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1 Introduction

In this article, we are exploring the initial boundary value problem of the semilinear
wave equation containing logarithmic plus polynomial source terms

utt−∆u=uln|u|k+|u|p−1u, x∈Ω, t>0,

u(x,0)=u0(x), ut(x,0)=u1(x), x∈Ω,

u(x,t)=0, x∈∂Ω, t>0,

(1.1)

where Ω⊂Rn is a smooth bounded domain and k>1, 2<p< n+2
n−2

(n≥3) are con-
stants. The semilinear hyperbolic equations are very important nonlinear evolution
equations in the field of mathematical physics. The polynomial nonlinearities model
the external force that enhances energy and drives the system toward possible insta-
bility [12]. The evolution equations with logarithmic nonlinearities come naturally
in inflation cosmology and supersymmetric field theory (see [4, 18]). Moreover, we
can see its implementation in different area of physics for example nuclear physics,
optics, and geophysics (see [5, 16]). According to existing literature, some special
analytical solutions of the problem with logarithmic nonlinearities can be found in
the logarithmic quantum mechanics (see [3, 25]).

In order to recall the related work of problem (1.1), we give the following hyper-
bolic model with general nonlinearity f(u) to discuss different cases of the nonlin-
earity

utt−∆u=f(u). (1.2)

The background survey will be started with very important work of Sattinger [29],
which was revolutionary for investigating nonlinear wave equations. The author [29]
first introduced the concept of potential well W to study the above semi-linear
wave equation with polynomial source term when initial data u0 lie in the so-called
potential well to get the solution still belongs to the potential well as described above.
For precisely specified class of initial data finite blowup result was also studied.
In [27], Payane and Sattinger proved finite blowup of solution of the problem (1.2)
while u0 lies outside the potential well W . Besides, they discussed potential energy
J with availability of saddle point and gave explanatory description of potential
well W . The way to search blow up results for the abstract problem (1.2) was first
developed in [21]. In [2] point-wise blow up in finite time was shown for (1.2). Using
assumption (u0,u1)≥0, the proof of blow up (global nonexistence) was treated in [17]
and [28] for definitely positive initial energy case. The so-called family of potential
wells was proposed by Liu Yacheng [20] which incorporates single potential well W
as a special case, and the previous results were developed in E(0)<d for special
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nonlinear term
f(u)= |u|p−1u.

For the case I(u0)≥0, E(0)=d, threshold results were obtained in [19]. Considering
damping term, the author [10] successfully proved finite time blowup solution for
E(0)>0. Later, many investigation carried out for the arbitrarily high initial energy
(see [9, 26, 30, 32, 33]). All these works were about polynomial source term, and for
more recent work on polynomial source terms, we can refer to [8, 24, 34]. However,
there were many investigation already done with logarithmic nonlinearity (see [1,
6, 7, 11, 13–15]). Inspiring by their study, we went into polynomial and logarithmic
nonlinearity together, i.e., polynomial term multiplying logarithmic term, and got
some interesting result. The nonlinear term of a semilinear wave equation with
logarithmic nonlinearity in [22] is uln|u|k, the nonlinear term of a semilinear wave
equation with polynomial nonlinearity in [23] is |u|p ln|u|. Here in this paper, the
nonlinear term is uln|u|k+|u|p−1u, for the first time we are considering the problem
(1.1) with logarithmic plus polynomial source term to see the nature of the solution.

In the present paper, we consider another case of the combination of the loga-
rithmic and polynomial nonlinearities, i.e., polynomial term plus logarithmic term,
to investigate the effect of such combined nonlinearity on the dynamical properties
of the solution to problem (1.1).

We are organizing the article as following. Some fundamental concepts of poten-
tial wells and essential lemmas are discussing in Section 2. In Section 3, we conclude
the main result for subcritical initial energy level. The results of the critical case are
given in Section 4. Finally, the proof under arbitrarily positive initial energy case is
studied in Section 5.

2 Preliminaries

Definition 2.1. A function u(x,t) is called a weak solution of (1.1) on Ω×[0,T ) if

u∈C
(
[0,T ];H1

0 (Ω)
)
∩C1

(
[0,T ];L2(Ω)

)
and maintains

(ut,v)+

∫ t

0

(∇u,∇v)dτ

=

∫ t

0

(uln|u|k,v)dτ+

∫ t

0

(|u|p−1u,v)dτ+(u1,v)

for all v∈H1
0 (Ω), t∈ [0,T ) and u(x,0)=u0(x) in H1

0 (Ω), ut(x,0)=u1(x) in L2(Ω).



4 M. Ahmed and W. Wu / Ann. Appl. Math., 40 (2024), pp. 1-23

2.1 Potential wells

In this part, potential wells and their essential characteristics are discussed. Later
these will be important ingredients for the successive sections.

