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Abstract. The Ripa model consists of the shallow water equations and terms which
take the horizontal temperature fluctuations into account. The pollutant transport
model describes the transport and diffusion of pollutants in shallow water flows. Both
models admit hydrostatic solutions in which the gradient of the flux term is exactly
balanced by the source term on the right-hand side. In this paper, we write both
models in a unified form and propose a well-balanced fifth-order finite difference al-
ternative weighted essentially non-oscillatory (AWENO) scheme, which allows using
arbitrary monotone, Lipschitz continuous and consistent numerical flux. For illustra-
tion purposes, the Lax-Friedrichs flux is employed. In order to design a well-balanced
AWENO scheme, reformulation of the source term and linearization of the WENO in-
terpolation operator are made. The well-balancedness of the proposed method will
be analysed theoretically in this paper. Numerical examples verify the well-balanced
property, high-order accuracy and effectiveness of our approach.

AMS subject classifications: 35L65, 65M06, 76M20
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1 Introduction

The shallow water equations (SWEs) are attractive among researchers due to their wide
range of applications in describing the flood waves, dam breaks and tidal flows in coastal
regions. A tremendous amount of numerical approaches for the shallow water equations
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were developed in the recent literature, and readers are referred to [1, 9, 11–14, 26, 28, 36]
and references therein.

In this paper, we study two models related to the shallow water equations, i.e., the
Ripa model and the pollutant transport model. The Ripa model, which was introduced
in [17, 31, 32] to model ocean currents when temperature fluctuations play an important
role, consists of the SWEs and terms which take the horizontal temperature fluctuations
into account. The governing equations of the systems are derived by integrating ver-
tically the velocity fields, density, and horizontal pressure gradient in each layer of the
multi-layer model. Since the motion and behavior of the currents are influenced by forces
such as temperature acting on the water, a horizontal temperature gradient is introduced
to represent the variation in fluid density. This demonstrates the importance of the study
on the Ripa model for understanding real-world phenomena. The pollutant transport
model, which was studied in [2,10], comprises SWEs and terms which concern transport
of a passive pollutant in the flow modeled by the Saint-Venant system. Due to the fact
that the transport of pollutants in rivers, reservoirs, oceans and some coastal areas may
have harmful effects on the environment, it is necessary to predict the transport of pollu-
tants, find their location and concentration, and provide accurate and reliable estimates,
which would significantly help to improve the environment.

For simplicity, the Ripa model and the pollutant transport model can be written into
a unified form,

∂Q
∂t

+∇·F(Q)=S(Q,b), (1.1)

where Q, F(Q) and S(Q,b) are vectors of conservative variables, flux and source, respec-
tively, with

Q=

 h
hu
hξ

, F(Q)=

 hu

hu⊗u+
1
2

gh2φ(ξ)Id

hξu

, S(Q,b)=

 0
−ghφ(ξ)∇b

0

. (1.2)

with

ξ=

{
θ, Ripa model,
T, Pollutant transport model,

φ(ξ)=

{
θ, Ripa model,
1, Pollutant transport model,

where d is the dimension of the space, h denotes the water height, u is the water velocity,
θ is the temperature, T is the pollutant concentration, g is the gravitational constant and
b= b(x) denotes the bottom topography. Here we consider the dimensionless model. In
addition, h+b stands for the water surface. A notable feature of the system (1.1) is that
both models admit the following steady state solutions,

h+b=constant, u=0, ξ=constant. (1.3)

This is usually called C-property, where ”C” stands for ”constant”. At the discrete level,
a scheme which preserves the C-property is referred to as a well-balanced scheme. The
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advantages of using a well-balanced scheme can be found in [41]. The most important
advantage of a well-balanced scheme is that it can accurately resolve small perturbations
of a steady state solution on relatively coarse meshes.

The difficulty is that the solution of both systems may contain non-linear shock waves,
rarefaction waves and linear discontinuities, so that the solution itself is usually not
smooth. Even worse, if the bottom is non-flat, their interactions may lead to very com-
plex wave structures and non-trivial equilibria, which are numerically difficult to main-
tain. Therefore, designing an reliable numerical method for this model is a challenging
task but critical. For the Ripa model, Chertock et al. built a well-balanced and positivity-
preserving central upwind scheme in [15], in which an interface tracking method is cou-
pled. Desveaux et al. proposed in [18] a relaxation technique and exhibited an approx-
imate Riemann solver to design a well-balanced scheme for Ripa model. In [35], a new
well-balanced central finite volume scheme was introduced both in one and two dimen-
sions. In [21], the authors designed a high order well-balanced finite difference weighted
essentially non-oscillatory (WENO) scheme for the Ripa model where high-order accu-
racy was achieved by using the traditional WENO reconstruction technique. For the pol-
lutant transport model, Kurganov and Levy proposed in [23] a central-upwind scheme
for approximating solutions of the Saint-Venant system. In [24], a well-balanced finite
difference WENO scheme is presented for modelling transport and diffusion of pollu-
tant in shallow water flows. Qian et al. introduced in [29] a central WENO scheme for
the sediment transport model in shallow water. In [16], a finite-volume-particle method
was proposed where they used finite volume methods for the shallow water equations
and particle method for the transport equation of pollutant. Xu and Shu applied the
anti-diffusive high order WENO scheme to the pollutant transport model in [42].

