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Abstract

This paper is concerned with the superconvergence error estimates of a classical mixed
finite element method for a nonlinear parabolic/elliptic coupled thermistor equations. The
method is based on a popular combination of the lowest-order rectangular Raviart-Thomas
mixed approximation for the electric potential/field (¢, 0) and the bilinear Lagrange ap-
proximation for temperature u. In terms of the special properties of these elements above,
the superclose error estimates with order O(h?) are obtained firstly for all three com-
ponents in such a strongly coupled system. Subsequently, the global superconvergence
error estimates with order O(h?) are derived through a simple and effective interpolation
post-processing technique. As by a product, optimal error estimates are acquired for po-
tential/field and temperature in the order of O(h) and O(h?), respectively. Finally, some
numerical results are provided to confirm the theoretical analysis.

Mathematics subject classification: 65M15, 65M30, 65N15, 65N30.
Key words: Nonlinear thermistor equations, Galerkin mixed finite element method, Inter-
polation post-processing technique, Superclose and superconvergence error estimates.

1. Introduction

In this paper, we focus on superconvergence error analysis of the lowest-order Raviart-
Thomas mixed finite element method for nonlinear and coupled thermistor equations, which
are modeled as a coupled system of nonlinear partial differential equations with a quadratic
growth on the gradient of one of the unknowns, defined by

uy — Au = o(u)|Vol|?, (x,t) € Q x J, (1.1)
—V - (o(u)Ve) =0, (z,t) € Q x J, (1.2)
u(x,t) =0, ¢(x,t) =g(x,t), (x,t)€dQxJ, (1.3)
u(x,0) = up(x), x € Q, (1.4)

where Q C R? is a rectangular domain with boundary 9Q,x = (z,y),J = (0,T]. The system
(1.1)-(1.4) models the electric heating of a conducting body, which plays an important role in
many micro-electromechanical systems. The unknowns ¢ = ¢(x,t) and v = u(x,t) are the
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distributions of the electrical potential and the temperature in ), respectively. o(u) is the
temperature dependent electrical conductivity, o(u)|V¢|? is the Joule heating. Moreover, ug
and g are given smooth functions.

A lot of theoretical and numerical analysis have been devoted to system (1.1)-(1.4) by many
authors due to its wide applications (see [2-5,12,16,19-22,32,49-52, 56, 59—62, 64] and the
references therein). More precisely, for theoretical analysis, the existence of time-dependent
thermistor equations was shown by means of supersolutions and subsolutions, the maximum
principle and fixed point argument in [4]. The existence of weak solutions was studied with
Faedo-Galerkin method for an arbitrarily large interval of time in [12]. The existence and
uniqueness of C'* solution for thermistor problem with mixed boundary conditions was estab-
lished in [60]. For numerical analysis, a linearized Euler Galerkin scheme with linear finite
element approximation applied in spatial direction was presented and analyzed in [61]. Due to
some pollution arising from the approximation used the nonlinear term o(u)|V¢|?, only a sub-
optimal error estimate was obtained. In [16], optimal error estimate was established based on
the duality argument under the time-step condition 7 = O(h%/%), where d is the dimension, for
completely discrete scheme with minimal regularity assumptions. Based on a standard finite
element method used in spatial direction and the combinations of rational implicit and explicit
multistep schemes used in temporal direction, some higher-order linearly implicit finite element
schemes were developed in [2] and optimal error estimates were proved under the time-step
condition 7 = O(h3/(?P)) and r > 2, where p is the order of discretization in time and 7 is
the degree of piecewise polynomial approximations used in space, respectively. In terms of
an error splitting technique proposed in [33,34], the unconditionally optimal error estimates for
Lagrange finite element methods with different time approximation schemes were established
in [2,19,20,32]. Subsequently, the superconvergence error estimates were derived in [49-52]
with the help of the high precision integral identity technique under the appropriate restriction
between time step size and space step size.

Since mixed finite element methods allow simultaneous computation of the original variable
and its gradient, both of them being equally accurate [18], and these methods have been ap-
plied to many problems [6,7,10,13,23,25-27] and the references therein. As pointed out in [22],
0 = o(u)V¢ denotes the electric field, which is more important in physics, it is natural to solve
the system with a mixed finite element method to approximate potential /field and temperature
(¢,0,u). Mixed finite element methods may produce a better approximation to the electric
field @ and the nonlinear source term o(u)|V¢|?. In [62], based on the Raviart-Thomas mixed
finite element approximation used for the electric potential/field (¢, 8) and classical Lagrange
finite element approximation applied for the temperature u, a mixed finite element scheme was
proposed and investigated. It should be pointed out that a higher-order mixed finite element
space was required in [62] to obtain optimal error estimate for temperature, in which the lowest-
order Raviart-Thomas mixed finite element space is excluded. As we known, the lowest-order
Raviart-Thomas mixed finite element space is the most popular and widely used in practical
applications [8,43,53] due to the ease of implementation and less computational costs. In terms
of an H~'-norm estimate of a classical mixed finite element method, which the lowest Raviart-
Thomas mixed used to approximate the electric potential/field (¢, 0) and the linear Lagrange
element used to approximate the temperature u, and a nonclassical elliptic map, optimal error
estimates were derived in [22]. Meanwhile, a simple one-step recovery technique with one-order
Raviart-Thomas mixed finite element space was developed to obtain a new numerical electric
potential/field of second-order accuracy.
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On the other hand, the superconvergence technique is a simple and effective way to improve
the accuracy of numerical solutions for linear or nonlinear boundary value problems [37,40] and
has become a hot topic for the numerical methods of partial differential equations, such as the
second-order elliptic equation [39,45], linear elasticity problem [44], the Schrédinger equation
[47,48], Maxwell’s equation [30,38,58], Stokes/Navier-Stokes equations [42,57] and so on.

As point out in [22], the approximation in the lowest-order Raviart-Thomas mixed element
is in the order O(h), while the linear Lagrange element approximation is in the order O(h?).
Due to the strong coupling and nonlinearity of the thermistor system (we refer to [11,24, 35,
36, 55] for other problems with strong nonlinearity), the inconsistency makes the theoretical
analysis on optimal and superconvergence error estimates of the temperature more difficult and
more challenging in the traditional sense. In this work, as an attempt, different from optimal
estimates obtained in [2,16,19,20,32,61], the main aim herein is to investigate the superclose
and superconvergent error estimates of the lowest-order Raviart-Thomas mixed finite element
space and bilinear Lagrange finite element space approximating potential/field and temperature
(¢, 0,u) with a linearized backward Euler scheme for system (1.1)-(1.4). The analysis relies on
the refined estimates with the aid of high accuracy analysis of the lowest-order Raviart-Thomas
mixed element and bilinear element on the rectangular mesh, as well as the mean value technique
and interpolated postprocessing approach.