To begin with, we propose two C1 functions on H1
0 (Ω)→R, which are potential

energy function and Nehari function respectively as below

J(u) :=
1

2
‖∇u‖2− k

2

∫
Ω

u2 ln|u|dx+
k

4
‖u‖2− 1

p+1
‖u‖p+1

p+1

and

I(u) :=‖∇u‖2−k
∫

Ω

u2 ln|u|dx−‖u‖p+1
p+1. (2.1)

After that we can write

J(u) :=
1

2
I(u)+

k

4
‖u‖2+

p−1

2(p+1)
‖u‖p+1

p+1 (2.2)

and

E(t) :=
1

2
‖ut‖2+

1

2
‖∇u‖2− k

2

∫
Ω

u2 ln|u|dx+
k

4
‖u‖2− 1

p+1
‖u‖p+1

p+1

=
1

2
‖ut‖2+J(u)

=
1

2
‖ut‖2+

1

2
I(u)+

k

4
‖u‖2+

p−1

2(p+1)
‖u‖p+1

p+1. (2.3)

Now, we introduce the Nehari manifold

N (u) :={u∈H1
0 (Ω)| I(u)=0, ‖∇u‖2 6=0}

and the mountain pass level or depth of potential well

d := inf
u∈N

J(u).

Then we define the stable set

W :={u∈H1
0 (Ω)| I(u)>0, J(u)<d}∪{0}

and the unstable set

V :={u∈H1
0 (Ω)| I(u)<0, J(u)<d}.
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Then family potential wells for δ>0 expanding above sets as following

Jδ(u) :=
δ

2
‖∇u‖2+

k

4
‖u‖2− k

2

∫
Ω

u2 ln|u|dx− 1

p+1
‖u‖p+1

p+1,

Iδ(u) :=δ‖∇u‖2−k
∫

Ω

u2 ln|u|dx−‖u‖p+1
p+1,

Nδ(u) :={u∈H1
0 (Ω)| Iδ(u)=0, ‖∇u‖2 6=0},

and

d(δ) := inf
u∈Nδ

J(u), (2.4)

and

Wδ :={u∈H1
0 (Ω)| Iδ(u)>0, J(u)<d(δ)}∪{0},

and the outside of Wδ as

Vδ :={u∈H1
0 (Ω)| Iδ(u)<0, J(u)<d(δ)}.

To investigate the problem (1.1) at E(0)=d we introduce

V ′ :={u∈H1
0 (Ω)| I(u)<0}.

The below lemma apprises us about the critical point of potential energy function.

Lemma 2.1. For u∈H1
0 (Ω) with ‖u‖ 6=0, set m(λ) :=J(λu). Then

(i). limλ→0m(λ)=0, limλ→+∞m(λ)=−∞;

(ii). for λ∈(0,+∞), there exists a unique λ∗=λ∗(u) at which

d

dλ
m(λ)=0;

(iii). m(λ) increases on (0,λ∗), decreases on (λ∗,+∞) and reaches its maximum at
λ=λ∗.

(iv). I(λu)=λ d
dλ
m(λ)>0 for 0<λ<λ∗; I(λu)<0 for λ∗<λ<+∞ and I(λ∗u)=0.
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Proof. Proof of (i). We have

m(λ) :=J(λu)

=
1

2
λ2‖∇u‖2− k

2
λ2

∫
Ω

u2 ln|u|dx+
k

4
λ2‖u‖2− k

2
λ2 lnλ‖u‖2−λ

p+1

p+1
‖u‖p+1

p+1.

From ‖u‖ 6=0, it is obvious m(0)=0, m(+∞)=−∞.
Proof of (ii). Differentiating m(λ), then having equal zero, we get

m′(λ)=
d

dλ
J(λu)

=λ‖∇u‖2−kλlnλ‖u‖2−kλ
∫

Ω

u2 ln|u|dx−λp‖u‖p+1
p+1 =0,

that implies

‖∇u‖2−k
∫

Ω

u2 ln|u|dx=k lnλ‖u‖2+λp−1‖u‖p+1
p+1. (2.5)

Let

l(λ) :=k lnλ‖u‖2+λp−1‖u‖p+1
p+1.

Differentiating this we get

l′(λ)=
k

λ
‖u‖2+(p−1)λp−2‖u‖p+1

p+1

=
1

λ

(
k‖u‖2+(p−1)λp−1‖u‖p+1

p+1

)
.

Clearly l′(λ)>0 for every λ>0. So l(λ) is increasing on (0,+∞). Thus, we can write

lim
λ→0+

l(λ)=−∞,

lim
λ→∞

l(λ)=∞.

