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Abstract. In this investigation, the analysis of the nonlinear vibroacoustic and sound
transmission loss behaviors of plates made of functionally graded material is pre-
sented. It is assumed that the properties of the functionally graded plates are in the
form of the simple power law scheme and continuous along the thickness, under ther-
mal load and incident oblique plane sound wave as well as the first-order shear defor-
mation theory. For this purpose, first, using Hamilton’s principle, the nonlinear partial
differential equations of motion are derived by the displacement field function ap-
proach and by considering the nonlinear von Kármán strain-displacement relations. To
solve the equations, using the Galerkin method, the nonlinear partial differential equa-
tions of motion lead to Duffing equation. Then, using the homotopy analysis method,
the equation of the transverse movement of the plate is solved semi-analytically to ob-
tain the nonlinear frequencies. Finally, the nonlinear vibration and acoustic response
of functionally graded plates are studied by considering the variation of the impor-
tant parameters such as aspect ratio, dimensionless amplitude, volume fraction power
of functionally graded material, external acoustic pressure, incidence and azimuthal
angles, temperature changes, phase portrait, sound transmission loss, velocity and av-
erage mean square velocity of drive point and sound power level of the functionally
graded plate. Results show increasing the incidence angle leads increase in hardening
effects and sound transmission loss, but growing the azimuthal angle does not have
much effect on the frequency-response and sound transmission loss in the absence of
the external mean flow. Also, increasing temperature changes lead to decrease in hard-
ening effects and sound transmission loss.
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1 Introduction13

Noise transmission is a crucial subject in the design of many structures, such as walls14

and floors of buildings, ship hulls, and side walls, and airplane and train cabins; Be-15

cause noise, in addition to harassing the crew and passengers, may lead to fatigue of the16

structure and even catastrophic failures in the system. As a result, over the years, various17

analytical models have been presented and developed to predict the characteristics of the18

sound transmission. These models may be further classified as high-frequency or low-19

frequency noise models. In high-frequency noise, the panel dimensions are vast com-20

pared to relatively short sound wavelengths; therefore, the panel can be modeled analyt-21

ically using the infinite panel theory. In low-frequency noise, panel dimensions are com-22

parable to long-wavelength sound, and boundary effects are essential. In this approach,23

the panel is usually modeled as a rectangular simply supported plate in an infinite baf-24

fle. When a panel with infinite length is acoustically excited, the frequency at which the25

speed of sound in the air equals the speed of the free bending wave is named the crit-26

ical frequency [1]. Critical frequency is especially significant when dealing with sound27

radiation from structures. The characteristics of sound radiation depend on whether the28

incitement frequency is higher or lower than the critical frequency. Similarly, the sound29

radiation efficiency of structure is very high near the critical frequency. The behavior of30

plates with limited length is shown in the same way. When a structure is acoustically31

excited, the frequency at which the speed of the free bending wave equals the speed of32

the forced bending wave is called the coincidence frequency [1]. Sound transmission33

close to the coincidence frequency is very high. Sound transmission characteristics hinge34

on whether the incitement frequency is higher or lower than the coincidence frequency.35

The vibrational response of a plate to the sound field around its critical frequency is the36

greatest. So, to find the structure response to sound incitement, it is necessary to know37

its critical frequency precisely. If it is necessary to reduce the response, the critical fre-38

quency information of the structure can be applied in its plan. For instance, the structure39

can be planned so that the critical frequency is outside the kind of frequencies in which40

the acoustic incitement is greater. Therefore, knowing the information about the critical41

and coincidence frequencies of structure is necessary to learning its structural-acoustic42

relations. It should be intentioned that these two parameters are interdependent. The43

critical and coincidence frequencies of the plates have been debated in particular in ref-44

erences [2–4].45

Functionally graded materials (FGM) are composite materials whose mechanical or46

thermal specifications vary functionally and continuously from one level to another. The47

use of FGM in recent decades is a significant increase. Since these materials have high48

thermal resistance, they have many engineering usages in productions, for example, de-49

fense and aerospace productions. Also, these materials are applied in the structure of50

tools, for example, nuclear reactors, turbine blades, pressure vessels, heat exchangers,51

biomedical materials such as dental implants, and chemical productions. Panels are52

one of the common structures made of FGM that have many uses in engineering con-53
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structions, for example, space vehicles, and different parts of the airplane, and are used54

mainly in civil buildings. So, because these materials are significant, much research has55

been done on the vibration of functionally graded (FG) plates. Considering that in the56

classical plate theory (CPT), shear deformations in the thickness of the panel are ignored,57

the natural frequencies are obtained with a little approximation. To solve this problem, it58

is possible to study the vibration of panels by applying the first-order shear deformation59

theory (FSDT) or higher-order shear deformation theory (HSDT). Considering that for60

the accurate and reliable design and analysis of a structure, it is necessary to investigate61

the vibration with large amplitude, in reality, most phenomena are nonlinear, and as a62

result, nonlinear analysis is closer to reality than linear analysis. For this purpose, in this63

paper, von Kármán’s nonlinear strain-displacement relationships are used to study the64

nonlinear vibration of the FG plate.65

Damping is an essential factor in the dynamic design of many engineering compo-66

nents because it significantly affects the level of vibration and noise. It also controls the67

fatigue life and impact resistance of structures [5]. FGMs have higher inherent damping68

than conventional isotropic materials due to the interaction between metal and ceramic.69

FGMs are widely used in the automotive, marine, and aerospace industries due to their70

high hardness-to-weight ratio and play a significant role in reducing input noise to me-71

chanical systems. These materials are widely used due to their simplicity and inexpen-72

sive. For example, to control the noise entering the airplane cabin, FGMs are commonly73

used in the middle compartment of the panels. Therefore, there is a critical necessity74

to gain an appearance for the critical, coincidence frequencies, and sound transmission75

loss (STL) of the plates, taking into account the orthotropic behavior and crosswise shear76

flexibility and investigating the effects of the incidence angle in addition to the azimuthal77

angle.78

Considering the importance and application of FGM, some researchers conducted79

studies on the mechanical behavior of these materials. Gholami and Ansari [6] studied80

the forced vibrations of FG plates based on the theory of three-dimensional elasticity the-81

ory in different boundary conditions. Hashemi and Jafari [7] analyzed the nonlinear free82

vibration of a rectangular plate made of FGM using the FSDT. Thai et al. [8] investigated83

the free vibration and bending of a rectangular plate made of FGM using the simplified84

FSDT. Singh and Harsha [9], studied the static analysis of the functionally graded rect-85

angular plate using von Kármán’s nonlinear classical plate theory. Several researchers86

investigated the vibration of plates made of FGM based on CPT. Yazdi [10] analyzed the87

nonlinear free vibration of a thin plate made of FGM using the homotopy perturbation88

method (HPM) and based on CPT. Some researchers studied the linear vibrations of FG89

plates using the FSDT or HSDT. Yang and Shen [11] analyzed the free and forced vibra-90

tion of sheets made of [12] analyzed the stability, and free vibrations of plates made FGM91

by using two-dimensional HSDT. Vel and Batra [13] investigated the free and forced lin-92

ear vibrations of rectangular plates made of FGM based on the three-dimensional elastic93

theory with simply supported boundary conditions by using the power series solution94

and by comparing the results obtained from the CPT, FSDT and third-order shear de-95
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formation theory (TSDT) showed that for functionally graded materials, a more accurate96

solution is obtained from the FSDT than the TSDT. For this purpose, in this paper, the97

FSDT is used to study the nonlinear vibration of an FG plate. Some other researchers98

investigated the nonlinear vibration of FGMs. Hao et al. [14] analyzed the nonlinear dy-99

namics of a single-walled rectangular plate made of FGM in a thermal ambiance under100

external transverse loading. They used HSDT and finally found the nonlinear dynamic101

resonances of the plate by using an approximate perturbation method and the Runge-102

Kutta numerical method. Zhang et al. [15] analyzed the nonlinear dynamics of a circular103

joint plate made of FGM under external and parametric loads created on the HSDT and104

using an approximate perturbation method based on Fourier expansion. Dogan [16] in-105

vestigated the nonlinear vibrations of a cantilever plate made of FGM under random106

excitation. Huang and Shen [17, 18] investigated the nonlinear vibration and dynamic107

response of FG plates and shells in thermal environments by using the HSDT and pertur-108

bation methods. Samadani et al. [19] investigated the nonlinear vibrations of two models109

of nanobeams using the homotopy analysis method (HAM) [20].Torabi et al. [21] ana-110

lyzed the dynamic instability of nanoplates made of FGM using the HAM in different111

boundary conditions. Yoosefian et al. [22] studied the nonlinear bending of sandwich112

plates made of FGM under mechanical and thermal loads.113

The issue of sound behavior and sound transmission in panels has been investigated114

by various researchers. Amirinejad et al. [23] conducted sound wave transmission from a115

polymer foam plate using the mathematical model of the functionally graded viscoelastic116

materials (FGV). Li et al. [24] studied the effects of distributed mass loading on the sound117

radiation behavior of plates. Huang et al. [25] investigated the sound transmission of118

sandwich panels using three-dimensional elasticity theory. Xin et al. [26] analyzed the119

sound transmission of a two-part metal panel under acoustic excitation by an analyti-120

cal method. Zhang et al. [27] discussed a unified approach to predict acoustic radiation121

from rectangular plates with arbitrary boundary conditions. Hu et al. [28] analyzed the122

sound radiation from functionally graded porous plates (FGP) with arbitrary and station-123

ary boundary conditions on an elastic foundation. Arasan et al. [29], using wave number124

analysis, obtained analytical expressions for the frequency limit of thin and thick plates125

for an elastic layer of isotropic materials and were able to predict its vibroacoustic behav-126

ior. Zhou et al. [30], investigated the vibrations and sound radiation of FG plates under127

the temperature gradient along the thickness of the plate. Yang and Shen [11] analyzed128

the vibroacoustic response of the FG plate exposed to the thermal ambiance with the129

