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Abstract. This paper develops a class of robust weak Galerkin methods for sta-
tionary incompressible convective Brinkman-Forchheimer equations. The methods
adopt piecewise polynomials of degrees m (m > 1) and m — 1 respectively for the
approximations of velocity and pressure variables inside the elements and piecewise
polynomials of degrees k (k = m — 1,m), and m respectively for their numerical
traces on the interfaces of elements, and are shown to yield globally divergence-free
velocity approximation. Existence and uniqueness results for the discrete schemes,
as well as optimal a priori error estimates, are established. A convergent linearized
iterative algorithm is also presented. Numerical experiments are provided to verify
the performance of the proposed methods.
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1. Introduction

Let Q@ C R"™ (n = 2,3) be a Lipschitz polygonal/polyhedral domain. We consider
the following stationary incompressible convective Brinkman-Forchheimer model:

—VvAu+ V- (u®u)+aul"2u+Vp=Ff in Q,

V-u=0 in Q, (1.1)
u=20 on 0f).
Here w = (uy,--- ,u,)' is the velocity vector, p the pressure, f a given forcing function,

v the Brinkman coefficient, o > 0 the Forchheimer coefficient, and 2 < r < oo when
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n=2and 2 < r < 6 when n = 3. The operator ® is defined by u ® v = (u;v;)nxn for
v=(v1, - ,vn)".

The Brinkman-Forchheimer model, which can be viewed as the Navier-Stokes equa-
tions with a nonlinear damping term, is used to modelling fast flows in highly porous
media [20,43]. In recent years there have developed many numerical algorithms
for Brinkman-Forchheimer equations, such as conforming mixed finite element meth-
ods [5, 6,24, 31, 51], nonconforming mixed finite element methods [33], stabilized
mixed methods [27,35], multi-level mixed methods [25,41,58,59], parallel finite ele-
ment algorithms [48,49]. We refer to [4,7,13,18,23,26,32,39,52,57,61,62] for the
study of the properties of weak/strong solutions to the Brinkman-Forchheimer equa-
tions.

It is well-known that the divergence constraint V -« = 0 corresponds to the conser-
vation of mass for incompressible fluid flows, and that numerical methods with poor
conservation usually suffer from instabilities [1,19, 28,29, 38]. Besides, the numerical
schemes with exactly divergence-free velocity approximation may automatically lead to
pressure-robustness in the sense that the velocity approximation error is independent
of the pressure approximation [19,30,36]. We refer to [8,9,11,15,16,21,37,50,55,60]
for some divergence-free finite element methods for the incompressible fluid flows.

In this paper we consider a robust globally divergence-free weak Galerkin (WG) fi-
nite element discretization of the Brinkman-Forchheimer model (1.1). The WG frame-
work was first proposed in [44, 45] for second-order elliptic problems. It allows the
use of totally discontinuous functions on meshes with arbitrary shape of polygons/po-
lyhedra due to the introduction of weakly defined gradient/divergence operators over
functions with discontinuity, and has the local elimination property, i.e. the unknowns
defined in the interior of elements can be locally eliminated by using the numerical
traces defined on the interfaces of elements. We refer to [8,9,12,15-17, 22, 34, 36,
37,40,46,47,50,53, 54,56, 60] for developments and applications of WG methods
for fluid flow problems and some other problems. Particularly, a class of robust glob-
ally divergence-free weak Galerkin methods were developed in [8] for Stokes equa-
tions, and later were extended to solve incompressible quasi-Newtonian Stokes equa-
tions [60], natural convection equations [15,16] and incompressible Magnetohydro-
dynamics flow equations [56].

The goal of this contribution is to extend the WG methods of [8] to the discretiza-
tion of the Brinkman-Forchheimer model. The main features of our WG discretization
for the model (1.1) are as follows:

* The discretization scheme is arbitrary order, which adopts piecewise polynomials
of degrees m (m > 1) and m — 1 to approximate the velocity and pressure inside
the elements, respectively, and piecewise polynomials of degrees k (k = m—1,m)
and m to approximate the traces of velocity and pressure on the interfaces of
elements, respectively.

* The scheme yields globally divergence-free velocity approximation, which auto-
matically leads to pressure-robustness.
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* The scheme is parameter-friendly, i.e. the stabilization parameter in the scheme
does not require to be sufficiently large.

* The unknowns of the velocity and pressure in the interior of elements can be
locally eliminated so as to obtain a reduced discrete system of smaller size.

* The well-posedness and optimal error estimates of the scheme are established.

The rest of this paper is organized as follows. Section 2 gives notations, weak for-
mulations, the WG scheme and some preliminary results. Section 3 establishes the
well-posedness of the discrete scheme. Section 4 is devoted to the a priori error anal-
ysis. Section 5 derives L? error estimate for the velocity. Section 6 shows the local
elimination property and proposes an iteration algorithm for the nonlinear WG scheme.
Section 7 provides several numerical experiments. Finally, Section 8 gives some con-
cluding remarks.

2. Weak Galerkin finite element scheme

2.1. Notation and weak problem

For any bounded domain A c R! (I = n,n — 1), nonnegative integer s and real
number 1 < ¢ < oo, let W54(A) and W;?(A) be the usual Sobolev spaces defined on

A with norm || - ||5 44 and semi-norm | - |s,A. In particular, H*(A) := W*2(A) and
Hg(A) = W5™*(A), with || - [lsa = || - sz and |- |sa = |- [s2,0. We use ()
to denote the inner product of H*(A), with (-,-)ao = (-,-)oa. When A = Q, we set
- lls == Il s, - |s == | - |s.o @nd (-,+) := (:,-)q. Especially, when A C R"~! we

use (-,-)5 to replace (-,-)p. For a nonnegative integer m, let P,,(A) be the set of all
polynomials defined on A with degree no more than m. We also need the following
Sobolev spaces:

L§(Q2) = {qg € L*(©) : (¢,1) = 0},
H(div;A) :={v e [L2(A)]": V- v € LQ(A)} .

Let 7, be a shape regular partition of 2 into closed simplexes, and let &, be the set
of all edges (faces) of all the elements in Q2. For any K € T, e € &,, we denote by hg
the diameter of K and by h. the diameter of e, and set h = maxgcT;, hix. Let ng and
n. denote the outward unit normal vectors along the boundary 0K and e, respectively.
We may abbreviate nx as n when there is no ambiguity. We use V;, and V- to denote
respectively the operators of piecewise-defined gradient and divergence with respect to
the decomposition 7,. For convenience, throughout the paper we use x < y (z 2 ¥)
to denote x < Cy (x > Cy), where C' is a positive constant independent of the mesh
size h.

We introduce the spaces

V= [Hy)]", Q=L}Q), Vo={veV:V .v=0}
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and define the following bilinear and trilinear forms: For u,v,x € V and ¢ € Q,

a(u,v) :=v(Vu,Vv), b(v,q):=—(q,V-v),

|r72

(ks u,v) = alk[ 2w, v),

1 1
dlusw,v) i= (V- (@@ w),v) - (V- (0@ w),u).
We note that the trilinear form d(-; -, ) is the same as that in [15,16].

Then the weak form of (1.1) is given as follows: Seek (u,p) € V' x @ such that

a(w,v) +b(v,p) + c(u;u,v) + d(u;u,v) = (f,v), VwveV,

b(u,q) =0, Vg € Q. @D

Remark 2.1. As shown in [31, Theorem 1], the weak problem (2.1) admits at least one
solution (u,p) € V x Q when  is a bounded Lipschitz domain and f € [H~}(Q)]",
and there holds

[Vaullo < —HfV”*. (2.2)
In addition, if the smallness condition
N”f”* <1 (2.3)
1%

holds, then the solution of (2.1) is unique. Here

T (Fv) o (k5 u, )

sup : sup .
02vevy IVollo” 0+uwreVy [|VE[ol[Vulo[Vollo

2.2. WG scheme

In order to give the WG scheme to the system (1.1) we introduce, for integer v > 0,
the discrete gradient operator V,, , and the discrete weak divergence operator V,, -
as follows.

Definition 2.1. For all K € T, and v € V(K) := {v = {v;, v} : v; € L*(K),vp €
H'Y2(9K)}, the discrete weak gradient V., -, kv € [Py (K)]" of v on K is defined by

(Vi k0,6)k = —(vi, V- S)k + (v, 6 - ni)or, Vs € [Py(K)]™ (2.4)
Then the global discrete weak gradient operator V., -, is defined as
Vuwrlk =Vuryr, YK ETh.

Moreover, for a vector v = (vi,va, -+ ,v,) with vj|x € V(K) for j = 1,...,n, the
discrete weak gradient V,, v is defined as

N T
pr/'v = (vw,'yvla vw,fyv% T avw,'yvn)



Robust Globally Divergence-Free Weak Galerkin Methods for Brinkman-Forchheimer Equations 5
Definition 2.2. Forall K € T;, and w € W(K) := {w = {w;, wy} : w; € [L*(K)]", wy, -
ny € H-Y/2(0K)}, the discrete weak divergence V., . i -w € P, (K) of w on K is defined
by

(Vi w,¢)g = —(wi, Vo) + (wy - m,S)ar, Vs € Py(K). (2.5)
Then the global discrete weak divergence operator V,, ~- is defined as

Vuny |k =Ve~yr, YK ETh.