The rest of this paper is organized as follows. In Section 2, some notations, preliminaries
and a widely used the lowest-order Raviart-Thomas mixed finite element space are introduced.
In Section 3, the detailed superclose error estimates (see Theorem 3.1) are derived firstly. Then,
based on the interpolation postprocessing technique, the global superconvergence results (see
Theorem 3.2) are obtained efficiently. Finally, in Section 4, some numerical results are provided
to confirm the theoretical analysis and show the effectiveness of the interpolation postprocessing
technique.

Throughout this paper, we assume that the temperature-dependent electric conductivity
o(-) € WL*°(R) N C?(R) satisfies

0<a.<o(s)<a®, VseR (1.5)

for some positive constants a. and a*. It should be pointed out that the above assumption on o
is satisfied in many engineering applications [29]. Moreover, we denote C' a generic positive
constant, which may be different in different places, and independent of n (time level), h
(spatial parameter) and 7 (time step).

2. Some Preliminaries

Let WP (2) be the Sobolev space with the norm |||/, , and seminorm |+|,, , as the definition
in [1], and (-,-) denote the inner product. When p = 2, we also denote H™(Q) = W™2(Q).
Moreover, in the investigation of nonstationary problem we shall work with functions which
depend on time and have values in a Banach space. Such functions are elements of the so-called
Bochner spaces (see [14] for more details). More precisely, for any Banach space Y and function
f:[0,7] = Y, define the norm

T 3
HiEdt] ., 1<p<oo,
1f ooy = (/ ||f()||y> <»p

ess supe (o) [ £ ()lly, p=oc.
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Let 7;, be a finite element partition of © into uniform rectangles and h = maxge7, {hi},
and hg is the diameter of element K. The bilinear finite element space is defined by

Vi = {v, € C(Q); vn|x € span{l,z,y, zy}, vnloa =0, VK € Tp}

with I, : uw € H*(Q)) — Inu € V}, be the nodal Lagrangian interpolation operator. Moreover,
define Ry, : H}(Q) — Vj, to be a Ritz projection operator by

(V(u — Rhu), V’Uh) =0, VYo, € V. (2.1)

Then, by the classical finite element theory [9,54], there holds for u € H?(2) N Hg (),
lu = Riullo + hl|V (s — Rpu)llo < Ch?|ulz, (2:2)
u — Tnullo + AV (u — Inu)|lo < Ch?|uls. (2.3)

In addition, from [46,48], we have the following superclose error estimate between Inu and Rpu
in H'-seminorm for u € H3(Q),

IV (I — Ryw)llo < CH2 Jul]s. (2.4)

To present the mixed formulation, the lowest-order Raviart-Thomas space, which satisfies
the Babuska-Brezzi condition, is defined as follows:

Hj), ={ve H(div;Q) : v|x = (v1,02)|x € Q10(K) X Qu1(K), VK € Tp}, (2.5)
My, = {’LU S L2(Q) :’LU|K S Qoo(K), VK € 7;1},

where Q. (K) is the space of polynomials of degree no more than m and n in « and y on K,
respectively and
H(div;Q) = {o|o € (L}(9))%, V-0 € L2(0)}

with
oG = llelld + IV - oll5.

From [17,31], we recall the lowest-order Raviart-Thomas projection as follows:
I, x P, : H(div;Q) x L*(Q) — Hj) x M,

is defined by the following conditions:

/(o’ Mpo) nds =0, i=1,23,4, (2.7)

l;

/ (w — Pow)dx =0, (2.8)
K

where I;,1 = 1,2, 3,4, are the four edges of the rectangle K € T, and n,; is the outward normal
vector along to the edge I;. Moreover, we have the following results from [15,17,31]:

(1) Py is the local L*(Q) projection.
(2) IIj and P, satisfy

(V (o — Hha),wh) =0, Vw, €My, (2.9)
(wahw,V~Xh) =0, Vxn € Hy. (2.10)
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(3) There hold the approximation properties

lo = Thollop < Chlloflip, 1 <p<oo, (2.11)
[w = Pywllop < Chllwlrp, 1<p<oc. (2.12)
Here, we present some lemmas, which play a key role, in the error analysis.
Lemma 2.1. Suppose that o € (H?*(2))?, we have
(U—Hha,x)K:/ (o0 — o) - xde < Ch% Vx € Hy,. (2.13)
K

Proof. For any element K € T, (see Fig. 2.1), let (xx,yx) stand for the center of K and
let 2h, and 2h, stand for the side lengths of K in the z- and y-direction, respectively. Define
two error functions for z and y as follows [37,40,41]:

[(y yK) *hi]-

wl»—l

(@ —2x)® = hZ], Fly):=

E'(z) = (BE(@)),, = F(y)=(F(y),, =1,
S ) :%(E%c))m, w—ux) = () = L (7)),
Note that
(U_Hho'aX)K:/K(O'—HhO')-de

:/(Jlfﬂhal)xlda}jL/ (02 — MMpoo)x2 de =T+ 11.
K K

Since the treatment for I7 is the same as that for I, we deal only with I in the following.
Noting that x1|x € Q10(K) = span{l,z}, we have

Xl(xay)h( :Xl(xKay)+(x_$K)X1z(xay)a (214)
ly
:
hy,|
l ' ha l
o — — - ___
’ (951(, ZJK) '
K
L4

Fig. 2.1. The illustration of element K.
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where x1(zk,y) and x1.(z,y) are constants on element K. Hence, I can be rewritten as

I= /K(O'l —Tlpop)x1 dxe = /K(01 —po1) (x1(zk,y) + (@ — 2x)x12(2, ) do

:X1($K,y)/K(U1*Hh01)dﬂ?+X1x($,y)/K($*ZEK)((H —IIjo1) dz

In terms of E~ (x) =1, one can obtain by integration by parts
/ (o1 — poyr) dae = / E x)(o1 — Hpo1) de
K