Our aim of this paper is to design a well-balanced high order finite difference alter-
native weighted essentially non-oscillatory (AWENO) scheme [22,39] for the Ripa model
and the pollutant transport model. Compared with the classical WENO schemes [4–
8], the AWENO scheme requires polynomial interpolation procedure on the conserva-
tive variables rather than flux reconstruction procedure in the classical finite difference
WENO scheme. The advantage of the AWENO scheme is that arbitrary monotone, Lip-
schitz continuous and consistent numerical flux can be applied to the framework [27],
and it provides superior free-stream and vortex preservation on the generalized curvilin-
ear meshes easily, whereas only the smooth flux splitting can be used to reconstruct the
flux functions in the classical finite difference WENO formulation. Besides, the AWENO
scheme has higher resolution, less dissipation and dispersion errors than classical WENO
schemes. Moreover, the AWENO scheme has potential in designing well-balanced and
equilibrium-preserving methods for a variety of models in compressible fluid dynamics,
e.g., [19, 20, 38]. However, direct use of the AWENO scheme does not lead to a well-
balanced discretization. As a result, the C-property is not satisfied. To remedy this draw-
back, we mimic [40] to reformulate the source term. The idea is to rewrite h into (h+b)−b
since the water surface h+b and the bottom topography b do not change with time when
solutions are at the steady state (1.3). Besides, we linearize the WENO interpolation op-
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erator in the sense that the non-linear weights for the bottom topography b are the same
as those for the water depth h. As a result, the water surface would always be a constant
when the flow is hydrostatic. We then prove that the proposed method is well-balanced.
Finally, a variety of numerical examples verify our theory and indicate that our approach
has potentials in capturing basic physical structures, i.e., rarefaction and shock waves,
for more general problems, e.g., shock-tube problem, small perturbations imposed on
steady-state solutions, dam break simulations, etc.

The rest of this paper is organized as follows. In Section 2, we revisit the traditional
fifth-order finite difference AWENO scheme and introduce how to apply it to the model
(1.1). Then well-balanced modifications of the source term in (1.1) and the AWENO
scheme are introduced in Section 3, where a unified framework is discussed for both
the Ripa and pollutant transport models. A variety of numerical examples illustrate the
high-order of accuracy and effectiveness of our approach in Section 4 and Section 5 for
the Ripa and pollutant transport models, respectively. Finally, conclusions will be given
in Section 6.

2 Traditional fifth-order finite difference AWENO scheme

Let Ω = [a,b] be the computational domain, and let Ω = ∪Ii be a uniform partition of
the computational domain Ω, with Ii := [xi− 1

2
,xi+ 1

2
], i = 1,2,··· ,Nx. Here xi+ 1

2
are the

cell interfaces, with finite difference nodes being defined by xi = xi− 1
2
+ ∆x

2 , where ∆x =
(b−a)/Nx is the length of the cell Ii.

In the following subsections, the fifth-order finite difference AWENO scheme is intro-
duced for the model (1.1).

2.1 Discretization of the term ∂Ψ/∂x (Ψ∈{F,b})

The traditional conservative discretization of the term ∂Ψ/∂x, where Ψ∈{F,b}, reads

∂Ψ
∂x

(xi)=
1

∆x

(
Ψi+ 1

2
−Ψi− 1

2

)
, (2.1)

with Ψi+ 1
2

being defined at cell interfaces. According to [33], the following formula pro-
vides a sixth-order approximation of Ψi± 1

2
,

Ψi± 1
2
≈ Ψ̂i± 1

2
=Ψ(0)

i± 1
2
− 1

24
∆x2Ψ(2)

i± 1
2
+

7
5760

∆x4Ψ(4)
i± 1

2︸ ︷︷ ︸
:=D

i± 1
2
[Ψ]

, (2.2)

where the superscripts represent the orders of spatial derivatives, and the linear operator
D is used to denote high-order terms. Since Ψ(0)

i± 1
2
, Ψ(2)

i± 1
2

and Ψ(4)
i± 1

2
are unknown, they
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need to be approximated so that the numerical discretization is an overall fifth-order
approximation of ∂Ψ/∂x|xi . To this end, we adopt in this paper the fifth-order AWENO
discretization [22, 39], i.e., at each cell interface x= xi+ 1

2
one has

Ψ(0)
i+ 1

2
≈


ΨRP

i+ 1
2

(
Q−

i+ 1
2
,Q+

i+ 1
2

)
, if Ψ=F,

1
2

(
Ψ−

i+ 1
2
+Ψ+

i+ 1
2

)
, if Ψ=b,

(2.3a)

∆x2Ψ(2)
i+ 1

2
≈ 1

48
(−5Ψi−2+39Ψi−1−34Ψi−34Ψi+1+39Ψi+2−5Ψi+3), (2.3b)

∆x4Ψ(4)
i+ 1

2
≈ 1

2
(Ψi−2−3Ψi−1+2Ψi+2Ψi+1−3Ψi+2+Ψi+3), (2.3c)

where Ψ(2)
i+ 1

2
and Ψ(4)

i+ 1
2

are the second and the fourth derivatives of Ψ at x= xi+ 1
2
, respec-

tively, Q−
i+ 1

2
and Q+

i+ 1
2

are fifth-order approximations of Qi+ 1
2

produced by WENO inter-

polation which will be introduced in the next section, FRP
i+ 1

2
(Q−

i+ 1
2
,Q+

i+ 1
2
) is an approximate

solution to the Riemann problem associated with the left and right initial states Q−
i+ 1

2
and

Q+
i+ 1

2
, respectively. In this paper, the Lax-Friedrichs numerical flux is employed, i.e.,

FRP
i+ 1

2

(
Q−

i+ 1
2
,Q+

i+ 1
2

)
=

1
2

(
F(Q−

i+ 1
2
)+F(Q+

i+ 1
2
)
)
− α

2

(
Q+

i+ 1
2
−Q−

i+ 1
2

)
, (2.4)

where α=maxi{|un
i |+cn

i } and c=
√

ghφ(ξ) is the speed of sound.

2.2 WENO interpolation

In this section, the fifth order WENO interpolation procedure is briefly reviewed. Details
can be found in [39]. We only show computation of q−

i+ 1
2
, where q is a variable to be

interpolated. Computation of q+
i+ 1

2
can be done in a mirror-symmetric way.

