + 20V fllsip cy vl D
Using that by assumption
(Crn +2vaHLip(l~l)C2’731) HVszoo(u) < Wn,
we get thaton A, 1 N {yn|Dxn| < 3},

L4 £ (%) — (X1 2300} (f (X)) = f(Xn—1)| — Bwn)

< L9 f ) ooy ralDa 20 |V F o 0y 70| Dl
2 2
+ 1009 £ 73100200y 2NV ip ey Va Dal™
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Now,

(ﬂl*l)<

E [, 1019 £ oo 1alDal 20t IV Fll @y Yl Dal] < IV ewqywn ™ (vnom)?,

2 2
E[La, Lol o2 Dul2200y 20V F iy Yl Pl

T —(3-1
< @IV Fllsp) *wn Y (pno) .

Setting
9
2

G = ||Vf||qm(u) + IV Flluip@y) *

and using w, < 1 we get

E (1A, 1 {yaDul <6, £ (Xn)— F (X)) 230a} ([f(Xn) = f(Xn—1)| = Bwn)] < Cravy, 71 (e ).

Recall that A, 1 C B,,_1 so that, on A,,_1, f(X,—-1) > —w,—1. Thus, using w,,_1 < 2w,
we get

L<E[Ia,  {yaDul <630 f(X)<—10n} ([ F(Xn) = fF(Xp1) | + w0, 1)]
< 5w, P(Ay_1 N {n|Du| < 8} N{F(X) < —wn}) + Crwy P (yuon)P.  (&7)

Analysis of II. Again, one has
I =E[1a, ,n{y,Du|<s} (F(Xn1) + 70 (Vf(X1),Tn + Du) + Ry)],

where the remainder satisfies inequality (.6)) since on A, _1 N {y4|Dy| < J} the segment
connecting X,,_1 and X, lies in U. By assumption, 2C3||V f ILip(cyYn < 0" so that

I <E[la, \n{y,Dy<s} (f(Xn-1) = (1 =8")C 9| V(X 1)
+ 1V f(Xn-1), Dn) + 2HVfHLip(CI)’Y%|Dn|2)]-
We note that
E[1a, \{yu|Dy<s}(Vf(Xn-1), Dn)]

= ~E[1a, ,n{y,Ds1z6}(Vf(Xn—1), Dn)]
< 5V fll o 1y 0

Moreover, using that C “yallv f ||2°°(u) < w, and w,,_1 < 2w, we conclude
—E[lp, \n(Ac_ u{ynDuze}) (f(Xn1) = (1= 8)C |V (X1) )]

< P(By—1 N (A5 1 U {7a|Dal = 6})) 20w + C | V| 1))
< 3P(B,—1\By)wy.
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Consequently,

E[1a, A {yalDaf<s) (f (K1) = (1 =) C | VF(X-1) ?)]
=E[lp, , (f(Xu-1) = (1= 0)C | VF(X—1)?)]
—E[l, nac UfrlDulzep) (f(Xn-1) = (1= 8)C | VF(Xu-1) )]
< E[lp, , (f(Xa-1) = (1 =8)C | VF(Xy-1) *) ] + 3P (By—1\Bu)wy.
We conclude that altogether
0 < E[lg, , (f(Xa-1) = (1= 8)C 9| VF(Xu1) )]
+3P(By1\Bu)wn + (0 V fll Loy + 20V fllip(ery) (720)*

Estimating ¢, in terms of a difference equation. Combining the estimates for I and II, see
(A7) above, we get

En E[Ip, , (f(Xu-1) — (1 8)C 19|V F(Xy 1) )] + 8P (B, _1\By)
+ (07NV sy + 20V Flluipiey) (Yo + Creoy T ()1 (48)

S’aniﬁ
Using the Lojasiewicz-inequality together with the convexity of x — |x|?f we get
Gn < 8n1—(1— (S/)Cilhz')’11|grlfl|2lS + 8w, P (B, —1\By) + ')’nvgzﬁ-

By assumption, one has for n > N that

(o _
nl 1< epont
Un
and using that (v,),>N is monotonically decreasing and w, < v, for {, := /v, and

g(y) =xy— (1—58)C 2 |y|? + 1 we get

2—-1
Cn < Cn1+ ')’nvnlS 8(Cn-1) +8P(B,_1\Bn). (4.9)
A comparison argument for the difference equation (&.9). For s > 0, the mapping
Ts:R - R, y — y+sg(y)

is monotonically increasing on (—oo, ((1 — ¢')28C~1£25)~1/(26=1)]. We let
i ),
(Cn)n>N = < S +yo> ’
Un
n>N