Moreover, for a tensor w = (w1, ,wy,)" with wilx € W(K) for j = 1,...,n, the
discrete weak divergence V., , - w is defined as

Vs W:i=(Vyy-wi, -, Vi wn)T.

)

For any K € Tj,e € &, and nonnegative integer j, let II7 : L*(K) — Pj(K) and
117 : L?(e) — Pj(e) be the usual L*-projection operators. We shall adopt IT? to denote
IT% for the vector form.

For any integer m > 1, and integer k = m — 1, m, we introduce the following finite
dimensional spaces:

Vi := {on = {Vni, v} 2 Vil € [Pn(K)]", vmple € [Pr(e)]", VK € Ty, Ve € &},
Vi = {vy = {vpi, v} € Vi : Omplon = 0},

Qn = {an = {ani» e} * qnilic € Pm1(K), quole € Prn(e), VK € Ty, Ve € &},
Q= {an = {ani, v} € Qn,qni € L§(Q)}.

For any uy, = {wni, unp}, v = {Vhi, v}, kn = {Knikmp} € V), and pp, = {phi, pro}
€ Q?l, we shall define bilinear and trilinear terms as follows:

ap(up, vp) = V(Vm—1Un, Vi,m—19p) + Sp(un, vp),

(
n(tn, vp) == v (T wp; — wpy), T v — Vhb) o7 >
(

)

S

h(Vn, qn) == (Vw,mqh, Vhi),
ch ﬁhauhavh) = a|kni| "> whi, Vhi),
1

> =(Vawm - {thi @ Khi» Unp ® Kpp}, Uni)
1

) (Vewm - {0hi ® Kni, Vs @ Ky}, i),

(
dp(Kp; up,vp) =

where (-, )7, = ZKeTh(-, ok, and the stabilization parameter n|gx = h;(l, VK € Ty.
In what follows we assume that f € L%(Q). Based on the above definitions, the WG
scheme for (1.1) reads: Seek uy, = {up;, upp} € V0, pr = {pni, prp} € QY such that

ap(up, vp) + bp (v, pr) + cn(wp; wn, vy)
+ dp(un;un,vp) = (Foon), VYo, € VP, (2.6a)
bn(wn, qn) = 0, Van € QY. (2.6b)
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The following theorem shows that the scheme (2.6) yields globally divergence-free
velocity approximation.

Theorem 2.1. Let uj, = {up;, upp} € V)2 be the velocity solution of the WG scheme (2.6).
Then there hold
Up; € H(div; Q), V-up; =0. 2.7)

Proof. Define a function ¢y,;, € L?(&,) as follows: For any e € &,

Ohole = —((uni o)) e = ((Whi - e)|ko)le, if e=KiNKy, Ki,Ky €Ty,
"0, Ve c a0

Let 1
@Yo ‘= —/ Vh-uh-da:.
9] Jo Z

Taking qn; = Vi, - wni — 0, qny = @np — o in (2.6b), we obtain

0= _(uhia vw,mQh)
= (Vi @his qni) = Y, (Wni - 1, qro)or

KETh
= (Vi hi, Vi wni = 90) = D (Wni - 1 0mp — 90) oK
KeTh
= (Vh - whi, Vi uni) = Y (Wni -1, om)ok
KETh
= IVnwnill§ + D2 Cuni el + (ni - 1)1 3
€€ e LI
which indicates the desired conclusion (2.7). O
2.3. Preliminary results
We first introduce two semi-norms ||| - |||y and ||| - |||o on the spaces V}, and Qp,
respectively, as follows:
1 B 2
ol = IV wan- 10l + || (L vni = woma) |+ v € Vi,
0,07,
llanlld = llanills + > Al Vurmanll x» Yan € Qn,
KETh

where

I toom = (X H|baK> |

KeTy
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and we recall that n|sx = hj'. It is easy to see that ||| - |||y and ||| - ||| are norms on V,
and Q%, respectively (cf. [8, Lemma 3.3]).

The following lemma follows from the trace theorem, the inverse inequality and
scaling arguments (cf. [16, Lemma 3.2], [42, Theorem 3.4.1]).

Lemma 2.1. Forall K € Tj,,w € H'(K), and 1 < q < oo, there holds

_1 1—1
HWHO,q,aK S thHWHQqJ( + hy q’W‘17q7K'

In particular, for all w € Py, (K),

_1
HWHO,q,aK N th HWHO,q,K'

For the projections IT7 and HJB with j > 0, the following approximation and stability
results are standard.

Lemma 2.2 (cf. [42, Lemmas 3.5.4-3.5.5]). For VK € Tp,Ve € Ep,and 1 <1 < j+1,
there hold

oo = Twllo,x + hic|w = Wwl,k S hiclwl, oo Vo € HY(K),
_1

lw = Wwloox + [lo = TPw]ly o S hi® whi, Yw € HY(K),

[ewlly g < llwllo.x Yo e L2 (K),

HHJ’BUJHO,e < lwllo.e; Yov € LZ(e).

In view of the definitions of the discrete weak gradient operator, the Green’s for-
mula, the projection operator, the Cauchy-Schwarz inequality, the inverse inequality
and the trace inequality, the following lemma holds (cf. [8, Lemma 3.2]).

Lemma 2.3. For any K € T, and wy, = {wpi,wrp} € [Pn(K)]" x [Pp(OK)]" with
0 <m —1<k <m, there hold

_1
IV@nillo, i S IVwm1@nllox + b TR wni = whbl|g o

o (2.8)
IV wm—1whllo, e S IV@nilloxe + hye [[TE whi — whb[g -
By the definition of the norm ||| - |||y;, we further have the following conclusion
(cf. [16, (3.3)], [56, Lemma 3.3]).
Lemma 2.4. For any v;, € V)%, there hold
IVhonillo < lllonlllv (2.9)

and
[vnillor < Crlllvnlllv (2.10)
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for r satisfying
2<r<oo, if n=2,
2<r<6, if n=3,

where C5 > 0 is a positive constant only depending on r.
For any integer j > 0, we introduce the local Raviart-Thomas (RT) element space
RT;(K) = [P{(K)]" + 2 P;(K), VK €T,
and the RT projection operator P/ : [H'(K)]" — RT;(K) (cf. [3]) defined by
<P]»RTw . ne,a>e = (w:ne,0)., Vo€ Pjle), ec&, eCOK for j>0, (2.11)
(PJ-RTw,a)K = (w,0)k, Vo € [Pi_1(K)|" for j>1. (2.12)
The following lemmas show some properties of P]RT.

Lemma 2.5 (cf. [3, Lemma 3.1]). For any wy; € RTj(K), the relation V - wp;|[x = 0
implies wp; € [P;(K)]".

Lemma 2.6 (cf. [3, Theorem 3.1, Lemma 3.5]). For any K € Ty, the following properties
hold:
(V- PfTw.qp) . = (V-wa)k, Ywe[H(K)", q € Pi(K), (2.13)
Jw = Pl < Miclwl Vw e [HY(K)", V1<I<j+1. (2.14)

Lemma 2.7 (cf. [16, Lemma 4.2]). Forany K € Tj, w € [H/(K)|"and 1 <1 < j + 1,
the following estimates hold:

jw = PP 0|, o S Bl
-1
jw - PjRT“"o,aK S hye P lwlk,

—n
jw - PJRTw‘O,?,,K S b Clwlik,

[-1_n

jw - PJ'RTw‘O,?,,BK Shyg? *lwlik.

We have the following commutativity properties for the RT projection, the L? pro-
jections and the discrete weak operators.
Lemma 2.8 (cf. [8, Lemma 3.7]). For m > 1, there hold
me_l{PﬁTw,Hka} =1’ ,(Vw), Ywe [HQ)]", k=m,m—1,
V{14 1q} = I, (V), Vg € H'().

Finally, we give several inequalities to be used later (cf. [2, Lemma 4.1], [10, The-
orem 5.3.3], [25, Lemma 1]).
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Lemma 2.9. For any A\, u € R", there hold

A2 = (a2 < (r = 2)(IA2 + ul"72) X = gl
[IAT72X = )™ 2p) < CRA+ )™ 2IA = ul,
(A72N =0 2) - N =) 2 (A=l

for r > 2, and
(I =l ™2 = (= 2) ] - (A = )|
(T B 1)(T — 2) r— r—
< (AT A =l
for r > 4, where | - | denotes the Euclid norm and C, is a positive constant, depending only
on r, to be used in the latter analysis.
3. Well-posedness of discrete scheme

Lemmas 3.1 and 3.2 give some stability conditions for the discrete scheme (2.6).