CPT and the FSDT semi-analytically (differential quadrature approximation, Galerkin130

technique, and the modal superposition method). Chandra et al. [31], analyzed the loss131

of sound transmission and vibroacoustic of an FG plate with the FSDT. Geng et al. [32]132

studied the vibration and sound radiation characteristics of a thin isotropic plate in ther-133

mal ambiance. Oliazadeh et al. [33] studied sound transmission from single-layer and134

double-layer rectangular plates using statistical energy analysis (SEA) [34] to predict the135

sound transmission loss of the single and double-walled plates. Yang et al. [35] studied136

the sound radiation from an FG plate using the theory of three-dimensional elasticity and137
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considering the state space method [36].138

Various solution methods have been applied to investigate the vibroacoustic of struc-139

tures. Some numerical methods such as the finite element method (FEM), the boundary140

element method (BEM), the Durbin’s numerical Laplace transform inversion scheme, the141

Rayleigh integral method [37], multiple time-scales method (MTSM) [38], reduced-order142

method [39], have been presented in literature. Dhainaut et al. [40] presented a finite el-143

ement formulation to predict the nonlinear random response of thin isotropic composite144

panels simultaneously exposed to high sound loads and temperatures. Jeyaraj et al. [5],145

studied the vibration-sound response of a plate made of composite materials in a ther-146

mal ambiance with the technique of combining BEM with FEM and considering the in-147

herent damping of the plate and loss factor. Norouzi and Younesian [41], using Durbin’s148

numerical Laplace transform inversion scheme, the Rayleigh integral method, and the149

MTSM investigated the vibroacoustic issue for a viscoelastic rectangular plate with a150

nonlinear geometry exposed to a subsonic compressible airflow. In [35], the Rayleigh in-151

tegral method has been employed to calculate the sound radiation of the vibration plate.152

Przekop and Rizzi [42] analyzed the dynamic response of a combined sound-heat load153

of a thin aluminum beam subjected to a sudden and intense impact with the reduced-154

order method. Some analytic approximation methods such as the Adomian decomposi-155

tion method (ADM) [43] and HAM have been considered in the literature. In [41], the156

ADM has been applied to solve the nonlinear vibroacoustic equation of a viscoelastic157

rectangular plate and in [44], HAM is applied to obtain the solution of surface acoustic158

waves in an FG plate. Some analytical methods such as the convergent power series solu-159

tion [45] and the transfer matrix method [46] have been applied in the literature. In [47],160

the convergent power series solution is applied to obtain the exact dynamic response of161

the truncated conical shell and in [25], the transfer matrix method is used to develop the162

analytical solutions of sound transmission through sandwich panels.163

However, the issue of nonlinear vibroacoustic of panels has been investigated by a164

few researchers. Kim et al. [48] investigated the nonlinear random response of thin and165

thick panels under combined sound-heat load using FSDT and von Kármán’s nonlinear166

classical plate theory. Therefore, the need for nonlinear vibroacoustic analysis of pan-167

els made of FGM is more noticeable than before. In this paper, due to the presence of168

nonlinear parameters and to accurately check the effect of these parameters and also pro-169

vide an approximate expression for the nonlinear frequency (ωNL) of the system, a semi-170

analytical method is used to solve the governing nonlinear equation. For this purpose,171

the HAM is used to solve the nonlinear differential equations governing the vibroacoustic172

of a plate made of FGM with a simply supported boundary condition. In this approach,173

by applying the Galerkin method, the nonlinear partial differential equations of motion174

are reduced into nonlinear ordinary differential equations in the time domain. The re-175

sulting equations are dimensionless and they are solved using the HAM to analyze the176

effects of different parameters on sound transmission loss and vibration response of the177

system with an approximate analytical solution.178

In this investigation, the homotopy analysis method and the Galerkin method [49,50]179
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are applied to study the nonlinear vibroacoustic analysis of functionally graded plates180

in the thermal ambiance at oblique incidence. The outline of this paper is as follows: In181

Section 2, by using von Kármán’s nonlinear strain-displacement relations and the first-182

order shear deformation theory, taking into account the specifications of the functionally183

graded plate and the sound pressure characteristics, the equations of motion are derived184

using Hamilton’s principle. Then, the governing nonlinear partial differential equations185

of the functionally graded plate are converted to nonlinear ordinary differential ones in186

the time domain through applying the Galerkin method. Then, the obtained equations187

are reduced to one equation which is solved in Section 3 using the homotopy analysis188

method. In Section 4, to calculate the free field sound radiation associated with a given189

vibration response, an acoustic model of functionally graded plate is considered. Then,190

in Section 5, the effects of different parameters such as aspect ratio, dimensionless ampli-191

tude, volume fraction power of functionally graded material, external acoustic pressure,192

incidence and azimuthal angles, temperature changes, phase portrait, sound transmis-193

sion loss, velocity and average mean square velocity of drive point and sound power194

level on the nonlinear vibration and acoustic responses of the functionally graded plates195

are investigated. Finally, in Section 6, conclusions are provided.196

2 Mathematical modeling and governing equations197

The main feature of FGM is a mixture of ceramic and metal. Its properties, including198

Young’s modulus, thermal expansion coefficient, Poisson’s ratio, mass density, and ther-199

mal conductivity, constantly change along the thickness of the plate, and the power law200

is used to present the volume fraction of ceramic and metal phases. There are different201

models for the homogenization of FGM components. If the changes in material proper-202

ties along the thickness are slow, it is possible to use the standard plan in the scale of the203

representative volume element (RVE), but if the changes in the material properties along204

the thickness are fast, more advanced averaging methods such as Mori-Tanaka [51] and205

self-consistent methods should be used. Therefore, a wide variety of grading, from slow206

change to fast change of characters, is possible for metal-ceramics [52].207

2.1 Specifications of FG plate208

Fig. 1 shows the image of a plate made of FGM with length, la width lb and thickness209

h, whose upper surface (z = h
2 ) is made of ceramic (indicated by the subscript c in the210

formulas), and its lower surface (z =− h
2 ) is made of metal (indicated by the subscript211

m in the formulas); under oblique sound pressure it shows two angles of incident and212

azimuthal. Since structures made of FGMs are most commonly used in high temperature213

ambiance where significant changes in mechanical properties of the constituent materials214

are expected, it is essential to take into consideration this temperature-dependency for215

accurate prediction of the mechanical response.216
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Figure 1: Schematic of an FG plate under oblique acoustic load.

In FGM structures, the generic material properties are assumed to be functions of
temperature and thickness direction z [18]:

P(z,T)=Pt(T)Vc(z)+Pb(T)Vm(z),

where P(z,T) represents the effective properties of this plate such as Young’s modulus E,
thermal expansion coefficient α, Poisson’s ratio ϑ, mass density ρ, and thermal conductiv-
ity κ.Pt(T) and Pb(T) are the properties at the top and bottom surfaces of the FG plate that
are assumed to be temperature-dependent, whereas the mass density is independent to
the temperature. Vc(z) and Vm(z)=1−Vc(z) are the ceramic and metal volume fractions.
Vc(z) follows a simple power law as:

Vc(z)=
(1

2
+

z
h

)n
,

where n is the index of the power law and dictates whether the FGM is rich in ceramic or
metal. According to the power law, n= 0 indicates an entirely ceramic state, and n=∞
defines an entirely metallic state. The properties of the top and bottom surfaces of the FG
plate can be formulated as a nonlinear function of temperature as follows [18]:

P=P0(P−1T−1+1+P1T+P2T2+P3T3),

in which the constants P0, P−1, P1, P2 and P3 are the coefficients of the temperature T(K)
and are specific for each material, T is the temperature at an arbitrary material point of
the plate. According to a simple rule of mixture of composite materials (Voigt model),



8 F. Samadani and S. Kazemi / Adv. Appl. Math. Mech., x (202x), pp. 1-42

the effective properties of an FG plate can be written as [18]:

E(z,T)= [Ec(T)−Em(T)]Vc(Z)+Em(T),
α(z,T)= [αc(T)−αm(T)]Vc(Z)+αm(T),
κ(z,T)= [κc(T)−κm(T)]Vc(Z)+κm(T),
ϑ(z,T)= [ϑc(T)−ϑm(T)]Vc(Z)+ϑm(T),
ρ(z,T)=(ρc−ρm)Vc(Z)+ρm.