Hence, there is a unique λ0 available for which l(λ0)=0,

l(λ)<0 for 0<λ<λ0,

l(λ)>0 for λ0<λ<∞.

As a result, we can obtain a unique λ∗>λ0 so that (2.5) holds for some u for which
left side of (2.5) is positive.

Proof of (iii). We know

d

dλ
J(λu)=λ

(
‖∇u‖2−k

∫
Ω

u2 ln|u|dx−l(λ)

)
.

From the proof of (ii) it implies that
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1. if 0<λ≤λ0, then l(λ)≤0;

2. if λ0<λ<λ
∗, then

0<l(λ)<‖∇u‖2−k
∫

Ω

u2 ln|u|dx;

3. if λ∗<λ<∞, then

l(λ)>‖∇u‖2−k
∫

Ω

u2 ln|u|dx.

Hence, we arrive at

1. If 0<λ<λ∗,
d

dλ
J(λu)=m′(λ)>0;

2. If λ=λ∗,
d

dλ
J(λu)=m′(λ)=0;

3. If λ∗<λ<+∞,
d

dλ
J(λu)=m′(λ)<0.

Hence, (iii) follows.
(iv). we can have the conclusion using the proof of (iii) and

I(λu)=λ2‖∇u‖2−kλ2

∫
Ω

u2 ln|u|dx−kλ2 lnλ‖u‖2−λp+1‖u‖p+1
p+1

=λ
d

dλ
J(λu).

Thus, we complete the proof.

The below lemma gives some key characteristics of Iδ(u) with respect to H1
0 .

Lemma 2.2. Consider a ball in H1
0 with radius r :=‖∇u‖, then for any δ>0

(i). Iδ(u)>0, when 0<‖∇u‖≤r(δ);

(ii). r>r(δ), when Iδ(u)<0;
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(iii). r > r(δ) or r= 0, when Iδ(u) = 0, where the real value r(δ) solves equation
φ(r)=δ uniquely

φ(r) :=(kC∗+2)Cp+1rp−1,

C= sup
u∈H1

0 (Ω)

‖u‖p+1

‖∇u‖
,

and C∗ is a large enough constant.

Proof. First, we prove

k

∫
Ω

u2 ln|u|dx<(kC∗+1)‖u‖p+1
p+1.

Since ln|u|< |u|, we can write

k

∫
Ω

u2 ln|u|dx<k
∫

Ω

u3dx<k‖u‖3
3+‖u‖p+1

p+1.

Using the embedding Lp+1(Ω) ↪→L3(Ω) for p>2, where C∗ is the constant of that
embedding, we can obtain

k

∫
Ω

u2 ln|u|dx<kC3
∗‖u‖3

p+1+‖u‖p+1
p+1.

Now, we can write

kC3
∗‖u‖3

p+1 =kC3
∗

(∫
Ω1

|u|p+1dx

) 3
p+1

=kC3
∗

(∫
Ω1

|u|p+1dx+

∫
Ω2

|u|p+1dx

) 3
p+1

<kC3
∗

(∫
Ω1

|u|p+1dx+

∫
Ω2

1dx

) 3
p+1

=kC3
∗

(∫
Ω1

|u|p+1dx+|Ω2|
) 3

p+1

<kC3
∗

(∫
Ω1

|u|p+1dx+|Ω2|
)

<kC∗
∫

Ω1

|u|p+1dx

<kC∗
∫

Ω

|u|p+1dx=kC∗‖u‖p+1
p+1,
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where

Ω1 =

{
x∈Ω

∣∣∣∣∣
(∫

Ω1

|u|p+1dx

) 1
p+1

≥1

}
,

Ω2 =

{
x∈Ω

∣∣∣∣∣
(∫

Ω2

|u|p+1dx

) 1
p+1

<1

}
.

Therefore, we have

k

∫
Ω

u2 ln|u|dx<kC∗‖u‖p+1
p+1+‖u‖p+1

p+1

=(kC∗+1)‖u‖p+1
p+1.

Proof of (i). Using 0<‖∇u‖≤r(δ) we obtain ‖u‖p+1>0 and 0<φ(‖∇u‖)≤δ. By

k

∫
Ω

u2 ln|u|dx+‖u‖p+1
p+1<(kC∗+2)‖u‖p+1

p+1

≤(kC∗+2)Cp+1‖∇u‖p+1

=φ(‖∇u‖)‖∇u‖2≤δ‖∇u‖2, (2.6)

we have Iδ(u)>0.
Proof of (ii). If Iδ(u)<0, then we can write

δ‖∇u‖2<k

∫
Ω

u2 ln|u|dx+‖u‖p+1
p+1

<(kC∗+2)‖u‖p+1
p+1≤φ(‖∇u‖)‖∇u‖2,

which implies ‖∇u‖>r(δ).
Proof of (iii). ‖∇u‖=0 implies Iδ(u)=0. Again, If Iδ(u)=0 and ‖∇u‖ 6=0, then

δ‖∇u‖2 =k

∫
Ω

u2 ln|u|dx+‖u‖p+1
p+1

<(kC∗+2)‖u‖p+1
p+1≤φ(‖∇u‖)‖∇u‖2, (2.7)

which gives ‖∇u‖>r(δ).