Lemma 3.1. For any kj, = {Kni, knp}, un = {Uni s}, vn = {vpi, v} € V), there
hold

an(un, vy) S vllluplllv - [llvnllv, (3.1
ap (v, vn) = Vvl (3.2)
cn(vp; vp,vp) = athiHar, (3.3)
cn(ren; wn, vp) < aCElenl[5 2 llwnllly - lllvalllv, (3.4
dp(Kn;vp, vp) = 0, (3.5)
dp(Kn;un,vn) S lllenlllv - [llunlllv - llonlllv, (3.6)

where C5 is the same as in (2.10).
Proof. According to the definition of ay(-,-), the Cauchy-Schwarz inequality and
Lemma 2.4, we easily get (3.1)-(3.2). The results (3.3) and (3.5) follow from the

definitions of ¢ (+;-,) and dy(+;-, ), respectively. From the definition of ¢ (-;,-), the
Holder’s inequality and Lemma 2.4 we obtain

cn(knsun, vn) < allknillo, [ wnillorlvnillor < Crallsally 2 lnllv - lloalllv,

i.e. (3.4) holds. The inequality (3.6) has been proved in [16, Lemma 3.10]. O
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We also have the following discrete inf-sup inequality.
Lemma 3.2 ([8, Theorem 3.1]). There holds

by (vn, ph)
sup

OlOh D) > oy Von € Q)
weve Ny

Denote
Vo = {kn, € Vi) : by(kn, qn) = 0,Va, € Q) }

From the proof of Theorem 2.1 we easily see that
Von = {Kh € Vho tKp € H(div; Q),V - kp; = 0} )

To prove the existence of solutions to the scheme (2.6), we introduce the following
auxiliary system: Find u;, € V{, such that

Bp(un; up,vn) = (f,vni), Yon € Von, (3.7)
where the trilinear form By, (-;-,-) : Vop, x Vo, x Vo, — R is defined by
Bh(kn; un, vn) == an(wn, vr) + cp(Kn; Un, V1) + dp(Knp; wp, vp)

for any kp,, up, v, € V.
We have the following equivalence result.

Lemma 3.3. The discrete problems (2.6) and (3.7) are equivalent in the sense that both
(1) and (i7) hold:

@D If (up,pn) € Vh0 X Q% solves (2.6), then uy, € Vpy, solves (3.7).

(i) If up € Vi, solves (3.7), then (up, pr) solves (2.6), where py, € Q?L is determined by

b (vh, o) = (f, Vri) — an(un, vy) — cp(up; up, vp)

- dh(uh;uh,vh), Yuy, € Vho. (3.8)
Define
dp(Kp;up, v Vhi
Nh ': sup h( hy %h, h) ’ Hf”*,h — sup (f7 hz)‘
0 oneVor, IIERIIV - [l[wnlllv - [llvnlllv 0v,e Vi, lUnlllv

From (3.6) and Lemma 2.4 we easily know that

Ne 1 ([flln S [1Fllo-

Based on Lemma 3.3, we can obtain the following existence and boundedness re-
sults for the WG method.
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Theorem 3.1. The WG scheme (2.6) admits at least a solution pair (up,pp) € V,? x QY
and there hold

1
lanlll < =1 £l (3.9)
lonlle S 1F e+ 112, + A5 (3.10)

Proof. We first show the problem (3.7) admits at least one solution u; € V.
According to [14, Theorem 1.2], it suffices to show that the following two results hold:

(D Bp(vp;vp,vp) > v||oplll}, Yon € Vor;
(ID) Vjy, is separable, and the relation lim;_, u,(f) = wuy, (weakly in V{,) implies

llim B, (ug); ug),'uh> = Bp(up;up,vp), Yo, € Vop.
— 00

In fact, (I) follows from Lemma 3.1 directly We only need to show (II). Since

Vor is a finite dimensional space, we know that Vj, is separable and that the weak

. [ . .
convergence lim;_, u,g) = uy, on Vjy, is equivalent to the strong convergence

lim H(u}f’-uhmvzo. (3.11)

=00

On the other hand, by Lemmas 2.4, 2.9, 3.1 and the definition of N},, we have

‘Bh (u,(f);uﬁf’,vh) - Bh(“h?’uh,vh)‘

= ‘ah (ug) - uh,vh) + <ch(u§f);u§f),vh) - ch(uh;uh,vh)>

0

+dp, (ug) — uh;uhl ()

- uh,vh) +dj (uh;uﬁ’ - uh,vh) +dp <uh - Uh;'uha'vh)‘
s, 1, )

2
e N e ] o+ 2 ) [ sl - ol

< vl = wal| - Honllv +C5Cra

which, together with (3.11), yields

lim By, (ug);ug),vh) = Bh(uh;uh,vh), Yo € Vop,
=00
i.e. (II) holds. Hence, (3.7) has at least one solution u;, € Vyy,.
For a given u;, € Vg, C V)2, by Lemma 3.2 there is a unique p;, € QY satisfy-
ing (3.8). Thus, in light of Lemma 3.3 we know that (u,pp) is a solution of (2.6).
Taking v, = up, qn = pp, in (2.6) and using Lemma 3.1, we immediately get

vllunlle + allwnllzr = (Fwni) < 1 F ol

which implies (3.9). Finally, the estimate (3.10) follows from Lemmas 2.4, 3.1 and 3.2,
the Eq. (3.8) and the estimate (3.9). This finishes the proof. O
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Furthermore, we have the following uniqueness result.

Theorem 3.2. Assume that the smallness condition

N
—3Iflln <1 (3.12)

holds, then the scheme (2.6) admits a unique solution (up,py) € V¥ x QY.
Proof. Let (up1,pp1) and (upe, pro) be two solutions of (2.6), i.e. for j = 1,2 and
(vn, qn) € V¥ x QY there hold
an(wp;j,vp) + cn(Upj; wpj, vp)
+ dn(wnj; nj, vn) + b (Vng, prj) = (f; vni),
bu(wnj, qn) = 0,
which give
an(Up1 — Up2, V1) + cp(Un1; Unt, vh)
— cp(un2; wn2, va) — bp(Vn, pr1 — Ph2)
= dp(wn2; Un2, V1) — dp(Unt; Unt, vh), (3.13a)
br(up1 — un2,qn) = 0. (3.13b)

Taking vy, = up; — upe and g, = pp1 — pro in the above two equations and using the
relation

dp(wh2; Up1 — Up2, Up1 — Up2) =0
due to (3.5), we obtain
ap(up1 — wp2, Up1 — Up2) + cp (U1 U1, Up1 — Up2)
— cp(up2; un2, wp1 — up2)
= dp(wn2; Wp2, Up1 — Wp2) — dp (W1 Upt, Ut — Up2)
= dp(up2 — Up1; URL, Up1 — Up2).
This relation, together with (3.2), (3.6), (3.9), and the inequality
ch(Wh1; Wht, Rl — Up2) — Ch(Wh2; Un2, Wp1 — Up2) 2 [|Uhit — Wpaz|lg, > 0
due to Lemma 2.9, implies
v|unt — wnalll¥ < dp(ung — wpi; wn, unn — wp2)
< Nallwnlllv llwn — waellli
< VTINBIS s e — wnallf,
ie. I
h
(1= T30 ) s = il <.
This inequality plus the assumption (3.12) yields wj; = up2. Then by (3.13a) we have

b (Vn, pr1 — Pre) = 0 which, together with Lemma 3.2, leads to py; = ppeo. This finishes
the proof. O
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4. A priori error estimates

This section is devoted to the error analysis for the WG method (2.6). To this end,
we first assume that the weak solution (u, p) of (1.1) satisfies the following regularity
conditions for m > 1:

we [H™HQ)]" NV, pe H™Q)NL§(Q). (4.1)
Define . 5
Thulk = { P (ulk), TI7 (u|k) } | 4.2)
Prplx = {15, 1 (plx). 115 (plk) } -
Here we recall that m > 1and k = m — 1, m.
Lemma 4.1. There hold
PiTy| € [Pn(K)", YK €T, (4.3)
and, for any (vs, q1) € V) x QY
an(Zrw,vy) + by (vh, Prp) + cn(Zru; Lru, vp) + dp(Thu; Tru, vp)
= (f,vn) + & (uyu,vp) + Err(w, vp) + Errr(u; w, vy), (4.42)
bn(Zhu, qn) =0, (4.4b)

where

gl(ua u,’l)h) = PmRTu®PmRTu —u®uavhvhi)

+
N R RN =N
— N~

(MPu@ Py —u® u)n,vhi>aTh

(u-V)u — (PﬁTu . Vh)PmRTu, th‘)

(o © MPwpn, PRTw),
Err(u,vp) == v <(Vu — H,’iﬂ,qu)n, Vpi — th>
+v <77(P£Tu — u), HkB’Uhi — ’th>87_h s

Errr(usw,vp) = (\PﬁTu\rsziju — ]u\“zu, th‘) .