Three cases of temperature change across the thickness of the plate are considered, i.e.,
uniform temperature rise, nonlinear temperature rise and linear temperature rise. In
uniform case, temperature field is expressed as:

T=T0+∆T,

where T0 is the initial uniform temperature T0 =300K (where the plate is assumed to be
stress free), and ∆T denotes the temperature change. Temperature change makes an ini-
tial deflection of the plate; thus, the natural frequency should be. Note that, in the cases
studied, no buckling will arise due to thermal ambiance since the edges of the plate can
move in-plane directions, so increasing the temperature will just yield a continuous de-
formation of the plate [53]. For nonlinear temperature rise, the temperature distribution
along the thickness can be obtained by solving the following steady-state heat transfer
equation by considering the boundary conditions through the thickness of the plate [18]:

− d
dz

[
κ(z)

dT
dz

]
=0,

z=
h
2
−→T=Tt,

z=−h
2
−→T=Tb,

in which Tt and Tb are the temperatures at top and bottom surfaces of the plate. The
solution of this equation, by means of polynomial series, is:

T(z)=Tb+(Tt−Tb)η(z),

where

η(z)=
1
c

[(1
2
+

z
h

)
− κcm

(n+1)κm

(1
2
+

z
h

)n+1
+

κ2
cm

(2n+1)κ2
m

(1
2
+

z
h

)2n+1

− κ3
cm

(3n+1)κ3
m

(1
2
+

z
h

)3n+1
+

κ4
cm

(4n+1)κ4
m

(1
2
+

z
h

)4n+1

− κ5
cm

(5n+1)κ5
m

(1
2
+

z
h

)5n+1]
,

C=1− κcm

(n+1)κm
+

κ2
cm

(2n+1)κ2
m
− κ3

cm
(3n+1)κ3

m
+

κ4
cm

(4n+1)κ4
m
− κ5

cm
(5n+1)κ5

m
,

κcm =κc−κm.
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For linear temperature rise and isotropic plates (pure ceramic and pure metal), the tem-
perature field will simply become as:

T(z)=Tb+(Tt−Tb)
(1

2
+

z
h

)
.

2.2 Governing equations and boundary conditions217

The equivalent single layer laminated plate theories are developed by assuming the form
of the displacement field as a linear function of the transverse dimension z. One of the
equivalent single layer laminated plate theories is the FSDT, which is based on the dis-
placement field: [54]:

u(x,y,z,t)= ū(x,y,z,t)+zϕx(x,y,t),
v(x,y,z,t)= v̄(x,y,z,t)+zϕy(x,y,t),
w(x,y,z,t)= w̄(x,y,z,t),

where ū, v̄, and w̄ denote the displacement components along the x, y and z coordinate
directions, respectively, of a point on the midplane (i.e., z=0), ϕx and ϕy are the rotations
about the y and x axis, respectively. For a small deformation, the square gradient of
displacement can be omitted; But if the normal lateral rotation angle is in the average
range, i.e., 10 to 15 degrees, the terms ( ∂w

∂x )
2, ( ∂w

∂y )
2, and ( ∂w

∂x )(
∂w
∂y ) cannot be ignored. This

induces geometrical nonlinearity, and the strains (ε) become nonlinear. By assuming
large deformations, van Kármán’s nonlinear displacement strain relations are expressed
as follows [54]:

εxx =
∂u
∂x

+
1
2

(∂w
∂x

)2
=

∂ū
∂x

+z
∂ϕx

∂x
+

1
2

(∂w̄
∂x

)2
, εyy =

∂v
∂y

+
1
2

(∂w
∂y

)2
=

∂v̄
∂y

+z
∂ϕy

∂y
+

1
2

(∂w̄
∂y

)2
, (2.1a)

εxy =
1
2

(∂u
∂y

+
∂v
∂x

+
(∂w

∂x

)(∂w
∂y

))
=

1
2

( ∂v̄
∂x

+
∂ū
∂y

+z
(∂ϕx

∂y
+

∂ϕy

∂x

)
+
(∂w̄

∂x

)(∂w̄
∂y

))
, (2.1b)

εxz =
1
2

(∂w̄
∂x

+ϕx

)
, εyz =

1
2

(∂w̄
∂y

+ϕy

)
. (2.1c)

The matrix form of Eq. (2.1) is as follows:

[ε]=


εxx
εyy
εxy
εxz
εyz

=



∂ū
∂x

+
1
2

(∂w̄
∂x

)2

∂v̄
∂y

+
1
2

(∂w̄
∂y

)2

1
2

( ∂v̄
∂x

+
∂ū
∂y

+
(∂w̄

∂x

)(∂w̄
∂y

))
1
2

(∂w̄
∂x

+ϕx

)
1
2

(∂w̄
∂y

+ϕy

)


+z



∂ϕx

∂x
∂ϕy

∂y
1
2

(∂ϕx

∂y

)(∂ϕy

∂x

)
0
0


. (2.2)
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Hooke’s law (stress-strain relations) for orthotropic FGM based on the FSDT can be shown
below [55]: 

σxx
σyy
τyz
τxz
τxy

=


C11 C12 0 0 0
C12 C22 0 0 0
0 0 C44 0 0
0 0 0 C55 0
0 0 0 0 C66




εxx
εyy
γyz
γxz
γxy

, (2.3)

where γ is the engineering strain and Cij (i, j= 1−6) are the coefficients of the stiffness
matrix, which are expressed as follows:

C11(z)=C22(z)=
E(z,T)

1−ϑ(z)2 ,

C12(z)=
E(z,T)ϑ(z)

1−ϑ(z)2 ,

C44(z)=C55(z)=C66(z)=
E(z,T)

2(1+ϑ(z))
.

2.3 Hamilton’s principle218

Hamilton’s principle to achieve the governing equation is presented as follows:

δ
∫ T

0
[U+W1+W2−K]dt=0, (2.4)

where U, K, W1 and W2 are the strain energy of the system, the kinetic energy of the
system, the work done by the external load q and the work done due to thermal effects,
respectively. The variation of strain energy is displayed as follows:

δ
∫ t2

t1

Udt=
∫ t2

t1

∫
S

∫ h
2

− h
2

[
σxxδεxx+σyyδεyy+σzzδεzz

+2(σxyδεxy+σyzδεyz+σxzδεxz)
]
dzdSdt, (2.5)

where S is the surface of the plate and δεzz = 0. The kinetic energy is obtained as fol-
lows [56]:

K=
1
2

∫
V

ρ(z)
(∂ui

∂t

)2
dV=

1
2

∫
S

∫ h
2

− h
2

ρ(z)
[(∂u

∂t

)2
+
(∂v

∂t

)2
+
(∂w

∂t

)2]
dzdS.
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The variation of kinetic energy is obtained as follows [56]:

δK=
∫

S

[
I0

(∂ū
∂t

∂δū
∂t

+
∂v̄
∂t

∂δv̄
∂t

+
∂w̄
∂t

∂δw̄
∂t

)
+ I1

(∂ū
∂t

∂δϕx

∂t
+

∂ϕx

∂t
∂δū
∂t

+
∂v̄
∂t

∂δϕy

∂t
+

∂ϕy

∂t
∂δv̄
∂t

)
+ I2

(∂ϕx

∂t
∂δϕx

∂t
+

∂ϕy

∂t
∂δϕy

∂t

)]
dS,

which (I2, I1, I0) are mass inertias defined by:

(I0, I1, I2)=
∫ h

2

− h
2

ρ(z)(1,z,z2)dz.

The variation of work done due to temperature changes is expressed as follows:

δW2=
∫

S

[
NT

xx
∂w̄
∂x

∂δw̄
∂x

+NT
xy

∂w̄
∂x

∂δw̄
∂y

+NT
yy

∂w̄
∂y

∂δw̄
∂y

]
dS,

(NT
xx,NT

yy)=−
∫ h

2

− h
2

(
α(z,T)∆T

E(z,T)
1−ϑ(z)

)
dZ, NT

xy =0.

