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Abstract

We study decentralized smooth optimization problems over compact submanifolds.

Recasting it as a composite optimization problem, we propose a decentralized Douglas-

Rachford splitting algorithm (DDRS). When the proximal operator of the local loss func-

tion does not have a closed-form solution, an inexact version of DDRS (iDDRS), is also

presented. Both algorithms rely on careful integration of the nonconvex Douglas-Rachford

splitting algorithm with gradient tracking and manifold optimization. We show that our

DDRS and iDDRS achieve the convergence rate of O(1/k). The main challenge in the

proof is how to handle the nonconvexity of the manifold constraint. To address this issue,

we utilize the concept of proximal smoothness for compact submanifolds. This ensures

that the projection onto the submanifold exhibits convexity-like properties, which allows

us to control the consensus error across agents. Numerical experiments on the principal

component analysis are conducted to demonstrate the effectiveness of our decentralized

DRS compared with the state-of-the-art ones.

Mathematics subject classification: 65N06, 65B99.
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1. Introduction

Owing to concerns about privacy and robustness, decentralized optimization over mani-

folds has garnered significant attention in machine learning, optimization control, and signal

processing. Examples include principal component analysis [8,36,49], low-rank matrix comple-

tion [5,19,29], and low-dimension subspace learning [19,29]. The problem can be mathematically

formulated as follows:
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min
x1,··· ,xn

n∑

i=1

fi(xi)

s.t. x1 = · · · = xn, xi ∈ M, ∀ i = 1, . . . , n,

(1.1)

where fi : R
d×r → R is a continuously differentiable function held privately by the i-th agent,

and M is a compact submanifold of Rd×r, e.g. Stiefel manifold, Oblique manifold [1, 4, 21].

While numerous algorithms [3, 18, 26, 37, 41, 42, 45, 51] have been explored for decentralized

optimization with nonconvex objective functions, there are only a few papers dealing with

the nonconvex constraint. This is an important issue because there is a frequent interest in

optimizing nonconvex functions over nonconvex sets, especially compact submanifolds, see,

e.g. [8, 19, 29, 36, 49]. Such nonconvex constraint introduces additional challenges in the imple-

mentation and analysis of decentralized optimization algorithms. These scenarios often require

global solutions for a series of nonconvex constrained optimization problems (e.g. projections

to the nonconvex manifold), potentially obstructing the use of conventional tools (e.g. the

one-Lipschitz continuity of the projection mapping to the closed convex set) for algorithmic

complexity analysis.

The Douglas-Rachford splitting (DRS) is recognized as a famous and efficient splitting

algorithm in solving convex and nonconvex optimization problems. The DRS is closely related

to the more popular alternating direction method of multipliers (ADMM). The authors in [14]

first showed that ADMM is an application of the Douglas-Rachford splitting method (DRSM)

to the dual problem when the primal problem is convex. A recent study in [43] shows the primal

equivalence between DRS and ADMM in the nonconvex case and demonstrates the convergence

of both methods using the Douglas-Rachford envelope. This leads to the following question:

Can we design provably convergent decentralized DRS methods for solving (1.1)?

1.1. Our contributions

In this paper, we leverage a novel fusion of gradient tracking and DRS, presenting two

decentralized DRS algorithms to solve the decentralized manifold optimization problem (1.1).

• An easy-to-implement paradigm of decentralized DRS. By utilizing the decen-

tralized communication graph to construct an inexact projection to the consensus set, we

develop a decentralized DRS method (DDRS). To mitigate potential consensus distortions

caused by the nonconvexity of the manifold constraints, the communication graph needs

to be well-connected (which corresponds to a large enough number of communication

rounds, i.e. t, in Algorithm 3.1). Moreover, for cases where the proximal operator of the

loss function lacks a closed-form solution, we present an inexact decentralized DRS method

(iDDRS), where the inexactness of evaluating the proximal operator associated with the

loss function gradually decreases. Numerical results on eigenvalue problems demonstrate

the superior efficacy of our algorithm compared with state-of-the-art methods. DDRS and

iDDRS are the first splitting algorithms for solving decentralized manifold optimization

problems.

• Harnessing convex-like properties for best-known convergence complexity.

Compared to algorithms for convex constraints, the main challenge in the convergence

analysis of our algorithms arises from the nonconvexity of manifold constraints. To address

this, we employ a powerful property of the compact submanifold from variational analysis,
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called proximal smoothness. With a well-connected communication graph, we ensure that

all iterations stay within a small neighborhood of the manifold (see Lemma 4.2). Then,

by leveraging the convex-like properties of the projection operator within such neighbor-

hood and the Douglas-Rachford envelope, we establish the global convergence of DDRS

with a convergence rate of O(1/K) (see Theorem 4.1). For the iDDRS, we require that

the evaluation errors of the proximal operator of the loss function are summable, thus

achieving the same convergence rate as its exact counterpart.

1.2. Related works

Over the past decades, decentralized optimization has attracted increasing interest due to its

wide applications. For the Euclidean case (i.e. M = R
d×r), one seminal approach, the decen-

tralized gradient descent (DGD) method, is explored in [31, 44, 50]. Its limitation in achieving

convergence using fixed step sizes spurred further research. To address this issue, algorithms us-

ing local historic iterative information, such as EXTRA [38,39], gradient-tracking [30,34,48], and

the proximal gradient primal-dual algorithm [18] have been proposed. The connections among

these algorithms are studied in [7]. Another popular approach is the decentralized ADMM, see,

e.g. [15, 25, 27, 28, 40, 52], which empirically converges faster than the former methods. These

studies can only tackle the nonconvexity from fi and fail to converge if the constraint set is non-

convex. Given the equivalence between ADMM and DRS, one of our motivations is to design

fast decentralized DRS algorithms for solving (1.1) with nonconvex submanifold constraint.

For the case where M is the Stiefel manifold, the authors [8, 9] propose a decentralized

Riemannian gradient descent method and its gradient-tracking version [8]. When the local ob-

jective function is of negative log-probability type, a decentralized Riemannian natural gradient

method is proposed in [19]. To use a single step of consensus, augmented Lagrangian meth-

ods [46, 47] are proposed. For the general submanifold setting, through a theoretical study on

the regularity condition of the consensus on the manifold, the authors [22] establish the linear

consensus results of the projected gradient method and Riemannian gradient method. Based

on that, a decentralized projected gradient descent method and its gradient-tracking version

are presented in [12]. However, there is no splitting-type method available for addressing the

decentralized manifold optimization problem. Inspired by the superior performance of the DRS

method over the gradient-type methods in the centralized Euclidean setting [16, 17, 24, 43], we

aim to develop decentralized DRS methods for solving (1.1).

1.3. Notation

For any positive integer n, let [n] = 1, 2, . . . , n. Define J = 1n1
⊤
n /n, where 1n ∈ R

n is

a vector with all entries set to 1. For a real number a, we use ⌈a⌉ to denote the smallest integer

greater than a. For a matrix x ∈ R
n×d, we use ‖x‖ to denote its Frobenius norm. For a square

matrix and an integer t, W t denotes the t-th power of W . Let W = W ⊗ Id ∈ R
(nd)×(nd),

with ⊗ representing the Kronecker product. For the submanifold M ⊂ R
d×r, we always set

the Euclidean metric as the Riemannian metric. We denote the tangent space and the normal

space of M at a point x as TxM and NxM, respectively.

Given n agents (x1, . . . , xn), where xi ∈ R
d×r, i ∈ [n], we denote

x =
(
x⊤
1 , . . . , x

⊤
n

)⊤
, x̂ =

(
x̂⊤, . . . , x̂⊤

)⊤
, x̄ :=

(
x̄⊤, . . . , x̄⊤

)⊤
,
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where x̂, x̄ are defined in (2.9) and (2.10), respectively. We define ‖x‖F,∞ := maxi ‖xi‖. We

also denote f(x) =
∑n

i=1 fi(xi). Its Euclidean gradient is given by

∇f(x) =
(
∇f1(x1)

⊤, . . . ,∇fn(xn)
⊤
)⊤

,

where ∇fi(xi) denotes the Euclidean gradient of fi at xi. If xi ∈ M, i ∈ [n], we denote the

Riemannian gradient of f as

gradf(x) =
(
gradf1(x1)

⊤, . . . , gradfn(xn)
⊤
)⊤

,

where gradfi(xi) denotes the Riemannian gradient of fi at xi defined in (2.2). We denote the

n-fold Cartesian product of M as Mn = M× · · · ×M
︸ ︷︷ ︸

n

.

