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Abstract. In the conforming discontinuous Galerkin method, the standard bilinear

form for the conforming finite elements is applied to discontinuous finite elements
without adding any inter-element nor penalty form. The Pk (k ≥ 1) discontinuous

finite elements and the Pk−1 weak Galerkin finite elements are adopted to approx-
imate the velocity and the pressure respectively, when solving the Stokes equations

on triangular or tetrahedral meshes. The discontinuous finite element solutions are

divergence-free and surprisingly H-div functions on the whole domain. The optimal
order convergence is achieved for both variables and for all k ≥ 1. The theory is

verified by numerical examples.
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1. Introduction

In this paper, we introduce a divergence-free conforming discontinuous Galerkin

method to solve the Stokes equations, finding unknown velocity u and pressure p such

that

−µ∆u+∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where viscosity µ > 0 is a constant, and Ω is a polygonal or polyhedral domain in

R
d (d = 2, 3). The weak form of the Stokes equations is: Find (u, p) ∈ H1

0 (Ω)× L2
0(Ω)
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such that

(µ∇u,∇v)− (p,∇ · v) = (f ,v), ∀v ∈ H1
0 (Ω), (1.4)

(q,∇ · u) = 0, ∀ q ∈ L2
0(Ω), (1.5)

where L2
0(Ω) is the L2 space with mean value 0 on the domain.

To get divergence-free finite element solutions, the conforming finite element me-

thod employs the continuous Pk finite elements and the discontinuous Pk−1 finite ele-

ments approximating the velocity and the pressure respectively on triangular or tetra-

hedral meshes, using the bilinear forms in (1.4)-(1.5). However, most such combina-

tions are not stable. The first such a working method was discovered by Scott and

Vogelius [34, 35], on 2D triangular meshes for all k ≥ 4, provided that the underly-

ing meshes have no nearly-singular vertex. Such divergence-free finite elements are

studied on special 2D and 3D meshes, or with high-order polynomial and/or macro

bubbles, in [3,7,8,10–12,14–16,18,22,27,30–33,44,60–68,68].

Another method, to get divergence-free finite element solutions, is to employ H(div)
finite element functions on triangular and tetrahedral meshes. That is, the H(div)-
Pk/discontinuous-Pk−1 mixed element also produces divergence-free solutions, cf. [26,

37,39,42]. However, as the H(div) finite element is not H1-conforming, in most cases,

additional inter-element and penalty forms are added to the variational formulation

(1.4)-(1.5). One can get rid of all such stabilizers by using proper weak gradients and

weak divergences [28,29,49,50,69].

A completely new method, to get divergence-free finite element solutions, is to be

proposed in this work. We start with totally discontinuous Pk (k ≥ 1) polynomials

to approximate the velocity. The resulting discontinuous Pk solutions are no longer

discontinuous, but are continuous in the normal direction on all edges/triangles. That

is, the finite element solutions are in the H(div,Ω) space and are point-wise divergence-

free. Let Th = {T} be a quasi-uniform triangular or tetrahedral mesh with mesh-size h.

The conforming discontinuous Galerkin (CDG) finite element spaces are defined by

Vh =
{

uh ∈ L2(Ω) : uh|T ∈ Pk(T ), T ∈ Th
}

, (1.6)

where Pk(T ) is the space of 2D or 3D vector polynomials of degree k ≥ 1 or less on T .

Some references on the CDG methods can be found in [9, 47, 48, 51–56]. The weak

Galerkin (WG) finite element spaces are defined by

Ph =
{

qh = {q0, qb} : q0|T ∈ Pk−1(T ), T ∈ T ; qb|e ∈ Pk(e),

e ∈ Eh; (q0, 1)Th + 〈qb, 1〉∂Th = 0
}

, (1.7)

where Eh is the set of edges or face-triangles in mesh Th, (·, ·)Th =
∑

T∈Th
(·, ·)T and

〈·, ·〉∂Th =
∑

T∈Th
〈·, ·〉∂T . Some references for the WG methods are [1,2,4,6,13,17,19–

21, 23–25, 36, 38, 40, 41, 43, 46, 57–59, 70]. The proposed CDG finite element method

for the Stokes equations reads: Find (uh, ph) ∈ Vh × Ph such that

(µ∇wuh,∇wvh) + (∇wph,vh) = (f ,vh), ∀vh ∈ Vh, (1.8)

(∇wqh,uh) = 0, ∀ qh ∈ Ph, (1.9)
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where Vh and Ph are defined in (1.6) and (1.7) respectively, and the weak gradients

∇wuh and ∇wph are defined in (3.2) and (2.3) below, respectively. It is shown that

both the solutions uh and ph of (1.8)-(1.9) converge quasi-optimally. Additionally, the

solution uh is an H(div) function and is divergence-free. Consequently, the method is

pressure robust, i.e., both the velocity error and the pressure error are independent of

p and µ. We verify the theory with some numerical examples in 2D and 3D.