The thermal load does not cause movement inside the plane and ∆T=T−T0 where T0 is
the initial temperature of the system, in which the plate is without tension. The variation
work done by the external load is calculated as follows:

δW1=−
∫

qδw̄dS. (2.6)

By putting the Eqs. (2.5)-(2.6) in the Eq. (2.4) and setting the displacement coefficients
to zero according to the fundamental lemma of the calculus of variations, the Euler-
Lagrange equation is obtained as follows [55]:

δū=
∂Nxx

∂x
+

∂Nxy

∂y
= I0

∂2ū
∂t2 + I1

∂2ϕx

∂t2 , (2.7)

δv̄=
∂Nyy

∂y
+

∂Nxy

∂x
= I0

∂2v̄
∂t2 + I1

∂2ϕy

∂t2 , (2.8)

δw̄=
∂Qx

∂x
+

∂Qy

∂y
+

∂

∂x

(
Nxx

∂w̄
∂x

+Nxy
∂w̄
∂y

)
+

∂

∂y

(
Nyy

∂w̄
∂y

+Nxy
∂w̄
∂x

)
+NT

xx
∂2w̄
∂x2

+2NT
xy

∂2w̄
∂x∂y

+NT
yy

∂2w̄
∂y2 +q(x,y,t)= I0

∂2w̄
∂t2 , (2.9)

δϕx :
∂Mxx

∂x
+

∂Mxy

∂y
−Qx = I2

∂2ϕx

∂t2 + I1
∂2ū
∂t2 , (2.10)

δϕy :
∂Myy

∂y
+

∂Mxy

∂x
−Qy = I2

∂2ϕy

∂t2 + I1
∂2v̄
∂t2 , (2.11)
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where Nij, Mij, and Qij are the stress resultants defined by:
Nxx
Nyy
Nxy

=
∫ h

2

− h
2


σxx
σyy
τxy

dz,


Mxx
Myy
Mxy

=
∫ h

2

− h
2

z


σxx
σyy
τxy

dz, (2.12)

{
Qx
Qy

}
=
∫ h

2

− h
2

K
{

τxz
τyz

}
dz, (2.13)

where K is the shear correction factor, which can be anticipated to be a function of z and
given by [57]:

K=
5

6−(ϑcVc(z)+ϑmVm(z)))
. (2.14)

By putting Eq. (2.2) in (2.3) and then by putting in Eqs. (2.7) and (2.12), the following
equations are obtained [54]:

A11

(∂2ū
∂x2 +

∂2w̄
∂x

∂2w̄
∂x2

)
+A12

( ∂2v̄
∂x∂y

+
∂2w̄
∂y

∂2w̄
∂x∂y

)
+B11

∂2ϕx

∂x2 +B12
∂2ϕy

∂x∂y

+A66

(∂2ū
∂y2 +

∂2v̄
∂x∂y

+
∂w̄
∂y

∂2w̄
∂x∂y

+
∂w̄
∂x

∂2w̄
∂y2

)
+B66

(∂2ϕx

∂y2 +
∂2ϕy

∂x∂y

)
= I0

∂2ū
∂t2 + I1

∂2ϕx

∂t2 , (2.15)

A66

( ∂2ū
∂x∂y

+
∂2v̄
∂x2 +

∂w̄
∂y

∂2w̄
∂x2 +

∂w̄
∂x

∂2w̄
∂x∂y

)
+B66

(∂2ϕy

∂x2 +
∂2ϕx

∂x∂y

)
+A12

( ∂2ū
∂x∂y

+
∂w̄
∂x

∂2w̄
∂x∂y

)
+A22

(∂2v̄
∂y2 +

∂w̄
∂y

∂2ū
∂y2

)
+B12

∂2ϕx

∂x∂y
+B22

∂2ϕy

∂y2

= I0
∂2v̄
∂t2 + I1

∂2ϕy

∂t2 , (2.16)

KA55

(∂2w̄
∂x2 +

∂ϕx

∂x

)
+KA44

(∂2w̄
∂y2 +

∂ϕy

∂y

)
+

∂w̄
∂x

(
A11

(∂2ū
∂x2 +

∂w̄
∂x

∂2w̄
∂x2

)
+B11

∂2ϕx

∂x2 +A12

( ∂2v̄
∂x∂y

+
∂2w̄
∂y

∂2w̄
∂x∂y

)
+B12

∂2ϕy

∂x∂y

)
+

∂2w̄
∂x2

(
A11

(∂ū
∂x

+
1
2

(∂w̄
∂x

)2)
+B11

∂ϕx

∂x
+A12

(∂v̄
∂y

+
1
2

(∂w̄
∂y

)2)
+B12

∂ϕy

∂y

)
+2

∂2w̄
∂x∂y

(
A66

(∂ū
∂y

+
∂v̄
∂x

+
∂w̄
∂y

∂w̄
∂x

)
+B66

(∂ϕx

∂y
+

∂ϕy

∂x

))
+

∂w̄
∂y

(
A66

( ∂2ū
∂x∂y

+
∂2v̄
∂x2 +

∂w̄
∂y

∂2w̄
∂y∂x2

)
+B66

( ∂2ϕx

∂x∂y
+

∂2ϕy

∂x2

))

+
∂w̄
∂x

(
A66

( ∂ū
∂y2 +

∂2v̄
∂x∂y

+
∂w̄
∂y

∂2w̄
∂x∂y

+
∂w̄
∂x

∂2w̄
∂y2

)
++B66

(∂2ϕx

∂y2 +
∂2ϕy

∂x∂y

))
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+
∂2∂w̄
∂y2

(
A12

(∂ū
∂x

+
1
2

(∂w̄
∂x

)2)
+B12

∂ϕx

∂x
+A22

(∂v̄
∂y

+
1
2

(∂w̄
∂y

)2)
+B22

∂ϕy

∂y

)

+
∂w̄
∂y

(
A22

(∂2v̄
∂y2 +

∂w̄
∂y

∂2w̄
∂y2

)
+B22

∂2ϕy

∂y2 +A12

( ∂2ū
∂x∂y

+
∂w̄
∂x

∂2w̄
∂x∂y

)
+B12

∂2ϕx

∂x∂y

)

+NT
xx

∂2w̄
∂x2 +2NT

xy
∂2w̄
∂x∂y

+NT
yy

∂2w̄
∂y2 +q(x,y,t)= I0

∂2w̄
∂t2 , (2.17)

B11

(∂2ū
∂x2 +

∂w̄
∂x

∂2w̄
∂x2

)
+D11

∂2ϕx

∂x2 +B12

( ∂2v̄
∂x∂y

+
∂w̄
∂y

∂2w̄
∂x∂y

)
+D12

∂2ϕy

∂x∂y

+B66

(∂2ū
∂y2 +

∂2v̄
∂x∂y

+
∂w̄
∂y

∂2w̄
∂x∂y

+
∂w̄
∂x

∂2w̄
∂y2

)
+D66

(∂2ϕx

∂y2 +
∂2ϕy

∂x∂y

)
−KA55

(∂w̄
∂x

+ϕx

)
= I2

∂2ϕx

∂t2 + I1
∂2ū
∂t2 , (2.18)

B66

( ∂2v̄
∂x2 +

∂2ū
∂x∂y

+
∂w̄
∂x

∂2w̄
∂x∂y

+
∂w̄
∂y

∂2w̄
∂x2

)
+D66

(∂2ϕy

∂x2 +
∂2ϕx

∂x∂y

)
+B12

( ∂2ū
∂x∂y

+
∂w̄
∂x

∂2w̄
∂x∂y

)
+B22

(∂2v̄
∂y2 +

∂w̄
∂y

∂2ū
∂y2

)
+D12

∂2ϕx

∂x∂y
+D22

∂2ϕy

∂y2 −KA44

(∂w̄
∂y

+ϕy
)

= I2
∂2ϕy

∂t2 + I1
∂2v̄
∂t2 , (2.19)

where Aij are called extensional stiffnesses, Dij the bending stiffnesses, and Bij the bending-
extensional coupling stiffnesses, which are defined in terms of the stiffness matrix as:

(Aij,Bij,Dij)=
∫ h

2

− h
2

Cij(z)(1,z,z2)dz.

Ignoring the plane moment of inertia in the above equations, I1 and I2 become zero.
Considering the simply supported boundary conditions without plane displacement, the
following relationships are established:

at x=0,la, v̄= w̄=Nxx =Mxx = ϕy =0,
at y=0,la, ū= w̄=Nyy =Myy = ϕy =0.