2. Preliminary

In the context of decentralized optimization, the communication accessibility across the

agents is modeled by an undirected connected network graph G = (V ; E) with |V| = n. Let

W be the adjacency matrix of the graph. We then make the following standard assumption

on W [8, 51].

Assumption 2.1. We assume that the mixing matrix W satisfies the following conditions:

(i) Wij ≥ 0 for any i, j ∈ [n] and Wij = 0 if and only if (i, j) 6∈ E .

(ii) W = W⊤ and W1n = 1n.

(iii) The null space of (I −W ) is span(1n) := {c1n : c ∈ R}.

It follows from [33] that the second largest singular value of W , denoted as σ2(W ), is strictly

less than 1. To simplify the notation, we use σ2 to represent σ2(W ).

2.1. Manifold optimization

Manifold optimization has attracted much attention in the past few decades, as evident in

works such as [1,4,21]. The goal of manifold optimization is to minimize a real-valued function

over a manifold, i.e.

min
x∈M

h(x), (2.1)

where M is a Riemannian manifold and h : M → R is a real-valued function. The Riemannian

gradient gradh(x) ∈ TxM is the unique tangent vector satisfying

〈gradh(x), ξ〉 = dh(x)[ξ], ∀ ξ ∈ TxM. (2.2)

If M is a submanifold embedded in R
d×r and the function h can be extended to R

d×r, then

the Riemannian gradient of h at x can be computed as

gradh(x) = PTxM

(
∇h(x)

)
,

where PTxM represents the orthogonal projection onto TxM. We say x∗ is a stationary point

of (2.1) if gradh(x∗) = 0.
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2.2. Proximal smoothness

The notion of proximal smoothness, as introduced by [10], refers to the characteristic of

a closed set whereby the nearest-point projection becomes a singleton when the point is close

enough to the set. Specifically, for any positive real number γ, we define the γ-tube aroundM as

UM(γ) := {x : dist(x,M) < γ}.

We say a closed set M is γ-proximally smooth if the projection operator PM(x) is a singleton

whenever x ∈ UM(γ). It is worth noting that any compact C2-submanifold of Rd×r is a prox-

imally smooth set [2, 10, 11]. For instance, the Stiefel manifold is a set that is 1-proximally

smooth. Throughout this paper, we assume that M is 2γ-proximally smooth. By following the

proof in [10, Theorem 4.8], a 2γ-proximally smooth set M satisfies the following property:

‖PM(x) − PM(y)‖ ≤ 2‖x− y‖, ∀x, y ∈ ŪM(γ), (2.3)

where

ŪM(γ) := {x : dist(x,M) ≤ γ}
is the closure of UM(γ). Moreover, for any point x ∈ M and a normal v ∈ NxM, it holds that

〈v, y − x〉 ≤ ‖v‖
4γ

‖y − x‖2, ∀ y ∈ M. (2.4)

This is often referred to as the normal inequality [10, 11].

2.3. The Douglas-Rachford splitting method

The DRS is recognized as a famous and efficient splitting algorithm in solving convex and

nonconvex optimization problems. Recently, its primal equivalence with the more popular

ADMM is established in [43]. Consider the following composite optimization problem:

min
x∈Rp

ϕ1(x) + ϕ2(x), (2.5)

where ϕ1, ϕ2 : R
p → R are proper, lower semicontinuous, extended real-valued functions.

Starting from some xk, sk, zk ∈ R
p, one iteration of the classical DRS applied to (2.5) with

stepsize α amounts to 





sk+1 = sk + zk − xk,

xk+1 = proxαϕ1
(sk+1),

zk+1 = proxαϕ2
(2xk+1 − sk+1),

(2.6)

where proxαϕ1
is a proximal operator of ϕ1 defined by

proxαϕ1
(x) = arg min

y∈Rp
ϕ1(y) +

1

2α
‖y − x‖2. (2.7)

The authors in [24] present the first general analysis of global convergence of the classical DRS

for fully nonconvex problems where one function is Lipschitz differentiable. The authors in [43]

consider the relaxed DRS and give a tight convergence result. Their convergence analysis is

based on the Douglas-Rachford envelope (DRE), first introduced in [32] for convex problems

and generalized to nonconvex cases. In particular, the DRE of (2.5) is defined as

ϕDR
α (x) := min

w∈Rp

{

ϕ2(w) + ϕ1(u) + 〈∇ϕ1(u), w − u〉+ 1

2α
‖w − u‖2

}

, (2.8)
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where u := proxαϕ1
(x). They show that the DRE serves as an exact and continuously differen-

tiable merit function for the original problem.

2.4. Stationary point

Let x1, . . . , xn ∈ M represent the local copies of x at each agent. We denote x̂ as their

Euclidean average point, given by

x̂ :=
1

n

n∑

i=1

xi. (2.9)

Let PM be the orthogonal projection to M. We define x̄ is an element in PM(x̂), i.e.

x̄ ∈ argminy∈M

n∑

i=1

‖y − xi‖2 = PM(x̂). (2.10)

Any element x̄ in PM(x̂) is the induced arithmetic mean of {xi}ni=1 on M [35]. The ǫ-stationary

point of problem (1.1) is defined as follows.

Definition 2.1. The set of points {x1, x2, · · · , xn} ⊂ M is called an ǫ-stationary point of (1.1)

if there exists an x̄ ∈ PM(x̂) such that

‖x− x̄‖2 ≤ ǫ, ‖gradf(x̄)‖2 ≤ ǫ,

where

x =
(
x⊤
1 , . . . , x

⊤
n

)⊤
, x̄ = (x̄⊤, . . . , x̄⊤)⊤.

In the following development, we always assure that x̂ ∈ ŪM(γ). Consequently, PM(x̂) is

a singleton and we have x̄ = PM(x̂).

3. Decentralized Douglas-Rachford Splitting Methods

In this section, we will present two decentralized DRS methods for solving (1.1). We first

give the notations as follows. Let xi,k denote the i-agent in the k-iteration. Denote

x̂k =
1

n

n∑

i=1

xi,k,

and x̄k be the projection of x̂ onto M. We also denote

xk =
(
x⊤
1,k, · · · , x⊤

n,k

)⊤
, x̂k =

(
x̂⊤
k , · · · , x̂⊤

k

)⊤
, x̄k =

(
x̄⊤
k , · · · , x̄⊤

k

)⊤
.

3.1. Decentralized DRS

By Assumption 2.1, the constraint x1 = · · · = xn can be reformulated as (Ind −W)x = 0,

where Ind is the nd× nd identity matrix. Let us define

C :=
{
x ∈ Mn : (Ind −W)x = 0

}
,

and denote δC by the indicator function of C. Then, problem (1.1) can be written as

min
x∈Rnd×r

f(x) + δC(x). (3.1)
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Note that the nearest-point projection of a point x to C has an explicit formulation, namely,

PC(x) = argmin
{y∈Mn:y1=···=yn}

‖y − x‖2 = PMn(x̂) =: x̄. (3.2)

Given s0, z0,x0 ∈ Mn, at the k-th iterate, a direct application of the DRS method for solving

(3.1) has the following update scheme:







sk+1 = sk + zk − xk,

xk+1 = proxαf (sk+1),

yk+1 = 2xk+1 − sk+1,

zk+1 = PC(yk+1).

(3.3)

Let

ŷk =
1

n

n∑

i=1

yi,k.

The agent-wise version of (3.3) can be written as: For any i ∈ [n],







si,k+1 = si,k + zi,k − xi,k,

xi,k+1 = proxαfi(si,k+1),

yi,k+1 = 2xi,k+1 − si,k+1,

zi,k+1 = PM(ŷk+1).

(3.4)

Note that in the update of zi,k+1, the i-th agent needs to collect {yi,k+1}ni=1. This can be easily

achieved in the centralized setting, but could be a critical issue for the decentralized setting

where only partial communication along the graph is allowed.

To address the above problem in the z-update, a natural way is to investigate the local

average instead of the global average. However, due to the existence of the nonconvexity

of M, a careful design to control the approximation error is needed. Before introducing our

approaches, let us rewrite the z-update in a form with a more explicit dependence on x. It is

easily shown that the update of xi,k+1 implies that

si,k+1 = xi,k+1 + α∇fi(xi,k+1).