An H(div)-conforming HDG method is proposed in [5], where, comparing to our

CDG-WG method, an inter-element trace velocity ub space [Pk(Eh)]d and its two La-

grange multiplier spaces [Pk(Eh)] for (u− ub) · n = 0, are added. Here Eh is the set of

edges/triangles in a triangular/tetrahedral mesh Th. Thus the normal jump of the dis-

continuous velocity uh is forced to zero by these five (in 3D) Pk trace spaces so that the

resulting solution is also in H(div) and consequently also divergence-free. The method

here is to choose a proper pressure finite element space Ph so that the gradient space

is precisely the BDMk space, i.e., ∇Ph = {vh ∈ H(div,Ω) : vh|T ∈ [Pk(T )]
d}. If the

pressure space is a little larger, there is no solution as the inf-sup condition would fail.

If the pressure space is a little smaller, it would not force the velocity solution uh to be

in H(div), neither divergence-free.

The rest of the paper is organized as follows. In Section 2, the auxiliary WG finite

element method is defined and the known results on the WG method are quoted. In

Section 3, the CDG method is defined and the uniqueness of the solution, its H(div)
conformity and its inf-sup condition are also proved. In Section 4, pressure-robust error

estimates for the velocity in H1-norm and for the pressure in L2-norm are established.

In Section 5, optimal order and pressure-robust convergence for the velocity in L2-norm

is proved. In Section 6, we provide several numerical examples in 2D and 3D.

2. Preliminary on WG

For the purpose of error analysis, we define a weak Galerkin finite element space as

follows for approximating the velocity,

Ṽh =
{

v = {v0,vb} : v0|T ∈ Pk(T ), T ∈ Th,vb|e ∈ Pk+1(e),

e ∈ Eh, vb|∂Ω = 0
}

. (2.1)

For a weak function vh = {v0,vb} ∈ Ṽh, its weak gradient ∇wv is a piecewise

polynomial such that ∇wv|T ∈ [Pk+1(T )]
d×d and satisfies the following equation:

(∇wvh, τ)T = −(v0,∇ · τ)T + 〈vb, τ · n〉∂T , ∀ τ ∈ [Pk+1(T )]
d×d, (2.2)

where n is the unit outward normal vector on the boundary ∂T .

For a weak pressure function q = {q0, qb} ∈ Ph in (1.7), its weak gradient ∇wq
is defined as a piecewise vector-valued polynomial such that on each T ∈ Th, ∇wq ∈
Pk(T ) satisfies

(∇wqh,ϕ)T = −(q0,∇ · ϕ)T + 〈qb,ϕ · n〉∂T , ∀ϕ ∈ [Pk(T )]
d. (2.3)



4 X. Ye and S. Zhang

We introduce two semi-norms |||v||| and ‖v‖1,h for any v ∈ Ṽh as follows:

|||v|||2 = (∇wv,∇wv), (2.4)

‖v‖21,h =
∑

T∈Th

‖∇v0‖2T +
∑

T∈Th

h−1
T ‖v0 − vb‖2∂T , (2.5)

and two semi-norms |||q||| and ‖q‖1,h for q ∈ Ph as follows:

|||q|||2 = (∇wq,∇wq), (2.6)

‖q‖21,h =
∑

T∈Th

‖∇q0‖2T +
∑

T∈Th

h−1
T ‖q0 − qb‖2∂T . (2.7)

The following norm equivalence inequalities have been proved in [2]:

C1‖v‖1,h ≤ |||v||| ≤ C2‖v‖1,h, ∀v ∈ Ṽh, (2.8)

C1‖q‖1,h ≤ |||q||| ≤ C2‖q‖1,h, ∀ q ∈ Ph. (2.9)

3. The CDG method

We extend the CDG finite element space Vh to a subspace of the WG finite element

space Ṽh. For T ∈ Th, we define the jump of τ as [τ ]e = (τ |T − τ |Tn
)/2 and the

average of τ as {τ}e = (τ |T + τ |Tn
)/2 and Tn denotes the elements neighboring to

T at an edge/triangle e. For e ∈ ∂T ∩ ∂Ω, we define [vh]e = vh and {vh}e = 0 as

a free-variable on the edge for all vh ∈ Vh.