(Er1+8) (1= 8)28C B2y, ) 7

and note that, forn > N,
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= 1
< (04-18n-1+80,-1)((1 — &")2BC~ 12, ) %1
5 1
< (vnCN + 8un) ((1 — 5/)2:8C71L2'7N+1) P11 <1,

so that T7 26-1 is monotonically increasing on (—00,{y—1 + 8]. We prove by induction
n%n

that for alln > N, {, < {, + 8 P(By\B,). By assumption, {y = &n/vn < R/ony < In-
Moreover, supposing that the statement is true forn —1 > N, we concludg that g, 1 <
Cn—1 + 8 so that we get with (£.9) and the monotonicity of T7 26-10n (=00, 1 + 8] that

gn < T,aniﬁfl (gnfl + SJP(IBN\]anﬁ) + 8]P<]Bn71\18n>

= Cu1 4 7000 'g(Cu1 +8P(BN\B, 1)) + 8P(By\B,)

(R) (R) 2
(O [ON p
< N 0l <M> + Yo + 8P(By\B,)
Un—1 On
< i(cp(R) — 17 (@4 )2'5) + 1o+ 8P(By\By) (4.10)
- Un tp_1—tN n fp_1—tN ny ’
Noting that
p(R) (R) P
o = (@ )
we get
R 2B th—tn R R R
—NYn (q)gnf)lftl\l) < / (I)El ) du = CIDEHLN — q)gn—)lftN'
fp_1—tN
With @I0) it follows that {,, < {, + 8P(Bx\B,) which finishes the proof. O

By slightly modifying the proof, one can derive a rate of convergence for the approxi-
mation of a local minimum in a neighbourhood that satisfies a Lojasiewicz-inequality. See
also for almost sure convergence rates.

Proposition 4.2. Let B € (1/2,1), U C R? and xo € U such that V f is Lipschitz continuous
on the convex hull of U, as well as f(x) > f(xo) and |V f(x)| > £|f(x) — f(x0)|P forall x € U.
Let (vn)nenN, and (Yn)nenN be decreasing sequences of positive reals such that 7y, — 0 and there
exists k > 0 such that for alln € N,

Un—1
Un

—-1< K'ynvzlﬁ_l.

Assume that f(Xo) € L' and there exists a C > 0 such that almost surely, for all n € No:
(i) X, € U.
(i) |V F(Xa) 2 < COVF(Xn), ~Tpir) and [y | < CIVF(X)]

(iii) B[Dys1|Fu] = 0 and E[|Dy 12| Fa] < v, 00" .
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Then there exists a constant C > 0 such that for all n € Ny,
= R
E[f(Xa) — f(x0)] < (@} +0n). (4.11)

The bounds in #4) and @.IT) depend on (CDEf)) as well as the additional error term (v, )
that is defined by the size of the stochastic perturbation. In the next proposition we choose

(CIDEf)) and (vy,) to be of the same order. This can be interpreted as computing a bound
on the stochastic perturbation in order to recover the rate of convergence for the non-
perturbed gradient descent algorithm in @.4) and @II). If the perturbation is larger one
can artificially increase B to satisfy the assumptions in Proposition4.3]

Proposition 4.3. Let B € (1/2,1) and (yn)nen and (04)neN be sequences of strictly positive
reals such that (y,)neN is monotonically decreasing with limy, o v = 0. If

(a) 02 = O(vgltnzﬁwl),

_ 2B+g-1

®) o= 01 "ty 7 ),

(c) %:O@zﬁ),

then for every Lipschitz function Vf : R — R?, U C R? bounded and 5 > 0 for sufficiently
large constant Cy, there exist constants k and C, such that for

__1 __1
vy = Coty, 2ﬁ71/ wy, = Cyty 21371,

the main and additional assumptions of PropositionB.lare satisfied for large N. Moreover, for this
choice of parameters, one can replace in Propositiond.1] inequality @.4) by

1

(1, (%) ~ ()] < (1 (0 +8) (26 - 0rrd 1 )7 ol

Proof. By choice of (v,),eN, we get with the Taylor formula

Av 1 _ 281
— AN 2[37_1’)/;11{'”1 = O(annﬁ ), (412)