This together with the update of yi,k+1 yields

yi,k+1 = xi,k+1 − α∇fi(xi,k+1), i ∈ [n]. (3.5)

Therefore, the last two rows in (3.4) can be simplified as follows:

zi,k+1 = PM

(

1

n

n∑

j=1

(
xj,k+1 − α∇fj(xj,k+1)

)

)

. (3.6)

Based on the above formulation, and utilizing the adjacency matrix W under Assumption 2.1,

we approximate
∑n

j=1 xj,k+1/n by
∑n

j=1 W
t
ijxj,k+1, where t is an integer, denoting the com-

munication rounds. To obtain a better performance, we adopt the gradient tracking tech-

niques [8, 30, 34] on the gradient

−α

n

n∑

j=1

∇fj(xj,k+1) =
1

n

n∑

j=1

(xj,k+1 − sj,k+1),
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i.e.

di,k+1 =

n∑

j=1

W t
ijdi,k + xi,k+1 − si,k+1 − (xi,k − si,k), (3.7)

where di,0 := x0,k − s0,k. Then, these approximations give a modified and operational update

zi,k+1 = PM

(
n∑

j=1

W t
ijxj,k+1 + di,k+1

)

. (3.8)

With (3.7) and (3.8), our decentralized DRS method performs the following update in the

k-th iteration, for i = 1, . . . , n,






si,k+1 = si,k + zi,k − xi,k,

xi,k+1 = proxαfi(si,k+1),

di,k+1 =

n∑

j=1

W t
ijdj,k + xi,k+1 − si,k+1 − (xi,k − si,k),

zi,k+1 = PM

(
n∑

j=1

W t
ijxj,k+1 + di,k+1

)

.

(3.9)

The detailed description is given in Algorithm 3.1.

Algorithm 3.1: Decentralized DRS Method for Solving (1.1).

Require: Initial point s0, z0 ∈ Mn, an integer t, the step size α.

1 Let xi,0 = si,0, di,0 = xi,0 − si,0 and yi,0 = 2xi,0 − si,0 on each node i ∈ [n].

2 for k = 0, . . . (for each node i ∈ [n], in parallel) do

3 Update si,k+1 = si,k + zi,k − xi,k.

4 Update xi,k+1 = proxαfi(si,k+1).

5 Update yi,k+1 = 2xi,k+1 − si,k+1.

6 Perform gradient tracking

di,k+1 =

n∑

j=1

W t
ijdj,k + xi,k+1 − si,k+1 − (xi,k − si,k).

7 Update zi,k+1 = PM

(
n∑

j=1

W t
ijxj,k+1 + di,k+1

)

.

8 end

As will be seen in the next section, we need the communication graph to be well-connected

(which corresponds to a sufficiently large integer t) to tackle the nonconvexity from the manifold

constraint. Basically speaking, a large t will guarantee that the iterates remain in the proximally

smooth neighborhood ofM, which allows us to utilize the convex-like properties, (2.3) and (2.4).

Moreover, {yi,k} is an auxiliary sequence, which is useful for the subsequent analysis.

3.2. Inexact decentralized DRS

Note that in (3.9), the computation of the exact proximal operator, denoted as proxαf , is

required. This computation is time-consuming in some cases. Therefore, we investigate the
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convergence of the algorithm when proxαf is computed approximately with a tolerance ǫk. In

particular, one can find xi,k+1 satisfying

xi,k+1 − si,k+1 + α∇fi(xi,k+1) = µi,k+1, i ∈ [n],

where

‖µi,k+1‖2 ≤ ǫk+1, i ∈ [n].

This implies that

xi,k+1 = proxαfi(si,k + µi,k).

The detailed iterative process is given in Algorithm 3.2. We emphasize that the introductions

of iDDRS aim for a complete analysis of the decentralized Douglas-Rachford splitting-type

methods when the evaluation of the proximal mapping is costly. For the principal component

analysis problem, its proximal operator can be exactly calculated with a lower cost, as shown in

Section 5. Therefore, we do not present the numerical result of iDDRS in this paper. However,

we will investigate more appropriate applications to test the iDDRS algorithm in the future.

Algorithm 3.2: Inexact Decentralized DRS Method for Solving (1.1).

Require: Initial point s0, z0 ∈ Mn, an integer t, the step size α, the sequence {ǫk}
ǫ0 < δ2.

1 Let xi,0 = si,0, di,0 = xi,0 − si,0 and yi,0 = 2xi,0 − si,0 on each node i ∈ [n].

2 for k = 0, . . . (for each node i ∈ [n], in parallel) do

3 Update si,k+1 = si,k + zi,k − xi,k.

4 Update xi,k+1 = proxαfi(si,k+1 + µi,k+1), ‖µi,k+1‖2 ≤ ǫk.

5 Update yi,k+1 = 2xi,k+1 − si,k+1.

6 Take gradient tracking

di,k+1 =

n∑

j=1

W t
ijdj,k + xi,k+1 − si,k+1 − (xi,k − si,k).

7 Update zi,k+1 = PM

(
n∑

j=1

W t
ijxj,k+1 + di,k+1

)

.

8 end

4. Convergence Analysis

This section will provide the main convergence result for our algorithms DDRS and iDDRS.

We first make the following assumptions.

Assumption 4.1. For any given i, the function fi is L-smooth, i.e. for any x, y ∈ R
d×r,

‖∇fi(x) −∇fi(y)‖ ≤ Lf‖x− y‖. (4.1)

Using (4.1), we can readily obtain a quadratic upper bound for fi: For x, y ∈ conv(M), it holds

that

fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+ Lf

2
‖y − x‖2, i ∈ [n]. (4.2)
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Moreover, it follows from [12, Lemma 4.2] that there exists L > Lf such that

‖gradfi(x)− gradfi(y)‖ ≤ L‖x− y‖, i ∈ [n]. (4.3)

Before analyzing our algorithms, we give the following two useful lemmas, which are indepen-

dent of the algorithm and will be used in subsequent analyses. For an L-smooth h, its proximal

operator proxαh is strongly monotone and cocoercive for small enough α [43, Proposition 2.3].

Proposition 4.1. Let h be an L-smooth function and 0<α<1/L. Then, proxαh is (1/(1+αL))-

strongly monotone and (1− αL)-cocoercive, in the sense that

〈x− x′, s− s′〉 ≥ 1

1 + αL
‖s− s′‖2,

〈x− x′, s− s′〉 ≥ (1− αL)‖x− x′‖2
(4.4)

for all s, s′, where x = proxαh(s) and x′ = proxαh(s
′). In particular,

1

1 + αL
‖s− s′‖ ≤ ‖x− x′‖ ≤ 1

1− αL
‖s− s′‖. (4.5)

We give the following bound on the distance between proxαf (x) and x for an L-smooth h

and α < 1/(2L).

Lemma 4.1. Let f be an L-smooth function and 0<α<1/(2L). Then, for any x=proxαf (s+µ)

with ‖µ‖ ≤ ǫ, it holds that

‖s− x‖ ≤ α(3‖∇f(0)‖+ 2L‖s‖+ 2ǫ) + ǫ. (4.6)

When ǫ = 0, it reduced to

‖s− x‖ ≤ α(3‖∇f(0)‖+ 2L‖s‖). (4.7)

Proof. We only prove (4.6). It follows from the definition of proxαf that

x− s+ α∇f(x) = µ.

Then, by using the L-smoothness of f and the triangle inequality, we have

‖x‖ = ‖s− α∇f(x) + µ‖ ≤ ‖s‖+ ǫ+ α(‖∇f(0)‖+ L‖x‖).

This gives

‖x‖ ≤ ‖s‖+ ǫ+ α‖∇f(0)‖
1− αL

.

Therefore,

‖s− x‖ = α‖∇f(x)‖ + ǫ ≤ α(‖∇f(0)‖+ L‖x‖) + ǫ

≤ α

(

‖∇f(0)‖+ L‖s‖+ ǫ+ ‖∇f(0)‖
1− αL

)

+ ǫ

≤ α (3‖∇f(0)‖+ 2L‖s‖+ 2ǫ) + ǫ.

The proof is complete. �
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4.1. Convergence of DDRS

This subsection will provide the main convergence result of our DDRS (Algorithm 3.1). We

first show that the update of zi,k+1 is well-defined by ensuring that its projection ontoM results

in a singleton. Subsequently, we introduce a descent lemma for our DDRS, drawing from the

DRE function as defined in (2.8). Lastly, we establish the convergence rate of O(1/k) to reach

a stationary point.