T

Proof. For all K € Ty, om € Py (K), by Lemma 2.6 we have
(v : PmRTua Qm)K = (v " u, Qm)K =0,

which means that V - Py = 0, i.e. (4.3) holds.
From the definition of discrete weak divergence, the Green’s formula and the defi-
nition of the trilinear form d(+; -, -) we easily have

dp(Zhu; Thu,vp) = (V (u®@u), 'vhi) + & (usu, vy). (4.5)
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Thus, according to Lemma 2.8, the projection properties and the definition of discrete
weak gradient, we get

an(Zpw, vp) + b (vn, Prp) + ch(Zpw; Lpu, vp) + dp(Zpu; Lpu, vy)

=v (Vw,m,l{P,fTu, HkBu}, me,lfvh) +v <77HE(P£Tu —u), HkB'vhi — ’th>
+ (Vhi, Vo {19, TIEpY) + o (|PE | 2 PR w, vy)
+ (V- (u@u),vp) + & (u;u, vp)

= y(l'[,’iﬂ,l(Vu), me_l'vh) +v <77(P£Tu —u), Hkahi — th>
+ (v, I, (VD)) + a(Ju]" 2w, vhi) + Errr(us w, o)
+ (V (u® u),vhi) + &1 (u; u, vp)

- —y(Vh ALY (Vu), 'vhi) + 1/<H;§I_1(Vu)n, 'th>a7'h
+v <77(Pn}fTu —u), HE'Uhi — vhb>a7‘h + (V (u®u), 'vhi)
+ (vpi, Vp) + a(\u!r*Qu,'vhi) + &r(u;u, ) + Err(u; u, vp).

Th

T

Consequently, using the relation ((Vu)n,vn)s7, = 0, the Green formula, projection
properties, and the first equation in (1.1), we obtain

an(Znw,vp) + bp (v, Prp) + cn(Zrhw; Tru, vy) + dp(Zrw; Lru, vp)
= V(1,1 (Vu), Viop) + (I, (Vu)n, vp, — vni) 7
t+v <77(PT§T’U, - ’LL), Hl?”hi - vhb>a7—h + (v : ('U/ & U), th')
+ (Vni, V) + a(u|" 2w, vpi) + Er(usw,vp) + Errr(u; u, vp)
= —v(Au,vy;) + y((Vu —II;, Vu)n,v, — vhb>a7‘h
RT B, . ,
+ v (P w —w), I vy th>87h + (V- (u @ u), vp)
+ (vpi, Vp) + a(\u]r_Qu, vpi) + Er(wsu, vp) + Errr(u;w, vp)
= (f,vni) + &r(wsu, vp) + Err(u, vp) + Errr(us u, vp).
This gives (4.4a).
From the definition of V,, ,,, the fact V - Py = 0 and (2.11) it follows
bh(Zru,qn) = — (V- PR u, qp) + (PE u - "’q’lb>an = (u-n,qm)oT7, =0,
i.e. the relation (4.4b) holds. This completes the proof. O

By following a similar line as in the proofs of [16, Lemma 4.3] and [56, Lemma 5.2],
we can obtain the estimates of &;, &77, and &;yy.

Lemma 4.2. For any vy, € V)2, there hold

(€1 (w, ws o) S W™ |ull2f|wllmrlonlllv, (4.6a)
[Err(uw, vn)| S W™ [[wflmiallvnllv, (4.6b)
(€rrr(u, w;on)| S A" [l [l onllv, (4.60)

for k =m,m — 1 whenn =2and k = m whenn = 3.
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Proof. We first estimate the four terms of {;(u, u;v;) one by one. By the triangle
inequality, the Holder’s inequality and the Sobolev inequality, we have

1
‘—5 (PmRTu ® PrfTu —uRu, thhi)

N

|(PEw @ (PEu —w), Viyow) | + [ (PE w —u) @ u, Vi)
Z [Py — “|0,3,K |P£TU{O,6,K IV nonillo,x
KeTh

+lulocon D [P w = uly i [IVhvnllo,x
KeTn

A

=: By + Bo.
Then, combining Lemmas 2.4, 2.6 and 2.7 we obtain

B1 S Z |P£T“ - “{0,3,1( (|P£T“ —uloga + |uloen) [Vivnillox
KeTh,

S [ IV nonillo, i + B []o,c0,0fttlms1 [[lon]lv

S P ull2llwllmr ol

By A" Hufoco.0lulmrillonllv S h™ [ullz]le]mllonlllv-

Thus, we get the following estimate of the first term of &;:

1
—5 (PEw e PITu —we w, Vo) | S W fulfulnllonlly.  @47)

For the second term of £;, we have

<(Hfu® Hfu — u®u)n,'vhi>a7_h‘

N~ N

(Mfu @My —u®u)n, vy — ”hb>aTh

N

<(HEU —u) ® (I, u — u)n, vy — th>aTh

+ ‘<(H,§u —u) @ (I} un, vy — ’vhb>a7'h‘

+ (M — T ) © (I u — w)n, vy — o)y

)

+ (I — w) & ), on — o)y,

which, together with the Cauchy inequality and the properties of the projections IT?
and IT} , further yields

1
‘5 (MMfu®Mfu — u®u)n,vhi>aTh‘



16 X. Wang and X. Xie
S D M u = ufy o M u — wlo o
KeTy

X ({'vhi — HE’vhi{om,aK + T v — ”hb|0,oo,aK>

+ | u — u‘O,BK ITT;, w|0,00,0K

X (|fvhi - HE”hi‘gﬁK + |HEUM - "’hb‘o,aK>

+ | = T e TP w — w0
x (|vhz ~ TE 0kl o o5 + [TIE ORI — ’th‘Opo,aK)
+ [T =l o [T ulg o o
x (‘”hi - HE”’M“O,BK + | op; — vhb‘075K>

S W [ellzllwlfmr lfonllv- (4.8)

For the third term of &;, from the Holder’s inequality and the properties of the
projection P we obtain

|((w — PETw) - Vu, o) | + [(PE w - (Vu — V, PE ), vy, |

S
<D u— Pl o 4 [Valoxllonilloex
KeTy,

(PRTu \V4 )PmRTu, 'vhi)

l\.')lr—l

+ Z ‘PrfTMo,&K |V — thrjn%Tu‘o,K [onillo,3,x
KeTy,

S P |ullz]|wllmgflonlllv- (4.9

For the last term of £;, we apply the triangle inequality to get

1
-3 {(vn @ I u)n, Pn’fTu>a7_h

1
=15 {(vpy ® TP u)n, P u — Hfbu>a7_h‘

S K(0ni = vm) © (M w — Mju)n, Pilu — Hﬁ@m-h‘
+ ‘<'vh¢ ® (MPu — Miu)n, PETy — Hﬁu>an‘

+ ‘(('vhi — vpy) @ Iun, PRy — Hﬁu}aﬁ‘

+ ‘<’th‘ ® Mjun, Py — I u)

which plus the Cauchy inequality and the properties of the projection PZT, IIP and
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IT; further implies

1
‘_5 <('th @ Hl?“)"% PrﬁTu>a7;L‘

S Z (Jvni — I 0nilo,00.05 + TIE VR — Viblo,00,0K)
KeTs,

X ‘HE“‘ - HZU‘O,@K ‘Pn}fT“ - Hﬁ“‘o,aK

+ [Vhilo,00.0 [T U — HZU{O,M( 1Py — T w0k

+ (|vhi — HEUMO,@K + |HEUM - ”hb‘o,aK)

RT B
x [T ulg 6 ok P u —II u‘o,s,aK

+ [vnilos.ox iulosor | P w — Hﬁ“‘o@f{

S B [ull2llwllme [llonlllv- (4.10)
Combining the above four estimates (4.7)-(4.10) leads to the desired result (4.6a).
Similarly, for the terms &;;(w,vp) and &;77(u, u;vy,) we can get the following esti-

mates:

|11 (u, vp)| < ‘V ((Vu —1II;,_ Vu)n, vy — 'th>a7-h‘

—i—‘ PRTu u) vahi—”hb%n
S Y IVu— 1L, Vulloax
KeTy,

X (H”hi - HkB”hiHo,aK + ([ TEvni — v 8K>

2

KeTy

S el (¥l + o (

1
2 (TI vp — vps) H

77% (P,fTu -—u H

0,0K ‘ 0,0K

1

? (I vhi — vin) Ho aK>

+ 0"l lllonllv

S W {[ullmes[l[onlllv

and

(111 (w, w;0p)| S [Pl u — uHog (HPRT'”HOQ (r-2) T lually o 2(r—2 > [onillo,s

< Wl [l lon il

where in the estimate of |£;;;| we have used Lemma 2.9. This finishes the proof. O
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Based on Lemmas 4.1 and 4.2, we can obtain the following conclusion.