The following displacement functions are defined to satisfy the boundary conditions [7]:

ū(x,y,t)=
∞

∑
n=1

∞

∑
m=1

Umm(t)cos(αx)sin(βy), (2.20)

v̄(x,y,t)=
∞

∑
n=1

∞

∑
m=1

Vmn(t)sin(αx)cos(βy), (2.21)

w̄(x,y,t)=
∞

∑
n=1

∞

∑
m=1

Wmn(t)sin(αx)sin(βy), (2.22)
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ϕx(x,y,t)=
∞

∑
n=1

∞

∑
m=1

Xmn(t)cos(αx)sin(βy), (2.23)

ϕy(x,y,t)=
∞

∑
n=1

∞

∑
m=1

Ymn(t)sin(αx)cos(βy). (2.24)

In the above relations, U, V, W, X and Y are the unknown time terms, β= nπ
lb

, α= mπ
la

also219

m and n are half-wave numbers.220

2.4 Specifications of sound pressure221

The sound pressure that hits the FGM obliquely is assumed as follows [58]:

pi(x,y,t)=PieiΩ̄te−i(kxx+kyy−kzz), (2.25)

where Pi is the incident sound pressure amplitude, Ω̄ is the incident frequency, kx =
ksin(θi)cos(Φi), ky = ksin(θi)cos(Φi) and kz = kcos(θi) are the components of the wave
vector which must satisfy the condition k2

x+k2
y+k2

z = k2, k is the wave number which is

equal to Ω̄
c , where c is the speed of sound, θi is the incident angle and Φi is the azimuthal

angle. Likewise, the waves reflected and transmitted from and through the plate can be
signified as:

pr(x,y,t)=PreiΩ̄te−i(kxx+kyy+kzz), (2.26)

pt(x,y,t)=PteiΩ̄te−i(kxx+kyy−kzz), (2.27)

where Pr and Pt are the indefinite compound amplitudes of the reflected and transmit-
ted waves, respectively [58]. Moreover, assuming that the panel is not made of porous
material, the airspeed on each side of the panel is equal to the speed of the panel. By
writing the Euler equation on both sides of the panel, the relations between pressure and
transverse displacement can be conveyed as [58]:

− ∂(pi+pr)

∂z
=ρ0

∂2w
∂t2 at z=0, (2.28)

− ∂(pt)

∂z
=ρ0

∂2w
∂t2 at z=0, (2.29)

where ρ0 is the air density. Substituting, Eqs. (2.22), (2.25) and (2.26) into Eq. (2.28) and
applying the Galerkin method with suitable weighting function, sin(αx)sin(βy), vari-
able Pr is obtained in terms of Pi and d2wmn(t)

dt2 which is given in Appendix A. Similarly,
substituting Eqs. (2.22) and (2.27) into Eq. (2.29) and using the Galerkin method with
weighting function sin(αx)sin(βy), variable Pt is obtained in term of d2wmn(t)

dt2 which is
given in Appendix A. External sound pressure is assumed in the plate motion equations
as an external load:

q(x,y,t)= pi(x,y,t)+pr(x,y,t)−pt(x,y,t). (2.30)
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In this investigation, the vibration in the first mode is examined. For this purpose, by
putting m=n=1 in the Eqs. (2.20)-(2.24) and inserting them in the equations of motion
(2.15)-(2.19) and applying the Galerkin method, the equations of motion are extracted as
follows:

Π11W2−Π12U−Π13V−Π14X−Π15Y=0, (2.31)

Π21W2−Π22U−Π23V−Π24X−Π25Y=0, (2.32)

Π41W2−Π42W−Π43U−Π44V−Π45X−Π46Y=0, (2.33)

Π51W2−Π52W−Π53U−Π54V−Π55X−Π56Y=0, (2.34)

I0
d2W
dt2 +(−Π35U−Π36V+Π32)W+Π31W3+(−Π37W+Π33)X

+(−Π38W+C34)Y+Π39cos(Ω̄t+φ)=0. (2.35)

The coefficients Πij and φ in the above equations depend on the geometry and properties
of the plate, which are given in Appendix B. From the four Eqs. (2.31)-(2.34), the four
unknowns, U,V,X and Y are obtained in terms of and by substituting in the Eq. (2.35),
the following equation is derived:

d2W
dt2 +a1W+a2W2

+a3W3
+a0cos(Ωt+φ)=0.

To simplify the solution, the dimensionless form of the above equation is derived as fol-
lows:

d2W
dT2 +a1W+a2W2+a3W3+a0cos(ΩT+φ)=0, (2.36)

using the following dimensionless parameters:

W=
W
h

, T=
t
h

√
Em

ρm
, ω=Ωh

√
ρm

Em
.

The coefficients ai in the Eq. (2.36) are given in Appendix C.222

3 Applying the HAM to the equation of motion223

Now, we consider the equation of motion in a simply supported FG plate as:

d2W
dT2 +a1W(T)+a2W2(T)2+a3W3(T)3+a0cos(ωT+φ)=0, (3.1)

W(0)=A, Ẇ(0)=0. (3.2)
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Under the transformation, τ=ΩqT, Eq. (3.1) is converted to

Ω2
q

∂2W(τ)

dτ2 +a1W(τ)+a2W(τ)2+a3W(τ)3+a0cos
( ω

Ωq
τ+φ

)
=0, (3.3)

W(0)=A, Ẇ(0)=0, (3.4)

in which Ωq is the nonlinear frequency of vibration and is defined as

Ωq =
n

∑
i=0

qiωi. (3.5)

To solve Eq. (3.3) using the HAM, we choose W0(τ)=Acos(τ) as the initial guess and

L[φ(τ;q)]=ω2
0

[∂2φ(τ;q)
∂τ2 +φ(τ;q)

]
(3.6)

as the linear operator. From Eq. (3.3), we define

N [φ(τ;q),Ωq]=Ω2
q

∂2φ(τ;q)
∂τ2 +a1φ(τ;q)+a2φ(τ;q)2+a3φ(τ;q)3+a0cos

( ω

Ωq
τ+φ

)
(3.7)

as the nonlinear operator. Now, one can create the following zeroth-order deformation
equation

(1−q)L[φ(τ;q)]=qk
[
Ω2

q
∂2φ(τ;q)

∂τ2 +a1φ(τ;q)+a2φ(τ;q)2

+a3φ(τ;q)3+a0cos
( ω

Ωq
τ+φ

)]
(3.8)

with the initial conditions

φ(0;q)=A, φ̇(0;q)=0. (3.9)

Expanding φ(0;q) in the Taylor series concerning the embedding parameter q gives

φ(0;q)=W0(τ)+
+∞

∑
m=1

Wm(τ)qm. (3.10)

Differentiating the zeroth-order deformation Eq. (3.8) and the initial conditions Eq. (3.9)
m times (m≥1) concerning q and then setting q=0 and finally dividing them by m! one
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can obtain

−ω2
0

(∂2W0(τ)

∂τ2

)
−ω2

0W0(τ)−kω2
0

(∂2W0(τ)

∂τ2

)
−ka1W0(τ)−ka2W0(τ)

2

−ka3W0(τ)
3+ω2

0

(∂2W1(τ)

∂τ2

)
+ω2

0W1(τ)−ka0cos
( ω

ω0
τ+φ

)
=0, (3.11)

W1(0)=0, Ẇ1(0)=0, (3.12)

−kω2
0

(∂2W1(τ)

∂τ2

)
−2ka2W0(τ)W1(τ)−3ka3W0(τ)

2W1(τ)−ka1W1(τ)

−
ka0sin

(
ω
ω0

τ+φ
)

ωτω1

ω2
0

+ω2
0

(∂2W0(τ)

∂τ2

)
+ω2

0W2(τ)

−ω2
0

(∂2W1(τ)

∂τ2

)
−ω2

0W1(τ)−2k
(∂2W0(τ)

∂τ2

)
ω0ω1=0, (3.13)

W2(0)=0, Ẇ2(0)=0. (3.14)

Higher powers can be used if needed. Replacing the initial guess W0(τ)= Acos(τ) into
Eq. (3.11) gives(

kω2
0 A−ka1A− 3

4
ka3A3

)
cos(τ)− 1

2
kA2a2cos(2τ)− 1

4
ka3A3cos(3τ)− 1

2
ka2A2

+ω2
0

(∂2W1(τ)

∂τ2

)
+ω2

0W1(τ)−ka0cos
( ω

ω0
τ+φ

)
. (3.15)

Secular term causes dispersion of the answer and should be removed. At the same time,
the nonlinear frequency is extracted from it. To eliminate the secular term in the first-
order approximation, we set the coefficient of cos(τ) in Eq. (3.15) equal to zero. This
yield

ω0=
1
2

√
(3A2a3+4a1) (3.16)

and therefore
W1(τ)

=

(
9A5a2

3k−96A4ka2a3−12A3ω2a3k+12A3a1a3k+128A2ω2a2k−288A2a0a3k−128A2a1a2k−384a1a0k
216A4a2

3−288A2ω2a3+576A2a1a3−384ω2a1+384a2
1

)
cos(τ)

+

(
−48A4ka2a3+64A2ω2a2k−64A2a1a2k

216A4a2
3−288A2ω2a3+576A2a1a3−384ω2a1+384a2

1

)
cos(2τ)

+

(
−9A5a2

3k+12A3ω2a3k−12A3a1a3k
216A4a2

3−288A2ω2a3+576A2a1a3−384ω2a1+384a2
1

)
cos(3τ)

+

(
288A2a0a3k+384a1a0k

216A4a2
3−288A2ω2a3+576A2a1a3−384ω2a1+384a2

1

)
cos
( 2ωτ√

3A2a3+4a1
+φ
)

+

(
144A4ka2a3−192A2ω2a2k+192A2a1a2k

216A4a2
3−288A2ω2a3+576A2a1a3−384ω2a1+384a2

1

)
. (3.17)
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Similarly, we find

ω1=
1
96

Ak√
3A2a3+4a1(9A4a2

3−12A2ω2a3+24A2a1a3−16ω2a1+16a2
1)

(
27A5a2

3−576A4a2a2
3

−36A3ω2a2
3+36A3a1a2

3+960A3a2
2a3+768A2ω2a2a3−1728A2a2

3a0−768A2a1a2a3

−1280Aω2a2
2+1280Aa1a2

2−2304a0a1a3). (3.18)