Due to the proximal smoothness of the manifold constraint, the update of the variable zi,k+1

is well-defined only when the term
∑n

j=1 W
t
ijxj,k+1+di,k+1 lies within the neighborhood ŪM(γ),

i.e. for all k ≥ 0,
n∑

j=1

W t
ijxj,k+1 + di,k+1 ∈ ŪM(γ). (4.8)

Therefore, before demonstrating the main convergence result of Algorithm 3.1, we will prove

that (4.8) holds under some mild conditions. Let us define several constants that will be used

in the next analysis, namely,

δ1 :=
γ

4
, δ2 :=

δ1
12

, δ3 := 2δ2 + ζ, (4.9)

where γ occurs in (2.3). Let N1,N2 be two neighborhoods defined by

N1 :=
{
x ∈ R

nd×r : ‖x̂− x̄‖ ≤ δ1
}
,

N2 :=
{
x ∈ R

nd×r : ‖x̂− x̄‖ ≤ 10δ2
}
,

(4.10)

The next lemma demonstrates that under certain conditions on α, t, if x0 ∈ N1 and s0 ∈ N2,

then for all k, it holds that xk ∈ N1 and
∑n

j=1 W
t
ijxi,k + di,k remains within the neighborhood

ŪM(γ). This latter result allows us to invoke the Lipschitz continuity (2.3) of PM over ŪM(γ)

in the subsequent analysis. We note that for a sufficiently large t, the used communication graph

is well-connected, i.e. the second-largest singular value of W t is small enough. We provide the

proof in Section 4.1.1.

Lemma 4.2. Suppose that Assumptions 2.1 and 4.1 hold. Let {sk,xk,yk, zk} be generated by

Algorithm 3.1 with

0 < α ≤ min

{
1

2L
,

δ2
3‖∇f(0)‖+ 2L (ζ + δ2)

}

,

t ≥
⌈

max

{

logσ2

(
1

4
√
n

)

, logσ2

(
δ3

δ2
√
n

)}⌉

.

If

‖d0‖F,∞ ≤ 4δ2, ‖s0‖F,∞ ≤ ζ + δ2, x0 ∈ N1, z0 ∈ N2,

then it holds that for any integer k > 0,

xk ∈ N1, zk ∈ N2, (4.11)

where δ1, δ2, δ3 are defined in (4.9) and N1,N2 are defined in (4.10). Moreover, we have that

for any integer k > 0,
n∑

j=1

W t
ijxj,k + di,k ∈ ŪM(γ), i ∈ [n]. (4.12)
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As shown in [32], the DRE defined in (2.8) can serve as the potential function to analyze

the convergence of the DRS method. In particular, given any s, we define x = proxαf (s),

y = x− α∇f(x) and ȳ = PC(y). The DRE of (3.1) is defined as follows:

ϕDR
α (s) : = f(x) + min

w∈C

{

〈∇f(x),w − x〉 + 1

2α
‖w − x‖2

}

= f(x) + 〈∇f(x), ȳ − x〉+ 1

2α
‖ȳ − x‖2. (4.13)

We then have the following descent lemma on ϕα.

Lemma 4.3. Suppose that Assumption 4.1 holds. Let {sk,xk,yk, zk} be generated by Algo-

rithm 3.1. Then, it holds that

ϕDR
α (s0)− ϕDR

α (sk+1) ≥
k∑

ℓ=0

1− αL− 2α2L2

2α
‖xℓ+1 − xℓ‖2

− 1 + αL

2α

k∑

ℓ=0

(

α‖xℓ+1 − xℓ‖2 +
1

α
‖zℓ − ȳℓ‖2

)

. (4.14)

Proof. It follows from the definition of ϕα in (4.13) and ȳk ∈ C that

ϕDR
α (sk) ≤ f(xk+1) + 〈∇f(xk+1), ȳk − xk+1〉+

1

2α
‖ȳk − xk+1‖2

= f(xk+1) + 〈∇f(xk+1),xk − xk+1〉+ 〈∇f(xk+1), ȳk − xk〉+
1

2α
‖ȳk − xk+1‖2

≤ f(xk) +
L

2
‖xk+1 − xk‖2 + 〈∇f(xk+1), ȳk − xk〉+

1

2α
‖ȳk − xk+1‖2, (4.15)

where the second inequality is due to the Lf -smoothness of fi’s and L > Lf . Then we have

ϕDR
α (sk) ≤ f(xk) +

L

2
‖xk+1 − xk‖2 + 〈∇f(xk), ȳk − xk〉+

1

2α
‖ȳk − xk+1‖2

+ 〈∇f(xk+1)−∇f(xk), ȳk − xk〉

= ϕDR
α (sk−1) + 〈∇f(xk+1)−∇f(xk), ȳk − xk〉+

1 + αL

2α
‖xk+1 − xk‖2

+
1

α
〈xk+1 − xk,xk − ȳk〉. (4.16)

By (3.9), we have

xk − ȳk = xk − zk + zk − ȳk = sk − sk+1 + zk − ȳk

= xk − xk+1 + α
(
∇f(xk)−∇f(xk+1)

)
+ zk − ȳk. (4.17)

Plugging (4.17) into (4.16) gives

ϕDR
α (sk−1)− ϕDR

α (sk)

≥ −α‖∇f(xk+1)−∇f(xk)‖2 +
1

2α
‖xk+1 − xk‖2

− L

2
‖xk+1 − xk‖2 + 〈∇f(xk+1)−∇f(xk), zk − ȳk〉 −

1

α
〈xk+1 − xk, zk − ȳk〉

≥ 1− αL − 2α2L2

2α
‖xk+1 − xk‖2 −

(

L+
1

α

)

‖xk+1 − xk‖‖zk − ȳk‖. (4.18)
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Summing (4.18) in k gives

ϕDR
α (s0)− ϕDR

α (sk+1) ≥
k∑

ℓ=0

1− αL− 2α2L2

2α
‖xℓ+1 − xℓ‖2

− 1 + αL

2α

k∑

ℓ=0

(

α‖xℓ+1 − xℓ‖2 +
1

α
‖zℓ − ȳℓ‖2

)

,

where the inequality is from the Lipschitz continuity of ∇fi and the Cauchy-Schwarz inequality.

The proof is complete. �

Putting the above results together, we establish the following convergence rate of O(1/k) to

reach a stationary point, which matches the best-known result of the decentralized gradient-type

methods [8, 12, 46]. We provide the proof in Section 4.1.2.

Theorem 4.1. Suppose that Assumptions 2.1 and 4.1 hold. Let {sk,xk,yk, zk} be generated

by Algorithm 3.1 with

0 < α ≤ min

{
1

2(1 + 2L+ C1L2)
,

δ2
3‖∇f(0)‖+ 2L(ζ + δ2)

}

,

t ≥
⌈

max

{

logσ2

(
1

4
√
n

)

, logσ2

(
δ3

δ2
√
n

)

, logσ2

1

12
√
n

}⌉

.

Let f∗ be the optimal value of (3.1). If ‖d0‖ ≤ 4δ2, ‖s0‖F,∞ ≤ ζ + δ2,x0 ∈ N1 and z0 ∈ N2 for

any k ∈ N, it holds that

min
0≤ℓ≤k

‖xℓ − x̄ℓ‖ ≤ 8α
(
C1α2L2 + 4

)

k + 1

(

ϕDR
α (x0, ȳ0)− f∗ +

C2
α2

)

+
2C2
k + 1

, (4.19)

min
0≤ℓ≤k

‖gradf(x̄ℓ)‖ ≤ 72
(
C1α2L2 + 4

)

(k + 1)α

(

ϕDR
α (x0, ȳ0)− f∗ +

C2
α2

)

+
18C2

(k + 1)α2
, (4.20)

where

C1 :=
32

(
1− 4σt

2

)2

(

4σt
2 +

4
(
1− σt

2

)2

)

,

C2 :=
4

1− 16σ2t
2

‖z0 − ȳ0‖2 +
128

(
1− 4σt

2

)2(
1− σ2t

2

)‖d0 − (x̂0 − ŝ0)‖2.
(4.21)

Remark 4.1. Compared to the convergence analysis of projected gradient-type methods [12],

DDRS relies on the one-step decrease of the Douglas-Rachford envelope instead of the original

objective function. As there are three iterative sequences, {xk}, {sk}, and {zk}, we need a more

careful investigation on the consensus analysis, especially in maintaining the neighborhood of

the proximal smoothness.

4.1.1. Proof of Lemma 4.2

Before proving Lemma 4.2, we need the following two lemmas, i.e. Lemmas 4.4 and 4.5.