(4]

so that (@.J) is satisfied for large x for all large n. Note that (4.2) is satisfied for v, =

Cvt,:l/(zﬁ_l) for a sufficiently large C, for all large  if (7,0,,)* and (w;(q_l)('ynan)q) are

both of order O(y,t, 2p/(26-1) ). Elementary computations show that the first, respectively

second term is of order O (yut; 28728 71)), iff condition (a), respectively (b) holds. For the

Eq. note that w, < vy, if C;, > Cy and w,, < 1 for large enough 1, since (c) implies that
tn = Y 1 7i — oo. The Eq.B.3alholds for large n since t, = t,_1 + v ~ t,_1. Moreover,
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the third inequality holds for large 7 since 7y, — 0. The rest follows since by definition of
® and (v,),en one has for n > N,

1
251
o < S0 ((2/3 —1)yR2F1 4 i) o™
R fN

th—tN"

The proof is complete. O

Remark 4.1. (i) In the case 7, = C,n~ 7 and 0, = Con’ for v € (1/2,1), 0 € R and
Cy, Cy > 0 assumptions (a), (b) and (c) are satisfied, if

@ 2< ;ﬁl)_fyl_ 2
) o<
@) vz %
In that case, we have
ty ~ 1C_77n17.

(ii) In the case v, = C7n*1 and 0, = C,n’ for o € R and C,,Cy > 0 assumptions (a), (b)
and (c) are satisfied if o < 1/2 and g > 2. In that case, t, ~ C, log(n).

4.2 Bounding the drift term in the case where no dropdown occurs

Proposition 4.4. Assume all assumptions of Proposition Additionally assume that the se-
quence (—Nvy /yn)usn is decreasing and (v, / (—A&))Y ¢ — 0 with

gn = q)(R) + (yO + 8>Un-

th—in

1-¢6 &
—— L [y, [0]
n=N+1

< Yna1/RE + /i /O (@) du

Then

[e9)

Tn((yo + 8)Avy + Y02 + 80,P(B,_1\By)).

1
4+
vV Yo +38 nzg—&-l —Avy

Proof. Using that w, < v, with (4.8) we get

(1 - 5/)C717nIE []l]Bn,llvf(anlﬂz] <Cp-1—Cn+ 'angzﬁ + Svn]P(Ianl\]Bn)/
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and hence,
(1-8)CVyE s, [V f(Xy1)]
< ) (1= 8)C 1y E [, [V F(X,1)[?]

<V \/_Aén + 'YnU%'B + 80, P(B,,—1\By). (4.13)
With the Cauchy-Schwarz inequality we get that

Z VIn \/_Agn + ’)’nviﬁ + 80, P (B, —1\Bn)

n=N+1
§< i Agn) < Z ( Agn‘f")’nvnﬁ‘i‘Svan( nl\]Bn>))2 (4.14)
n=N+1 n=N+1 gn
with

gn = q)(R) + (yO + 8>Un

th—tn
Recall that &, < &, by Proposition 411
We use partial summation to get an estimate for (4.14). By assumption, the sequence

(R)

(=Avy/vn)n>nN is decreasing. Moreover, for ¢, := q)tn_tN we get with the mean value

theorem that there exists u, € (t,_1 — tn,tn — tn) With =A@, /vy = —Cbl(};) so that
(=A¢n/vn)n>N is also decreasing. Altogether, we thus get that

(an)n>N = <<_7An§n> 2) n>N

is increasing so that its differences are non-negative. We conclude with partial summation
that

Y an(=A%y) =aniin+ Y, Aayi1la
n=N+1 n=N-+1
<anyiin+ ), AayqCa
n=N+1
2 an(—AGy),
n=N+1

where we used that a,,,1&, tends to zero. Consequently, we get with (£.13) and (£.14) that

1-0)C1 Y 1uEfly, [VAX)]
n=N+1
)y

AE (_Agn + ')’nviﬁ + SUnIPGanl\IBn))'
n=N+1V Cn
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Note that

R R
o — o T
</ -y < RP,

YN+1
and forn > N +1,

(R) (R)
CI) _ — CI) _ . tio1—tN
’Y”J e < \ _q)gf,)rm <V (®£¢R))5d”f
r)/n th—2—tN

where we used that —®R) and (+y,,) >~ are monotonically decreasing. Hence, using that