Theorem 4.1. Let (up, pp) € V2 x QY be the solution to the WG scheme (2.6). Under the
regularity assumption (4.1) and the discrete smallness condition (3.12) with

N
9= 1= fllen >0, (4.11)
14
there hold the following error estimates:
I Zhw — unllv S Mi(w)h™, (4.12a)
1Prp = palllo S Ma(w)h™ + Ma(u)h®™, (4.12b)

where
Mi(u) =07 (L+ [Jullz + lulls ™) [[wfmi,

and My (u) and M3(u) are two positive constants depending only on ¥, v, || |« n, [|[u||2
and [|u/mq1-

Proof. Subtracting (2.6a) and (2.6b) from (4.4a) and (4.4b), respectively, we have
an(Znuw — wp, vy) + by (vh, Pup — pu) + cn(Zhu; Thu, vy)
— cp(upsup, vy) + dp(Zrw; Tpu, vy) — dp(wp; up, vp)

:&(u; u,’uh)+£n(u,vh)+£nl(u; u,vh), V’Uh € Vho, (4.133)

b (Zhu — up, qn) =0, Van € QY. (4.13b)

Taking vy, = Zpu — uy, in Eq. (4.13a) and utilizing Lemmas 2.9 and 3.1, we obtain

V|IZhu — up||F + |’P£Tu - uhiH;,r

—2 _
SV Zhu — wpllly + (|P£TU{T PR w — Jupi| " up, PR u — uhi)
={r(uw, us Tpu — up) + Err(us Ty — wy) + Errr(w, w; Zru — wy)
—{dn(Trw; Thu, Tpu — wy) — di(wp; wn, Truw — up) }
=&r(uw, ws Thpu — up) + Err(us Tpuw — wy) + rrr(w, w; Zpu — uy)
— dp(Zhu — up;up, Ipu — up),
where in the last line we have used the relation dy(Zpu; Zpu — up, Zpu — up) = 0.
In view of Lemma 4.2, the definition of N}, with u;,Z,u € V;,, and the fact that
[P w — wpl|fy, > 0, we further obtain
V[ Znw — wnllli; < CR™ (Jwllzllwllmis + lwlmer + s [wlni) [1Zaw — wllv

+ Mallwnllv I Zhw — wnl[3

which, together with (3.9), yields

Ny, _
v (1 - 7\\frr*,h) I — wnlly < CH™ (14 s+ aal3) sl
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Thus, the desired estimate (4.12a) follows.
Next we estimate the error of pressure. Using the Eq. (4.13a) we get

br(Vn, Prp — pr) = —an(Zpw — up, vp) — cp(Zpw; Tpu, vp) + cp(un; wp, vp)
— dp(Zhw; Zpw, vp) + dp(up; wp, vp)
+&r(usw,vp) + Err(u, vy) + Errr(us w, o)
—an(Thu — wp, vy) — (e (Tpu; Tpu, vy) — cp(wn; wp,vy))
— dp(Thu — up; Zyu — up, vp) — dp(Tpw — wp; up, vp)
— dp(un; Zhu — up,vy)

+ &1(w; w, vp) + Er1(w, vp) + Errr(uw;w,vy), Yo, € V2.

In light of Lemmas 2.4, 2.9, 3.1, 3.2, 4.2 and the estimates (3.9) and (4.12a), we have

b _
1P —pillo < sup  nlomPrp = i)
oo ™ Mol

SVIZhu — wnlllv + aCrCE (IZnully + Junlllv)" > | Zaw — wnlllv
+ (|1 Zpw — wnllly + llunllv [ Zaw — wsllyv
+&r(u;u, vy) + €11 (u, vh) +&rrr(u;u, vy)

HfH*,h R _
S <V+ > = S lulls? ) I Znw — wallly + [ Znw — wallff

+h™ (1 [z + [lell;™) fulln,

which shows (4.12b). U

Finally, based upon Theorem 4.1, Lemmas 2.2, 2.6-2.8, we can obtain the following
main conclusion.

Theorem 4.2. Under the same conditions as in Theorem 4.1, there hold

|Vu — Viupillo + ||[Vu — Vi m_1uhH0 < Mjp(u)h™, 4.14)
lp = prillo S (Ma(w) + [[pllm)h™ + Ma(w)h?™. (4.15)
Remark 4.1. The result (4.14) shows that the velocity error estimate is independent of

the pressure approximation, which means that the proposed WG scheme is pressure-
robust.

5. L? error estimation for velocity

We follow standard dual arguments to derive an L? error estimate for the velocity
solution of the WG scheme with » = 2,4. To this end, we introduce the following dual
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problem: Seek (¢, ) such that

~vAp— (u-V)p+ (Vu) ¢+ alul "¢

ta(r — 2l Hu- $)u+ Vi = e, in Q
V-¢p=0, in Q,
$=0, on 05},

(5.1)

where w and w;, = {up;, upy} are respectively the solutions of (1.1) and (2.6), and
eni := PRy — uy,;. We assume the following regularity condition holds:

1@ll2 + 11¥ll < llenillo- (5.2)
The corresponding weak form of (5.1) reads: Seek (¢,v) € V' x @ such that

Au(@,v) +b(v,¢) = (epi,v), VveV,

5.3
b(é,q) =0, Vg€ Q, :3)
where the bilinear form A,(-,-) : V x V' — R is defined by
Au(¢,v) = a(¢,v) + c(u; ¢,v) + d(u; v, @) + d(v; u, P)
+ Oé(?" - 2)(‘,”’7’—4(” ' ¢)u7 U)? (54)

and the bilinear forms, a(-,-) and b(, -), and the trilinear forms, ¢(-;-,-) and d(+; -, -), are
given in Subsection 2.1.

Remark 5.1. According to the Holder’s inequality, the Sobolev inequality and the
boundedness result (2.2), we can get the boundedness result

Au(®,) S [[VolVollo, Vo,veV. (5.5)

At the same time, under the uniqueness condition (2.3) we can obtain the coercivity
result

Au(v,v) > |Vol2, YveV. (5.6)

It is standard that the inf-sup inequality

sup b(v,q)
veV ||V’U||0

2 HqH07 vq € Q

holds (cf. [14]). As a result, the problem (5.3) admits a unique solution.

By taking similar routines as in the proofs of Lemmas 4.1 and 4.2, respectively, we
can obtain Lemmas 5.1 and 5.2.
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Lemma 5.1. There hold

an(Zno, vn) + bp(vn, Pry) + cn(Znu; Lo, vp)
— dp(Zpw; e, vn) + dp(vn; Zru, Ino)
= (eni, vhi) — Er(u; ¢, vp) + Err(h,vp) .
+ Err1(u; ¢,v,) + Erv(vp;w, @) '
—a(r —=2)(|u]"" (u - d)u, ern;), Vv, € VP,
bn(Zno, an) = 0, VYai, € Q,

where

E](’U,, d)avh) = Pn}’:de)@Pn}fTu_ ¢®u7vhvhi)

+
N RN N =N
— T~

(HE¢®HEU—¢®U) n’vhi>8Th

(w- V)¢ — (PFw-V,) PE ¢, vp)

(o @ M u) n, P g) o

Err(¢,vp) = v (Vo —IL;,_1V) N, vhi — Vhb) 7
+v{n(PH¢— ) vy — th>37—h ,

Er(w; ¢,v,) = a (‘PﬁTUV_Q Pl — |U|r72¢,’vhi) ,

Erv(vp;u, @) = <(Vth}fTu)T PiTp— (Vu)' o, th)

1
D) <(Hl§¢’ X 'th) n, PrﬁTu>a7’h

1
+ 5 <(HE’U & ’th) n, P£T¢>8’Th

DN |

(P ), P 8),
Lemma 5.2. For any v, € V2, there hold

[€r(usw, Tno)| < A" w2l ullmra D],

|Er(u; §,vn)| < hllwll2l|@l2llvnllv,

(€11 (w, Zno)| + |Err(¢, en)| S h"H[wllm1 ] @2, 5.8)
(€rrr(w;w, Tno)| < A" [ully ™ ullmal|l2, '

| Errr(w; é,0n)] < hllully [ @lllllonlllv,

|Erv(vn; w, @) < hllwllal|@ll2f|vnllv-

Based on Lemmas 5.1 and 5.2, we can derive the following L? error estimate in the
casesr = 2,4.

21

7)
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Theorem 5.1. Under the regularity assumption (5.2) and the same conditions as in The-
orem 4.1, there holds
| —upllo S My(u)h™ (5.9)

where My(u) is a positive constant depending on ||ull2 and ||w||;m+1-

Proof. Denote ej, := Zpu — uy, and ¢, := Ppp — pp. Taking v, = ep, and ¢, = ¢, in
(5.7), we derive

lenills = an(Zne, en) + brlen, Patd) + cn(Tnu; Inep, ep)
+a(r = 2)(jul""*(u- P)u, epn)
+ dn(Zyhu; en, Zyo) + dip(en; Znu, Ine)
+ Er(u; ¢, en) — Err(¢, ep)
— Errr(u; ¢, en) — Erv(en; u, @),

bn(Zne,en) = 0.