The WENO interpolation is based on the large stencil S5={qi−2,qi−1,qi,qi+1,qi+2,qi+3}
with its sub-stencils S0 = {qi−2,qi−1,qi}, S1 = {qi−1,qi,qi+1} and S2 = {qi,qi+1,qi+2}, see

S5

xi−2 xi−1 xi xi+1 xi+2

xi+1/2

S0 β0

S1 β1

S2 β2

Figure 1: The grid points, stencil S5 and its sub-stencils S0, S1, S2, used in the fifth order WENO interpolation
procedure.
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Fig. 1. Then a second-degree polynomial, denoted by W−
i+ 1

2
[q], is constructed on S5 by a

convex combination of three second-degree Lagrange interpolation polynomials q(k)(x)
constructed respectively on the stencils S0, S1 and S2, such that the function value of this
polynomial is a fifth-order approximation of q(xi+ 1

2
), i.e.,

q(xi+ 1
2
)≈q−

i+ 1
2
=W−

i+ 1
2
[q]=

2

∑
k=0

dkq(k)(xi+ 1
2
), (2.5)

where dk are optimal (linear) weights with {d0 =1/16, d1 =5/8, d2 =5/16} and explicit
form of q(k)(xi+ 1

2
) are

q(0)(xi+ 1
2
)=

3
8

qi−2−
5
4

qi−1+
15
8

qi, (2.6a)

q(1)(xi+ 1
2
)=−1

8
qi−1+

3
4

qi+
3
8

qi+1, (2.6b)

q(2)(xi+ 1
2
)=

3
8

qi+
3
4

qi+1−
1
8

qi+2. (2.6c)

To avoid numerical oscillations near discontinuities, the optimal weights are replaced by
the non-linear weights ωk. Here we adopt the one designed in [4, 39] (i.e., Z-type non-
linear weights):

ωk =
αk

∑2
s=0 αs

, αk =dk

(
1+
(

τ5

βk+ε

)2
)

, (2.7)

where ε is a sensitivity parameter being used to avoid a division by zero, τ5 = |β0−β2|
is the global (on S5) optimal-order smoothness indicator with local (on Sk) smoothness
indicators βk being explicitly computed by

β0=
13
12

(qi−2−2qi−1+qi)
2+

1
4
(qi−2−4qi−1+3qi)

2, (2.8a)

β1=
13
12

(qi−1−2qi+qi+1)
2+

1
4
(qi−1−qi+1)

2, (2.8b)

β2=
13
12

(qi−2qi+1+qi+2)
2+

1
4
(3qi−4qi+1+qi+2)

2. (2.8c)

It is suggested in [3, 30] that the WENO operator should used in characteristic space to
reduce spurious oscillations. For the system (1.1), the eigenvalues of the Jacobian matrix
∂F(Q)/∂Q are

λ1=u, λ2=u−c, λ3=u+c,

where c=
√

ghφ(ξ) is the speed of sound. The left and right eigenvectors lk and rk corre-
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sponding to λk form the following left and right eigen-matrices, respectively,

L=

l1
l2
l3

=


− ξη(ξ)

2φ(ξ)
0

η(ξ)

2φ(ξ)

ξ(2φ(ξ)u+η(ξ)c)
4φ(ξ)c

−ξ

2c
ξφ′(ξ)

4φ(ξ)

−ξ(2φ(ξ)u−η(ξ)c)
4φ(ξ)c

ξ

2c
ξφ′(ξ)

4φ(ξ)


,

R=
(
r1 r2 r3

)
=


−φ′(ξ)

η(ξ)

1
ξ

1
ξ

−φ′(ξ)u
η(ξ)

u−c
ξ

u+c
ξ

1 1 1

,

where η(ξ) = 2φ(ξ)−ξφ′(ξ). Then one may interpolate conservative variables via the
following steps.

• First of all, the vector Qi+k of conservative variables is projected into the character-
istic space via

Q̃i+k =Li+ 1
2
Qi+k, k=−2,··· ,3, (2.9)

where the eigen-matrices Li+ 1
2

and Ri+ 1
2

are linearized by algorithmic averages at
each cell interface.

• Secondly, perform the WENO interpolation on the characteristic variables to obtain
Q̃−

i+ 1
2
=W−

i+ 1
2
[Q̃], which is done component-by-component.

• Finally, project the interpolated values Q̃−
i+ 1

2
back into the physical space to obtain

Q−
i+ 1

2
=Ri+ 1

2
Q̃−

i+ 1
2
. (2.10)

Remark 2.1. To utilize the characteristic projections for the bottom topography b, we
define B = (0,b,0)T and follow the steps above with the same eigen-matrices Li+ 1

2
and

Ri+ 1
2
. Then the second entry in the resulting interpolated vector B−

i+ 1
2

is denoted by b−
i+ 1

2
.

The interface value approximated from right, denoted by Q+
i+ 1

2
, and B+

i+ 1
2

can be done

similarly. Later we will see that the first and third entries are always zero.

2.3 Spatial discretization

Based on the previous sections, a semi-discretized fifth-order AWENO scheme of the
model (1.1) reads

∂Q
∂t

∣∣∣
xi

+
1

∆x

(
F̂i+ 1

2
−F̂i− 1

2

)
=−ghiφ(ξi)

1
∆x

(
B̂i+ 1

2
−B̂i− 1

2

)
, (2.11)
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where B=(0 b 0)T, and

F̂i± 1
2
=FRP

i± 1
2

(
Q−

i± 1
2
,Q+

i± 1
2

)
+Di± 1

2
[F], (2.12a)

b̂i± 1
2
=

1
2

(
b−

i± 1
2
+b+

i± 1
2

)
+Di± 1

2
[b]. (2.12b)

However, (2.11) is a standard AWENO discretization of (1.1), it is not well-balanced. In
the next section, we are going to make some modifications so that our scheme is well-
balanced.