</ll /13) )1 —Hyor) dy — /KEl(x)(Ul —Ijo1), dz
N </l1 - /13> E(z)(o1 —Tlhon)e dy + /KE(z)(Ul —1,01) s do

- / E(2)01s da, (2.16)
K

where we have used E'(z)|;, and E'(z)|;, are constants and interpolation condition (2.7), which

shows ( /l B /l) E'(2)(0y — o1) dy = 0,

and E(x)|;;, = 0 and E(x)|;; = 0 in the above estimate. Combining (2.14) and (2.16), I
becomes that

I :/ E(-T)Ulzz (Xl(‘ray) - (:E - -’L'K)le(m,y)) de
K
:/ E(m)alledw—/ E(z)(x — 2x)0122X12 dT
< Chiloula.xlxalo e < Chiloilex|x1lo.x, (2.17)

where we have used

IxX12llo.c < Chy*xalo.x

Moreover, according to (z — zx) = (E2(z))" /6, one can obtain by integration by parts

=

:E—:EK)( —Io1) de

“E,

Hhal) dx

ChIH Cnl>—‘

I /lg,) (x))// (@)1 —Ilno) dy — /K (EQ(CU))” (01 = Ipo1)a dw}

/ll /13> (B2(@)) (@) thl)mdy/K(EQ(z)),(UlHhOl)mdm]

(x — zi)E(x)012, dx, (2.18)

D=/
N\.—./-\N\

w|H
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where we have used E” (z)|;, and E (z)|;, are constants and interpolation condition (2.7),

</z - /l> E'(2)(01 —ho1) dy =0,

and E(z)|;, = 0 and E(z)|;, = 0 in the above estimate. Combining (2.14) and (2.18), I
becomes

which shows

2= §/ (v — ) E(2) 0120 X10 d < Chiclo |2, re[x1 o, (2.19)
K

where we have used

Ix1a2llo,x < Chz|x1lox-
Substituting (2.17) and (2.19) into (2.15) yields that
I'= /K(Ul —Tpo1)x1 de < Chicloy ]2,k |x1]o,x- (2.20)
In a similar way, we also have
II = /K(0'2 —Ipo9)x2 de < Oh%{|0'2|2,K|X2|O,K- (2.21)
Combining (2.20) and (2.21), we derive
(0 =Xk = [ (o= Tho) - xdw < Chi ol loi (2.22)
which is the desired result and the proof is complete. O

2

, we have

Lemma 2.2. Let m = (m1,mz) be a constant vector and suppose that o € (H%())

(m-(oc —Iyo),w), = / m- (o — po)wde < Chi|o|ex|wlox, Ywe M, (2.23)
K
Proof. Noting that
/ m- (o —Io)wde = / mq (o1 — [po1)w de +/ ma(og — Ipo0)w de
K K K

= m1w|K/ (01 — poq) dm+m2w|K/ (02 — Ijo2) de,
K K

and using the same process as estimate (2.16), we have

/ m- (o —Ipo)wde = ml/ E(z)o1z,w dx + m2/ F(y)ogyyw dx
K K K

< Chicllol2.xlwl

0,K 5

which is the desired result and the proof is complete. O

Lemma 2.3 ([28], Discrete Gronwall’s Inequality). Let 7, H and ay,by,cp,d, be non-
negative numbers for integers n > 0 such that

n n n
an+72bk §Tdeak+Tch+H.
k=0 k=0 k=0

Suppose that Tdy, < 1 for all k and set o, = (1 — 7dg) ™!, then we have

an—l—Tzn:bk < exp (Tiakdk> (Tick—i—H).
k=1

k=0
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For the fully discrete analysis, we introduce the following notations. Let
O=to<ti<---<ty=T

be a uniform partition of the time interval [0,T] with time step size 7 = T'/N. For a smooth
function w on [0, T, we denote w™ = w(+,t,) for 1 < n < N and the backward Euler discretiza-
tion operator by

3. Superclose and Superconvergence Error Analysis

To introduce the mixed form, we shall define an extra variable 8 = o(u)V¢ and denote
B(u) = 1/o(u). Then, the original thermistor equation (1.1)-(1.2) can be rewritten as

ue — Au = 5(u)|0)?, (3.1)
Bu)8 = Vo,
-V.-6=0.

Here, we present the weak formulation of (3.1)-(3.3) is to seek u € Hi(Q), (0, ¢) € H (div; Q) x
L?(9) such that

(ut, v) + (Vu, Vo) = (B(w)|0]*,v), Vv e Hi(Q)NL>(Q), (3.4)
(B(u)8,x) + (6, V-x) = (9,x-n), Vxe H(div;Q),
—(V-0,w) =0, Ywe L3(Q), (3.6)

where g is the boundary data and n denotes the normal vector along to 0f.
Based on the above weak formulation and notations, a semi-implicit backward Euler mixed

finite element scheme with the lowest-order Raviart-Thomas pair is to find (“ZH, gn+1, Z+1) c
(Vi, Hp, My,), such that

(DTuZH,Uh) + (VUZH,Vvh) = (6(uﬁ)|02+1|,vh), Yo, € Vi, (3.7)
(Bu)0r " xn) + (o7 V o xn) = (g™, xn - m), Vxn € Hy, (3.8)
—(V~02+1,wh) =0, Ywp € My,

where g"t! is the boundary data of ¢ at ¢t = ¢,,1. For the initial step approximations, we
choose uf) = Rpu® and (69, ¢Y) is the finite element solution of

(B8, xn) + (60, V- xn) = {¢°,xn - m), Vxn € Hp, (3.10)
—(V-Bg,wh) =0, Ywy € My, (3.11)