NG = N, 4 (yo+8)(—Av)

we get
—A p
Z Tn < VIR VT | du
n=N+1 Tn
+ /Yo +8 Z Tn(—Avy).
n=N+1
Consequently,
JA—CT Y s, VAKXl
n=N+1
< 7N+1\/_R/5+\/_/ b du
2B
PR — (Yo + 8)Avy + Y40y, + 80, P(B,_1\By)).
yo + 8 n:§+1 n n¥n n n n

The proof is complete. 0

4.3 Technical analysis of lower dropdowns

Roughly speaking, the following two lemmas will later be used to show that for a certain
critical level of the objective function, a lower dropdown (in the sense of the previous two
propositions) entails that the SGD’s target value converges to a value strictly below the
respective critical level with high probability.

Lemma 4.1. Let (My,),eN be a L?-martingale started in zero. Then for every x > 0,
My~ () 2 5) S Bt 5 e = 9()
H’(sung—Mg 2K>§——|— — =: (k).
(eEN K2 nelNy (2" +x)2

In particular, for every € > 0 there exists a x > 0 such that the above right-hand side is smaller
than e.
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Proof. Forn € Ny, let T, = inf{¢ € N : (M);,q > 2"}. Then,

sup (M, —(M);) < sup M,—2",
(=T, Ty 0=1,..T,

sup (M~ (M)) < sup M.
t=1,.., T 0=1,.., T,

We use Doob’s L2-inequality to deduce that

2n+3

I< @

]P< sup M, > 2"+K> < 4(2" 4 x)%E[M7.

+1
0=1,..Tpi1 !

]P< sup MgZK) < iz
t=1,..,Tp K

Therefore,
on +3

+ Y =
K2 nGZJI:\Io (2" 4+ x)?

P(;;E(Mg - (M)) 2 ) <

The proof is complete. O

Lemma 4.2. Let N € IN,6,C > 0, (04),>nN be a sequence of positive reals and let (Ay),>N be
a sequence of (U, 5,C, (0,),2)-compatible events. Moreover, suppose that (7y,02),~N is decreas-
ing and that for &' € (0,1),

2C° ||V £l ip(ugzsy1n < 0.
Then one has for T > 0O that

P ( sup Ip, i {yDul<s} (f(Xn) = f(XN)) = 2T)

n>N
<4>( 1= T>+2\|Vf\| Y (i) &
>~ - 5 i 20 vy p—
C')’N+1‘712\]+1 Lip(U )£=N+1 T

where ¢ is as in Lemma
Proof. By @.5) and (@.6) we have on A, _1 N {yu|Dy| < 6}

FXn) < f(Xn1) =7 (1= 0" CTHVF(Xu1) P+ (VF(Xa-1), Dn))
+ 2HVfHLip(U25)7%l|DTl’2'

Forn > N, we let

n

n=— 3 Ia, ,7((1=38)Cf(Xeo1) P+ (f(Xe-1),Dp)),
(=N+1

[
|

n

2y =2V fllupw) Y 1a,,7IDef?
(=Nt
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and observe thaton A, _1 N {yx|Dy| < 6}
f(Xn) = f(XN) < B + &)

Next, we deduce an estimate for the supremum of the process (Z,),~N. In terms of the

martingale
n

M, = — Z ]1A[;,1'Y€<Vf(xéfl>/ D€>/
{=N+1

we have

n

M)y =Y 7ila, \E[(Vf(Xi-1),D¢)?| Fp1]
(=N+1

n

< Y Ya, V(X))o
{=N-+1

Using that (7,,02),~n~ is monotonically decreasing we deduce that

n

<M>?Z S ’)/N+1U'IZ\]+1 Z ]lAg,lr)/Avf(Xf—l”z'
(=N+1

Consequently,

[1]

1-4 1 1
CIYNT1ON 41 a a /,

fora := (Cyn+10%,1)/ (1 —¢&'). With Lemma& T we get

]P(supEnzT) §P<sup1Mn—<1M> ZZ) §¢<Z). (4.15)
n>N n>N 4@ a n a a

Conversely,

E|sup 2| <21V flupueoE| ¥ 1a, D00
n>N {=N+1

e}

<2 Vfllupuzy Y (veer)?
(=N

and by the Markov inequality
- o 1
P(sup=, > T) <20V gy Y. (o -
n>N (=N+1

In combination with (£.15) we obtain the result. O
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4.4 Satisfiability o