3 High order well-balanced finite difference AWENO scheme

In this section, high order well-balanced conservative finite difference AWENO scheme
is designed for the model (1.1), which requires a reformulation of the source term and a
modification of the Lax-Friedrichs numerical flux.

3.1 Reformulation of the source term

Following the splitting technique [40], the source term is reformulated equivalently as

S(Q,b)=A
∂Sb(b)

∂x
, (3.1)

where the matrix A and vector Sb are

A=


0 0 0

−g(h+b)φ(ξ)
1
2

gφ(ξ) 0

0 0 0

, Sb(b)=

 b
b2

0

, (3.2)

respectively. To be consistent with the numerical fluxes F̂i± 1
2
, the numerical derivative of

vector Sb is computed by the AWENO scheme:

∂Sb

∂x

∣∣∣
xi

=
(Ŝb)i+ 1

2
−(Ŝb)i− 1

2

∆x
, i=1,··· ,Nx, (3.3)

with
(Ŝb)i+ 1

2
=

1
2

(
Sb(b−i+ 1

2
)+Sb(b+i+ 1

2
)
)
+Di+ 1

2
[Sb]. (3.4)

In general, h±
i+ 1

2
+b±

i+ 1
2
6=const when the solutions to the model (1.1) are at the steady state

(1.3) since the WENO operator W is nonlinear. As a result, the well-balanced property
would be destroyed. To remedy this, we linearize the WENO operator as follows.
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• Suppose Q̃ and B̃ have been obtained by

Q̃=LQ=(q̃1 q̃2 q̃3)
T and B̃=LB=(b̃1 b̃2 b̃3)

T.

• Then, the WENO operator are employed to the vector Q̃, i.e.,

W−
i+ 1

2
[Q̃] :=

(
W(1),−

i+ 1
2
[q̃1] W(2),−

i+ 1
2
[q̃2] W(3),−

i+ 1
2
[q̃3]
)T

.

• Finally, the WENO operator is linearized in the sense that

W−
i+ 1

2
[B̃] :=

(
W(1),−

i+ 1
2
[b̃1] W(2),−

i+ 1
2
[b̃2] W(3),−

i+ 1
2
[b̃3]
)T

.

3.2 Modification of the numerical fluxes

In order to achieve the well-balanced property, we modify the Lax-Friedrichs flux (2.4),
according to [40], as

FRP,(m)(Q−
i+ 1

2
,Q+

i+ 1
2
)=

1
2

(
F(Q−

i+ 1
2
)+F(Q+

i+ 1
2
)−λ(Q̄+

i+ 1
2
−Q̄−

i+ 1
2
)
)

, (3.5)

where Q̄=[h+b hu (h+b)ξ]T. Since the bottom topography b is independent of the time
t, this modification is justified. One can easily check that when the solutions are at the
steady state (1.3), the above modified Lax-Friedrichs numerical flux becomes

FRP,(m)(Q−
i+ 1

2
,Q+

i+ 1
2
)=

1
2

(
F(Q−

i+ 1
2
)+F(Q+

i+ 1
2
)
)

. (3.6)

Finally, the numerical flux defined in (2.2) is modified as

F̂(m)

i+ 1
2
=FRP,(m)

(
Q−

i+ 1
2
,Q+

i+ 1
2

)
+Di+ 1

2
[F]. (3.7)

3.3 Well-balanced property

In summary, a semi-discretized form of well-balanced finite difference AWENO scheme
can be expressed as

∂Q
∂t

∣∣∣
xi

+
F̂(m)

i+ 1
2
−F̂(m)

i− 1
2

∆x
=Ai

(Ŝb)i+ 1
2
−(Ŝb)i− 1

2

∆x
, (3.8)

where F̂(m)

i+ 1
2

is the modified Lax-Friedrichs numerical flux defined in (3.7) and Ŝi+ 1
2

is

computed by formula (3.4) with the linearize procedure. In the following, we are going
to prove that the scheme (3.17) is well-balanced.
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At the steady state, the left and right eigen-matrices L and R, respectively, become

L=

l1
l2
l3

=


− ξη(ξ)

2φ(ξ)
0

η(ξ)

2φ(ξ)

ξη(ξ)

4φ(ξ)

−ξ

2c
ξφ′(ξ)

4φ(ξ)

ξη(ξ)

4φ(ξ)

ξ

2c
ξφ′(ξ)

4φ(ξ)


, R=

(
r1 r2 r3

)
=


−φ′(ξ)

η(ξ)

1
ξ

1
ξ

0 − c
ξ

c
ξ

1 1 1

.

The conservative variables Qi+k and Bi+k are projected into the characteristic fields via
the left eigenvector Li+ 1

2
,

Q̃i+k =Li+ 1
2
Qi+k =


− ξη(ξ)

2φ(ξ)
0

η(ξ)

2φ(ξ)

ξη(ξ)

4φ(ξ)

−ξ

2c
ξφ′(ξ)

4φ(ξ)

ξη(ξ)

4φ(ξ)

ξ

2c
ξφ′(ξ)

4φ(ξ)


 h

0
hξ


i+k

=


0
ξ

2
ξ

2

hi+k =

q̃1
q̃2
q̃3


i+k

, (3.9a)

B̃i+k =Li+ 1
2
Bi+k =


− ξη(ξ)

2φ(ξ)
0

η(ξ)

2φ(ξ)

ξη(ξ)

4φ(ξ)

−ξ

2c
ξφ′(ξ)

4φ(ξ)

ξη(ξ)

4φ(ξ)

ξ

2c
ξφ′(ξ)

4φ(ξ)