The mixed finite element numerical scheme (3.7)-(3.9) is semi-implicit and decoupled, one
needs to solve tow linear systems at each time step. One can check that the coefficient matrix in
(3.7) is symmetric positive definite and (87, ¢}') is the mixed finite element solution to a linear
elliptic equation, the numerical scheme (3.7)-(3.9) is uniquely solvable at each time step [22].
Now, we present the optimal and superclose error estimates in the following theorem.
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Theorem 3.1. Let (0™,¢",u") and (07, ¢y, u}y) be the solutions of (3.4)-(3.6) and (3.7)-
(3.9), respectively. Suppose that @ € L>((H?*(Q))? N (WhH>(Q))?),0; € L>=((H?*())? N
(WL(Q))?),¢ € L=(HY(Q)),u € L>®(H3(Q)),us € L®(H?(Q)) and uy € L=(L*()). Under
a temporal stepsize restriction T = O(h'*®), o > 0, we have

|V (Inu™ — u)||, + | 110" — 67|, + || Pa¢” — ¢7||, < C(* +7), n=0,1,2,...,N, (3.12)
|V (™ =up) |, + 6" = 6r]l, + [|¢" — orll, < C(h+7), n=0,1,2,...,N. (3.13)
Proof. For simplicity, we split the errors as follows:
u" —up = u" — Rpu" + Rpu™ —upy =& + ey,
0" — 0 = 0" —11,0" +11,0™ — 07 := £ + ey,
" — b = " — Prd” + Prg" — ¢ :=E&5 + e
From (3.4)-(3.6), we have at t = t,,41
(Dru™t o) + (Vu" ™, Vo) = (B(u™)|0" 2,0 ) + (Dru™ — Ut )
+ (B ) = B(u™))|0" %, vp), (3.14)
(Bu™O™ 1 xn) + (", V - xn) = (9", xn - >+ ((Bu™ —Bu™1))0™+ x4), (3.15)
—(V-6" wy) = 0. (3.16)

Thus, from (3.14)-(3.16) and (3.7)-(3.9), we obtain the following error equations:

(Dret®™ o) + (Ver™', V) = = (D& up) — (VELT, Vy)
+ (B0 — B(ur)

+ (DTU U ,’Uh)

+ ((ﬁ(u”“) — B(u"))|0”+1|2,vh), Voup € Vy, (3.17)

n+l _ , n+l
t

(B(un)eg™ xn) = —((Bu™) = B(ur)) 0", xn)
+(B(u )(Hhﬁ’"+1 0"), xn)
— (€Y xn) = (5 Y xa)
+ ((B(u™) = Bu"™1)) 0™, X)), Vxn € Hy,  (3.18)
(V-&+ wn) + (V-egth wn) =0, Ywp € My, (3.19)

Taking x5, = eg " in (3.18), we obtain by (1.5) and the definition of 3(-) that

|| 5 o= —((B™) = B(up))o" " egt) + (B(up) (Th0" " — 0771), e5™")
— (€T Voeg™) = (5T Ve ) + ((B™) — Bu" )0 g™
=: A1+ Ay + A3z + Ay + As. (3.20)

Now, we estimate A;,i = 1,2,3,4,5, term by term. By Cauchy-Schwarz inequality and (2.2),
there holds

A < [[8(a") = B |o107  lo.colleg™ [l < Cllu™ = uitllolles™ [l
< O(1* + [letflo)lles™ lo-
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Note that

Ay = (3(u) (0741 — 0+ )

= (3(uF) — 50 (1071 — 07,5
+ (ﬂ(un)(Hh@"Jrl - 0"“) nH) A1 + Ago.

By Cauchy-Schwarz inequality again, we have

[Az| < [|8(u") = B(uf)[|o|[TLn0™ " = 67| leg™ |, o
< Offu” - uit[lo(CR) (CR™leg ™" ,)
< C(0* +[leillo)lles™ Ilo-

In order to estimate the term Ass, we define
— 1 1,00
w=— [ wde, weW >*K), (3.21)
K| Jxe

there holds
o = Bllo.cox < Chiclelt,ooic (3.22)
thus, we have
Aoy = (ﬁ(un)(ﬂh@wrl - 0"“)762“)
= > (B (o — 0", gt

KeTh,
_ Z ((ﬂ(un)fﬂ(u")) (HhenJrl 70n+1),ez+1)K
KeTy,
+ Z ﬁ(un)(HhGnJrl _0n+1’e701+1)K
KeTh,
< D7 1B = Bl oo i [TL20™ = 071 [l i
KeTh,
+ Z un HhenJrl 0n+1762+1)}(
KeTy,
< > Cxchicllo™hxlleg™ lox + D2 Crchicl™ M axclleg™ llo «
KeT, KeTn
<CP* Y 10" et o i < CHO" ol o < CR2leg ™
KeTy,

where Lemma 2.1 have been used in the above estimate. Therefore, one can check that
[Ao] < C (12 + [le]ly) lleg™ [lo-

According to (2.10), it follows that
Az =0.

Moreover, taking wy, = eZH in (3.19) yields

(€777 = (7T,
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together with (2.9) shows that
Ay =0.
With the help of Taylor’s expansion, one can check that
|A5| — ((ﬁ(un) _ ﬁ( n+1))0n+1 n+1)

< [1B(u"™) = B )loll0™ o, [leg™

e [

< Crlleg™ -
Substituting the estimates A; ~ As into (3.20) gives that

leg™ lg < (0 + llello)lles ™ lo + Crlles™ -
which implies
leg™, < C(h*+7+]exll,) (3.23)
From (3.18), we have
(57159 x0) = (300~ )0 )+ (3 ) (07 0"1) )~ (€5, 9 )
+ ((ﬂ(un) - ﬂ(un+1))0n+1a Xh) - (/B(uh)ez+17 Xh)a VXh S Hh-

Then, by Cauchy-Schwarz inequality, it follows that

—((B™) = B(up))0™ 1, xn) < ||Bw™) = B(u) |, 110" .0 llxnllo
scw”+W£MMwmm (3.24)

In a similar way as As, one can check that

(B(up) (0™ = 0"+1), ) = ((B(ur) — Bu™) (0™~ 6+1), x5,)
+ (Blu (H 0"+ —0""1) x»)
< (0 + [len o) Ixnllo- (3.25)

According to (2.10), there holds
(&, V - xn) =0. (3.26)
An application of Taylor’s expansion, we have

((B™) = B"™1)0™ 1 xn) < [1B(w™) = B )00 0,00l xnllo
< C7lixallo- (3.27)

Using (1.5), (3.23) and Cauchy-Schwarz inequality, we have
—(B(un)eg™ xn) < [Bui)[leg™ [ollxallo
<O+ 7+ [lelo)Ixnllo: (3.28)
Based on the above estimates (3.24)-(3.28) and in terms of the inf-sup condition of Raviart-

