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Abstract. In this article, we study a parabolic equation with both nonlinear time-
derivative term and nonlinear diffusion term by the finite volume element method.
The optimal error estimate in H!-norm is proved for fully discrete scheme. The sub-
optimal error estimate in L?-norm is proved both for semi-discrete scheme and fully
discrete scheme. We prove the existence of solution for the fully discrete scheme. Nu-
merical results show the effectiveness of our method.
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1 Introduction

The theory of numerical methods for linear equations is relatively mature. In contrast, the
research findings of nonlinear equations are inadequate. Based on the different positions
of nonlinear terms, nonlinear equations are divided into different types. For the nonlinear
parabolic equation, a common case is that the diffusion term or the convective term is
nonlinear, and many authors have done a lot of work in this area. However, only a few
researchers pay attention to the situation that the time derivative is nonlinear. In fact,
this type of equations are also of great importance in describing phenomenons in natural
and social science. For the radiation diffusion equation [28], the energy can be a function
of the temperature in some cases. In this condition, the radiation diffusion system can
be transformed into a equation with nonlinear time derivative. In [1], the authors used
an equation with nonlinear time derivative to simulate the flow in root-soil system. In
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this paper. we consider the following nonlinear parabolic equation with both nonlinear
diffusion term and nonlinear time derivative term:

Baa(tu) —V-(b(u))Vu)=f(xt), (xt)eQxI,
u(x,t)=g(xt), (x,t) €90, (1.1)
u(x,O):uO(x), xe(),

where Q) C R? is a bounded domain and I = (0,T] is the time interval. We assume that
there exists constants «;,1=1,2,3,4 and f;, i =1,2,3, satisfying

0<ag<a(u)<ay, 0<az<a'(u)<way, |a"(u)|<as, (1.2a)
O<,81§b(u)§,82, ]b’(u)|§ﬁ3 (1.2b)

For the elliptic equation with nonlinear diffusion term, Douglas and Dupont [14] pro-
posed a Galerkin method for the nonlinear Dirichlet problem in 1974. Later, Liu [19] et
al. also used finite element method (FEM) to solve the nonlinear elliptic equation, and
extended the coefficient matrix to a more general case. Due to the property of local con-
servation, finite volume element method [11, 16,20, 27] (FVEM) is attracting more and
more attention. In terms of FVEM, Li [18] gave a linear element finite volume method
for this equation and obtained the error estimate in H L_norm. Chatzipantelidis [5] et al.
provided a new proof and got the optimal error estimate both in H!-norm and L?-norm.
Bi [3] et al. discussed a two-grid finite volume element method for nonlinear elliptic
equation. Recently, Du [15] et al. discussed a quadratic FVEM for the nonlinear elliptic
equation and established the optimal error estimates.

For the parabolic equation with nonlinear diffusion term and linear time derivative,
there are lots of articles both in FEM and FVEM. For the FEM, Douglas and Dupont [13]
discussed some linear and nonlinear parabolic equations with Galerkin method and ob-
tained optimal H L_norm error estimate in 1970. On this basis, Wheeler [21] used Galerkin
method to solve a nonlinear parabolic problem and derived L?-norm error estimate.
Chen [9] et al. analyzed a two-grid expanded mixed finite element method for the non-
linear parabolic equation. Yang [23] used the least-squares mixed finite element to solve
the nonlinear convection-diffusion equation. Cannon and Lin [4] studied finite element
method for the nonlinear diffusion equation with memory and gave error estimate in L2-
norm. For the FVEM, Wu [22] solved a nonlinear parabolic equation by the generalized
difference method and obtained the optimal H!-norm error estimate in 1987. Chatzi-
pantelidis and Ginting [6] studied a nonlinear parabolic equation by the finite volume
element method and got the error estimate under a mild mesh condition. Chen and
Liu [8] used the finite volume element method solving a nonlinear parabolic problem,
where the diffusion term is nonlinear. Zhang [25] presented a semi-discrete finite volume
element scheme to solve a nonlinear parabolic equation, where the convection term, dif-
fusion term and reaction term are all nonlinear. Zhang [26] et al. gave a full-discrete two-
grid finite volume element scheme to solve the nonlinear parabolic equation. Yang and
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Yuan [24] used a quadratic finite volume element method to solve nonlinear parabolic
systems.