Now, fundamental nonlinear frequency-amplitude relation and deflection-time and am-
plitude relation for vibrating actuated simply supported FG plate can be estimated as
below

Ω≡Ωq∼=ω0+ω1=
1
2

√
(3A2a3+4a1)

+
1

96
Ak√

3A2a3+4a1(9A4a2
3−12A2ω2a3+24A2a1a3−16ω2a1+16a2

1)

(
27A5a2

3−576A4a2a2
3

−36A3ω2a2
3+36A3a1a2

3+960A3a2
2a3+768A2ω2a2a3−1728A2a2

3a0−768A2a1a2a3

−1280Aω2a2
2+1280Aa1a2

2−2304a0a1a3) (3.19)

and

W(τ)∼=W0(τ)+W1(τ)=

(
A

+
9A5a2

3k−96A4ka2a3−12A3ω2a3k+12A3a1a3k+128A2ω2a2k−288A2a0a3k−128A2a1a2k−384a1a0k
216A4a2

3−288A2ω2a3+576A2a1a3−384ω2a1+384a2
1

)
cos(τ)

+

(
−48A4ka2a3+64A2ω2a2k−64A2a1a2k

216A4a2
3−288A2ω2a3+576A2a1a3−384ω2a1+384a2

1

)
cos(2τ)

+

(
−9A5a2

3k+12A3ω2a3k−12A3a1a3k
216A4a2

3−288A2ω2a3+576A2a1a3−384ω2a1+384a2
1

)
cos(3τ)

+

(
288A2a0a3k+384a1a0k

216A4a2
3−288A2ω2a3+576A2a1a3−384ω2a1+384a2

1

)
cos
( 2ωτ√

3A2a3+4a1
+φ
)

+

(
144A4ka2a3−192A2ω2a2k+192A2a1a2k

216A4a2
3−288A2ω2a3+576A2a1a3−384ω2a1+384a2

1

)
. (3.20)

4 Modeling the vibroacoustic response of FG plate224

In this section, an acoustic model is considered to calculate the free field sound radiation
associated with a given vibration response. The vibration response of the FG plate in
terms of displacement and velocity is resolute by applying the transmitted sound pres-
sure of the plate pt(x,y,t) obtained from Section 2. Fluid-structure interaction is not in-
volved in the present model. Acoustic wave propagation through a light homogeneous
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elastic fluid such as air, for which the fluid-structure interaction can be ignored, is defined
by the wave equation. The time average of the sound intensity is obtained from [30]:

Ī=
1
2

Real(ptẇ∗), (4.1)

where ẇ∗ is the speed of the sound particle and the superscript ∗ indicates the complex
conjugate. The sound power produced in a certain volume is identical to the surface
integral of the normal constituent of the sound intensity as:

W=
∮

Ī ·ndS, (4.2)

where n is the surface normal. If the surface utilized to evaluate this countenance is
chosen to be equal to the surface of the introduced vibrating plate, the sound power can
be written as follows:

W=
1
2

Real
(∮

ptẇ∗dS
)

. (4.3)

The above equation can be written in decibel scale as follows:

SPL=10log
( W

Wre f

)
=20log

( p
pre f

)
, (4.4)

where Wre f is the power of the sound source which is equal to 10−12(W), andpre f is the
pressure of the sound source which is equal to 20×10−6(Pa) [31]. Radiation efficiency is a
quantity to know how a vibrating object radiates sound [31], which is distinct as the ratio
of the sound power radiated per surface unit by the object to the sound power radiated
per surface unit by the sound source, as follows:

σ=
W

ρ0c0S〈Ẇ
2
〉

, (4.5)

where 〈Ẇ
2
〉= 1

8Ẇ2 is the average mean square velocity of the plate and c0 is the sound
speed [31]. Sound transmission loss is the ratio of incident sound power to transmitted
sound power. The sound transmission loss in decibels is as follows [1]:

STL=10log
( 1

τ

)
, (4.6)

where τ is the transmission coefficient, which is defined as the ratio of transmission
power and incident power

(
Wt
Wl

)
. Since the incident sound wave is a plane wave, its
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intensity is p2
i

2ρ0c0
. The incident intensity on the plane is the intensity value that is perpen-

dicular to the plane. Therefore, the incident intensity is equal to [1]:

Ii =
ρ2

i cosθi

2ρ0c0
.

Incident sound power Wl is simply achieved by multiplying the intensity of the incident
by the area of the plate, in the area it affects [30]:

Wl =
p2

i Scosθi

2ρ0c0
.

Transmitted sound power can be defined as follows [30]:

Wt =
1
2

Real
(∮

ptẇ∗dS
)

.

The above integral can be solved numerically using Simpson’s one-third rule.225

5 Results and discussions226

In this section, selected numerical results are obtainable and compared with the previous227

literature to analyze the effects of different parameters on the nonlinear natural frequen-228

cies and acoustic responses of the FG plates. Two sets of material mixtures are considered.229

One is aluminum and alumina, referred to as Al/Al2O3 and the other is stainless steel230

and silicon nitride, referred to as SUS304/Si3N4. The upper surface of these FG plates is231

ceramic-rich and the lower surface is metal-rich. The properties of Al/Al2O3 rectangular232

FG plates which are temperature-independent, Em=70×109(Pa), Ec=380×109(Pa), ρm=233

2707( kg
m3 ), ρc=3800( kg

m3 ), αm=23×10−6( 1
c ), αc=7.4×10−6( 1

c ), κm=204( W
mk ), κc=10.4( W

mk )234

and ϑm =ϑc =0.3 [18]. For Si3N4, the mass density is: ρc =2370
(

kg
m3

)
, and for SUS304 is:235

ρm=8166
(

kg
m3

)
. Young’s modulus, thermal expansion coefficients, thermal conductivities236

and Poisson’s ratios of SUS304/Si3N4, which are assumed to be temperature-dependent,237

listed in Table 1 [18, 59]:238

Table 2 shows the fundamental frequency of Al/Al2O3 square FG plate. Table 2 also239

includes the results presented by [12, 53]. The frequency parameters are in complete240

agreement with these references, which validates the linear part of the present model.241

In Table 3, the nonlinear frequency ratio
(ωNL

ωL

)
of free vibration on Al/Al2O3 square242

FG plate for different values of the index and non-dimensional amplitude A has been243

extracted and compared with the results of the references [7, 10]. As can be seen in Table244

3, the results have good accuracy. In the reference [10], the author has used CPT, whereas245

in the present research, FSDT is used, and shear effects are considered; as a result, the246
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Table 1: Temperature-dependent coefficients of material properties for SUS304/Si3N4.

Parameter Material P−1 P0 P1 P2 P3
E(Pa) Si3N4 0 348.43×109 −3.070×10−4 2.160×10−7 −8.946×10−11

SUS304 0 201.04×109 3.079×10−4 −6.534×10−7 0
α( 1

k0 ) Si3N4 0 5.8723×10−6 9.095×10−4 0 0
SUS304 0 12.330×10−6 8.086×10−4 0 0

κ( W
mk0 ) Si3N4 0 13.723 −1.032×10−3 5.466×10−7 −7.876×10−11

SUS304 0 15.379 −1.264×10−3 2.092×10−6 −7.223×10−10

ϑ Si3N4 0 0.2400 0 0 0
SUS304 0 0.3262 −2.002×10−4 3.797×10−7 0

Table 2: Evaluation of frequency parameter for a square FG plate (k=−0.81,ω=Ωh
√

ρc
Ec

, la
lb
=1,∆T=0(C0)).

la
h n Present [53] [12]

(FSDT) (FSDT) (HSDT)
• 0 0.2121 0.2121 0.2121
• 0.5 0.1814 0.1811 0.1819
5 1 0.1642 0.1636 0.164
• 4 0.1409 0.1401 0.1383
• 10 0.1331 0.1329 0.1306
• 0 0.0571 0.0577 0.0577
• 0.5 0.0485 0.0490 0.0491

10 1 0.0438 0.0442 0.0442
4 0.0379 0.0383 0.0381

10 0.0362 0.0366 0.0366

difference between the results is due to the solution theories, and the results of this study247

seem more accurate. Furthermore, the nonlinear frequency ratio is dependent on the248

amplitude of the vibration, and with increasing amplitude of the vibration; the effect of249

nonlinearity is increased.250

In Fig. 2, the linear sound transmission loss of Al/Al2O3 rectangular FG plate ex-251

tracted from the present study is compared with the results reported in [52] and CPT,252

showing good agreement.253

In the above examples, the material properties are considered as temperature-254

independent and the thermal field is assumed to be a uniform temperature rise through255

the thickness. To ensure the correctness of the solution method, the nonlinear frequency256

ratio of free vibration extracted from this study has been compared with the results257

of [18]. Table 4 shows comparisons of nonlinear frequency ratio for SUS304/Si3N4 square258

plates with temperature-dependent material properties in the thermal ambiance. These259

comparisons show that the present results agree well with existing results.260

In Fig. 3, the non-dimensional deflection of SUS304/Si3N4 square FG plate with261

temperature-dependent material properties in the thermal ambiance obtained by the262
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Table 3: Evaluation of the nonlinear frequency ratios for Al/Al2O3 square FG plate (k=−0.81, la
lb
= 40, la

lb
=

1,∆T=0(C0)).