(5.10)

Taking v, = Z,¢ and q;, = P2 in (4.13), respectively, we have
an(en, Znpd) + bn(Znd,en) + cn(Thu; Lpw, L) — cp(up; up, L)
+ dp(Zhu; Zyu, L) — dp(up; upn, Lno)
=&r(u,u, L) + Er1(ws Zyep) + Errr(uw, u; Iy o),
bh(eh, Phw) = 07
which plus (5.10) give

lenill§ = {cn(Tnw; Zno, en) — cn(Tnw; Tpu, Tned) + cp(up; un, L)
+a(r —2)(ju""H(u- P)u,en)}
+{ — dn(ZThu; Tyw, T d) + dp(wn; un, L)
+ dn(Zhu; en, no) + di(en; Tnu, Tnd) }
+ {¢&1(u,u,Tyd) + Er(u; ¢, ep) + E11(w; L) — Er(o, ep)
+ &rir(u, w; Iio) — Erpr(u; @, en) — Erv(ep;u, @)}

3
= > R (5.11)
j=1

Then let us estimate R, j = 1,...,3 one by one.
For the term R, we have

% = of (|PETu" PiT o, er) — (|PETw
+ (\uhi\rﬁuhi, P,gT(f)) +(r—2) (‘u’r74(u - P)u, ehi) }

= a{ <<‘PT§T’U,{T72 — |uhi|r_2) €hi, PTQT(ﬁ)

"

P P
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+ (1P u] ™ = fwnil %) P u, ¢ — PET )
- <|P£Tu|r72 — up % = (r — 2)|up "t - eni, PR w - ¢)
—(r—2) <]uhi]“4uhi (P,I,“:/Tu - u) - ¢, ehi>
(= 2) (Junil" P ugs = [ul ") (w- ), e ). (5.12)

We easily see that i1 = 0 when r = 2. When r = 4, combining (5.12) with Lemma 2.9

further gives
‘9{1‘ < 7“ — 2 ((‘ + ”U;hi’r_?’) \ehi gy (f){)
—-2) <( PRT It |uhi|r73> leni| |PE u|, |¢ — P£T¢D
+ w <<|P£Tu|r_4 + |uhi|r74> leni|?, | PR ul |¢|)
+(r—2) (|uhi|r $IPTw — u @], |en])
(= 20C, (il + ul) ™ funi — ullull @] leni]
S (1P| + |unil) e, [ P o))

- ((PE ] + ) e [Pl |6 — P
+ (lenil?, |P£TU‘ 1) + (|2endl ‘PrfTU —ul @], |eni)

+ (Jun; — ul|ul[@], len]).

rr-f

This estimate, together with the Holder’s inequality, the triangle inequality, Lemmas 2.4,
2.7 and (3.9), yields

9] S ([P wlly 5 + lnillos) llens 3o | P76 5

+ <HP£T“H0,3 + ||th‘||0,3) llenillo,e HPT};TUHQG & — P£T¢HO73

Pyl o llollos + l[unillos || P’ w —ull 5 [ #llosllenillos

+ llenlZs |
+ (lenllos + [P w = wlly ;) luloslldloslendlos

< (lell2 + lwnlllv) llenll [ #ll2
+ (lell2 + [llenllv) llenllv ] 2h*=5 ]2
+ llenlll¥ lwli2llpllz + llewnllv h?= flull2l @llzlllenllv

+ (lenlly + 2% ull2) llullall @l lenlll
||f”*h _n
(H o+ 2L (Henlly + 12~ % full2) lleallv 9]l

From the definition of dj(-;-,-), the Holder’s inequality, the Sobolev inequality and
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Lemmas 2.1, 2.4 and 2.7 it follows

Ro| = | — dn(Thw; Thu, L) + dp(wp; un, Ind)
+ dn(Znw; en, Tn) + du(en; Tnu, L)
= |dn(en; en, Znd)|
< llenlll¥llolla-

By Lemma 5.2 we have

R3] = [§r(uw, u, o) + Er(u; b, en) + Err(w; Lro) — Err(, en)
+ &rrr(u, u; Ino) — Errr(u; @, en) — Erv(en;u, @)
S wlmrrull2lllle + hllull2li@l2llenllv + A wlmil ¢l
+ B g [l 2 @ll2 + Pllells 2l dllollenllv + hllull2ll@l2llenllv-

All the above estimates of i, together with (5.11), the regularity assumption (5.2),
Theorem 4.2 and the triangle inequality, lead to the desired conclusion (5.9). O

Remark 5.2. For some other cases of r, one may follow a similar line as in the proof of
Theorem 5.1 to derive the L? estimate, but with additional conditions on r and w.

6. Local elimination property and iteration scheme

6.1. Local elimination property

In the subsection, we shall demonstrate that in the WG scheme (2.6) the velocity
and pressure approximations, (un;, pri), defined in the interior of elements can be lo-
cally eliminated by the using the numerical traces (uny, pry) defined on the element
interfaces. After the local elimination the resulting system only includes the degrees of
freedom of (wpp, ppy) as unknowns.

For any K € Ty, taking vp;|7;\x = 0, vpp = 0, quil7;,\x = 0 and gpp = 0 in (2.6), we
obtain the following local problem: Seek (wp;, ppi) € [P (K)]" X Pp—1(K) such that

an, ik (Whi, Vi) + bp K (Vhi, Phi) + Ch g (Whis Whis Vhi) + Ak (Whis Whis Vhi)
= Fyy k(vni), Yop € [P (K)]", (6.1)
bu,k (Whis qni) = 0,  Vqn; € Ppn1(K),

where

an, & (Whi; Vhi) = V(Vm-1{thi, 0}, Vi m—1{Vhi, 0}) j + 5h & (Whi, Vpi),
Sh,K(th‘a'Uhi) =V <77HEuhiaHkB'vhi>aK,
bn, & (Vni, Phi) = (Vw,m{Dhis 0}, Vni) s
(

Ch i (Whis Whiy Vhi) o= (lwni|™ Wi, Uhi) g
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1
dp, K (Whs; Whs, Vp;) 1= 3 (Veom - {tni @ wpi, 0 © 0}, vpi) 5
1
—3 (Veoym - {Vhi ® wpi, 0 © O}, wp;)

Fr i (0ni) == (£, 00i) k = ¥ (Vwm-1{0, wns}, Vg m—1{0hi, 0})
+ v (nupe, HE”M%K - %(me {0 ® 0, upy @ upp}, vpi)
— (V,m{0,pro } Vhi) -
By following the same routines as in the proofs of Theorems 3.1 and 3.2, we can

get existence and uniqueness results of (6.1).

Theorem 6.1. For all K € T, and given numerical traces upplgx and ppylok, the local
problem (6.1) admits at least one solution. In addition, under the smallness condition

Nk | o x|l
NowcllFnscllben _ (6.2)

v? ’

the problem (6.1) admits a unique solution. Here
dh, i (Khi; Whi, Vni)

N’LK = sup |
ks unsoni€Vonre IEnilllv.i - lwnilllvg - [lvnalllv,x
Fy, i (vp;
||Fh7KH*,h = sup M,
07, €Von, K llvnlllv,x

Vinic i= { ni € [Pr(EO)" 2 b (s ani) = 0, Yani € P (K) |,
1
2

2
0,0K /)

1
1B
n2 11} vy,

ol = (¥ {010, 0} B +

6.2. Iteration scheme
Due to the nonlinearity of the WG scheme (2.6), we shall employ the following

Oseen type iteration algorithm:

Given u), seek (u},pl)with  =1,2,... such that
ap (u%, 'vh) + by, (’Uh,pgl) +cp, (uﬁ;l; ’u%, 'vh)
+ dp (wj, " uh, vn) = (F, vm), 6.3)

by, (Ulm qn) =0

for V(vs, qn) € Vi) x Q).
It is not difficult to know that the linear system (6.3) is uni-solvent for given

(uﬁ;l,pﬁl’l) and that it holds
1
wrlll, < Nl 1=1,2, (6.4)

We have the following convergence result.
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Theorem 6.2. Assume that (uy,pp) € V¥ x QY is the solution of the WG scheme (2.6).
Under the condition

—2
IFIER" | NallFllon
+ 2
v 14

202 C a1 <1 (6.5)

the Oseen type iteration scheme (6.3) is convergent in the following sense:
. 1 . l
tim [l — =0, i [~ i =0 ©6
Proof. Denote ¢!, := u}, — u; and e}, := p}, — pj,. Subtracting (2.6) from (6.3) gives

an (ei“vh) + bp (Um 6;,) —Ch (Uh; uh,vh) + cn (uﬁ;l; uz,vh)

— dp,(wp; up, vp) + dp (ul, Y, vy) =0, (6.7a)

b (¢l an) =0 (6.7b)

for any (vs,,qn) € V¥ x QY. Taking v, = €., g, = e in (6.7) and using the definition
of ¢;(+;-,-) and the relation dj, (el 1; €., €l)) = 0, we have

VH]@UH%/ = ch(uh;uh, ez) — ch(uz_l;ulh, ez) +dp, (uh;uh, ez) — dh(uz_l;ulh, efL)

= ch(uh;ufh 51) - ch(ulh 17uh7 51) - Ch(u’lh 176517651)
+dh(uh - ulh lauh, u) <dh(uh ; Uh, € 51) - dh(ulh laugw 51))
=« ((’UMT*Q = Juy, ! ’PQ)U#”@Z) —cn(uy e, e) —du(e s un,e).