For the parabolic equation with nonlinear diffusion term and nonlinear time deriva-
tive, Arbogast [1] et al. used it to simulate the flow in root-soil system in 1993. They
devised the finite element scheme for this equation and proved the error estimate. Then,
Arbogast and Wheeler [2] applied the mixed finite element method to solve this equa-
tion and obtained the error estimate. Clement [12] et al. studied a two-dimensional finite
difference scheme for this equation. Eymard [17] et al. applied the finite volume method
to solve the Richards equation. However, we haven’t found articles about finite volume
element for this equation.

In this article, we use the finite volume element method to solve a parabolic equation
with both nonlinear time-derivative term and nonlinear diffusion term. For the nonlinear
time derivative da(u)/dt, a common method is to convert it into a’(u)du/0dt. The theo-
retical analysis of the converted equation is mature. However, that scheme can’t keep
the conservation of physical variable. We devise a scheme to solve the original equation
which is conservative in physics. We firstly construct the semi-discrete and fully discrete
schemes for this equation. Then, the optimal error estimate in H'-norm and suboptimal
error estimate in L?>-norm are proved. Finally, some numerical examples are presented
to confirm the theoretical results. In error estimation, we use a similar procedure in [22]
to estimate the nonlinear diffusion term. The main difficulty for the error estimation is
to handle the nonlinear time derivative. We divide the inner product of nonlinear time
derivative and test function into two parts. For the first part, we refer to the results for
the same equation by FEM [1,2]. The results of [1] is used as a bridge to estimate the
error of FVEM. For the second part, we use the principle of interpolation to estimate the
difference between test functions of FEM and FVEM. Combining these two parts, we can
obtain the error estimate.

The rest of the paper is organized as follows. In Section 2, we present the numerical
schemes and some necessary lemmas. In Section 3, the error estimates for semi-discrete
scheme is obtained. Similarly, the error estimates for fully discrete scheme is presented
in Section 4. We prove the existence of the fully discrete scheme in Section 5. In Section
6, we use iteration method to solve this equation and get the numerical results. Finally,
we give a brief conclusion in Section 7.

2 Finite volume discretization

The finite volume method need two partitions, the primary partition and the dual par-
tition. We divide the domain into some triangles and the primary 7, = {K} is obtained
where h =maxge7, hx and hg is the diameter of element K. We denote N, the set of La-
grange interpolation nodes on all K. For each node in ), we create a corresponding
control volume K*. Then, we get the dual partition 7, = {K*}. For the time interval, we
set At:% and 0=ty <ty--- <ty =T be the partition of I.
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Figure 1: Dual partition in an element. Figure 2: Control volume around a vertex.

Fig. 1 shows the dual partition in an element, P; (1 <i<3) is the vertex of the triangle.
P; (4<i<6) is the midpoint of an edge, and P; is the barycenter of a triangle. In Fig. 2,
we present a control volume around a vertex. P (0<i<7) is the vertex of the triangle,
Pyi (1<i<7) is the midpoint between Py and P;. The grey shaded area is control volume
K}';O around P.

We assume that the primary partition is quasi uniform, then there exists a positive
constant C such that

C'h? <meas(K)<Ch?, VKET,. (2.1)

Based on the two partitions, we can define the trial function space and the test function
space. Take standard Lagrange linear finite element space as trial function space Uj,

Uh:{uh]uhEC(Q), uh]Kepl(K), VKEE}, (2.2)
and define piecewise constant space as test function space V},

Viy={oy|v, €L2(Q), vy, |; =constant, VK, € T,, vy,

k; =0, PEIQNN;}. (2.3)

In order to estimate the errors between exact solution and numerical solution, two projec-
tions are defined. The piecewise Lagrange interpolation projection from H'(Q) to stan-
dard Lagrange finite element space is called ITj,. Similarly, we get the piecewise constant
interpolation IT} from H' to Vj,. According to the principle of interpolation in Sobolev
space, we get

|lo—T1,0|lm < CH*™||v|l, m=0,1, YveH? (2.4)
and

lo—TLiollo < Ch|lo|i, VoeH. (2.5)
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For z,u € H' and v, € V},, we define the bilinear form as follow
B(zu,v;) = —Z/ (b(z)Vu)-noyds. (2.6)
T Jok*