Thomas mixed finite element method, egH can be bounded by

n+1 .
lextt]l, < C sup M

<O 47+ [lenlo): 3.29
xnE€H ”Xhlldiv - ( T ||e ||0) ( )
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Next, we pay our attention to estimate e”. To do this, letting v, = e?*! in (3.17) results in

1
5 (e lg = llezlly + llex™™ = eillg) + [ver*lg

= _(DT£Z+1’67J+1) - (VELH_la ve’ruH_l)
F (B0 = B[O [P en ) + (Dt — el
+ ((Bu™) = B(u™)) |07, e )
=: By + By + B3+ B4 + Bs. (330)

In what follows, we prove
lenfl, < C*(h*+7), n=0,1,2,...,N, (3.31)

by mathematical induction, where C* is a positive constant independent of h, 7 and n. In fact,
since ul) = Rpug, we have ||€|lo = 0, which shows that (3.31) holds for n = 0. Now, we assume
that (3.31) holds for n < k — 1 for some positive integer k. We should find C* independent of
h, 7 and n such that (3.31) also holds for n < k.

By Cauchy-Schwarz inequality and (2.2), it follows that

Bl < D, e, < nller (3.32)
According to Ritz projection, there holds
By =0. (3.33)
Note that
Bum)|0™ 2 — B(up) |65+
— B(UH)(|0H+1|2 _ ‘Hh0n+1‘2) +6(un)’1—[h0n+1’2 _ ﬁ(uz>’02+1‘2,
ﬂ(un)(|0n+1|2 o |Hh0n+1|2)
_ 26(un)0n+1(0n+1 _ Hhen—i-l) _ B(Un)|0n+1 _ Hh0n+1|2,
B[00 — B (uf) 0
= (B(u™) = B(up)) | TL,0" 1 [*+28 (uf, ) TL,0" ! (T0,0™+! — 07 1) — B (u) | TL, 0" — 071 7.
Thus, we have

By = (B(u™)|6" )% — B(up) |07+, enth)
=2

(B(Un)en—i-l(en-i-l _ Hh0n+1)’ez+1)

ﬂ(un)’0n+1 o Hh0n+1 27 €Z+1)
B(u™) = B(up)) 10,0717, et
ﬂ(uz)nhenJrl(HhenJrl o 0}7;—1—1) enJrl)

’ Ty

—(
+((
+2(
- (ﬂ(uﬁ) |HhenJr1 - 0}?+1|2a62+1) = ZBBk-

5
k=1
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One can check that

B31 — 2(6( n)0n+1 (0n+1 _ H 0n+1)’ez+1)

-9 Z 0n+1 0n+1 h0n+1)7en+1)
KeTn ’ "
2 3 (B~ F)en (07 ~ T )
KeTy,
2 30 B(OM -0 (O -0
KeTn
+2 Z 0n+1 0n+1 Hh0n+1) n+1)K
KeTy
49 Z 0n+1 0n+1 Hh0n+1)763+1 7@)}(
KeTh
<2 Z 18w un>H0 o0 KHO"HHO K||0n+1 - HhenHHo,KHQZHHO,K
KeTn
+2 ) Okl|6" ! — 07 o0, i |07+ —TLO" | flen ],
KeTy, 7 7
+2 3 Cuchcl 0 sl o +2 30 ol =8 oy — el
KeTy, KeTy, 7
<08 30 10 ey + O Y 167 e
KeT, KeTy
< CP*len ] + Ch2[[ Vet
where we have used Lemma 2.2, and
I@llo,x <llwllo,xc, [[w—"lox <Crhillwli k.

By Cauchy-Schwarz inequality, there holds
[Baal < 180" lo.oc |07 = TH0" 1[G et | < C2 et
Using Cauchy-Schwarz inequality again, we have
[Basl < [[8(a") = Buf) [T I5 e
< O +lexllo) len ™ {lo-
Moreover, it follows that
B < 2|8 (u) [ oo I TRO™ | oo [T126™ T = 037 [le

< Olleg™ lollen™ llo = C (B + 7+ [lezlo) lew™ [,

where we have used (3.23).
By Cauchy-Schwarz inequality, it follows that

Bgs < ||B(up) [lg o IT000" " — 037 11207 — 07| [len™™]
< Olleg™ o (cn leg lo) [len ™l

< O(h* + 7+ lewlo) e
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where we have used (3.23) and (3.31), which shows that for n < k — 1,
leg™ o0 < Ch7H g™ lp < CRTH(RZ 7+ e )
<CA+C*)(h+h7tr) <1, (3.34)

provided that 7 = O(R'™*),a > 0 and 2C(1 + C*) max{h,h*} < 1 for sufficiently small h.
With the above estimates Bs;,7 = 1,2, 3,4,5, we have

B3 _ 2(ﬂ(un)0n+1 (0n+1 o HhenJrl),eZJrl)

<O+ 74+ |len],) len*l, + CR?[|Ver ™|, (3.35)

An application of Taylor’s expansion, one can check that
|Bal < [| D7 =i [l | < Ol o (3.36)
[Bs| < [|B(u*") = Bu™) o165 0o el < Ollen™[lo- (3:37)

Substituting the estimates By ~ Bj into (3.30) yields that

o= Ulentllo = lleill) + [IVer g < C(0? + 7 +[lenllo) llea ™l + Cr[[Ver ™|,
which shows that
1 n n n n
o= (len o = lletlly) < ot +72) + C(llei Iy + ez llo)- (3.38)

Summing up the above inequality and using €2 = 0, we have

n+1
lentt]2 < Cht +72) + 07 S ek (3.39)
k=1

Thanks to Gronwall’s inequality (see Lemma 2.3), there holds for Ct < 1/2,

n+1(|2 cr 4 2
et < e (55 ) Ot + )
< Cexp(2CT)(h* +12)
< C*(h* + 1) (3.40)

where we take C* > /Cexp(2CT). Thus, the estimate (3.31) is also valid for n < k and we
complete the induction.
Finally, substituting (3.40) into (3.23) and (3.29), we have

el + lleg ™l < 002 7). (3.41)

On the other hand, we pay attention to estimate the H'-norm of e?. To do this, letting

vp = Drein (3.17) results in

n 1 n n n n
Dt g+ 5 (Ve o = [Veilly + [V (e = e o)
= — (D&, Drep™) — (VEIT, VD ep ™)

+ (B0 = B(up) [0 °, Dreirtt) + (Dru ! — uptt Dyeptt)

o

+ (B = Bu™)) |0, Dreptt) = ) Ey. (3.42)

k=1
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By Cauchy-Schwarz inequality, there holds

By < |21 Doz, < CH2D-ei
An application of Ritz projection, it follows that

E; =0.