This relation, together with Lemmas 2.4, 2.9 and 3.1, the estimates (3.9) and (6.4),
and the fact that —c;, (ul ;€ el) < 0, implies

h7u7u

vllebl < a ((unl™2 = Jul '), el ) = du (el sunsel)

< (czCralllunlly + i 2) + AR) ekl - Nl - ek,

v IS Nl -
g M

14

which gives

llewllly, < Mllle Iy,
with

—2
H,Jj| “h n Nh”.fH*,h‘

r—1 I/2

M :=2C:Cra

Thus, we get
lleullly < Mlllei M lly < -+ < MAlleallly- (6.8)

In view of (6.5), we know that 0 < M < 1. Hence, we obtain

= lim muh uhmv =0. (6.9)

lim me
l—00

tim [, =
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The thing left is to prove the second convergence relation of (6.6). From (6.7a) it
follows

bn (vn, eh) = —ap (€, vp) + cn(wn; un, vi) — cn(uh s ub, vp)
+ dp (wp; up, vp) — dp (wh s ul, o)

= —ah(ez,vh) + <Ch(uh§uhavh) - Ch(ufl;uh,’vh)) - Ch(uﬁfl;eip’vh)

— (dh(uh;ez,vh) +dp (el el vp) + dh(efl;uh,vh)>

for all v, € V;’. By Lemma 3.2 we have

bh(’vhyel)
o < on\Vh, €p)
\H%m@wvfz‘% [llvnlllv

The above two results, together with (6.9) and Lemmas 2.4, 2.9 and 3.1, yield the
desired conclusion

Jim eyl = Jtim [flph — pallg = 0.

This completes the proof. O

7. Numerical experiments

In this section, we provide some numerical tests to verify the performance of the
WG scheme (2.6) for the Brinkman-Forchheimer model (1.1) in two dimensions. We
adopt the Oseen type iterative algorithm (6.3) with the initial guess w9, = 0 and the
stop criterion

Huﬁl—uﬁleO <le—238 (7.1)
in all the numerical examples.

Example 7.1. Set Q = [0,1] x [0,1], » =1, @ = 5 and r = 10 in the model (1.1). The
exact solution (u, p) is given as follows:

up = 102%(z — 1)*y(y — 1)(2y — 1),
uy = —10x(z — 1)(2z — 1)y (y — 1)2, (7.2)
p=1002z — 1)2(2y — 1).

We compute the scheme (2.6) on uniform triangular meshes (cf. Fig. 1), with m = 1,2,
k = m—1, m. Numerical results of ||u—wp||o, || Vu—Vpupillo, [|[p—phillo and ||V-wp||0,00
are listed in Tables 1 and 2.
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Table 1: History of convergence results for Example 7.1: m = 1.

lu—wunillo [Vu=Viunillo [p—phillo . ]

k| mesh [ulo [Mulo n IVh - whillo,oo
Error Rate Error Rate Error Rate Error

4 x4 5.9583e-01 - 5.1516e-01 - 2.8667e-01 - 4.0593e-16

8§ x 8 1.5876e-01 | 1.91 | 2.7301e-01 | 0.92 | 1.4424e-01 | 0.99 | 2.3028e-16
16 x 16 | 4.1525e-02 | 1.93 | 1.3851e-01 | 0.98 | 7.2201e-02 | 1.00 | 3.1127e-16
32 x 32 |1.0641e-02 | 1.96 | 6.9420e-02 | 1.00 | 3.6100e-02 | 1.00 | 8.4459e-17
64 x 64 | 2.6985e-03 | 1.98 | 3.4723e-02 | 1.00 | 1.8048e-02 | 1.00 | 2.7905e-17

128 x 128 | 6.9479e-04 | 1.96 | 1.7364e-02 | 1.00 | 9.0235e-03 | 1.00 | 5.6257e-17
4x4 5.6714e-01 | - |5.1165e-01| - |2.8667e-01| - 3.4694e-18

8§ x 8 1.5224e-01 | 1.90 | 2.7237e-01 | 0.91 | 1.4425e-01 | 0.99 | 3.2092e-17
16 x 16 | 3.9918e-02 | 1.93 | 1.3841e-01 | 0.98 | 7.2213e-02 | 1.00 | 1.3010e-18
32 x 32 |1.0236e-02 | 1.96 | 6.9404e-02 | 1.00 | 3.6110e-02 | 1.00 | 2.9328e-17
64 x 64 | 2.5908e-03 | 1.98 | 3.4720e-02 | 1.00 | 1.8054e-02 | 1.00 | 8.2115e-17

128 x 128 | 6.5160e-04 | 1.99 | 1.7363e-02 | 1.00 | 9.0267e-03 | 1.00 | 1.4732e-17

Table 2: History of convergence results for Example 7.1: m = 2.

Tu—wuniflo Vu—Viunilo [p—pnillo o

il mesh Tl Full Tollo IV - wnillo.co
Error Rate Error Rate Error Rate Error

4 x4 5.9915e-02 - 1.3040e-01 - 3.3330e-02 - 2.2560e-14

8§ x 8 7.6055e-03 | 2.98 | 3.4961e-02 | 1.90 | 8.3117e-03 | 2.00 | 7.0083e-16
16 x 16 | 9.4731e-04 | 3.01 | 8.9617e-03 | 1.96 | 2.0761e-03 | 2.00 | 1.9606e-15
32 x 32 |1.1827e-04 | 3.00 | 2.2616e-03 | 1.99 | 5.1888e-04 | 2.00 | 7.4921e-16
64 x 64 | 1.4789e-05 | 3.00 | 5.6761e-04 | 1.99 | 1.2970e-04 | 2.00 | 2.5543e-17

128 x 128 | 1.8494e-06 | 3.00 | 1.4215e-04 | 2.00 | 3.2423e-05 | 2.00 | 3.5312e-16
4x4 5.6852e-02 | - |1.3016e-01| - |3.3281e-02| - 1.1310e-15

8 x 8 7.3762e-03 | 2.95 | 3.4894e-02 | 1.90 | 8.2971e-03 | 2.00 | 1.7295e-15
16 x 16 | 9.3175e-04 | 2.98 | 8.9496e-03 | 1.96 | 2.0724e-03 | 2.00 | 2.5093e-15
32 x32 | 1.1713e-04 | 2.99 | 2.2591e-03 | 1.99 | 5.1795e-04 | 2.00 | 4.0441e-17
64 x 64 | 1.4693e-05 | 3.00 | 5.6704e-04 | 1.99 | 1.2947e-04 | 2.00 | 1.0278e-15

128 x 128 | 1.8403e-06 | 3.00 | 1.4201e-04 | 2.00 | 3.2366e-05 | 2.00 | 1.1529e-16

Example 7.2. Set Q = [0,1] x [0,1], » = 1,a = 0.01 and r = 10 in the model (1.1).
The exact solution (u, p) is given as follows:

up = sin(7x) cos(my),
ug = — cos(mz) sin(my), (7.3)
p=a%— 5.
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Figure 1: Uniform triangular meshes: 4 x 4 mesh (left) and 8 x 8 mesh (right).

We compute the scheme (2.6) on uniform triangular meshes (cf. Fig. 1), with m =
1,2 and k£ = m — 1, m. Numerical results of ||u — up|lo, || Ve — Viruplo, |[p — prillo and
0,00 are listed in Tables 3 and 4.