0

b
0


i+k

=


0
−ξ

2c
ξ

2c

bi+k =

b̃1

b̃2

b̃3


i+k

, (3.9b)

where k=−2,··· ,3. The fifth order WENO interpolation method described in Section 2.2
is employed to compute the interface values Q̃−

i+ 1
2

and then we use the linearized WENO

operator to compute B̃−
i+ 1

2
, i.e.,

Q̃−
i+ 1

2
=W−

i+ 1
2
[Q̃]=


0

W(2),−
i+ 1

2
[q̃2]

W(3),−
i+ 1

2
[q̃3]

, B̃−
i+ 1

2
=W−

i+ 1
2
[B̃]=


0

W(2),−
i+ 1

2
[b̃2]

W(3),−
i+ 1

2
[b̃3]

. (3.10)

We note that W(2),−
i+ 1

2
[·] =W(3),−

i+ 1
2
[·] since q̃2 = q̃3. Therefore, they are denoted by W−

i+ 1
2
[·]

consistently in the following discussion. Finally, the interpolated values Q̃−
i+ 1

2
and B̃−

i+ 1
2
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are projected back into the physical space via the right eigenvector Ri+ 1
2
,

Q−
i+ 1

2
=Ri+ 1

2
Q̃−

i+ 1
2
=


−φ′(ξ)

η(ξ)

1
ξ

1
ξ

0
−c
ξ

c
ξ

1 1 1




0
W−

i+ 1
2
[q̃2]

W−
i+ 1

2
[q̃3]

=


W−

i+ 1
2
[h]

0
W−

i+ 1
2
[hξ]

, (3.11a)

B−
i+ 1

2
=Ri+ 1

2
B̃−

i+ 1
2
=


−φ′(ξ)

η(ξ)

1
ξ

1
ξ

0
−c
ξ

c
ξ

1 1 1




0

W−
i+ 1

2
[b̃2]

W−
i+ 1

2
[b̃3]

=

 0
W−

i+ 1
2
[b]

0

. (3.11b)

The right limits Q+
i+ 1

2
and B+

i+ 1
2

can be computed analogously.

Due to the consistency of the WENO interpolation operators in (3.11a) and (3.11b),
we have

h±
i+ 1

2
=W±

i+ 1
2
[h], (hξ)±

i+ 1
2
=W±

i+ 1
2
[hξ], b±

i+ 1
2
=W±

i+ 1
2
[b], (3.12)

and at the steady state we have

h±
i+ 1

2
+b±

i+ 1
2
=h+b=const. (3.13)

Theorem 3.1. At the steady state (1.3), it can be proved that

i) FRP,(m)
(

Q−
i+ 1

2
,Q+

i+ 1
2

)
− 1

2 Ai

(
Sb(b−i+ 1

2
)+Sb(b+i+ 1

2
)
)
=
(

0 1
2 CφgC2

surf 0
)T

, where Cφ:=φ(ξ)

and Csurf :=h+b,

ii) Di+ 1
2
[F]−AiDi+ 1

2
[Sb]=0,

iii) F̂(m)

i+ 1
2
−Ai(Ŝb)i+ 1

2
=
(

0 1
2 CφgC2

surf 0
)T

.

Proof. i). According to (1.3), (3.5), (3.11a) and (3.11b), it is obviously that the first and
third equations hold naturally. For the second equation, we have

1
2

g
(

h±
i+ 1

2

)2
φ(ξi)+g(hi+bi)φ(ξi)b±i+ 1

2
− 1

2
gφ(ξi)

(
b±

i+ 1
2

)2

=φ(ξi)

(
1
2

g
((

h±
i+ 1

2

)2
−
(

b±
i+ 1

2

)2
)
+g(hi+bi)b±i+ 1

2

)
=φ(ξi)

(
1
2

g
(

h±
i+ 1

2
+b±

i+ 1
2

)(
h±

i+ 1
2
−b±

i+ 1
2

)
+g(hi+bi)b±i+ 1

2

)
=

1
2

CφgC2
surf. (3.14)
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Note that Ai is a constant matrix due to (1.3). It is easy to check that

F−AiSb =Const. (3.15)

Since the operator D is linear, we have

Di+ 1
2
[F]−AiDi+ 1

2
[Sb]=Di+ 1

2
[F−AiSb]=0. (3.16)

From (3.7) and (3.4), we have

F̂(m)

i+ 1
2
−Ai(Ŝb)i+ 1

2

=
(

FRP,(m)
(

Q−
i+ 1

2
,Q+

i+ 1
2

)
+Di+ 1

2
[F]
)
−Ai

(
1
2

(
Sb(b−i+ 1

2
)+Sb(b+i+ 1

2
)
)
+Di+ 1

2
[Sb]

)
=FRP,(m)

(
Q−

i+ 1
2
,Q+

i+ 1
2

)
− 1

2
Ai

(
Sb(b−i+ 1

2
)+Sb(b+i+ 1

2
)
)
+
(
Di+ 1

2
[F]−AiDi+ 1

2
[Sb]

)
=

(
0

1
2

CφgC2
surf 0

)T

.

We finish the proof using the conclusion of i) and ii).

Theorem 3.2. The modified semi-discrete scheme (3.17) is well-balanced.

Proof. It is a direct corollary of Theorem 3.1.

For the temporal discretization, the third order TVD Runge-Kutta method [33] is
adopted. We note that the well-balancedness is still guaranteed when the Runge-Kutta
method is employed.