The more about d(δ) will be discussed in the below lemma.

Lemma 2.3. As function of δ, d(δ) shows the following behavior

(i). d(δ)>a(δ)r2(δ), ∀δ∈(0,1), where a(δ)= 1
2
− δ

2
;
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(ii). there is a unique δ0>1, for which d(δ0)=0, and d(δ)>0 for 0<δ<δ0;

(iii). d(δ) increases on (0,1), decreases on (1,δ0) and takes its maximum d=d(1) at
δ=1.

Proof. Proof of (i). We notice that Iδ(u)=0 and ‖∇u‖ 6=0 implies ‖∇u‖>r(δ) by
Lemma 2.2(iii). Applying this we can obtain

J(u)=
1

2
‖∇u‖2− k

2

∫
Ω

u2 ln|u|dx+
k

4
‖u‖2− 1

p+1
‖u‖p+1

p+1

>
1

2
‖∇u‖2− k

2

∫
Ω

u2 ln|u|dx+
k

4
‖u‖2− 1

2
‖u‖p+1

p+1

=

(
1

2
− δ

2

)
‖∇u‖2+

1

2
Iδ(u)+

k

4
‖u‖2

=
1

2
(1−δ)‖∇u‖2+

k

4
‖u‖2>a(δ)r2(δ).

Proof of (ii). For every u∈H1
0 (Ω), ‖∇u‖ 6=0, we introduce λ=λ(δ) such that

δλ2‖∇u‖2−kλ2

∫
Ω

u2 ln|u|dx=kλ2 lnλ‖u‖2+λp+1‖u‖p+1
p+1, (2.8)

i.e.,

δ‖∇u‖2−k
∫

Ω

u2 ln|u|dx=k lnλ‖u‖2+λp−1‖u‖p+1
p+1. (2.9)

So, Iδ(λu) = 0 means λu∈Nδ. Now, from (2.9) we see that λ(δ) is increasing as δ
increases, so we can obtain

lim
δ→+∞

λ(δ)=+∞.

Thus by Lemma 2.1, we achieve

lim
δ→+∞

J(λu)= lim
λ→+∞

J(λu)=−∞.

Therefore,

lim
δ→+∞

d(δ)=−∞.

Again, by (i), we have d(δ)>0 for 0<δ<1 and becomes maximum at a (a=1 will be
proved in the next part), and hence it certainly hits the δ-axis at some point δ0>1
such that d(δ0)=0 and d(δ)>0 for 0<δ<δ0.
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Proof of (iii). We prove that d(δ′)<d(δ′′) for any 0<δ′<δ′′<1 or 1<δ′′<δ′<δ0.
Clearly it is sufficient to prove that for any 0<δ′<δ′′<1 or 1<δ′′<δ′<δ0. We prove
this part considering following two cases.

Case i. (0<δ′<δ′′< 1). For any u∈H1
0 (Ω), Iδ′′(u) = 0 and ‖∇u‖ 6= 0 there exist

a v∈H1
0 (Ω) and a fix value ε(δ′,δ′′)> 0 for which Iδ′(v) = 0, ‖∇v‖ 6= 0 and J(v)<

J(u)−ε(δ′,δ′′). In fact, for these u, λ(δ) can be defined by (2.8) so that Iδ(λ(δ)u)=
0, λ(δ′′)=1 and (2.9) is true. Suppose m(λ)=J(λu). Then

d

dλ
m(λ)=

1

λ

(
(1−δ)‖∇(λu)‖2+Iδ(λu)

)
=(1−δ)λ‖∇u‖2.

Take v=λ(δ′)u, then Iδ′(v)=0 and ‖∇v‖ 6=0. If 0<δ′<δ′′<1, then

J(u)−J(v)=m(1)−m(λ(δ′))

>(1−δ′′)λ(δ′)r2(δ′′)(1−λ(δ′))

=ε(δ′,δ′′).

Case ii. (1<δ′′<δ′<δ0). From the argument in Case i, it is obvious that

J(u)−J(v)=m(1)−m(λ(δ′))

>(δ′′−1)λ(δ′′)r2(δ′′)(λ(δ′)−1)

=ε(δ′,δ′′).

This completes the proof.

The below lemma will be required to discuss details about the invariant set.