Building upon Lemma 4.1, we can establish that in Algorithm 3.1, when ‖s0‖F,∞ is bounded

by a specific constant, it follows that both ‖sk‖F,∞ and ‖xk − x̄k‖F,∞ are also bounded, for all

k > 0. Furthermore, one can shows that ‖∇f(xi,k)‖ and ‖di,k‖ are bounded.
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Lemma 4.4. Suppose that Assumptions 2.1 and 4.1 hold. Let {sk,xk,yk, zk} be generated by

Algorithm 3.1. Let δ2 be defined in (4.9). If

0 < α ≤ min

{
1

2L
,

δ2
3‖∇f(0)‖+ 2L (ζ + δ2)

}

, t ≥
⌈

logσ2

(
1

4
√
n

)⌉

,

‖d0‖F,∞ ≤ 4δ2 and ‖s0‖F,∞ ≤ ζ + δ2, then it holds that for any k,

‖sk‖F,∞ ≤ ζ + δ2, ‖xk − sk‖F,∞ ≤ δ2, (4.22)

‖∇f(xi,k)‖ ≤ δ2/α, i ∈ [n], (4.23)

‖di,k‖ ≤ 4δ2, i ∈ [n]. (4.24)

Proof. Firstly, we prove (4.22) by induction. Note that ‖s0‖F,∞ ≤ ζ+δ2 and by Lemma 4.1,

‖xi,0 − si,0‖ ≤ α

(

‖∇f(0)‖+ L‖si,0‖+ ‖∇f(0)‖
1− αL

)

≤ α
(
3‖∇f(0)‖+ 2L(ζ + δ2)

)
≤ δ2, (4.25)

which implies that ‖x0 − s0‖F,∞ ≤ δ2. Suppose for some k ≥ 0 that ‖sk‖F,∞ ≤ ζ + δ2 and

‖xk − sk‖F,∞ ≤ δ2. Then we have

‖sk+1‖F,∞ ≤ ‖zk‖F,∞ + ‖xk − sk‖F,∞ ≤ ζ + δ2.

Similar with (4.25), we further have that ‖xi,k+1 − si,k+1‖ ≤ δ2, for any i ∈ [n], which implies

‖xk − sk‖F,∞ ≤ δ2. Secondly, (4.23) follows from the fact that xi,k = si,k −α∇f(xi,k). Finally,

we prove (4.24) by induction. Suppose that (4.24) holds for some k ≥ 0. It follows from (3.7)

and di,0 = xi,0 − si,0 that

d̂k = x̂k − ŝk = αĝk, (4.26)

where

ĝk :=
1

n

n∑

i=1

∇f(xi,k).

Then we have that

‖di,k+1 − αĝk‖ =

∥
∥
∥
∥
∥

n∑

j=1

W t
ijdj,k − αĝk + α∇fi(xi,k+1)− α∇fi(xi,k)

∥
∥
∥
∥
∥

(4.26)

≤
∥
∥
∥
∥
∥

n∑

j=1

(

W t
ij −

1

n

)

dj,k

∥
∥
∥
∥
∥
+ α‖∇fi(xi,k+1)−∇fi(xi,k)‖

≤ σt
2

√
nmax

i
‖di,k‖+ 2δ2

≤ 1

4
max

i
‖di,k‖+ 2δ2 ≤ 3δ2, (4.27)

where the second inequality follows from (4.23) and the bound on the total variation distance

between any row of W t and 1/n [6, 13], i.e.

max
i

n∑

j=1

∣
∣
∣
∣
W t

i,j −
1

n

∣
∣
∣
∣
≤ √

nσt
2. (4.28)
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Hence,

‖di,k+1‖ ≤ ‖di,k+1 − αĝk‖+ ‖αĝk‖

≤ 3δ2 + αmax
i

‖∇f(xi,k)‖
(4.23)

≤ 3δ2 + δ2 ≤ 4δ2. (4.29)

The proof is complete. �

The following lemma shows that when xk ∈ N1, the term
∑n

j=1 W
t
ijxj,k + di,k will lie in the

neighborhood ŪM(γ).

Lemma 4.5. Suppose that Assumptions 2.1 and 4.1 hold. Let {sk,xk,yk, zk} be generated by

Algorithm 3.1. Under the same condition on α,d0 and s0 as in Lemma 4.4, if

t ≥
⌈

max

{

logσ2

(
1

4
√
n

)

, logσ2

(
δ3

δ2
√
n

)}⌉

,

and xk ∈ N1, then it holds that

n∑

j=1

W t
ijxj,k + di,k ∈ ŪM(γ), i ∈ [n], (4.30)

where δ1, δ2, δ3 are defined in (4.9) and N1 is defined in (4.10).

Proof. It follows from the updated rule of xi,k+1 and si,k+1 in Algorithm 3.1 that

xi,k+1 = xi,k+1 − si,k+1 + si,k+1

= xi,k+1 − si,k+1 + si,k − xi,k + zi,k

= zi,k + α∇f(xi,k)− α∇f(xi,k+1). (4.31)

Then we have that

‖xi,k+1‖ ≤ ‖xi,k+1 − zi,k‖+ ‖zi,k‖
≤ α‖∇fi(xi,k+1)−∇fi(xi,k)‖ + ‖zi,k‖
≤ 2δ2 + ζ = δ3, (4.32)

where the last inequality follows from (4.23) and Assumption 4.1. It follows that for any i ∈ [n],
∥
∥
∥
∥
∥

n∑

j=1

W t
ijxj,k + di,k − x̄k

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

j=1

W t
ijxj,k + di,k − x̂k

∥
∥
∥
∥
∥
+ ‖x̂k − x̄k‖

≤
∥
∥
∥
∥
∥

n∑

j=1

(W t
ij −

1

n
)xj,k

∥
∥
∥
∥
∥
+ ‖di,k‖+ ‖x̂k − x̄k‖

≤
n∑

j=1

∣
∣
∣
∣
W t

ij −
1

n

∣
∣
∣
∣
max

j
‖xj,k‖+ 4δ2 + δ1

≤ √
nσt

2δ3 + 4δ2 + δ1

≤ 5δ2 + δ1 ≤ 17

12
δ1 ≤ γ,

where the fourth inequality follows from (4.28). Combining the fact that x̄k ∈ M, we obtain

(4.30). The proof is complete. �
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Proof of Lemma 4.2. We prove it by induction on both ‖ẑk − z̄k‖ and ‖x̂k − x̄k‖. Suppose
for some k ≥ 0 such that (4.11) holds. Then we have

‖x̂k+1 − x̄k+1‖ ≤ ‖x̂k+1 − z̄k‖ ≤ ‖x̂k+1 − ẑk‖+ ‖ẑk − z̄k‖

≤ 1

n

n∑

i=1

‖xi,k+1 − zi,k‖+ 10δ2

(4.31)

≤ max
i

α‖∇fi(xi,k+1)−∇fi(xi,k)‖ + 10δ2

(4.23)

≤ 2δ2 + 10δ2 ≤ δ1, (4.33)

where the first inequality use x̄k = PM(x̂k) and z̄k ∈ M. In addition,

‖ẑk+1 − z̄k+1‖ ≤ ‖ẑk+1 − x̄‖ ≤ 1

n

n∑

i=1

‖zi,k+1 − x̄‖

≤ 2

n

n∑

i=1

∥
∥
∥
∥
∥

n∑

j=1

W t
ijxj,k + di,k − x̂

∥
∥
∥
∥
∥

≤ 2
(√

nσt
2δ3 + 4δ2

)
≤ 10δ2. (4.34)

Finally, (4.12) follows from Lemma 4.5. We completed the proof. �

4.1.2. Proof of Theorem 4.1

Before proving Lemma 4.2, we need the following two lemmas, i.e. Lemmas 4.10 and 4.11. The

following lemma shows the discrepancy between zk and ȳk.

Lemma 4.6. Suppose that Assumptions 2.1 and 4.1 hold. Under the conditions as same as in

Lemma 4.2, it holds that

‖dk+1 − (x̂k+1 − ŝk+1)‖ ≤ σt
2‖dk − (x̂k − ŝk)‖ + αL‖xk+1 − xk‖, (4.35)

‖zk+1 − ȳk+1‖ ≤ 4σt
2(‖zk − ȳk‖+ αL‖xk+1 − xk‖) + 2‖dk+1 − (x̂k+1 − ŝk+1)‖. (4.36)

Proof. Denote qi,k := xi,k − si,k = α∇f(xi,k). Since d̂k+1 = x̂k+1 − ŝk+1, we have

‖dk+1 − (x̂k+1 − ŝk+1)‖ ≤ ‖dk+1 − (x̂k − ŝk)‖
≤ ‖Wtdk − (x̂k − ŝk)‖+ ‖qk+1 − qk‖
≤ σt

2‖dk − (x̂k − ŝk)‖+ αL‖xk+1 − xk‖.