Define Eh : Vh → Ṽh such that for v ∈ Vh

Ehv = {v, {v}} ∈ Ṽh. (3.1)

For v ∈ Vh, we define the ∇wv naturally by

∇wv = ∇wEhv, (3.2)

where ∇wEhv is defined by (2.2).

Lemma 3.1. The CDG finite element problem (1.8)-(1.9) has a unique solution.

Proof. It suffices to show that zero is the only solution of (1.8)-(1.9) if f = 0. To

this end, let f = 0 and take vh = uh in (1.8) and qh = ph in (1.9). The difference of

the two resulting equations gives

(∇wuh, ∇wuh) = 0,

which implies that ∇wuh = ∇wEhuh = 0 on each element T . By (2.8), we have

‖Ehuh‖1,h = 0 which implies that ∇uh = 0 on T and uh − {uh} = [uh] = 0 on ∂T .

Thus, we obtain uh = 0.

Since uh = 0 and f = 0, the Eq. (1.8) becomes (vh,∇wph) = 0 for any vh ∈ Vh.

Letting vh = ∇wph ∈ Pk(T ), we have ∇wph = 0. It follows from (2.9) and ph ∈ L2
0(Ω)

that ph = 0. We have proved the lemma.
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Theorem 3.1. The CDG finite element solution uh in (1.8)-(1.9) is an H0(div,Ω) function

and is divergence-free, i.e.,

uh ∈ H0(div,Ω) and ∇ · uh = 0. (3.3)

Proof. In (1.9), letting q0 = 0 and qb = 0 everywhere except on one edge/triangle e
where qb|b = [uh]e, we get, by (2.3),

0 = (∇qh,uh) = 2
〈

[uh · n], [uh · n]
〉

e
.

Thus,

[uh · n]e = 0 on all e ∈ Eh and {uh · n}|e = 0, ∀ e ∈ Eh ∩ ∂Ω,

i.e., uh ∈ H0(div,Ω).
In (1.9), letting q0 = −∇ · uh and qb = 0, we get, by (2.3),

0 = (∇qh,uh) = −(q0,∇ · uh) + 〈qb, [uh]〉∂Th = (∇ · uh,∇ · uh),

which proves (3.3).

Lemma 3.2. There exists a positive constant β independent of h such that for all q =
{q0, qb} ∈ Ph,

sup
v∈Vh

(v,∇wq)

|||v||| ≥ β‖q0‖, (3.4)

where |||v||| = ‖∇wEhv‖0 defined by (3.1), (3.2) and (2.4).

Proof. For a q0 ∈ L2
0(Ω) (because (v,∇wqb) = 0 when we choose v in the H(div)

subspace), by (2.3), there is a BDM H0(div) interpolation function v such that

∇ · v = −q0, |v|1,h ≤ C‖q0‖0, v|T ∈ Pk(T ).

Thus, v ∈ Vh and, by (2.5) and (2.8),

(v,∇wq) = ‖q0‖20 ≥ C−1|v|1,h‖q0‖0 ≥ β|||v|||‖q0‖0.

The lemma is proved.

4. Error estimates

Corresponding to the CDG method (1.8)-(1.9), we introduce a WG method. Let

ũh = {ũ0, ũb} ∈ Ṽh and p̃h ∈ Ph be the weak Galerkin finite element solution for

(1.1)-(1.3) such that for all v = {v0,vb} ∈ Ṽh and q ∈ Ph,

(µ∇wũh, ∇wv) + (∇wp̃h,v0) = (f , v0), (4.1)

(∇wq, ũ0) = 0. (4.2)
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Let Πk be a generic element-wise defined L2 projection onto [Pk(T )]
j where j =

1, d, d × d and T ∈ Th. Let Πb
k be a generic edge/face-wise defined L2 projection onto

[Pk(e)]
j for e ∈ ∂T . Define

Qhu =
{

Πku,Π
b
k+1u

}

∈ Ṽh, Qhp =
{

Πk−1p,Π
b
kp
}

∈ Ph. (4.3)

Theorem 4.1 ([45, Theorems 5.1 and 6.1]). Let ũh = {ũ0, ũb} ∈ Ṽh and p̃h ∈ Ph be

the WG finite element solution of (4.1)-(4.2). Then

h‖∇w(Qhu− ũh)‖0 + ‖u− ũ0‖0 ≤ Chk+1|u|k+1, (4.4)

‖Πk−1p− p̃h‖0 ≤ Chk|u|k+1, (4.5)

where Qh and Πk−1 are defined in (4.3).