Note that
0" = (up) 671, Dre )
= (ﬁ(u”)@”“(O”“ — Hh0”+1),DTeZ+1)
B(u™)|o™+ — 11,6" 1 |°, D, epth)

(B(u™) = B(up)) |6, Drent?)
(B(up) 1,07+ (T1,0" ! — 07+1), D, el t1)

&
|

N —~
=@
—~

S
3
=~

5
— (B(up) 11,07+ — 071 ° Drentt) =0 3 Ey.

In order to estimate E3p, using summation by parts yields

E3 =2(B(u™)e" T (0" —11,0""), Dyell ™)

_ = [(ﬂ(un)enJrl(enJrl o Hh0n+1)7ez+1) o (ﬂ(unfl)en (en

o _(ﬂ(un)enJrl(enJrl o Hh0n+1) o ﬂ(unfl)en (en o Hhen),GZ),

and noting that

B(Un)en—i-l(en-i-l _ Hhen-i-l) _ ﬁ(un—l)en(en _ Hhen)

— (ﬂ(un) _ ﬂ(unfl))enJrl(enJrl _ Hh0n+1)
( )(0n+1 )(0n+1 o Hh0n+1)
( n— 1)0 (0n+1 0" — Hh(en-i-l _ en))
Thus, it follows that
E3 =2(B(u™)e" T (0" —11,0""), Dyell ™)
— %[(ﬂ(un)enJrl(enJrl o H 0n+1) enJrl) o (ﬂ(unfl)en (en
( Tﬁ( n))0n+1(0n+1 II 0n+1) n)

) u

— 2(
= 28" (D7) (07T — 100", €7)
=2

) u

ﬂ n— 1 en( T0n+1 o HhDTenJrl), Z)
Moreover, using mean value technique (3.22), we have

((DTﬂ(un))enJrl(enJrl II 0n+1) n)

’U.

= Z (D-B(u™))6" (6" +! — HW"“),@Z)K

KeTy,

—0"),ey)]

- .0"),ey)]

15

(3.43)

(3.44)



16 H.J. YANG AND D.Y. SHI

= S ((D-B™) — Dy B0+ (07 — 1,0 ), el)

KeTn
+ Y DB (0™ — 0 F) (07! — IL,0m ) el
KeTy
+ > DBum)em (6" — I,0m ) el —eT)
KeTy,
+ Z DTﬁ(u")BWH((B”H _ Hh0n+1),a)K
KeTy
< > IDBW™) = DrBu) g g s 167 Hlo,oo,rc |07 = TWAO™ [ el i
KeTn
+ Z Cx o™ — 0n+1||07007KH0”+1 B HhenHHo,KHeZHo,K
KeTy,
+ > Cxl[0" —T00" | et — €ty
KeTy
+ Z CKh%(HB”HHZKHaHO,K
KeTy,
< Z CKh%(|0n+1|17KH€ZH0,K + Z CKh%(|0n+1|LKHeZH1,K
KeTy, KeTn
+ > Crhicl| 0" 2k [|el]], 1
KeTy
<CR? 3 10" aclleilly o +Ch* > 16" il
KeTy, KeTn
< Cr?[lepl, + CR2||Ver|, < CR2[| Ve,
In the same way, we have
(B(Un_l)(D70n+1) (0n+1 _ Hhen-i-l),ez)
— Z (ﬁ(unfl)(DTenJrl) (0n+1 _ HhenJrl)an)K
KeTy
= > (B = Bur=1) (D-07H) (07 ~ 0" ), )
KeTy
+ Y BurN)((D-0"F — D, 6"FT) (0" —IL,0" ) )
KeTy,
+ Y B (D (00 e, e )
KeTn
+ Z B(Un—l)(DTen—i-l(e’fH-l —Hhen-ﬂ),@)K
KeTy,

< Ch?||ey]], + CR?[|[Veyl|, < Ch?|[Ver],
and

(ﬁ(un—l)en(DTen-i-l _ HhDTen-i-l) en)

’u

> (BwrHe"(D,0" T —T,D6™F ) en)
KeT

= 3 (B~ B )0 (D07 — D). el
KeTy
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+ > B r)((6" - 07) (D" — T, D,0" ) )
KeTy

+ 3 BurT)(6"(D,0" ! — I, D.0" ") el —T) .
KeTy

+ > Bur1)(97(D, 0" — I, D, 0" 1) €T
KeTy

< OR||eily + OR*[|Verll, < Ch*|[Ver]l,.

Therefore, we have

Ear < %[(ﬂ(un)gwrl(gwrl _ HhQnJrl)7 eZJrl) . (ﬂ(unq)en (0” - HhG”),eZ)]

+Ch?||Ver|,-
In terms of Cauchy-Schwarz inequality, it follows that
Egy < 28" ool —TL0" 0 [ el < O | Drei |
Thanks to (3.40), there holds

By < [|8(u™) = B(up) o[ T0n0" |5 [ Dre
<C h2+ ezl 1 P-en
< O 4 7)|| Dyer ..
According to (3.40) and (3.41), we have
Esa < [|B(ui)[lg oo [TTa0" [ o llea™ [l Dren™ ]
< C(h2 +7+ HeZHO)HDTeZHHO
< C(h? +7)|| Drep |-
With the help of (3.34), one can check that
Bus < 500 o 07 — 07 10,07 — 037, _[Dye
< C(h2 +7+ HeZHO)HDTeZHHO
< O 4 7)||Dyen ..