Note that

‖ŷk+1 − ȳk+1‖ ≤ ‖ŷk+1 − z̄k‖ ≤ ‖ŷk+1 − ẑk‖+ ‖ẑk − z̄k‖

≤ 1

n

n∑

i=1

‖xi,k+1 − si,k+1 + xi,k+1 − zi,k‖+ ‖ẑk − z̄k‖

≤ δ2 + 2δ2 + 10δ2 = 13δ2, (4.37)

which means ‖ŷk+1 − ȳk+1‖ ≤ γ. Note that

‖ẑk − ȳk‖2 = n

∥
∥
∥
∥
∥

1

n

n∑

i=1

(zi,k − ȳk)

∥
∥
∥
∥
∥

2

≤ n · 1

n2
· n‖zk − ȳk‖2 ≤ ‖zk − ȳk‖2. (4.38)
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Then, we have

‖zk+1 − ȳk+1‖ ≤ 2‖Wtxk+1 + dk+1 − ŷk+1‖
≤ 2σt

2‖xk+1 − x̂k+1‖+ 2‖dk+1 − (x̂k+1 − ŝk+1)‖
≤ 2σt

2(‖zk − ẑk‖+ ‖qk+1 − qk‖+ ‖q̂k+1 − q̂k‖)
+ 2‖dk+1 − (x̂k+1 − ŝk+1)‖

≤ 4σt
2(‖zk − ȳk‖+ αL‖xk+1 − xk‖)

+ 2‖dk+1 − (x̂k+1 − ŝk+1)‖,
where the first inequality is from 2-Lipschitz of PM over ŪM(γ), the third inequality is due to

xk+1 = zk+qk+1−qk from (4.31), and the last inequality follows from (4.38) and the Lipschitz

continuity of fi. We complete the proof. �

With the recursion inequalities (4.35) and (4.36), we can bound
∑k

ℓ=0 ‖zℓ − ȳℓ‖2 by
∑k

ℓ=0

‖xℓ+1 −xℓ‖2.
Lemma 4.7. Suppose that Assumption 2.1, 4.1 and the conditions in Lemma 4.2 hold. Then

it holds that
k∑

ℓ=0

‖zℓ − ȳℓ‖2 ≤ C1α2L2
k∑

ℓ=0

‖xℓ+1 − xℓ‖2 + C2, (4.39)

where C1, C2 are defined by Theorem 4.1.

Proof. Note that σt
2 < 4σt

2 ≤ 1/
√
n ≤ 1. Applying [48, Lemma 2] to (4.35) and (4.36) gives

k∑

ℓ=0

‖dk − (x̂k − ŝk)‖2 ≤ 4α2L2

(
1− σt

2

)2

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 +
4

1− σ2t
2

‖d0 − (x̂0 − ŝ0)‖2. (4.40)

Similarly, we have that

k∑

ℓ=0

‖zℓ − ȳℓ‖2 ≤ 32
(
1− 4σt

2

)2

k∑

ℓ=0

(
4σ2t

2 α2L2‖xℓ+1 − xℓ‖2 + ‖dℓ − (x̂ℓ − ŝℓ)‖2
)

+
4

1− 16σ2t
2

‖z0 − ȳ0‖2

≤ 32
(
1− 4σt

2

)2

k∑

ℓ=0

(

4σ2t
2 α2L2 +

4α2L2

(
1− σt

2

)2

)

‖xℓ+1 − xℓ‖2

+
128

(
1− 4σt

2

)2(
1− σ2t

2

)‖d0 − (x̂0 − ŝ0)‖2

+
4

1− 16σ2t
2

‖z0 − ȳ0‖2. (4.41)

The proof is complete. �

Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. It follows from (4.14) and (4.39) that

ϕDR
α (s0)− ϕDR

α (sk+1) ≥
(1 + αL)

(
1− α− 2αL− C1αL2

)

2α

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 −
C2(1 + αL)

2α2

≥ 1

4α

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 −
C2(1 + αL)

2α2
, (4.42)
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where the first inequality comes from Lemma 4.7, and the second inequality is due to the

assumption on α. By Assumption 4.1, we have from [43, Theorem 3.4] that

ϕDR
α (xk, ȳk) ≥ inf

x
{f(x) + δC(x)} = f∗ > −∞.

Then, it follows from (4.42) that

1

k + 1

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 ≤ 4α

k + 1

(

ϕDR
α (x0, ȳ0)− f∗ +

C2
α2

)

. (4.43)

It follows from the definition of ȳk that

ȳk −
(
x̂k − α∇f(x̂k)

)
∈ Nȳk

Mn.

This further implies that

‖gradf(ȳk)‖ = dist
(
∇f(ȳk), Nȳk

Mn
)

≤
∥
∥
∥
∥
∇f(ȳk)−

ȳk − x̂k

α
+∇f(x̂k)

∥
∥
∥
∥

≤ 2

α
‖ȳk − x̂k‖ ≤ 2

α
‖ȳk − xk‖. (4.44)

By combining with the fact that ‖ȳk − x̂k‖ ≤ ‖ȳk − xk‖, we have that

‖gradf(x̄k)‖ ≤ ‖gradf(ȳk)‖+ ‖gradf(ȳk)− gradf(x̄k)‖

≤ 2

α
‖ȳk − xk‖+ L‖ȳk − x̄k‖

≤ 2

α
‖ȳk − xk‖+ 2L‖ȳk − x̂k‖

≤ 2 + 2αL

α
‖ȳk − xk‖ ≤ 3

α
‖ȳk − xk‖, (4.45)

where the third inequality utilizes that

‖ȳk − x̄k‖ ≤ ‖ȳk − x̂k‖+ ‖x̂k − x̄k‖
≤ ‖ȳk − x̂k‖+ ‖ȳk − x̂k‖ ≤ 2‖ȳk − x̂k‖.

By the triangle inequality and Proposition 4.1, we have

‖x̄k − xk‖ ≤ ‖ȳk − xk‖
≤ ‖ȳk − zk‖+ ‖zk − xk‖
= ‖ȳk − zk‖+ ‖sk+1 − sk‖
≤ ‖ȳk − zk‖+ 2‖xk+1 − xk‖, (4.46)

where the first inequality uses the fact that x̄k belongs to the projection of xk onto Mn, the

last inequality follows from (4.5) and α < 1/(2L). Then, it holds that

1

k + 1

k∑

ℓ=0

‖x̄ℓ − xℓ‖2 ≤ 1

k + 1

k∑

ℓ=0

(‖ȳℓ − zℓ‖+ 2‖xℓ+1 − xℓ‖)2

≤ 2

k + 1
·
[

(
C1α2L2 + 4

)
k∑

ℓ=0

‖xℓ+1 − xℓ‖2 + C2
]

. (4.47)
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Combining (4.45) and (4.47) gives

1

k + 1

k∑

ℓ=0

‖gradf(x̄ℓ)‖2 ≤ 9

α2

1

k + 1

k∑

ℓ=0

‖ȳℓ − xℓ‖2

(4.39)

≤ 18C1α2L2 + 72

(k + 1)α2

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 +
18C2

(k + 1)α2
. (4.48)

Putting (4.43), (4.47), and (4.48) together gives (4.19) and (4.20). �

4.2. Convergence of iDDRS

This subsection will provide the main convergence result of our iDDRS (Algorithm 3.2).

Here, we shall consider the following assumption on the inexactness of evaluating the proximal

mapping of fi.

Assumption 4.2. {ǫk}k∈N is summable, i.e.
∑

k ǫk ≤ D < ∞ for some constant D.

For the ease of analysis, we assume ǫ0 < δ2, where δ2 is defined by (4.9). Similar to

Lemma 4.2, we have the following result. We provide the proof in Section 4.2.1.

Lemma 4.8. Suppose that Assumptions 2.1, 4.1, 4.2 hold. Let {sk,xk,yk, zk} be generated by

Algorithm 3.2 with

0 < α ≤ min

{
1

2L
,

δ2 − ǫ0
3‖∇f(0)‖+ 2L (ζ + δ2) + 2ǫ0

}

,

t ≥
⌈

max

{

logσ2

(
1

4
√
n

)

, logσ2

(
δ3

δ2
√
n

)}⌉

.

If x0 ∈ N1 and z0 ∈ N2, then it holds that for any integer k > 0,

xk ∈ N1, zk ∈ N2, (4.49)

where δ1, δ2, δ3 are defined in (4.9) and N1,N2 are defined in (4.10). Moreover, we have that

for any integer k > 0,
n∑

j=1

W t
ijxj,k + di,k ∈ ŪM(γ), i ∈ [n]. (4.50)

Denote µk = (µ⊤
1,k, · · · , µ⊤

n,k)
⊤. The following lemma is similar to Lemma 4.3, we omit the

proof.