n A Present [7] [10]
(FSDT) (FSDT) (HSDT)

• 0.25 1.0542 1.0529 1.0467
• 0.5 1.2005 1.1962 1.1758

0.2 0.75 1.4085 1.4005 1.3641
• 1 1.6553 1.6428 1.5911
• 1.5 2.2111 2.1895 2.1103
• 2 2.8091 2.7785 2.6755
• 0.25 1.0446 1.0473 1.0413

10 0.5 2.0468 2.0937 1.1563
• 0.75 1.3446 1.3630 1.3266
• 1 1.5581 1.5860 1.5335
• 1.5 2.0468 2.0937 2.0115
• 2 2.5785 2.6442 2.5355

HAM is compared to that obtained by the Runge-Kutta method shows excellent agree-263

ment.264

Fig. 4 demonstrates the effects of aspect ratio la
lb

on the nonlinear frequency ratio265

for different index of the power law values of SUS304/Si3N4 square FG plate with266

temperature-dependent material properties in the thermal ambiance. As in Figure 4 is267

seen for values 0< la
lb
< 1 by increasing the value of this geometrical ratio, the nonlinear268

Figure 2: Comparison of the linear STL (k =−0.81, la = 0.38(m),lb = 0.15(m),h = 0.00081(m), ∆T = 0(C0),
n=1000, θi =600, Φi =00).
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Table 4: Comparison of nonlinear frequency ratios for SUS304/Si3N4 square plates in the thermal ambiance
(k=−0.35,Tt =400K,Tb =300K,la =0.2m,h=0.025m).

A n
0 .05 1 2

0 Present (FSDT) 1 1 1 1
Ref. [18] (HSDT) 1 1 1 1

0.2 Present (FSDT) 1.035 1.036 1.036 1.035
Ref. [18] (HSDT) 1.022 1.022 1.022 1.022

0.4 Present (FSDT) 1.134 1.137 1.137 1.134
Ref. [18] (HSDT) 1.084 1.084 1.084 1.082

0.6 Present (FSDT) 1.283 1.288 1.287 1.282
Ref. [18] (HSDT) 1.181 1.181 1.180 1.176

0.8 Present (FSDT) 1.465 1.474 1.472 1.464
Ref. [18] (HSDT) 1.303 1.302 1.301 1.299

1 Present (FSDT) 1.669 1.682 1.679 1.668
Ref. [18] (HSDT) 1.446 1.444 1.442 1.668

frequency ratio is reduced and for values 1 < la
lb
< 4 by increasing the la

lb
, the nonlinear269

frequency ratio is increased. At this point la
lb
= 1, which plate is square, the nonlinear270

frequency ratio is minimum. By distancing the plate from square geometry, the effect of271

nonlinear geometric terms of the problem is more intense. Also, by increasing the index272

values, nonlinear frequency ratio is decreased, and this is because the property of the273

graded material changes from ceramic to metal and the softening effect increases.274

Figure 3: Comparison of the HAM results and those of Runge−Kutta method (k=−0.35, Tt=400K,Tb=300K,
la =0.2m,h=0.025m, n=10,A=1,θi =300,Φi =300).
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Figure 4: Changes in the nonlinear frequency ratios in terms of la
lb

for different values of n (k=−0.35, Tt =

400K,Tb =300K,Pi =8.6(MPa) A=1,θi =300, Φi =300).

Figure 5: Backbone curve and hardening nonlinear forced response curve (k =−0.81, a0 = 0.25,a1 = 25,a2 =
−2.5×10−4,a3 =0.125).

In Fig. 5, the blue curve signifies the free vibration behavior of the nonlinear system,275

presenting the dependency of the resonance on the vibration amplitude; this curve is so-276

called the backbone curve. The forced response is laid over on this curve to show that the277

backbone curve lies “in the middle” of the forced response curve; it is equidistant from278



F. Samadani and S. Kazemi / Adv. Appl. Math. Mech., x (202x), pp. 1-42 25

Figure 6: Backbone curve and linear forced response curve.

Figure 7: Influence of external acoustic pressure on the frequency-response (k=−0.35, Tt=400K,Tb=300K,la=
0.2m,h=0.025m,n=2, θi =300, Φi =300).

the forced response curve, where the distance is measured, as a first estimation, orthog-279

onal to the backbone curve [60]. If the coefficient of the term has a positive power of 3280

in the Doffing equation, it is called a hardening spring (tilts to the right). In hardening281

systems, the resonance frequency increases with increasing amplitude. Also, if the coef-282

ficient is negative, it is called a softening spring (tilts to the left). Resonance frequency283
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Figure 8: Effect of external acoustic pressure on the linear STL (k=−0.35, Tt =400K,Tb =300K,la =0.2m,h=
0.025m,n=2, θi =300, Φi =300).

Figure 9: Comparison of the linear and nonlinear sound transmission loss.

declines with increasing amplitude for softening systems. The nonlinear response is not284

a single-valued function and a hysteretic effect occurs for increasing and decreasing ex-285

citation frequency. This gives rise to a jump phenomenon, indicated by arrows in Fig. 5.286

Fig. 6 indicates the frequency-response of a Al/Al2O3 square FG plate to the nat-287

ural frequency of the linear system. It is seen that the curve is not tilted to the right288
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Figure 10: Influence of external acoustic pressure on the nonlinear STL (k=−0.35, Tt =400K,Tb =300K,la =
0.2m,h=0.025m,n=2, θi =300, Φi =300).

or left. An autonomous system is obtained if the external excitation is removed from289

the system. In a linear system, the frequency does not depend on the vibration am-290

plitude. Fig. 7 illustrates the variations of non-dimensional amplitude against the non-291

linear frequency ratio corresponding to different values of the external acoustic pres-292

sure in SUS304/Si3N4 square FG plate with temperature-dependent material properties293

in the thermal ambiance. It is perceived that increasing the external acoustic pressure294

leads to the distance from the forced response curve, and the hardening effects are de-295

creased and also amplitude of vibration is found to be higher. This is because flexibility296

becomes higher. In Fig. 8, the variations of linear sound transmission loss versus nonlin-297

ear frequency ratio are exposed for different values of the external acoustic pressure in298

SUS304/Si3N4 square FG plate with temperature-dependent material properties in the299

thermal ambiance. It is seen that growing the external acoustic pressure leads to a reduc-300

tion in sound transmission loss. This means that a lot of sounds are transmitted from the301

plate.302

Fig. 9 compares linear sound transmission loss and nonlinear sound transmission303

loss versus nonlinear frequency ratio. As can be seen, the graph is tilted to the right,304

which indicates the hardening of the vibration system. Fig. 10 indicates the variations305

of nonlinear sound transmission loss versus nonlinear frequency ratio for various values306

of the external acoustic pressure in SUS304/Si3N4 square FG plate with temperature-307

dependent material properties in the thermal ambiance. It is seen that increasing the308

external acoustic pressure leads to a decrease in sound transmission loss. This means309

that a lot of sounds are transmitted from the plate, and this is because the hardening310
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Figure 11: Effect of external acoustic pressure on the drive point velocity (k=−0.35, Tt=400K,Tb=300K,la=
0.2m,h=0.025m,n=2, θi =300, Φi =300).

Figure 12: Influence of external acoustic pressure on the average mean square velocity (k=−0.35, Tt=400K,Tb=
300K,la =0.2m,h=0.025m,n=2, θi =300, Φi =300).

effect decreases. Figs. 11-13 illustrate the drive point velocity, the average means square311

velocity and the sound power level versus nonlinear frequency ratio for various values312
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Figure 13: Sound power level due to point load excitation (k =−0.35, Tt = 400K,Tb = 300K,la = 0.2m,h =
0.025m,n=2, θi =300, Φi =300).

of the external acoustic pressure in SUS304/Si3N4 square FG plate with temperature-313

dependent material properties in the thermal ambiance. It is seen that increasing the314

amplitude of the incident acoustic pressure leads to the distance from the response curve315

and the velocity, average means square velocity and the sound power level of the FG316

plate are increased.317

Figs. 14-15 illustrate the variations of the frequency-response corresponding to differ-318

ent values of the incidence and azimuthal angles in SUS304/Si3N4 square FG plate with319

temperature-dependent material properties in the thermal ambiance. It is perceived that320

increasing the θi leads to the distance from the forced response curve, and also the hard-321

ening effects are increased. Also it is exhibits the increasing Φi does not have much effect322

on the frequency-response and this is due to the ignoring of external mean flow. Fig. 16323

indicates the variations of the frequency-response for various values of the Tt and Tb in324

SUS304/Si3N4 square FG plate with temperature-dependent material properties in the325

thermal ambiance. It is seen that increasing the temperature changes lead to a decrease in326

hardening effects and is closer to the forced response curve. This is because the tempera-327

ture changes have a softening effect on the total stiffness of the structure. This behavior is328

due to the fact that the natural frequencies decrease with increasing temperature changes.329

Figs. 17-18 show the variations of nonlinear sound transmission loss versus nonlin-330

ear frequency ratio for various values of the θi and Φi in SUS304/Si3N4 square FG plate331

with temperature-dependent material properties in the thermal ambiance. It is seen that332

increasing the incident angle leads to an increase in sound transmission loss. This means333

that a bit of sound is transmitted from the plate. This is because that the sound waves334
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Figure 14: Influence of the incidence angle on the frequency-response (k=−0.35, Tt = 400K,Tb = 300K,la =
0.2m,h=0.025m,n=2, θi =300, Φi =300).