Based on the above estimates F3; ~ F35, there holds

Es < %[(ﬂ(un)enJrl(enJrl _ HhenJrl),eZJrl) _ (ﬂ(unfl)en (en _ HhO"),eZ)]

RV, + O )| D,
With the aid of Taylor’s expansion, it follows that

By < || Dru™t —uf || Dre |, < Crl[Drei
Es < ||B(u™™) — Bw™)|loll0" 2 || Drentt|, < C7|| Drent,-

Substituting the estimates E1 ~ E5 into (3.42) results in

[P+ o= (17en s~ [[vez )

17

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)
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< 2[(Buer (0~ 00" ), ) — (S )er (6" — 06" )]

+Cr?||Vey||, + C(h* +7)||Drep ™|,

3

which implies that
1 1112 a2
L ([ezt - [vez)
S % [(6(“")0”-{-1 (0n+1 _ Hh0n+1),63+1) _ (B(Un—l)en (en _ HhG”),eZ)]
+C(ht +72) + O ver| 2.
Summing up the above inequality and using €0 = 0, we have

1 2
ZHvezﬂHi < ;(ﬂ(un)enJrl(enJrl . Hh0n+1)7ez+1)

+OY () 0> [ ek]fo, (3.53)
k=1 k=1

which shows that
Hvez—i-l Hi S 4(ﬁ(un)0n+1 (0n+1 _ Hhen—kl)’ez—i—l)
+Or Y (Wt 472+ Or S || Ve, (3.54)
k=1 k=1
An application of a similar way as Fs3;, one can check that
(ﬂ(un)enJrl (0n+1 o Hh0n+1) , €Z+1)
— Z (ﬁ(un)0n+1(0n+1 _ Hhen-i-l),ez-l-l)K

KeTh
= 3 ((Bwm) — Blum)o+ (67 — 1,67 +1), en )
KeTn
+ Z 0n+1 W)(enJrl*Hhe”Jrl),eZ*l)K
KeTy
+ Z 0n+1 0n+1 Hh0n+1),€z+1 *F)K
KETh
+ Z Blum) (8771 (074! — I1,07+1), n+1)K
KeTy

< cn|ver,

Substituting the above inequality into (3.54) gives that

Ve < OH Ve, + O S (ht +77) + Cr Y [Vek:

k=1 k=1
1 112 = 2
< EHVeuHHO+C(h4+72)+CT;HVeZHO, (3.55)
which implies that
Vet |2 < oht +72) + or 3 || Vb 2. (3.56)

k=1
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Thanks to Gronwall’s inequality (see Lemma 2.3), we have
[Vertt|, < C(h* +7), (3.57)
which together with (2.4) and triangle inequality yields that

[V (@™ =i ) g < [V (I = R )| + [V (Rpu = up )
<Ch?*+C(h* +71) < C(h* + 7). (3.58)

Thus, the desired result (3.12) is obtained with (3.41). Moreover, the desired result (3.13) is
derived by triangle inequality, (2.11), (2.12), (3.41) and (3.58). The proof is complete. O

In order to obtain the global superconvergence results, we adopt the interpolation post-
processing approach. To do this, we build a macroelement K consisting 4 elements Kj,
Jj = 1,2,3,4 (see Fig. 3.1). For numerical solution u}/, we adopt the local interpolation op-
erator Isp : C(IN() — QQQ(I?) as interpolation post-processing operator with the following
interpolation conditions (see Fig. 3.1(a)):

Lpu(z) = ulz), i=1,2,...,9, (3.59)

where z;,1 =1,2,...,9 are the nine vertices of K.

Moreover, we adopt the following two local interpolation operators Ilo, : H(div; K ) —
Q11(K) x Q11(K) and Py, : L?(K) — Q11(K) as interpolation post-processing operator with
the following interpolation conditions (see Fig. 3.1(b)):

IIhu € Qn(f() X Qu(f()a

/ (u1 — thul)dy = 0, 1= 1, 2, 5, 6,
i

/l (us — Topun)dz =0, i =3,4,7,8, (3.60)

Prw € Qll(f(),

/ (w— Pypw)de =0, i=1,234.
K;

24 27 23 ly ls
K4 Kg l5 K4 Kg 12
Z Z
8 Z9 6
Kl K2 l6 Kl K2 ll
21 Z5 Z9 l7 ls
(a) The illustration for Iy, (b) The illustration for Ily; and Paj,

Fig. 3.1. The macroelement K.
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Moreover, from [37] and [63], the following properties for Iy, I, and Psy, hold, i.e.

Ioply, = Iop,
lu — Lpully < Ch?||lullz, Yue€ H?(S), (3.61)
| Ionvnll1 < Cllvnll, Vup € Vi,
and

IIop 11, = Ilop,

lp — Mapllo < CH[lpllo, Vp € (H* (@),

IT2nqnllo < Cllgnllo, Vqn € Hp, (3.62)

Pop Py = Pap,

|lw— Popwlo < Ch2|lwllz, Yw e H*(Q),

| Panxnllo < Clixallo, V' Xn € Mp.

With the above properties, we have the following global superconvergence result.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. Moreover, suppose that ¢ €
L% (H?(Q)) , for 1 <n < N, there holds

|u™ = Lpup||, + (0" — T2n5 ||, + [|¢" — Pandi]|, < C(R* + 7). (3.63)
Proof. In fact, it is easy to see that by (3.61)
[u" = Lanug ||, < ||[u" = Landnu™||, + || Tondnu™ — Ionui||,
< Jlum = Lo + [ Fan (Tnw™ = i) ||,
< Ch? + C|| ™ — ujt|
<CR*+C(h* +71) < CO(R* + 7).

The error estimate of @ and ¢ follows an analogous approach for u. The proof is complete. [J

4. Numerical Results

In this section, we present some numerical results to verify the theoretical analysis. Here,
we consider a general system as in [22]
ug — Au = o(u)|Vo|]? + fi,
—V - (0(w)V¢) = fa,
where o(u) takes the form
1
=——+1.
o(u) T +
We set the domain € = (0,1) x (0, 1) and the final time 7' = 1.0 in the computation. Moreover,
we set the Dirichlet boundary conditions for w and ¢. The initial conditions ug(x) and the
right-hand side terms f1, fo are chosen such that the exact solution is given by

u(t, z,y) = exp(—t) sin(mx) sin(7y),
o(t, z,y) = exp(—t)sin(z + y).
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To confirm the conclusion presented in Theorems 3.1-3.2, we present the numerical errors with
7 =h?att=0.1,0.6,1.0 in Tables 4.1-4.9, respectively. Clearly, from Tables 4.1-4.9, we can
see that the numerical results agree well with the theoretical analysis. In addition, we also
present the graphics of the exact solution and numerical solution at t = 1.0 on mesh 32 x 32 in
Figs. 4.1-4.4, which also illustrate that the numerical solution approximates the exact solution

very well.