Lemma 4.9. Suppose that Assumption 4.1 holds. Let {sk,xk,yk, zk} be generated by Algo-

rithm 3.2. Then,

ϕDR
α (s0)− ϕDR

α (sk+1) ≥
k∑

ℓ=0

1− αL− 2α2L2

2α
‖xℓ+1 − xℓ‖2

− 1 + αL

2α

k∑

ℓ=0

(

α‖xℓ+1 − xℓ‖2 +
2

α

(
‖zl − ȳl‖2 + 2

√
nǫℓ
)
)

. (4.51)
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The following theorem shows that Algorithm 3.2 achieves the convergence rate of O(1/K).

We provide the proof in Section 4.2.2.

Theorem 4.2. Suppose that Assumption 2.1, 4.1, 4.2 hold. Let {sk,xk,yk, zk} be generated

by Algorithm 3.2 with

α ≤ min

{

1

2
(
1 + 2L+ 2C3L2

) ,
δ2 − ǫ0

3‖∇f(0)‖+ 2L (ζ + δ2) + 2ǫ0

}

,

t ≥
⌈

max

{

2 logσ2

(
1

n

)

, logσ2

(
δ3

δ2
√
n

)

, logσ2

1

12
√
n

}⌉

.

Let f∗ be the optimal value of (3.1). If ‖d0‖ ≤ 4δ2, ‖s0‖F,∞ ≤ ζ + δ2, x0 ∈ N1 and z0 ∈ N2,

it holds that for any k ∈ N,

min
0≤ℓ≤k

‖xℓ − x̄ℓ‖ ≤ 8α
(
C1α2L2 + 4

)

k + 1

(

ϕDR
α (x0, ȳ0)− f∗ +

C3
α2

)

+
2C5
k + 1

, (4.52)

min
0≤ℓ≤k

‖gradf(x̄ℓ)‖ ≤ 72
(
C3α2L2 + 4

)

(k + 1)α

(

ϕDR
α (x0, ȳ0)− f∗ +

C5
α2

)

+
18C5

(k + 1)α2
, (4.53)

where

C3 :=
128

(
1− 4σt

2

)2

(

σ2t
2 α2L2 +

α2L2

(
1− σt

2

)2

)

D,

C4 :=
512n+ 128n

(
1− σt

2

)2

(
1− 4σt

2

)2(
1− σt

2

)2

k∑

ℓ=0

ǫℓ

+
128

(
1− 4σt

2

)2(
1− σ2t

2

)‖d0 − (x̂0 − ŝ0)‖2 +
4

1− 16σ2t
2

‖z0 − ȳ0‖2,

C5 := C4 + 2
√
nD.

(4.54)

4.2.1. Proof of Lemma 4.8

Before proving Lemma 4.8, we first give the following two lemmas.

Lemma 4.10. Suppose that Assumptions 2.1, 4.1, 4.2 hold. Let {sk,xk,yk, zk} be generated

by Algorithm 3.2. Given any δ2 > 0, if

ǫ0 < δ2, 0 < α ≤ min

{
1

2L
,

δ2 − ǫ0
3‖∇f(0)‖+ 2L (ζ + δ2) + 2ǫ0

}

,

t ≥
⌈

logσ2

(
1

4
√
n

)⌉

, ‖d0‖F,∞ ≤ 4δ2, ‖s0‖F,∞ ≤ ζ + δ2,

then it holds that for any k,

‖sk‖F,∞ ≤ ζ + δ2, ‖xk − sk‖F,∞ ≤ δ2, (4.55)

‖α∇f(xi,k) + µi,k‖ ≤ δ2, i ∈ [n], (4.56)

‖di,k‖ ≤ 4δ2, i ∈ [n]. (4.57)

Proof. We prove it by induction on both ‖sk‖F,∞ and ‖xk − sk‖F,∞. Note that ‖s0‖F,∞ ≤
ζ + δ2 and by Lemma 4.1,

‖xi,0 − si,0‖ ≤ α
(
3‖∇f(0)‖+ 2L(ζ + δ2) + 2ǫ0

)
+ ǫ0 ≤ δ2, (4.58)
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which implies that ‖x0 − s0‖F,∞ ≤ δ2. Suppose for some k ≥ 0 that ‖sk‖F,∞ ≤ ζ + δ2 and

‖xk − sk‖F,∞ ≤ δ2. Then we have

‖sk+1‖F,∞ ≤ ‖zk‖F,∞ + ‖xk − sk‖F,∞ ≤ ζ + δ2.

Similar with (4.58), we further have that

‖xi,k+1 − si,k+1‖ ≤ α
(
3‖∇f(0)‖+ 2L(ζ + δ2) + 2ǫk+1

)
+ ǫk+1 ≤ δ2,

where we use ǫk+1 ≤ ǫ0. This implies that ‖xk+1 − sk+1‖ ≤ δ2. Moreover, (4.56) follows from

the fact that

xi,k = si,k − α∇f(xi,k) + µi,k.

Finally, we prove (4.57) by induction. Suppose for some k ≥ 0 such that (4.57) holds. It follows

from di,0 = xi,0 − si,0 that

d̂k = x̂k − ŝk = αĝk + µ̂k, (4.59)

where

ĝk :=
1

n

n∑

i=1

∇f(xi,k).

Then we have that

‖di,k+1 − (x̂k − ŝk)‖

=

∥
∥
∥
∥
∥

n∑

j=1

W t
ijdj,k − (x̂k − ŝk)

∥
∥
∥
∥
∥
+ ‖α∇fi(xi,k+1) + µi,k+1‖+ ‖α∇fi(xi,k) + µi,k‖

(4.59)

≤
∥
∥
∥
∥
∥

n∑

j=1

(

W t
ij −

1

n

)

dj,k

∥
∥
∥
∥
∥
+ ‖α∇fi(xi,k+1) + µi,k+1‖+ ‖α∇fi(xi,k) + µi,k‖

(4.28)(4.56)

≤ σt
2

√
nmax

i
‖di,k‖+ 2δ2

≤ 1

4
max

i
‖di,k‖+ 2δ2 ≤ 3δ2. (4.60)

Hence,

‖di,k+1‖ ≤ ‖di,k+1 − (x̂k − ŝk)‖+ ‖x̂k − ŝk‖

≤ 3δ2 +max
i

‖α∇f(xi,k) + µi,k‖
(4.56)

≤ 4δ2. (4.61)

The proof is completed. �

The following lemma is similar to Lemma 4.5, we omit the proof.

Lemma 4.11. Suppose that Assumptions 2.1, 4.1, 4.2 hold. Let {sk,xk,yk, zk} be generated

by Algorithm 3.2. Under the same condition on α,d0 and s0 as in Lemma 4.10, if

t ≥
⌈

max

{

logσ2

(
1

4
√
n

)

, logσ2

(
δ3

δ2
√
n

)}⌉

and xk ∈ N1, then it holds that

n∑

j=1

W t
ijxj,k + di,k ∈ ŪM(γ), i ∈ [n], (4.62)

where δ1, δ2, δ3 are defined in (4.9) and N1 is defined in (4.10).
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Now we give the proof of Lemma 4.8.

Proof of Lemma 4.8. We prove it by induction on both ‖ẑk − z̄k‖ and ‖x̂k − x̄k‖. Suppose
for some k ≥ 0 such that (4.11) holds. It follows from the updated rule of xk and sk in

Algorithm 3.1 that

xi,k+1 = zi,k + α∇f(xi,k)− α∇f(xi,k+1) + µi,k − µi,k+1. (4.63)

Then we have that

‖x̂k+1 − x̄k+1‖ ≤ ‖x̂k+1 − z̄k‖
≤ ‖x̂k+1 − ẑk‖+ ‖ẑk − z̄k‖

≤ 1

n

n∑

i=1

‖xi,k+1 − zi,k‖+ 12δ2

(4.56)

≤ 2δ2 + 10δ2 ≤ δ1, (4.64)

where the first inequality use x̄k = PM(x̂k) and z̄k ∈ M. In addition,

‖ẑk+1 − z̄k+1‖ ≤ ‖ẑk+1 − x̄k+1‖

≤ 1

n

n∑

i=1

‖zi,k+1 − x̄k+1‖

≤ 2

n

n∑

i=1

∥
∥
∥
∥
∥

n∑

j=1

W t
ijxj,k + di,k − x̂k+1

∥
∥
∥
∥
∥

≤ 2
(√

nσt
2δ3 + 4δ2

)
≤ 10δ2. (4.65)

Finally, (4.50) follows from Lemma 4.11. We completed the proof. �

4.2.2. Proof of Theorem 4.2

Before proving Theorem 4.2, we need the following two lemmas, which are similar to Lemmas 4.6

and 4.7. Here, for the sake of brevity, we will omit the proof of these lemmas.