Lemma 2.4. Suppose 0<J(u)<d for some u∈H1
0 (Ω) and 0<δ1 < 1<δ2 is two

solutions of d(δ)=J(u), then Iδ(u) remains same in sign on 0<δ1<δ<δ2.

Proof. To begin with, J(u)>0 leads ‖∇u‖ 6=0. If the sign of Iδ(u) are changeable
for 0<δ1<δ<δ2, then there exists a δ̄∈(δ1,δ2) such that Iδ̄(u)=0. Hence, by (2.4),
we have

J(u)≥d(δ̄),

which contradicts

J(u)=d(δ1)=d(δ2)<d(δ̄).

This completes the proof.
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2.2 Invariant sets

Here, in the below lemma the invariant set will be explored.

Lemma 2.5 (Invariant sets). Let u0∈H1
0 (Ω) and u1(x)∈L2(Ω). Assume that 0<e<d,

δ1<δ2 are the two roots of equation d(δ)=e. Then

(i). all solutions of problem (1.1) with 0<E(0)≤ e belong to Wδ for δ1<δ<δ2,
provided I(u0)>0 or ‖∇u0‖=0;

(ii). all solutions of problem (1.1) with 0<E(0)≤ e belong to Vδ for δ1 <δ < δ2,
provided I(u0)<0.

Proof. (i). Let u(t) be any solution of problem (1.1) with E(0)=e and I(u0)>0 or
‖∇u0‖=0, T be the existence time of u(t). If ‖∇u0‖=0, then obviously u0(x)∈Wδ on
0<δ<δ0. Since I(u0)>0 and Lemma 2.4 implies the sign of Iδ(u) is not changeable
on δ1<δ<δ2, we have Iδ(u0)>0 for δ∈(δ1,δ2). From the energy equality

1

2
‖u1‖2+J(u0)=E(0)≤d(δ1)=d(δ2)<d(δ), δ∈(δ1,δ2),

we have J(u0)<d(δ), i.e., u0(x)∈Wδ for δ1<δ<δ2. Next, we prove u(t)∈Wδ for
δ1<δ<δ2 and 0<t<T , where T is the maximal existence time of u(t). Arguing by
contradiction, we suppose that there must exist a first t0∈(0,T ) such that u(t0)∈∂Wδ

for some δ∈(δ1,δ2), i.e.,

Iδ(u(t0))=0, ‖∇u(t0)‖ 6=0 or J(u(t0))=d(δ).

From the energy inequality

1

2
‖ut‖2+J(u)≤E(0)<d(δ), t∈(0,T ), δ∈(δ1,δ2), (2.10)

J(u(t0)) = d(δ) is not possible. But, if Iδ(u(t0)) = 0 and ‖∇u(t0)‖ 6= 0, then (2.4)
implies J(u(t0))≥d(δ) that violates (2.10).

(ii). The proof follows from (i).

Indeed, we still have the following lemmas to discuss about solutions.

Lemma 2.6. For E(0)=0, all the solutions of (1.1), which are not trivial, lie in

Bc
r0

=

{
u∈H1

0 (Ω)

∣∣∣∣ ‖∇u‖≥r0 :=

(
1

(kC∗+2)Cp+1

) 1
p−1

}
.
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Proof. Let u(t) be any solution of (1.1) with initial energy E(0)=0, and T be the
maximum existence time of u(t). Then by

1

2
‖ut‖2+J(u)≡E(0)=0,

we get J(u)≤0 on 0≤ t<T . Thus by (2.2) we obtain

1

2
I(u)+

k

4
‖u‖2+

p−1

2(p+1)
‖u‖p+1

p+1≤0,

which means that I(u)≤0. Therefore, using (2.1), we get

‖∇u‖2≤k
∫

Ω

u2 ln|u|dx+‖u‖p+1
p+1

≤(kC∗+2)‖u‖p+1
p+1

≤(kC∗+2)Cp+1‖∇u‖p−1‖∇u‖2, 0≤ t<T.

By which we have either
‖∇u‖=0

or

‖∇u‖≥r0 =

(
1

(kC∗+2)Cp+1

) 1
p−1

.

If ‖∇u0‖=0, then ‖∇u‖≡0 for 0≤t<T . Otherwise there exists a t0∈(0,T ) such that
0<‖∇u(t0)‖<r0. By similar logics we can show that if ‖∇u0‖≥r0, then ‖∇u‖≥r0

for 0<t<T .

Lemma 2.7. Suppose u0(x)∈H1
0 (Ω) and u1(x)∈L2(Ω). Assume that E(0)<0 or

E(0)=0, ‖∇u0‖ 6=0. Then Vδ on 0<δ<1 contains all the solutions of (1.1).