3.4 Extension to two dimensions

A well-balanced finite difference AWENO spatial discretization of the two-dimensional
models (1.1) reads:

∂Q
∂t

∣∣∣
(xi ,yj)

=−
F̂(m)

i+ 1
2 ,j
−F̂(m)

i− 1
2 ,j

∆x
−

Ĝ(m)

i,j+ 1
2
−Ĝ(m)

i,j− 1
2

∆y

+(Ax)i,j

(Ŝb)i+ 1
2 ,j−(Ŝb)i− 1

2 ,j

∆x
+(Ay)i,j

(Ŝb)i,j+ 1
2
−(Ŝb)i,j− 1

2

∆y
, (3.17)

where Sb =[b b2 0 0]T, the explicit forms of the vectors Q, F(Q) and G(Q) are

Q=


h

hu
hv
hξ

, F(Q)=


hu

hu2+
1
2

gφ(ξ)h2

huv
huξ

, G(Q)=


hv

huv

hv2+
1
2

gφ(ξ)h2

hvξ

, (3.18)
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respectively, and the matrix Ax and Ay read

Ax=


0 0 0 0

−g(h+b)φ(ξ)
1
2

gφ(ξ) 0 0

0 0 0 0
0 0 0 0

, Ay=


0 0 0 0
0 0 0 0

−g(h+b)φ(ξ)
1
2

gφ(ξ) 0 0

0 0 0 0

, (3.19)

respectively.
To implement, one can easily extend the one-dimensional high order well-balanced

conservative finite difference AWENO scheme to the two-dimensional case on the uni-
form meshes in a dimension-by-dimension manner. It can be verified that the extended
two-dimensional scheme achieves the fifth-order of accuracy and preserves the well-
balanced property.

4 Numerical results for the Ripa model

In this section, a variety of numerical examples are used to demonstrate the robustness
and effectiveness of our approach for the Ripa model. In all numerical examples, the
WENO parameter ε is taken as 10−12, the gravitational constant is set as g= 1, and the
CFL number is chosen as 0.45. In the following, the reference solutions are obtained by
the same schemes with 2000 cells.

4.1 One-dimensional test problems

4.1.1 Well-balanced property

In the first set of tests, the well-balanced property of the proposed AWENO scheme is
examined. The initial conditions are still water solutions to the Ripa model, where h+b=
10, u=0 and θ=0.1, with two different bottom topographies,

smooth : b(x)=5exp
(
−2

5
(x−5)2

)
, (4.1a)

discontinuous : b(x)=

{
4, if 4≤ x≤8,
0, otherwise.

(4.1b)

The problem is computed in x∈ [0,10] up to t=0.5, with Nx=200. Exact boundary condi-
tions are employed. To demonstrate that the well-balanced property is maintained by the
proposed method to the rounding error of the machine, the problem is computed using
double precision, and the L∞-norms of errors of h, hu and hθ are shown in Table 1. It can
be clearly seen that the errors are at the level of rounding errors for both the smooth and
discontinuous bottom topographies, which verifies that the proposed scheme maintains
the expected well-balanced property.
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Table 1: L∞-norms of errors for the steady state solutions over different bottom topographies in (4.1).

h hu hθ
smooth 8.88E-15 5.69E-15 8.88E-16

discontinuous 5.33E-15 5.35E-15 6.66E-16

Table 2: L∞-norms of error and convergence orders for the test case in Section 4.1.2.

N h hu hθ
L∞-error Order L∞-error Order L∞-error Order

25 1.53E-005 2.29E-005 1.06E-005
50 4.93E-007 4.96 8.70E-007 4.72 3.21E-007 5.05

100 1.53E-008 5.01 2.77E-008 4.97 1.22E-008 4.72
200 4.70E-010 5.02 8.58E-010 5.01 4.10E-010 4.90
400 1.44E-011 5.03 2.44E-011 5.14 1.16E-011 5.14

4.1.2 Accuracy

In this set of tests, the fifth-order of accuracy of the proposed scheme is verified. Consider
a smooth bottom topography b(x)=0.1sin(4πx)−1. The initial conditions are set as

h(x,0)=1−b(x),
(hu)(x,0)=0.1,
θ(x,0)=1+0.01cos(2π(x−0.5)).

The problem is computed in x∈ [0,1] up to t= 1, and periodic boundary conditions are
employed. To observe spatial accuracy, we take the time step size ∆t as (CFL∆x/α)5/3,
where α = maxu |λ(u)| with λ(u) the eigenvalues of the Jacobian matrix ∂F/∂Q. The
reference solution computed by the proposed scheme with N = 6400 is treated as exact
solution to problem. The L∞-norms of errors of h, hu and hθ are shown in Table 2. It is
clear seen that the expected fifth-order of accuracy is achieved.

4.1.3 Riemann problem over a flat bottom

In this example, we consider a Riemann problem over a flat bottom topography (b(x)≡0).
The initially conditions read

(h,u,θ)(x,0)=

{
(5,0,3), x<0,

(1,0,5), x≥0.

The numerical results at t = 0.2 with Nx = 200 are obtained by solving the problem in
x∈ [−1,1] with transmissive boundary conditions. It can be observed in Fig. 2 that the
numerical results are in good agreement with the reference results.
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Figure 2: The numerical solutions of Riemann problem over a flat bottom in Section 4.1.3. From left to right:
depth h, pressure p and temperature θ.

4.1.4 Dam break problem over a flat bottom

We consider in this set of tests the dam break problem over a flat bottom (b(x)≡0) with
the following initial conditions

(h,u,θ)(x,0)=

{
(2,0,1), |x|≤0.5,

(1,0,1.5), |x|>0.5.
(4.2)

The problem is computed in x∈ [−1,1] with Nx=200. Transmissive boundary conditions
are imposed at both boundaries.

Distributions of the height h, momentum hu, temperature θ and pressure p are shown
in Fig. 3 at t=0.2. One can observe that the physical structures are perfectly captured by
our scheme.

4.1.5 Dam break problem over a rectangular bump

In this example, we extend the test problem for shallow water equations on a discontin-
uous water-bed presented in [37] to the Ripa model. The computational region is [0,600]
and the bottom topography reads

b(x)=

{
8, if |x−300|<75,

0, otherwise.