For any function ϕ ∈ H1(T ), the following trace inequality holds true:

‖ϕ‖2e ≤ C
(

h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T

)

. (4.6)

Lemma 4.1. Let u ∈ [Hk+1(Ω)]d. Then we have

‖∇w(Qhu−Πku)‖0 ≤ Chk|u|k+1, (4.7)

where Qh and Πk are defined in (4.3).

Proof. Recall Qhu = {Πku,Π
b
k+1

u} and EhΠku = {Πku, {Πku}}. Letting q =
∇w(Qhu−Πku) and using (2.2), the trace inequality (4.6) and inverse inequality yield

‖∇w(Qhu−Πku)‖20
= ‖∇w(Qhu− EhΠhu)‖20
=
(

∇w(Qhu− EhΠku),q
)

=
∑

T∈Th

〈

Πb
k+1u− {Πku},q · n

〉

∂T

=
∑

T∈Th

〈

Πb
k+1u− u− {Πku− u},q · n

〉

∂T

≤ C

(

∑

T∈Th

h−1
T ‖Πku− u‖2∂T

)1/2(
∑

T∈Th

hT ‖q‖2∂T
)1/2

≤ Chk|u|k+1‖∇w(Qhu−Πku)‖0.

We complete the proof of the lemma.

The differences of (4.1)-(4.2) and (1.8)-(1.9) give
(

µ∇w(ũh − uh),∇wv
)

+
(

∇w(p̃h − ph),v
)

= 0, ∀v ∈ Vh, (4.8)

(ũ0 − uh, ∇wq) = 0, ∀ q ∈ Ph. (4.9)

Let v = ũ0 −uh in (4.8) and q = p̃h − ph in (4.9). Subtracting (4.8) from (4.9) implies
(

∇w(ũh − uh),∇w(ũ0 − uh)
)

= 0. (4.10)
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Lemma 4.2. Let u ∈ Hk+1(Ω) and ũh = {ũ0, ũb} ∈ Ṽh be the WG solution of (4.1)-

(4.2). Then we have

‖∇w(ũh − ũ0)‖0 ≤ Chk|u|k+1. (4.11)

Proof. For q ∈ [Pk+1(T )]
d×d, using {ũ0} = ũ0 − [ũ0], [u] = 0, ‖Πb

k+1
u − u‖∂T ≤

‖Πku− u‖∂T , (2.2), (3.2), (4.6), (2.8) and (4.4), we have

∣

∣

∣

∣

∣

∑

T∈Th

〈ũb − {ũ0},q · n〉∂T

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

T

〈

(

(ũb −Πb
k+1u)− (ũ0 −Πku)

)

+ (Πb
k+1u− u)

+ (u−Πku) + [ũ0 − u],q · n
〉

∂T

∣

∣

∣

∣

∣

≤
(

∑

T

h−1‖(ũb −Πb
k+1u)− (ũ0 −Πku)‖2∂T + 2‖Πku− u‖2∂T + 2‖ũ0 − u‖2∂T

)1/2

×
(

∑

T

h‖q‖2∂T
)1/2

≤ C
(

‖∇w(Qhu− ũh)‖0 +
√
2(h−1‖Πku− u‖0 + ‖∇(Πku− u)‖0)

+
√
2(h−1‖Πku− ũ0‖0 + 2h−1‖Πku− u‖0 + 2‖∇(Πku− u)‖0)

)

‖q‖0
≤ Chk|u|k+1‖q‖0, (4.12)

where in the last but one step we inserted another Πku and used the inverse inequality

‖Πku− ũ0‖∂T ≤ h−1/2‖Πku− ũ0‖T

instead of the trace inequality, to avoid the error estimate on ‖∇(u − ũ0)‖0 (it can be

easily done too.)

Let q = ∇w(ũh − ũ0). Using (2.2) and (4.12), we have

‖∇w(ũh − ũ0)‖20 =
(

∇w(ũh − ũ0),q
)

=
∑

T∈Th

〈ũb − {ũ0},q · n〉∂T ≤ Chk|u|k+1‖q‖0,

which proves the lemma.