Proof. Let u(t) be the any solution of (1.1) with initial energy E(0)=0, and T be
the maximum existence time of it. The following gives

1

2
‖ut‖2+a(δ)‖∇u‖2+

1

p+1
Iδ(u)

≤1

2
‖ut‖2+J(u)=E(0), 0<δ<1. (2.11)

Combining E(0)< 0 and (2.11) implies Iδ(u)< 0, J(u)< 0<d(δ), where d(δ)> 0
for 0<δ< 1 by Lemma 2.3; if E(0) = 0, ‖∇u0‖ 6= 0, then by Lemma 2.6, we have
‖∇u0‖≥r0 for 0≤t<T . Again by (2.11) we get Iδ(u)<0, J(u)<0<d(δ) for 0<δ<1.
Thus for above two cases we always have u(t)∈Vδ for 0<δ<1, 0≤ t<T .
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3 Global existence and exponential growth at

subcritical initial energy level (E(0)<d)

Herein, the proof of the global existence and blowup characteristics of the solutions
for (1.1) will be given.

Theorem 3.1 (Global existence for E(0)<d). Suppose u0(x)∈H1
0 (Ω) and u1(x)∈

L2(Ω). Then, on the assumption 0<E(0)<d and I(u0)>0 or ‖∇u0‖=0, the problem
(1.1) possess a global weak solution

u(t)∈L∞
(
0,∞;H1

0 (Ω)
)

with
ut(t)∈L∞

(
0,∞;L2(Ω)

)
and u(t)∈W

for 0≤ t<∞.

Proof. Similar to [20], we consider approximate solutions um(x,t) of problem (1.1).
Then by similar arguments used in the proof of Theorem 3.2 in [20] we obtain

1

2
‖umt‖2+J(um)=Em(0)<d, 0≤ t<∞, (3.1)

and um(t)∈W for sufficiently large m and 0≤ t<∞. From (3.1) we can write

J(um)<d.

From this and by (2.2) we can write

1

2
I(um)+

k

4
‖um‖2+

p−1

2(p+1)
‖um‖p+1

p+1<d,

which implies that

‖um‖2<
4d

k
, ‖um‖p+1

p+1<
2(p+1)d

p−1
, (3.2)

and
I(um)<2d.

From this and (2.1) we get

‖∇um‖2<2d+k

∫
Ω

u2
m ln|um|dx+‖um‖p+1

p+1

<2d+(kC∗+2)‖um‖p+1
p+1

<2d+
2(p+1)(kC∗+2)d

p−1
.
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Again from (3.1) we can write

‖umt‖2<2d, 0≤ t<∞.

Now, using calculation and the fact (ln|y|)2≤y2 for |y|>1, we have∫
Ω

(
um ln|um|k

)2
dx=k2

∫
Ω1

(um ln|um|)2dx+k2

∫
Ω2

(um ln|um|)2dx

≤|Ω|k2e−2+|Ω|k2‖um‖4
4

≤|Ω|k2e−2+|Ω|k2S∗‖∇um‖4, (3.3)

where

Ω1 ={x∈Ω| um(x)≤1},
Ω2 ={x∈Ω| um(x)>1},

and S∗ is the constant of the Sobolev embedding H1
0 (Ω) ↪→L4(Ω). By (3.2)-(3.3)

and compactness method, the problem (1.1) admits a global weak solution

u(t)∈L∞
(
0,∞;H1

0 (Ω)
)

with
ut(t)∈L∞

(
0,∞;L2(Ω)

)
.

Finally, u(t)∈W on time 0≤ t<∞ by Lemma 2.5.

Theorem 3.2 (Exponential growth for E(0)<d). Suppose u0(x)∈H1
0 (Ω) and u1(x)∈

L2(Ω). Then, on the assumption E(0)<d, I(u0)<0 and (u0,u1)≥0, the L2-norm of
the solution of problem (1.1) will grow up as an exponential function as time goes
to infinity.

Proof. For E(0)<d and I(u0)<0, we suppose u(x,t) to be any solution of the problem
(1.1). Now, we consider the function L(t) : [0,+∞)→R+ defined as following

L(t)=‖u‖2.

Differentiating this we have

L′(t)=2(u,ut)

and

L′′(t)=2‖ut‖2+2(u,utt)

=2‖ut‖2−2

(
‖∇u‖2−k

∫
Ω

u2 ln|u|dx−‖u‖p+1
p+1

)
=2‖ut‖2−2I(u). (3.4)
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Using energy inequality and (2.3), we have

E(0)≥1

2
‖ut‖2+

1

2
I(u)+

k

4
‖u‖2+

p−1

2(p+1)
‖u‖p+1

p+1

≥1

2
‖ut‖2+

1

2
I(u)+

k

4
‖u‖2,

which implies

4E(0)≥2‖ut‖2+2I(u)+k‖u‖2.