The initial conditions for (h,u,θ) are as follows

(h,u,θ)=

{
(20−b(x),0,10), if x≤300,

(15−b(x),0,5), otherwise .

The numerical results obtained at t = 12 are shown in Fig. 4. It can be seen that the
AWENO scheme captures all physical structures well, especially the steep discontinu-
ities.
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Figure 3: Distributions of the height h, momentum hu, temperature θ and pressure p of the dam break problem
over a flat bottom in Section 4.1.4. Output time is t=0.2.

Figure 4: The numerical solutions of Riemann problem over a rectangular bump in Section 4.1.5. h+b (upper
left), hu (upper right), θ (lower left), and hθ (lower right).
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4.2 Two-dimensional test problems

4.2.1 Well-balanced property

In this set of tests, the well-balanced property of the proposed scheme is verified by
the following two-dimensional problem. The bottom consists of two Gaussian shaped
humps,

b(x,y)=


1
2

exp(−100dl(x,y)), x<0,

3
5

exp(−100dr(x,y)), x≥0,

dl(x,y)=(x+0.5)2+(y+0.5)2,

dr(x,y)=(x−0.5)2+(y−0.5)2,

and the other physical quantities at the initial state read

(h,u,v,θ)(x,y,0)=


(

3−b(x,y),0,0,
4
3

)
, r<0.5,

(2−b(x,y),0,0,3), r≥0.5,

where r =
√

x2+y2. The problem is computed in the computational domain (x,y) ∈
[−1,1]×[−1,1] up to t=0.12. Exact boundary conditions are employed.

We compute the problem under the mesh resolution Nx×Ny =200×200 and present
3D plots of the surface h+b, temperature θ and pressure p in Fig. 5. It is clear that the
proposed AWENO scheme precisely maintains the steady state solutions.

Figure 5: The 3D views of the numerical results of the steady state in Section 4.2.1. From left to right: surface,
temperature and pressure.
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4.2.2 Small perturbation imposed to the steady state solution

In this example, we use the same setup as in Section 4.2.1, but a small pressure perturba-
tion is imposed to the initial depth of the water in an annular region, i.e.,

(h,u,v,θ)(x,y,0)=



(
3−b(x,y)+0.1,0,0,

4
3

)
, 0.1≤ r<0.3,(

3−b(x,y),0,0,
4
3

)
, 0.3≤ r<0.5, or r<0.1,

(2−b(x,y),0,0,3), r≥0.5,

where r=
√

x2+y2. The problem is computed in (x,y)∈ [−1,1]×[−1,1] with Nx×Ny =
200×200 up to t=0.15. Exact boundary conditions are used.

The 3D plots of the surface h+b, temperature θ and pressure p are shown in Figure 6.
It can be observed that the physical structures are well resolved by our method.

Figure 6: The 3D plots of the surface h+b, temperature θ and pressure p of the problem studied in Section
4.2.2. Output time is t=0.15.

4.2.3 Dam break problem over a flat bottom

In this example, the effectiveness of the proposed method is demonstrated by using the
dam break problem. Consider a flat bottom (b(x,y) = 0) in the computational domain
[−1,1]×[−1,1] and an extremely thin dam which locates at r = 0.5, where r =

√
x2+y2.

Originally, the water depth h, velocities u and v, and temperature θ are given by

(h,u,v,θ)(x,y,0)=

{
(2,0,0,1), r<0.5,

(1,0,0,1.5), r≥0.5.

When the dam suddenly breaks, the water inside the dam will flow outwards, due to
differences in water depth and pressure. The 3D plots of the water depth h, temperature
θ and pressure p are shown in Fig. 7 at t= 0.15 with Nx×Ny = 200×200. Transmissive
boundary conditions are imposed. From the figure, one can clearly observe that the fine
physical structures are well captured by our scheme.
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Figure 7: The 3D plots of the water depth h, temperature θ and pressure p of the dam break problem studied
in Section 4.2.3. Output time is t=0.15.

5 Numerical results for pollutant transport model

In this section, we perform one- and two-dimensional numerical experiments of the pol-
lutant transport models. The gravitational constant takes g=9.812, and other set-ups are
the same as those for the Ripa model.

5.1 One-dimensional test problems

5.1.1 Well-balancedness

In this set of tests, the well-balanced property of the proposed AWENO scheme is veri-
fied. We test on two different bottom topographies, i.e., the smooth bottom

b(x)=5exp
(
−2

5
(x−5)2

)
,

and the discontinuous bottom

b(x)=

{
4, if 4≤ x≤8,

0, otherwise.

Initially we set h+b= 10, u= 0 and T = 0.1. The computational domain is [0,10] with a
uniform partition into 200 cells. The simulation is carried out up to t = 0.5 with exact
boundary conditions.

The L∞-norms of errors of h, hu and hT are shown in Table 3. It can be clearly seen
that the errors are at the level of rounding errors associated with double precision, which
verifies that the proposed scheme is capable of maintaining the expected well-balanced
property.
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Table 3: L∞-norms of errors of the surface h+b, velocity u and pollutant concentration T for different bottom
topographies in Section 5.1.1.

h hu hθ
smooth 1.24E-14 1.19E-13 2.89E-15

discontinuous 1.24E-14 7.43E-14 2.44E-15

Table 4: L∞-norms of errors and corresponding accuracies for the test problem in Section 5.1.2

.