Lemma 4.3. Let u ∈ Hk+1(Ω). Then we have

‖∇w(ũh − uh)‖0 ≤ Chk|u|k+1, (4.13)

‖p̃h − ph‖ ≤ Chk|u|k+1. (4.14)
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Proof. By (4.10) and (4.11), we have

(

∇w(ũh − uh),∇w(ũh − uh)
)

=
(

∇w(ũh − uh),∇w(ũh − ũ0)
)

≤ ‖∇w(ũh − uh)‖0‖∇w(ũh − ũ0)‖0
≤ Chk|u|k+1‖∇w(ũh − uh)‖0,

which implies (4.13). The estimate (4.14) follows from (4.8), (4.13) and (3.4) and we

proved the lemma.

Theorem 4.2. Let u ∈ Hk+1(Ω) ∩ H1
0 (Ω) be the exact solution of (1.1) and (1.3). Let

uh ∈ Vh and ph ∈ Ph be the finite element solution of (1.8)-(1.9). Then

‖∇w(Πku− uh)‖0 ≤ Chk|u|k+1, (4.15)

‖Πk−1p− ph‖0 ≤ Chk|u|k+1. (4.16)

Proof. By (4.4), (4.13) and (4.7), we have

‖∇w(Πku− uh)‖0 ≤ ‖∇w(Πku−Qhu)‖0 + ‖∇w(Qhu− ũh)‖0 + ‖∇w(ũh − uh)‖0
≤ Chk|u|k+1,

which yields (4.15). The estimates (4.14) and (4.5) imply (4.16). We have finished the

proof of the theorem.

5. Error estimate in the L2 norm

Consider

−µ∆ψ +∇ξ = ũ0 − uh in Ω, (5.1)

∇ ·ψ = 0 in Ω, (5.2)

ψ = 0 on ∂Ω, (5.3)

where ũ0 and uh are the solutions in (4.1) and (1.8) respectively. Assume that the dual

problem (5.1)-(5.3) has the [H2(Ω)]d ×H1(Ω)-regularity property in the sense that the

solution (ψ, ξ) ∈ [H2(Ω)]d ×H1(Ω) and the following a priori estimate holds true:

µ‖ψ‖2 + ‖ξ‖1 ≤ C‖ũ0 − uh‖. (5.4)

Theorem 5.1. Let (uh, ph) ∈ Vh × Ph be the solution of (1.8)-(1.9). Assume that (5.4)

holds true. Then, we have

‖Πku− u0‖ ≤ Chk+1|u|k+1. (5.5)
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Proof. Letψh = {ψ0,ψb} ∈ Ṽh and ξh ∈ Ph be the solution of the WG finite element

method (4.1)-(4.2) such that for all v = {v0,vb} ∈ Ṽh and q ∈ Ph

(µ∇wψh, ∇wv) + (∇wξh,v0) = (ũ0 − uh,v0), (5.6)

(ψ0,∇wq) = 0. (5.7)

Letting v = ũh − Ehuh ∈ Ṽh in (5.6) and using (4.9) gives

‖ũ0 − uh‖20 =
(

µ∇wψh, ∇w(ũh − uh)
)

. (5.8)

Letting v = ψ0 ∈ Vh in (4.8) and using (5.7) give

(

∇w(ũh − uh),∇ψ0

)

= 0. (5.9)

Using (5.8), (5.9) and (4.11), we have

‖ũ0 − uh‖20 =
(

µ∇w(ψh −ψ0), ∇w(ũh − uh)
)

≤ Chk+1µ‖ψ‖2‖u‖k+1. (5.10)

It follows from (5.10) and (5.4),

‖ũ0 − uh‖0 ≤ hk+1‖u‖k+1. (5.11)

The triangle inequality, (5.11) and (4.4) imply

‖Πku− uh‖0 ≤ ‖Πku− ũ0‖0 + ‖ũ0 − uh‖0 ≤ Chk+1‖u‖k+1.

We have proved the theorem.

6. Numerical experiments

In the numerical computation in 2D, the domain is Ω = (0, 1) × (0, 1). We choose

an f (depending on µ) in (1.1) so that the exact solution of (1.1)-(1.3) is

u =

(

(2y − 6y2 + 4y3)(x2 − 2x3 + x4)
−(2x− 6x2 + 4x3)(y2 − 2y3 + y4)

)

,

p = −2x3 + 3x2 − x.

(6.1)

We compute the solution (6.1) on triangular grids shown in Fig. 1 by the Pk-

CDG/Pk−1-WG mixed finite elements for k = 1, 2, 3, 4, 5. The results are listed in Ta-

bles 1-5. The optimal order of convergence is achieved for all solutions in all norms.

From the data, we can see the method is pressure robust that the error is independent

of viscosity µ.

We note that on some high level grids the computer round-off error exceeds the

truncation error, when µ = 10−6, in Tables 3-5.
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Figure 1: The first three grids for the computation in Tables 1-5.