By this we can have

2I(u)≤4E(0)−k‖u‖2−2‖ut‖2. (3.5)

Using (3.4) and (3.5), we get

L′′(t)≥2‖ut‖2+2k‖u‖2+2‖ut‖2−4E(0)

=4‖ut‖2+2k‖u‖2−4E(0)

=4‖ut‖2+2kL(t)−4E(0). (3.6)

(i). For E(0)≤0, (3.6) leads to

L′′(t)≥4‖ut‖2. (3.7)

(ii). If 0<E(0)<d, then applying Lemma 2.5, we can write u(t)∈Vδ on 1<δ<δ2

and t>0. Hence Iδ(u)<0, and by Lemma 2.2(ii), ‖∇u‖>r(δ) for 1<δ<δ2 and t>0.
So, we obtain Iδ2(u)≤0 and ‖∇u‖≥r(δ2) for t>0. And by (3.4), we get

L′′(t)≥2(δ2−1)‖∇u‖2−2Iδ2(u)≥2(δ2−1)r2(δ2)>0.

Therefore, we obtain

L′(t)≥2(δ2−1)r2(δ2)t+L′(0)

≥2(δ2−1)r2(δ2)t,

and

L(t)≥(δ2−1)r2(δ2)t2+L(0)

≥(δ2−1)r2(δ2)t2.

So, for sufficiently large t we have 2kL(t)> 4E(0) and (3.7) holds. Finally, (3.7)
gives

L(t)L′′(t)−(L′(t))
2≥4

(
‖u‖2‖ut‖2−(u,ut)

2
)
≥0.
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Now, by direct calculation we can have

(lnL(t))′=
L′(t)

L(t)
(3.8)

and

(lnL(t))′′=

(
L′(t)

L(t)

)′
=
L(t)L′′(t)−(L′(t))2

L2(t)
≥0.

So, (lnL(t))′= L′(t)
L(t)

is increasing on t. Using this fact and integrating (3.8) from t0
to t, we have

lnL(t)−lnL(t0)=

∫ t

t0

(lnL(t))′dτ

=

∫ t

t0

L′(t)

L(t)
dτ≥ L

′(t0)

L(t0)
(t−t0),

where 0≤ t0<t. From this we obtain

L(t)≥L(t0)exp

(
L′(t0)

L(t0)
(t−t0)

)
. (3.9)

If we can take a t0 sufficiently small such that L′(t0)> 0 and L(t0)> 0, then from
(3.9), we have

lim
t→+∞

L(t)=+∞,

which means that the L2-norm of the solution of problem (1.1) grows up as an
exponential function as time goes to infinity.

4 Global existence and exponential growth at

critical initial energy level(E(0)=d)

Here, the results will be proved for critical case.

Theorem 4.1 (Global existence for E(0)=d). Suppose u0(x)∈H1
0 (Ω) and u1(x)∈

L2(Ω). Then, on the assumption E(0)=d and I(u0)≥0, the problem (1.1) possess
a global weak solution

u(t)∈L∞
(
0,∞;H1

0 (Ω)
)

with
ut(t)∈L∞

(
0,∞;L2(Ω)

)
and u(t)∈W∪∂W

for 0≤ t<∞.
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Proof. It will be proved in two steps.

(i). ‖∇u0‖ 6= 0. Suppose λm = 1− 1
m

and u0m =λmu0, m= 2,3,···. Consider the
initial data like [22] for the problem (1.1) as following

u(x,0)=u0m(x), ut(x,0)=u1(x).

Now, from I(u0)≥0 and Lemma 2.1, we have λ∗=λ∗(u0)≥1. Thus, I(u0m)>0 and
J(u0m)=J(λmu0)<J(u0). Furthermore,

0<Em(0)≡1

2
‖u1‖2+J(u0m)

<
1

2
‖u1‖2+J(u0)

=E(0)=d.

Hence, by Theorem 3.1, for every m the problem (1.1) with above initial data possess
a global solution

um(t)∈L∞
(
0,∞;H1

0 (Ω)
)

and um(t)∈W on 0≤ t<∞ meeting

(umt,v)+

∫ t

0

(∇um,∇v)dτ=

∫ t

0

(f(um),v)dτ+(u1,v)

for every v∈H1
0 (Ω), 0≤ t<∞ and

1

2
‖umt‖2+J(um)=Em(0)<d, 0≤ t<∞.

The remainder part of the proof follows Theorem 3.1.

To prove the blowup result at E(0) =d the Lemma 4.1 is required and for the
proof see Lemma 2.7 in [31].

Lemma 4.1. Let u0(x)∈H1
0 (Ω) and u1(x)∈L2(Ω).Then, on the assumption E(0)=d,

I(u0)<0 and (u0,u1)≥0, the set V ′ is invariant under the flow of (1.1).