N h hu hT
L∞ error Order L∞ error Order L∞ error Order

25 5.65E-002 3.86E-001 5.72E-002
50 1.51E-002 1.90 1.17E-001 1.72 1.51E-002 1.92

100 3.12E-003 2.27 2.74E-002 2.09 3.00E-003 2.33
200 2.65E-004 3.56 2.31E-003 3.57 2.56E-004 3.55
400 1.25E-005 4.41 1.06E-004 4.45 1.23E-005 4.38
800 4.13E-007 4.92 3.50E-006 4.92 4.06E-007 4.92

5.1.2 Accuracy

In this test case, the fifth-order of accuracy is verified. To observe accuracy, we take
∆t=(CFL∆x/α)5/3, where α=maxu |λ(u)|with λ(u) being the eigenvalues of the Jacobian
matrix ∂F(Q)/∂Q. The bottom topography and initial conditions are given by

b(x)=sin2(πx), h(x,0)=5+exp(cos(2πx)),
hu(x,0)=sin(cos(2πx)), T(x,0)=cos(2πx).

The problem is computed in x∈[0,1] up to t=0.1 with periodic boundary conditions, and
the numerical results with Nx=6400 are taken as reference solutions. L∞-norms of errors
of numerical depth h, momentum hu and quantity of pollutant hT are shown in Table 4,
from which the expected fifth-order of accuracy can be observed.

5.1.3 Small perturbation imposed to a steady state water body

Consider a smooth bottom topography in x∈ [0,2],

b(x)=

{
0.25(cos(10π(x−1.5))+1), 1.4≤ x≤1.6,

0, otherwise,

and a small perturbation ε in water depth imposed to the steady state solutions,

h(x,0)=

{
1−b(x)+ε, 1.1≤ x≤1.2,

1−b(x), otherwise,
u(x,0)=0, T(x,0)=0.1.
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Figure 8: Numerical surface h+b, momentum hu and quantity of pollutant hT with Nx =200 for small pertur-
bation problem in Section 5.1.3. The final time is t=0.2.

Later on, the flow varies rapidly due to this perturbation. The problem is simulated with
ε=0.2 and Nx =200 up to t=0.2, with transmissive boundary conditions.

Fig. 8 shows numerical surface h+b, momentum hu and quantity of pollutant hT
computed by our fifth-order finite-difference AWENO scheme. One may observe that
the numerical solutions agree well with the reference ones, and are oscillation-free, which
verifies the effectiveness of our approach.

5.1.4 Shocks over a step

We consider the pollutant transport model on a stepping bottom topography defined in
x∈ [−10,10] as follows,

b(x)=

{
0, x≤0,

1, x>0.

Initially, the water depth h, velocity u and pollutant concentration T are given by

h(x,0)=

{
4, x≤0,

1, x>0,
u(x,0)=

{
5, x≤0,

−0.9, x>0,
T(x,0)=0.1.

The problem is computed up to t=1 with transmissive boundary conditions.
Fig. 9 shows numerical surface h+b, momentum hu and quantity of pollutant hT,

which agree with those presented in [25,43]. Besides, a small perturbation in momentum
can be observed at the discontinuity of bottom topography, which is not surprising since
moving water steady states cannot be preserved by the current approach.

5.2 2D numerical results

5.2.1 Circular dam break

In this test example, numerical solutions [24,34] of a two-dimensional circular dam break
problem are presented. At the beginning, an infinitely thin circular wall with a radius of
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Figure 9: Numerical surface h+b, momentum hu and quantity of pollutant hT for problem in Section 5.1.4.

Figure 10: Numerical water depth h, concentration of pollutant T and quantity of pollutant hT for circular dam
break at time t=0.45.

r =
√

x2+y2 = 2.5 is assumed in the computational domain (x,y)∈ [−20,20]×[−20,20].
The initial conditions are

(h,u,v,T)=

{
(2.5,0,0,1), r≤2.5,

(0.5,0,0,0.5), r>2.5.
(5.1)

When dam collapses instantaneously, the flow becomes transcritical due to the difference
in depth outside and inside of the dam. The problem is computed with Nx×Ny=300×300
up to t=0.45, and transmissive boundary conditions are set at all boundaries. Numerical
results for water depth h, pollutant concentration T and hT are presented in Fig. 10. We
observe that the results agree well with those in [24, 34].

5.2.2 Dam break on a non-flat bottom with nonzero source

We consider the two-dimensional dam-break problem on the square domain [−300,1100]×
[0,1400] with a non-flat bottom topography, the initial data is shown at the first panel of
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Figure 11: Initial setting in Example 5.2.2 (left) and contour plot of h+b at t=30 (right).

Fig. 11. The shape of the dam is given by

Γ(y)=

min
[

200+
(y−700)2

400
,600

]
, if 0≤y<700,

200, if 700≤y≤1400.

In this example, the bottom consists of three elliptic-shaped exponential humps:

b(x,y)=4.5
[
e−κ1(x−500)2−κ2(y−700)2

+e−κ2(x−300)2−κ1(y−600)2
+e−κ2(x−700)2−κ1(y−700)2

]
,

with κ1=10−4 and κ2=10−3. The water is clean at the beginning, but a source of polluted
water with the concentration of pollutant Ts =25 is imposed immediately

S(x,y,t)=0.5e−0.5(t−8)2−0.00001(x+y−1000)2−0.0005(x−y+200)2
.

The problem is computed with Nx×Ny = 500×500 up to t = 30. We can see from the
second panel of Fig. 11 that the proposed AWENO scheme can capture fine structures
generated by interactions between the initial curved shock and the complicated bottom
topography.

6 Conclusions

In this paper, we propose a fifth-order finite difference AWENO scheme for the Ripa
model and the pollutant transport model in a unified framework. Then by reformu-
lating the source terms and linearizing the WENO interpolation operator, the proposed
scheme is well-balanced. Finally, numerical examples verify the well-balanced property
and high-order accuracy of our approach. Besides, the potential of the proposed scheme
in capturing physical structures, e.g., rarefaction and shock waves, is illustrated by nu-
merous examples.
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