Figure 15: Effect of the azimuthal angle on the frequency-response (k=−0.35, Tt=400K,Tb=300K,la=0.2m,h=
0.025m,n=2, θi =300, Φi =300).

with larger incident angles pass through the structure less than sound waves with smaller335

incident angles. Also it is observed that increasing Φi does not have much effect on the336

STL value, and this is due to the ignoring of external mean flow. Fig. 19 exhibits the vari-337

ations of nonlinear sound transmission loss versus nonlinear frequency ratio for various338
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Figure 16: Influence of the temperature changes on the frequency-response (k=−0.35, la=0.2m,h=0.025m,n=2,
θi =300, Φi =300).

Figure 17: Effect of the incidence angle on the nonlinear STL (k=−0.35, Tt =400K,Tb =300K,la =0.2m,h=
0.025m,n=2, Φi =300).

values of the Tt and Tb in SUS304/Si3N4 square FG plate with temperature-dependent339

material properties in the thermal ambiance. It is seen that increasing the temperature340
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Figure 18: Influence of the azimuthal angle on the nonlinear STL (k=−0.35, Tt=400K,Tb=300K,la=0.2m,h=
0.025m,n=2, Φi =300).

Figure 19: Effect of the temperature changes on the nonlinear STL (k =−0.35, Tt = 400K,Tb = 300K,la =
0.2m,h=0.025m,n=2, θi =300).

changes lead to a decrease in sound transmission loss. This means that a lot of sounds341

are transmitted from the plate. This is because that the temperature changes have a soft-342
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(Pi =0MPa) (Pi =30MPa)

(Pi =40MPa) (Pi =50MPa)

Figure 20: Phase diagram of the FG plate with external acoustic pressure (k =−0.81, la
lb
= 5, la

h = 20,∆T =

20(C0),n=2, θi =300,Φi =300).

ening effect on the total stiffness of the structure.343

In Fig. 20, the instability and its behavior are shown with the help of the phase dia-344

gram (the non-dimensional velocity
( dW

dT

)
versus non-dimensional deflection) for the FG345

plate with temperature-independent material properties in the thermal ambiance. It can346

be concluded that by inputting external acoustic pressure, the stable region decreases un-347

til instability occurs. In this case study, temperature change across the thickness of the348

plate is assumed uniform temperature rise.349

6 Conclusions350

In this paper, the nonlinear vibroacoustic behavior of a rectangular plate made of func-351

tionally graded material that is exposed to an incident oblique plane sound wave and352

thermal loads is determined by using the first-order shear deformation theory. The353
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Galerkin method has been utilized for reducing the governing nonlinear partial differen-354

tial equations to nonlinear ordinary differential ones in the time domain. The homotopy355

analysis method has been used for solving the resulting nonlinear ordinary differential356

equation of motion. The results display that the jump phenomenon can be seen in the357

frequency response of plate vibration. The most important observations are summarized358

as follows:359

1. By increasing the aspect ratio of the functionally graded plate, the nonlinear fre-360

quency ratio reduces for values 0< la
lb
<1 and increases for values 1< la

lb
<4. Also, by361

increasing the index of the power law values of the functionally graded plate, the362

nonlinear frequency ratio is decreased.363

2. The nonlinear response is not a single-valued function and a hysteretic effect occurs364

for increasing and decreasing excitation frequency of the functionally graded plate.365

This causes a jump phenomenon.366

3. Increasing the external acoustic pressure leads to the distance from the forced re-367

sponse curve, reducing the hardening effects and increasing the vibration ampli-368

tude of the functionally graded plate and by increasing the amplitude of the vibra-369

tion, the effect of nonlinearity is increased.370

4. Growing in external acoustic pressure reduced the sound transmission losses due371

to reduced hardening effects transmitted from the functionally graded plate.372

5. An increase in the amplitude of the incident sound pressure leads to increase in the373

velocity, the mean square velocity and the sound power level of the functionally374

graded plate.375

6. Increasing the incidence angle leads to increase in hardening effects and sound376

transmission loss of the functionally graded plate.377

7. Growing the azimuthal angle does not have much effect on the frequency-response378

and sound transmission loss of the functionally graded plate in the absence of the379

external mean flow.380

8. Increasing temperature changes lead to decrease in hardening effects and sound381

transmission loss of the functionally graded plate.382

9. By inputting external acoustic pressure, the stable region decreases until instability383

occurs.384
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Appendix A. Amplitudes of the reflected and transmitted waves385

Pr =
1
4

((
−π6m3n3ρ+π4m3nρk2

yl2
b+π4mn3ρk2

xl2
a−π2mnρk2

xk2
yl2

a l2
b

)( d2

dt2 Wmn(t)
))

,

·
(

nπ2kzm
(
− Imπ2n(−1)m(−1)neI(Ωt−kx la−ky lb),

+ Imπ2n(−1)meI(Ωt−kx la)+ Imπ2n(−1)neI(Ωt−ky lb)− Iπ2eIΩtmn
))−1

+
1
4

((
−4Iπ4eIΩtm2kzn2−4Im2π4n2kz(−1)m(−1)neI(Ωt−kx la−ky lb),

+4Im2π4n2kz(−1)neI(Ωt−ky lb)+4Im2π4n2kz(−1)meI(Ωt−kx la)
)

Pi

)
,

·
(

nπ2kzm
(
− Imπ2n(−1)m(−1)neI(Ωt−kx la−ky lb)+ Imπ2n(−1)meI(Ωt−kx la)

+ Imπ2n(−1)neI(Ωt−ky lb)− Iπ2eIΩtmn
))−1

,

Pt =−
1
4

(
ρ
( d2

dt2 Wmn(t)
)(
−π6m3n3+π4m3nk2

yl2
b+π4mn3k2

xl2
a−π2mnk2

xk2
yl2

a l2
b

))

·
(

nπ2kzm
(
− Imπ2n(−1)m(−1)neI(Ωt−kx la−ky lb)+ Imπ2n(−1)meI(Ωt−kx la)

+ Imπ2n(−1)neI(Ωt−ky lb)− Iπ2eIΩtmn
))−1

.

Appendix B. Coefficients of Eqs.(2.18)-(2.20)386
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)
,
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, Π13=
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lalb
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B11m2π2

l2
a

+
B66n2π2

l2
b
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Π15=
mπ2n(B12+B66)

lalb
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G=Π15Π24Π44Π53−Π14Π25Π44Π53−Π15Π23Π45Π53+Π13Π25Π45Π53

+Π14Π23Π46Π53−Π13Π24Π46Π53−Π15Π24Π43Π54+Π14Π25Π43Π54

+Π15Π22Π45Π54−Π12Π25Π45Π54−Π14Π22Π46Π54+Π12Π24Π46Π54

+Π15Π23Π43Π55−Π13Π25Π43Π55−Π15Π22Π44Π55+Π12Π25Π44Π55

+Π13Π22Π46Π55−Π12Π23Π46Π55−Π14Π23Π43Π56+Π13Π24Π43Π56

+Π14Π22Π44Π56−Π12Π24Π44Π56−Π13Π22Π45Π56+Π12Π23Π45Π56,

T11=
1
G
(Π23Π45Π56−Π23Π46Π55−Π24Π44Π54+Π24Π46Π54+Π25Π44Π55

−Π25Π45Π54),
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1
G
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1
G
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T32=
1
G
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1
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T34=
1
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(−Π12Π23Π46+Π12Π25Π44+Π13Π22Π46−Π13Π25Π43−Π15Π22Π44
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1
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1
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1
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√

H2
1+H2

2 , Φ=
H2

H1
,

H2=sin(Ωt−kxla)+sin(Ωt−kylb)+sin(Ωt−kxla−kylb)+sin(Ωt),
H1=cos(Ωt−kxla)+cos(Ωt−kylb)+cos(Ωt−kxla−kylb)+cos(Ωt).

Appendix C. Coefficients of Eq. (2.30)387
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a3=
1
I0

(
h3
√

ρm

Em
(Π31−1·Π21Π35T12−1·Π35Π41T13−1·Π35Π51T14

−1·Π11Π36T21−1·Π21Π36T22−1·Π36Π41T23−1·Π36Π51T24
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.
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