Table 1: The error and the computed order of convergence by the P1 element for the solution (6.1) on
Fig. 1 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P1-CDG/P0-WG elements, µ = 1 in (1.1).

5 0.9385E-03 1.77 0.2850E-01 0.99 0.2115E-01 1.01

6 0.2498E-03 1.91 0.1418E-01 1.01 0.1067E-01 0.99

7 0.6409E-04 1.96 0.7064E-02 1.00 0.5369E-02 0.99

By the P1-CDG/P0-WG elements, µ = 10−6 in (1.1).

5 0.9385E-03 1.77 0.2850E-01 0.99 0.2113E-07 1.01

6 0.2498E-03 1.91 0.1418E-01 1.01 0.1067E-07 0.99

7 0.6409E-04 1.96 0.7064E-02 1.00 0.5371E-08 0.99

Table 2: The error and the computed order of convergence by the P2 element for the solution (6.1) on
Fig. 1 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P2-CDG/P1-WG elements, µ = 1 in (1.1).

4 0.1080E-03 0.00 0.7306E-02 0.00 0.1453E-01 0.00

5 0.1258E-04 3.10 0.1842E-02 1.99 0.4717E-02 1.62

6 0.1524E-05 3.04 0.4595E-03 2.00 0.1329E-02 1.83

By the P2-CDG/P1-WG elements, µ = 10−6 in (1.1).

4 0.1080E-03 3.12 0.7306E-02 1.92 0.1456E-07 1.13

5 0.1258E-04 3.10 0.1842E-02 1.99 0.4725E-08 1.62

6 0.1524E-05 3.04 0.4595E-03 2.00 0.1373E-08 1.78

We compute the 2D solution (6.1) again on slightly perturbed triangular grids

shown in Fig. 2 by the Pk-CDG/Pk−1-WG mixed finite elements for k = 1, 2, 3, 4, 5.

The results are listed in Tables 6-10. The optimal order of convergence is achieved for

all solutions in all norms.
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Table 3: The error and the computed order of convergence by the P3 element for the solution (6.1) on
Fig. 1 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P3-CDG/P2-WG elements, µ = 1 in (1.1).

4 0.7562E-05 3.89 0.6979E-03 2.85 0.1852E-02 2.57

5 0.4798E-06 3.98 0.8938E-04 2.97 0.2634E-03 2.81

6 0.3004E-07 4.00 0.1125E-04 2.99 0.3497E-04 2.91

By the P3-CDG/P2-WG elements, µ = 10−6 in (1.1).

4 0.7562E-05 3.89 0.6979E-03 2.85 0.1929E-08 2.51

5 0.4798E-06 3.98 0.8938E-04 2.97 0.3937E-09 2.29

6 0.3004E-07 4.00 0.1125E-04 2.99 0.3334E-09 0.24

Table 4: The error and the computed order of convergence by the P4 element for the solution (6.1) on
Fig. 1 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P4-CDG/P3-WG elements, µ = 1 in (1.1).

3 0.1583E-04 4.49 0.8399E-03 3.59 0.7350E-03 3.40

4 0.5330E-06 4.89 0.5711E-04 3.88 0.5016E-04 3.87

5 0.1701E-07 4.97 0.3700E-05 3.95 0.3191E-05 3.97

By the P4-CDG/P3-WG elements, µ = 10−6 in (1.1).

3 0.1583E-04 4.49 0.8399E-03 3.59 0.8573E-09 3.18

4 0.5330E-06 4.89 0.5711E-04 3.88 0.4274E-09 1.00

5 0.1701E-07 4.97 0.3701E-05 3.95 0.4401E-09 0.00

Table 5: The error and the computed order of convergence by the P5 element for the solution (6.1) on
Fig. 1 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P5-CDG/P4-WG elements, µ = 1 in (1.1).

2 0.6597E-04 4.15 0.2216E-02 3.40 0.1255E-02 3.16

3 0.1285E-05 5.68 0.8154E-04 4.76 0.4852E-04 4.69

4 0.2218E-07 5.86 0.2737E-05 4.90 0.1652E-05 4.88

By the P5-CDG/P4-WG elements, µ = 10−6 in (1.1).

2 0.6597E-04 4.15 0.2216E-02 3.40 0.1430E-08 3.00

3 0.1285E-05 5.68 0.8154E-04 4.76 0.3918E-09 1.87

4 0.2218E-07 5.86 0.2738E-05 4.90 0.5148E-09 0.00
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Figure 2: The first three grids for the computation in Tables 6-10.