Lemma 4.12. Suppose that the conditions in Lemma 4.8 hold. Then, it holds that

‖dk+1 − (x̂k+1 − ŝk+1)‖ ≤ σt
2‖dk − (x̂k − ŝk)‖+ αL‖xk+1 − xk‖+ 2

√
nǫk, (4.66)

‖zk+1 − ȳk+1‖ ≤ 4σt
2

(
‖zk − ȳk‖+ αL‖xk+1 − xk‖+ 2

√
nǫk
)

+ 2‖dk+1 − (x̂k+1 − ŝk+1)‖. (4.67)

Lemma 4.13. Suppose that Assumptions 2.1, 4.1, 4.2 and the conditions in Lemma 4.8 hold.

Then it holds that
k∑

ℓ=0

‖zℓ − ȳℓ‖2 ≤ C3α2L2
k∑

ℓ=0

‖xℓ+1 − xℓ‖2 + C4, (4.68)

where C3, C4 and C5 are defined in Theorem 4.2.
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Proof of Theorem 4.2. It follows from (4.51) and (4.68) that

ϕDR
α (s0)− ϕDR

α (sk+1) ≥
(1 + αL)

(
1− α− 2αL− 2C3αL2

)

2α

k∑

ℓ=0

‖xℓ+1 − xℓ‖2

− (1 + αL)

2α2

(

C4 + 2
√
n

k∑

l=0

ǫl

)

≥ 1

4α

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 −
(1 + αL)

2α2
C5, (4.69)

where the first inequality comes from Lemma 4.13, and the second inequality is due to the

assumption on α. By Assumption 4.1, we have from [43, Theorem 3.4] that

ϕDR
α (xk, ȳk) ≥ inf

x
{f(x) + δC(x)} = f∗ > −∞.

Then, it follows from (4.42) that

1

k + 1

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 ≤ 4α

k + 1

(

ϕDR
α (x0, ȳ0)− f∗ +

C5
α2

)

. (4.70)

Similar with (4.44), we have that

‖gradf(x̄k)‖ ≤ 3

α
‖ȳk − xk‖. (4.71)

By the triangle inequality and Proposition 4.1, we have

‖sk+1 − sk‖ ≤ ‖sk+1 + µk+1 − sk − µk‖+ ‖µk+1 − µk‖
≤ 2‖xk+1 − xk‖+ 2

√
nǫk. (4.72)

Then we have that

‖x̄k − xk‖ ≤ ‖ȳk − xk‖
≤ ‖ȳk − zk‖+ ‖zk − xk‖
= ‖ȳk − zk‖+ ‖sk+1 − sk‖
≤ ‖ȳk − zk‖+ 2‖xk+1 − xk‖,
≤ ‖ȳk − zk‖+ 2‖xk+1 − xk‖+ 2

√
nǫk. (4.73)

Then, it holds that

1

k + 1

k∑

ℓ=0

‖x̄ℓ − xℓ‖2 ≤ 1

k + 1

k∑

ℓ=0

(
‖ȳℓ − zℓ‖+ 2‖xℓ+1 − xℓ‖+ 2

√
nǫl
)2

≤ 3

k + 1
·
[

(
C3α2L2 + 4

)
k∑

ℓ=0

‖xℓ+1 − xℓ‖2 + C5
]

. (4.74)

Combining (4.71) and (4.74) gives

1

k + 1

k∑

ℓ=0

‖gradf(ȳℓ)‖2 ≤ 9

α2

1

k + 1

k∑

ℓ=0

‖ȳℓ − xℓ‖2

≤ 27C1α2L2 + 108

(k + 1)α2

k∑

ℓ=0

‖xℓ+1 − xℓ‖2 +
27C5

(k + 1)α2
. (4.75)

Putting (4.70), (4.74), and (4.75) together gives (4.52) and (4.53). �
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5. Numerical Experiments

In this section, we present numerical comparisons of our proposed methods with the ex-

isting decentralized manifold optimization algorithms, DRGTA [8] and DPGTA [12], on the

decentralized principal component analysis (DPCA).

The DPCA problem can be mathematically formulated as

min
x∈Mn

−1

2

n∑

i=1

tr
(
x⊤
i A

⊤
i Aixi

)
,

s.t. x1 = · · · = xn,

(5.1)

where

Mn := St(d, r) × · · · × St(d, r)
︸ ︷︷ ︸

n

,

Ai ∈ R
mi×d is the local data matrix in i-th agent with mi samples. Note that for any solution

x∗ of (5.1), x∗Q with an orthogonal matrix Q ∈ R
r×r is also a solution. We use the function

ds(x, x
∗) := min

Q∈Rr×r , Q⊤Q=QQ⊤=Ir

‖xQ− x∗‖

to compute the distance between two points x and x∗. As x is constrained on the Stiefel

manifold, it always holds that tr(x⊤x) = r. Then, we can define

fi = −1

2
tr
(
x⊤
(
A⊤

i Ai − ‖Ai‖22I
)
x
)

for (5.1). Consequently, the proximal operator proxαfi can be exactly calculated via solving

linear equations, i.e.

proxαfi(x) =
(
I + α

(
‖Ai‖22I −A⊤

i Ai

))−1
x.

Moreover, we can save (I + α(‖Ai‖22I − A⊤
i Ai))

−1 to significantly reduce the computational

costs. Given these, we only present the numerical results of DDRS.

5.1. Synthetic dataset

We set m1 = · · · = mn = 1000, d = 10, and r = 5. Then, a matrix B ∈ R
1000n×d is

generated from the singular value decomposition

B = UΣV ⊤,

where U ∈ R
1000n×d and V ∈ R

d×d are orthogonal matrices, and Σ ∈ R
d×d is a diagonal

matrix. To control the distributions of the singular values, we set Σ̃ = diag(ξj) with ξ ∈ (0, 1).

Furthermore, A is set as

A = U Σ̃V ⊤ ∈ R
1000n×d.

Ai is obtained by randomly splitting the rows of A into n subsets with equal cardinalities. It is

easy to check the first r columns of V form the solution of (5.1). In the experiments, we set ξ

and n to 0.8 and 8, respectively.

Each algorithm employs a fixed step size α = β̂n/
∑n

i=1 mi, and the grid search is carried

out to determine the optimal β̂. Both DRPGT and DRGTA utilize the polar decomposition for

their retraction operations. The connectivity between agents is simulated using various graph
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matrices like the Erdos-Renyi (ER) network with probability settings p = 0.3, 0.6 and the Ring

network. In addition, we opted for the Metropolis constant edge weight matrix [38] as our

choice of the mixing matrix W .

The results are presented in Figs. 5.1 and 5.2. It can be seen from Fig. 5.1 that DDRS with

the multiple-step consensus (i.e. t = 10) allows using a larger step size and converges faster

Fig. 5.1. Numerical results of DDRS for solving DPCA on the synthetic dataset with different network

graphs and different t.

Fig. 5.2. Numerical results of different algorithms for solving DPCA on the synthetic dataset.
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than those with the single-step consensus (i.e. t = 1). Besides, a denser graph (e.g. ER p = 0.6)

will give better solutions. For Fig. 5.2, we see that DDRS converges much faster than DPRGT

and DRGTA, and DPRGT and DRGTA have very close trajectories on the consensus error,

the objective function, the gradient norm, and the distance to the global optimum.

5.2. Mnist dataset

To evaluate the efficiency of our proposed method, we also conduct numerical tests on the

Mnist dataset [23]. The testing set, consisting of 60000 handwritten images of size 32 × 32, is

used to generate Ai’s. We first normalize the data matrix by dividing 255 and randomly split

the data into n = 8 agents with equal cardinality. Then, each agent holds a local matrix Ai of

dimension 60000/n× 784. We compute the first 5 principal components, i.e. d = 784, r = 5.

For all algorithms, we use the fixed step sizes α = β̂/60000 with a best-chosen β̂. Echoing

the findings from the synthetic dataset, Fig. 5.3 reveals that DDRS consistently outperforms

both DPRGT and DRGTA, with the latter two showcasing very similar behaviors.

Fig. 5.3. Numerical results of different algorithms for solving DPCA on the Mnist dataset.

6. Conclusion

Through a novel fusion of gradient tracking and DRS, we propose two efficient decentralized

Douglas-Rachford splitting algorithms, DDRS and iDDRS, for solving decentralized smooth

optimization problems on compact submanifolds. To address the nonconvexity challenge of the

manifold constraint, we employ the fundamental concept of proximal smoothness of the com-

pact submanifold and establish the best-known convergence rate O(1/K) for both algorithms.

Numerical experiments validate the superior performance of DDRS. Our work can also be read-

ily extended to solve more general decentralized nonsmooth optimization problems, e.g. the

strong prox-regular function [20].
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