Table 4.1: The numerical errors and convergence rates of u at t = 0.1.

h 1/4 1/8 1/16 1/32 1/64
Ju™ —uy |1 4.5489¢-01 2.2774e-01 1.1392e-01 5.6964e-02 2.8483e-02
Order / 0.99816 0.99940 0.99984 0.99996
[ Tpu™ — up]|1 8.4898e-02 2.2328e-02 5.6511e-03 1.4171e-03 3.5454e-04
Order / 1.9269 1.9823 1.9956 1.9989
|u™ — Iapup |1 2.0166e-01 5.1228e-02 1.2855e-02 3.2166e-03 8.0433e-04
Order / 1.9769 1.9946 1.9987 1.9997
Table 4.2: The numerical errors and convergence rates of @ at t = 0.1.
h 1/4 1/8 1/16 1/32 1/64
[|0™ — 0% 1|0 1.4946e-01 7.4273e-02 3.7072e-02 1.8528e-02 9.2627e-03
Order / 1.0089 1.0025 1.0007 1.0002
IT1,0™ — 670 1.4332e-02 3.6642¢-03 9.2201e-04 2.3093e-04 5.7748e-05
Order / 1.9677 1.9907 1.9973 1.9996
[|0™ — II24 607 ||o 3.6943e-02 1.8422e-02 5.8765e-03 1.5072e-03 3.7895e-04
Order / 1.0039 1.6484 1.9631 1.9918
Table 4.3: The numerical errors and convergence rates of ¢ at t = 0.1.
h 1/4 1/8 1/16 1/32 1/64
o™ — érllo 5.4561e-02 2.7387e-02 1.3706e-02 6.8548e-03 3.4276e-03
Order / 0.99440 0.99863 0.99966 0.99992
| Pno™ — &3 llo 6.2129e-04 2.2419e-04 6.0247¢e-05 1.5337e-05 3.8553e-06
Order / 1.4705 1.8958 1.9739 1.9920
6™ — Pengllo  9.6224e-03  2.4096e-03  6.0263e-04  1.5067e-04  3.7668e-05
Order / 1.9976 1.9994 1.9999 2.0000
Table 4.4: The numerical errors and convergence rates of u at t = 0.6.
h 1/4 1/8 1/16 1/32 1/64
[u" — uf |1 2.7568e-01 1.3810e-01 6.9089¢-02 3.4550e-02 1.7276e-02
Order / 0.99727 0.99917 0.99978 0.99995
[ Tpu™ — uf |1 5.9412e-02 1.5540e-02 3.9278e-03 9.8463e-04 2.4632¢-04
Order / 1.9348 1.9842 1.9961 1.9990
lu"™ — Iopup]|1 1.2608e-01 3.2007e-02 8.0302e-03 2.0093e-03 5.0243e-04
Order / 1.9779 1.9949 1.9987 1.9997
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Table 4.5: The numerical errors and convergence rates of 8 at t = 0.6.

h 1/4 1/8 1/16 1/32 1/64
|e™ — 63 |lo 8.9561e-02 4.4710e-02 2.2345e-02 1.1171e-02 5.5855¢e-03
Order / 1.0023 1.0006 1.0002 1.0000
|IT1,0™ — 67 ||o 5.0923e-03 1.2978e-03 3.2650e-04 8.1756e-05 2.0439e-05
Order / 1.9722 1.9909 1.9977 2.0000

|60™ — I12,.67 |0 1.7793e-02 7.1161e-03 1.9246e-03 4.8721e-04 1.2217e-04
Order / 1.3222 1.8865 1.9819 1.9956
Table 4.6: The numerical errors and convergence rates of ¢ at t = 0.6.
h 1/4 1/8 1/16 1/32 1/64
o™ — onllo 3.3092e-02 1.6611e-02 8.3133e-03 4.1576e-03 2.0789¢-03
Order / 0.99439 0.99861 0.99965 0.99991
| Pno™ — &3 llo 2.6009e-04 8.0563e-05 2.1171e-05 5.3616e-06 1.3477e-06
Order / 1.6908 1.9280 1.9814 1.9921
o™ — Pand?llo  5.8294e-03  1.4572e-03  3.6427e-04  9.1066e-05  2.2767¢-05
Order / 2.0002 2.0001 2.0000 2.0000
Table 4.7: The numerical errors and convergence rates of u at t = 1.0.
h 1/4 1/8 1/16 1/32 1/64
|[u™ — up]l1 1.8479¢-01 9.2570e-02 4.6312¢-02 2.3159e-02 1.1580e-02
Order / 0.99727 0.99917 0.99978 0.99994
[ Tpu™ — up |1 3.9913e-02 1.0434e-02 2.6371e-03 6.6106e-04 1.6538e-04
Order / 1.9355 1.9843 1.9961 1.9990
lu™ — Iopuf||x 8.4579e-02 2.1464e-02 5.3849e-03 1.3474e-03 3.3692e-04
Order / 1.9784 1.9949 1.9988 1.9997
Table 4.8: The numerical errors and convergence rates of @ at t = 1.0.
h 1/4 1/8 1/16 1/32 1/64
6™ — 6310 6.0120e-02 3.0039e-02 1.5017e-02 7.5079e-03 3.7539e-03
Order / 1.0010 1.0003 1.0001 1.0000
|IT1,0™ — 63 |0 2.8156e-03 7.1442e-04 1.7938e-04 4.4890e-05 1.1219e-05
Order / 1.9786 1.9937 1.9986 2.0004
[|0™ — II24 607 ||o 1.2300e-02 3.7065e-03 9.5376e-04 2.3985e-04 6.0052e-05
Order / 1.7305 1.9584 1.9915 1.9979
Table 4.9: The numerical errors and convergence rates of ¢ at t = 1.0.
h 1/4 1/8 1/16 1/32 1/64
[[6™ — dnllo 2.2182e-02 1.1134e-02 5.5725e-03 2.7869e-03 1.3936e-03
Order / 0.99438 0.99860 0.99965 0.99991
| Pno™ — &3 llo 1.3306e-04 3.8058e-05 9.8436e-06 2.4847e-06 6.2550e-07
Order / 1.8058 1.9509 1.9861 1.9900
|6™ — Pengllo  3.9058e-03  9.7595e-04  2.4396e-04  6.0988¢-05  1.5247e-05
Order / 2.0007 2.0002 2.0000 2.0000
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