Table 6: The error and the computed order of convergence by the P1 element for the solution (6.1) on
Fig. 2 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P1-CDG/P0-WG elements, µ = 1 in (1.1).

4 0.1331E-02 1.74 0.3608E-01 0.95 0.1617E-01 1.13

5 0.3531E-03 1.91 0.1818E-01 0.99 0.7686E-02 1.07

6 0.9023E-04 1.97 0.9104E-02 1.00 0.3821E-02 1.01

By the P1-CDG/P0-WG elements, µ = 10−6 in (1.1).

4 0.1331E-02 1.74 0.3608E-01 0.95 0.1617E-07 1.14

5 0.3531E-03 1.91 0.1818E-01 0.99 0.7692E-08 1.07

6 0.9023E-04 1.97 0.9104E-02 1.00 0.3836E-08 1.00

Table 7: The error and the computed order of convergence by the P2 element for the solution (6.1) on
Fig. 2 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P2-CDG/P1-WG elements, µ = 1 in (1.1).

4 0.2849E-04 3.00 0.2592E-02 1.92 0.1695E-02 1.32

5 0.3518E-05 3.02 0.6589E-03 1.98 0.5933E-03 1.51

6 0.4381E-06 3.01 0.1657E-03 1.99 0.1728E-03 1.78

By the P2-CDG/P1-WG elements, µ = 10−6 in (1.1).

4 0.2849E-04 3.00 0.2592E-02 1.92 0.1711E-08 1.32

5 0.3518E-05 3.02 0.6589E-03 1.98 0.6852E-09 1.32

6 0.4381E-06 3.01 0.1657E-03 1.99 0.3558E-09 0.95

In the 3D numerical computation, the domain is Ω = (0, 1) × (0, 1) × (0, 1). We

choose an f in (1.1) so that the exact solution is

u =





−210(x− 1)2x2(y − 1)2y2(z − 3z2 + 2z3)
210(x− 1)2x2(y − 1)2y2(z − 3z2 + 2z3)

210[(x− 3x2 + 2x3)(y2 − y)2 − (x2 − x)2(y − 3y2 + 2y3)](z2 − z)2



 ,

p = −10(3y2 − 2y3 − y).

(6.2)
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Table 8: The error and the computed order of convergence by the P3 element for the solution (6.1) on
Fig. 2 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P3-CDG/P2-WG elements, µ = 1 in (1.1).

3 0.1821E-04 3.31 0.1234E-02 2.56 0.1475E-02 2.76

4 0.1234E-05 3.88 0.1634E-03 2.92 0.1542E-03 3.26

5 0.7930E-07 3.96 0.2084E-04 2.97 0.1622E-04 3.25

By the P3-CDG/P2-WG elements, µ = 10−6 in (1.1).

3 0.1821E-04 3.31 0.1234E-02 2.56 0.1570E-08 2.67

4 0.1234E-05 3.88 0.1634E-03 2.92 0.4175E-09 1.91

5 0.7930E-07 3.96 0.2084E-04 2.97 0.3651E-09 0.19

Table 9: The error and the computed order of convergence by the P4 element for the solution (6.1) on
Fig. 2 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P4-CDG/P3-WG elements, µ = 1 in (1.1).

2 0.3561E-04 3.66 0.1743E-02 2.87 0.1885E-02 3.19

3 0.1193E-05 4.90 0.1090E-03 4.00 0.1854E-03 3.35

4 0.3911E-07 4.93 0.7003E-05 3.96 0.1422E-04 3.70

By the P4-CDG/P3-WG elements, µ = 10−6 in (1.1).

2 0.3561E-04 3.66 0.1743E-02 2.87 0.1985E-08 3.11

3 0.1193E-05 4.90 0.1090E-03 4.00 0.5254E-09 1.92

4 0.3911E-07 4.93 0.7003E-05 3.96 0.4155E-09 0.34

Table 10: The error and the computed order of convergence by the P5 element for the solution (6.1) on
Fig. 2 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P5-CDG/P4-WG elements, µ = 1 in (1.1).

2 0.3155E-05 5.79 0.1881E-03 4.80 0.1420E-03 4.88

3 0.5300E-07 5.90 0.6291E-05 4.90 0.4695E-05 4.92

4 0.1202E-08 5.46 0.3843E-06 4.03 0.1514E-06 4.95

By the P5-CDG/P4-WG elements, µ = 10−6 in (1.1).