IV - i

Table 3: History of convergence results for Example 7.2: m = 1.

k| mesh | e g 7 o i IR
Error Rate Error Rate Error Rate Error

4 x4 |1.6005e-01 - 2.6991e-01 - 5.2020e-01 - 2.5121e-15

0 8 x 8 |3.7542e-02 | 2.13 | 1.3803e-01 | 0.98 | 2.5615e-01 | 1.01 | 3.7682e-15
12 x 12| 1.5153e-02 | 2.28 | 9.2644e-02 | 0.98 | 1.7035e-01 | 1.00 | 1.1723e-14

16 x 16 | 7.7371e-03 | 2.33 | 6.9833e-02 | 0.98 | 1.2785e-01 | 1.00 | 1.0049e-14

4 x4 |1.5501e-01 - 2.6999e-01 - 8.2265e-01 - 7.5364e-15

1 8 x 8 |3.9277e-02 | 1.99 | 1.3795e-01 | 0.98 | 4.0158e-01 | 1.02 | 1.2561e-15
12 x 12| 1.7508e-02 | 1.99 | 9.2386e-02 | 0.99 | 2.6654e-01 | 1.01 | 6.6991e-15

16 x 16 | 9.8669e-03 | 1.99 | 6.9411e-02 | 0.99 | 1.9970e-01 | 1.00 | 2.5121e-15

Table 4: History of convergence results for Example 7.2: m = 2.
| mmesh IIu”JA”hOzllo IIVu”th“«;hzllo IIPH;WSIIO [V - whnillo.co
Error Rate Error Rate Error Rate Error

4 x4 |1.5314e-02 - 4.3800e-02 - 1.6032e-01 - 2.4925e-15

1 8 x 8 [1.9010e-03 | 3.01 | 1.1121e-02 | 1.98 | 3.4978e-02 | 2.15 | 1.0206e-14
12 x 12| 5.6253e-04 | 3.00 | 4.9640e-03 | 1.99 | 1.4918e-02 | 2.09 | 2.6064e-14

16 x 16 | 2.3740e-04 | 3.00 | 2.7977e-03 | 1.99 | 8.2361e-03 | 2.06 | 1.4461e-13

4 x4 |1.4859e-02 - 4.3805e-02 - 1.4305e-01 - 5.3069e-14

9 8 x 8 |1.8806e-03 |2.99(1.1123e-02 | 1.98 | 2.9207e-02 | 2.23 | 3.6426e-14
12 x 12| 5.5839¢e-04 | 3.00 | 4.9648e-03 | 1.99 | 1.2228e-02 | 2.13 | 1.6748e-15

16 x 16 | 2.3593e-04 | 2.99 | 2.7981e-03 | 1.99 | 6.6989¢e-03 | 2.08 | 5.7779e-14
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From the numerical results listed in Tables 1-4, we have the following observations:

* The convergence rates of |[Vu — V,up;|lo and ||p — prillo for the WG scheme are
m-th orders in the cases of m = 1,2 and k¥ = m, m — 1. These are conformable to
the theoretical results in Theorem 4.1.

* The convergence rate of ||u — wup;l/o is (m + 1)-th order, which is conformable to
the theoretical result in Theorem 5.1.

* The results of |V}, - up;||0,0o are almost zero. This means that the discrete velocity

is globally divergence-free, which is consistent with Theorem 2.1.

Example 7.3 (The lid-driven cavity flow problem). This problem is used to test the
influence of damping parameters « and r on the solution of the WG scheme. Take ()
=[0,1] x [0,1], » = 0.1 and f = 0. The boundary conditions are as follows:

u|:v:0 = u|:v:1 = u|y:0 =0, u|y=1 = (LO)T'

(a) velocity (Taylor-Hood) (b) pressure (Taylor-Hood)

(c) velocity (WG) (d) pressure (WG)

Figure 2: The velocity streamlines and pressure contours for Example 7.3: a = 0.
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(a) velocity: a =1 (b) velocity: a = 50 (c) velocity: o = 100

(d) pressure: o = 1 (e) pressure: o = 50 (f) pressure: a = 100

Figure 3: The velocity streamlines and pressure contours for Example 7.3: » = 5 and a = 1, 50, 100.

We compute the WG scheme (2.6) with m = k = 2 on the 25 x 25 uniform triangular
mesh (cf. Fig. 1) in the following cases:

(I) a =0, i.e. the case of the Navier-Stokes equations;
(D r =5and a = 1,50, 100;
(III) o =5and r = 3,5, 50.

The velocity streamlines and the pressure contours are displayed in Figs. 2-4. As a com-
parison, the referenced numerical solutions obtained with the Taylor-Hood element are
also shown for o = 0; see Figs. 2(a) and 2(b).

From Fig. 3 we can see that the shape and size of the vortex change evidently,
which means that the damping effect becomes greater for the velocity as the damping
parameter « increases. We can also see that the pressure approximation is not signifi-
cantly affected by . On the other hand, as shown in Fig. 4, the velocity and pressure
approximations are not significantly effected by the number r.

Example 7.4 (The problem of flow around a circular cylinder). The flow around a cir-
cular cylinder is examined with the Brinkman-Forchheimer model (1.1) and the WG
method. We take 2 =[0, 6] x [0,1]\ O4(1,0.5), v = 0.002 and f = 0, where Oy4(1,0.5) is
a disk with center (1,0.5) and diameter d = 0.3; see Fig. 5 for the domain and its finite
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(a) velocity: » = 3 (b) velocity: » =5 (c) velocity: r = 50

(d) pressure: r = 3 (e) pressure: r =5 (f) pressure: r = 50

Figure 4: The velocity streamlines and pressure contours for Example 7.3: a =5 and r = 3, 5, 50.

element mesh. The boundary conditions are as follows:

uly=0 = uly=1 = ulgo, = 0,
i

ule—0 = (6y(1 —y),0) ,

(—pI +vVu) n|x:6 =0,

where I and n are the unit matrix and the outward unit normal vector, respectively.
We compute the WG scheme (2.6) with m = k = 2 in the following cases:

(I) a =0, i.e. the case of the Navier-Stokes equations;
(I r =3.5and o = 0.1, 1, 10;
(III) o« =1and r = 3,4,5.

The obtained velocity, vorticity and pressure approximations are shown in Figs. 6-
8, respectively. As a comparison, the referenced numerical solutions obtained with the
Taylor-Hood element are also shown for a = 0; see Figs. 6(a)-6(c). We can see that our
method is effective and the damping effect is gradually enhanced as the parameters «
and r increase.

Example 7.5 (The backward-facing step flow problem). We consider a backward-
facing step flow problem in Q = Q; \ Q9, with ©; = [—4,16] x [-1,2] and Qs =
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Figure 5: The domain and finite element mesh for Example 7.4.

(a) velocity (Taylor-Hood)

CT‘*.

(b) vorticity (Taylor-Hood) (c) pressure (Taylor-Hood)

Vee Value

(e) vorticity (WG) (f) pressure (WG)

Figure 6: The velocity streamlines, vortex lines and pressure contours for Example 7.4: a = 0.
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Vec Value

(e) vorticity: a« = 1 (f) vorticity: a = 10

(h) pressure: o =1 (i) pressure: o = 10

Figure 7: The velocity streamlines, vortex lines and pressure contours for Example 7.4: r = 3.5 and
a=0.1,1,10.
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Vec Value

(a) velocity: r = 3

Vec Value Vec Value

(c) velocity: r =5

(d) vorticity: r = 3

c o

(e) vorticity: r = 4 (f) vorticity: » =5

(g) pressure: r = 3

(h) pressure: r = 4 (i) pressure: r =5

Figure 8: The velocity streamlines, vortex lines and pressure contours for Example 7.4: « = 1 and r = 3,4, 5.
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Figure 9: The domain and finite element mesh for Example 7.5.

(a) w1 (Taylor-Hood) (b) u2 (Taylor-Hood)
(c) pressure (Taylor-Hood) (d) u1 (WG)
(e) uz (WG) (f) pressure (WG)

Figure 10: The velocity u;, = (u1, ug)T and pressure contours for Example 7.5: o = 0.

[—4,0]x[—1, 0]; see Fig. 9 for the domain and its finite element mesh. We take v = 0.005
and f = 0. The boundary conditions are as follows:

Uly——1 = Uly=2 = U|_4<z<0,y=0 = U|z=0,—1<y<0 = 0,

T ou
ulp=—a = (y(2—9),0) , <—p + V8—m1> lz=16 = 0, u2|z=16 = 0.

We compute the WG scheme (2.6) with m = k = 2 in the following cases:

(I) a =0, i.e. the case of the Navier-Stokes equations;

(D) r =3.5and a = 0.01,0.1,1;
(IID) a=1andr = 5,10, 50.
The obtained velocity and pressure approximations are shown in Figs. 10-12. As a com-
parison, the numerical solutions obtained with the Taylor-Hood element are also shown
for a = 0; see Figs. 10(a)-10(c). Similar to Example 7.4, we can see that our method

is effective and the damping effect is gradually enhanced as the parameters o« and r
increase.
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(a) u1: o = 0.01

bB)ui: a=0.1 Q@Qui:a=1

(d) us: o =0.01

() uz: a=0.1 D uia=1

(g) pressure: a = 0.01

(h) pressure: o = 0.1 (i) pressure: a =1

Figure 11: The velocity up = (u1, ug)T and pressure contours for Example 7.5: » = 3.5 and o = 0.01, 0.1, 1.

8. Conclusion

We have developed a class of WG methods of arbitrary order for the steady Brink-
man-Forchheimer equations. The methods yield globally divergence-free velocity and
are pressure robust. Optimal error estimates have been derived for the velocity and
pressure approximations. The proposed Oseen type iteration algorithm is uncondi-
tionally convergent. Numerical experiments have verified the theoretical analysis and
demonstrated the robustness of the methods.
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B)ui:r=10 (@ ui: r=>50

(dus:r=5

(@) us: r =10 ) us: r =50

(g) pressure: r = 5

(h) pressure: r = 10 (i) pressure: r = 50
Figure 12: The velocity u, = (u1,u2)’ and pressure contours for Example 7.5: a = 1 and diverse
r = 5,10, 50.
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