Theorem 4.2 (Exponential growth for E(0) = d). Let u0(x)∈H1
0 (Ω) and u1(x)∈

L2(Ω). Then, on the assumption E(0)=d, I(u0)<0 and (u0,u1)≥0, the L2-norm of
the solution of problem (1.1) will grow up exponentially as time goes to infinity.

Proof. From (3.6), we have

L′′(t)≥4‖ut‖2+2kL(t)−4E(0)

=4‖ut‖2+2kL(t)−4d, (4.1)
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then L′′(t)>0 on 0≤t<∞ by (3.4) and Lemma 4.1. Hence, L′(t) is increasing. For
L′(0)=2(u0,u1)≥0, ∀t0>0 we can obtain

L′(t)≥L′(t0)>0, t≥ t0,
L(t)≥L′(t0)(t−t0)+L(t0)>L′(t0)(t−t0), t≥ t0.

Therefore, for large enough t, we can get

2kL(t)>4d.

From this and (4.1) we get

L′′(t)≥4‖ut‖2.

Hence

L(t)L′′(t)−(L′(t))
2≥4

(
‖u‖2‖ut‖−(u,ut)

2
)
≥0.

The remainder proof is likewise to Theorem 3.2.

5 Exponential growth at arbitrarily positive

initial energy level E(0)>0

The blowup results in arbitrarily positive initial energy will be discussed in below
theorem.

Theorem 5.1 (Exponential growth for E(0)>0). Suppose (u0,u1)∈H1
0 (Ω)×L2(Ω)

meet below conditions

(i). E(0)>0;

(ii). (u0,u1)>0;

(iii). ‖u0‖2> 4
k
E(0);

(iv). I(u0)<0,

then the solution of the problem (1.1) will grow up exponentially as time goes to
infinity.

Proof. The proof will be shown in two steps:

Step 1. First, we show I(u)<0 and ‖u(t)‖2> 4
k
E(0) for all t∈ (0,T ). For I(u)<0,

arguing by contradiction we suppose that there exists available a first time t0∈(0,T )
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for which I(u(t0)) = 0 and I(u)< 0 on t∈ [0,t0). Again, for the function L(t) in
Theorem 5.1(iv), there should be

L′(t)=2(u,ut)

and

L′′(t)=2‖ut‖−2I(u).

Using these and assumption of this theorem, we can prove L(t) is strictly increasing.
Hence, we can write

L(t)>‖u0‖2>
4

k
E(0), ∀t∈(0,t0).

So, we get

L(t0)>
4

k
E(0). (5.1)

Meanwhile, we know

J(u((t0))≤E(t0)≤E(0)

that is

1

2
‖∇u(t0)‖2− k

2

∫
Ω

u2(t0)ln|u(t0)|dx+
k

4
‖u(t0)‖2− 1

p+1
‖u(t0)‖p+1

p+1

≤E(t0)≤E(0). (5.2)

Moreover, I(u(t0))=0 leads

1

2
‖∇u(t0)‖2 =

k

2

∫
Ω

u2(t0)ln|u(t0)|dx+
1

2
‖u(t0)‖p+1

p+1

>
k

2

∫
Ω

u2(t0)ln|u(t0)|dx+
1

p+1
‖u(t0)‖p+1

p+1.

Now, we can write left side of (5.2) as below

1

2
‖∇u(t0)‖2− k

2

∫
Ω

u2(t0)ln|u(t0)|dx+
k

4
‖u(t0)‖2− 1

p+1
‖u(t0)‖p+1

p+1

=
1

2
‖∇u(t0)‖2+

k

4
‖u(t0)‖2−

(
k

2

∫
Ω

u2(t0)ln|u(t0)|dx+
1

p+1
‖u(t0)‖p+1

p+1

)
>

1

2
‖∇u(t0)‖2+

k

4
‖u(t0)‖2− 1

2
‖∇u(t0)‖2 =

k

4
‖u(t0)‖2. (5.3)



M. Ahmed and W. Wu / Ann. Appl. Math., 40 (2024), pp. 1-23 21

Combining (5.2) and (5.3), it is obvious that

k

4
‖u(t0)‖2≤E(0)

is equivalent to

L(t0)≤ 4

k
E(0),

that violates (5.1).

Step 2. In this step, infinite time blow up result will be proved. By (3.6) and
L(t)=‖u(t)‖2> 4

k
E(0) for any t∈(0,T ) we can reach

L′′(t)≥4‖ut‖2.

Thus, we get
L(t)L′′(t)−(L′(t))

2≥4
(
‖u‖2‖ut‖2−(u,ut)

2
)
≥0.

The rest of the proof follows Theorem 3.2.
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