2 0.3155E-05 5.79 0.1881E-03 4.80 0.5111E-09 3.05

3 0.5299E-07 5.90 0.6289E-05 4.90 0.4639E-09 0.14

4 0.1197E-08 5.47 0.3832E-06 4.04 0.5125E-09 0.00
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Figure 3: The first three tetrahedral grids for the computation in Tables 11-13.

Table 11: The error and the computed order of convergence by the P1 element for the solution (6.2) on
Fig. 3 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P1-CDG/P0-WG elements, µ = 1 in (1.1).

3 0.452E-01 0.91 0.564E+00 0.88 0.434E+00 2.25

4 0.137E-01 1.72 0.226E+00 1.32 0.108E+00 2.01

5 0.365E-02 1.91 0.971E-01 1.22 0.227E-01 2.25

By the P1-CDG/P0-WG elements, µ = 10−3 in (1.1).

3 0.568E-01 0.72 0.751E+00 0.64 0.635E-03 2.20

4 0.145E-01 1.97 0.235E+00 1.67 0.144E-03 2.14

5 0.371E-02 1.97 0.974E-01 1.27 0.260E-04 2.47

Table 12: The error and the computed order of convergence by the P2 element for the solution (6.2) on
Fig. 3 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P2-CDG/P1-WG elements, µ = 1 in (1.1).

3 0.593E-02 3.08 0.172E+00 2.18 0.131E+00 2.03

4 0.570E-03 3.38 0.392E-01 2.14 0.231E-01 2.50

5 0.558E-04 3.35 0.923E-02 2.08 0.319E-03 6.18

By the P2-CDG/P1-WG elements, µ = 10−3 in (1.1).

3 0.592E-02 3.09 0.172E+00 2.19 0.132E-03 2.03

4 0.646E-03 3.19 0.374E-01 2.20 0.177E-04 2.89

5 0.689E-04 3.23 0.908E-02 2.04 0.238E-05 2.90

We numerically compare the CDG-WG divergence-free finite element method with

an HDG divergence-free finite element method, in [5, (2.6)], in Table 14. The HDG

finite element method [5] adds a ub [Pk(Eh)]d velocity space to the CDG velocity space,

where Eh is the set of all triangles in the tetrahedral mesh Th. And it also adds two
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Table 13: The error and the computed order of convergence by the P3 element for the solution (6.2) on
Fig. 3 meshes.

Grid ‖u− uh‖0 O(hr) |||u− uh||| O(hr) ‖Πk−1p− p0‖0 O(hr)

By the P3-CDG/P2-WG elements, µ = 1 in (1.1).

3 0.688E-03 3.90 0.353E-01 2.87 0.215E-01 3.66

4 0.427E-04 4.01 0.478E-02 2.89 0.117E-02 4.19

5 0.268E-05 3.99 0.615E-03 2.96 0.220E-04 5.74

By the P3-CDG/P2-WG elements, µ = 10−3 in (1.1).

3 0.701E-03 3.92 0.357E-01 2.86 0.247E-04 3.30

4 0.425E-04 4.04 0.477E-02 2.90 0.933E-06 4.72

5 0.267E-05 3.99 0.614E-03 2.96 0.311E-07 4.91

Table 14: The error and the computed order of convergence for (6.2) on Fig. 3 meshes.

Grid ‖u− uh‖0 O(hr) ‖Πk−1p− p0‖0 O(hr) d.o.f.

By the P1-CDG/P0-WG elements, µ = 1.

1 0.897E-01 0.0 0.653E+00 0.0 132

2 0.705E-01 0.3 0.142E-01 5.5 984

3 0.452E-01 0.9 0.434E+00 2.3 7584

4 0.137E-01 1.7 0.108E+00 2.0 59520

5 0.365E-02 1.9 0.227E-01 2.2 471552

By the P1-HDG method (2.6) in [5], µ = 1.

1 0.872E-01 0.0 0.793E+00 0.0 276

2 0.877E-01 0.0 0.295E+01 0.0 1992

3 0.516E-01 0.8 0.635E+00 2.2 15072

4 0.122E-01 2.1 0.186E+00 1.8 117120

5 0.278E-02 2.1 0.413E-01 2.2 923136

Pk(Eh) Lagrange multiplier spaces, on the two sides of ub · n, to enforce the H(div)
continuity of the discrete velocity solution. Thus the number of degrees of freedom,

i.e., the number of unknowns, of the HDG method [5] nearly doubles that of the CDG-

WG method proposed in this manuscript, cf. Table 14. The two methods are about

equally accurate, as shown in Table 14.
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