The weak formulation of (1.1) can be written as

(a(u)e,on)+B(wu,op) = (f,on), Vo €Vy, (2.7)

where
(a(u)t,vp) = (aaa(tu) ,vh) :;/K aaa(;l) vpdxdy, (2.8a)
(F,on) :; /K Foudxdy. (2.8b)

By means of the projection I}, (2.7) can also be written into
(a(u)e IT50,) +B(w;u,Iv,) = (f IL05), Vo, € U,,. (2.9)

Similarly, the semi-discrete finite volume element scheme of (1.1) is to find u;, € Uj, such
that

(a(uh)t,Hth) —|—B(uh;uh,Hth) = (f,HZUh), Yo, € Uy. (2.10)

Using the backward Euler scheme to approximate the time derivative term, the fully
discrete finite volume scheme of (1.1) is to find u}} € U}, such that

(Bua (1) TTjoy) + Bl ITi0,) = (£ 0Tj0y), Vop €Uy, @11)
where
dua(u) = “41) _Ai(”zl). 2.12)
The semi-discrete finite element scheme of (1.1) is to find u}, € U}, such that
(a(dy)e,on)+ By (dy;dy,00) = (f,on), VopeUy, (2.13)
where
By, (iiy; iy, v,) = /Qb(ﬁh)Vﬁthhdxdy. (2.14)
Obviously, there is a positive constant x such that
By (zpup,up) > x||upl|3,  Vzu,up € Uy (2.15)

Following [10], we introduce the standard Ritz projection.
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Lemma 2.1. Supposing that Ry, is a projection from H' to U, and satisfies
By, (u;Ryu,vy,) =By, (u;u,vy), Vo, €U, (2.16)
Then, there exists a positive constant C such that
||t —Rpue|o+hl|u—Rpuly < Ch*||ull2, (2.17a)
1= Rye) o+ (e — Ry [l < CH2| | |- (2.17b)
In addition, there exists a positive constant My independent of h, such that
|V RytJoot | V Ryt oo <My for ¢<T. 2.18)

For error analysis we define two error functionals

en(f,x)=(f.x) = (f1Lx), Vx €Uy, (2.19)
Eu(W;X/lP) :Bh(w;X,lP)—B(W;X,HZlP), Vw,)(,l/JG Up,. (2.19b)

The bounds of (2.19) are proved in [5,7] and shown as the following lemma.
Lemma 2.2. Let x € Uy, then
len (£ 01 <CHIIfllil1x feH(Q), j=01,  (220a)
lea(w; R0, )| <CHH |[o]lallxl,  veH*'NHY(Q),  ij=01.  (2.20b)
Further, [5] proved the following estimation for ¢,.

Lemma 2.3. Let x,¢ € Uy, there exists a positive constant C such that
lea (05, x) —ea(w;9p, X)| < Ch[ Vil (14 [ Veol|o) [V (=) [o[[ VX lo- (221)
For M =max(2My,1), we define
Bu={xeUy:[|Villo <M} (222)

For the bilinear form, the following coercive ellipticity with barycenter dual partition is
proved in [5]. We only list the conclusion and will not repeat the proof process.

Lemma 2.4. Supposing that zj, € U, "By and uy, € Uy, there exists a positive constant 7y such
that

Bz ITup) >y ||un 3. (2.23)

The following Lemma 2.5 illustrates that the bilinear form is bounded, which has been
proved in [18].

Lemma 2.5. Supposing that zj,uy,v, € Uy, there exists a positive constant C such that

B(zp;up, IT504) < Cllup|1||op|1- (2.24)
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3 Error estimates for semi-discrete scheme

Theorem 3.1. Let u € H*NH! and uj, € U,N By be the solutions of Eq. (2.9) and Eq. (2.10),

respectively. Supposing that uy, € By, there exists a constant C such that

a3+ [ @)~y () g <.
Proof. Subtracting (2.10) from (2.9), we have
(a(u)e—a(up)e, 1T oy) 4+ B(u;u,IT50,) — B(up;up, I v,) =0, Vo, € Uy,
Define two variables
e=Ryu—uy,, p=u—Ryu.
Then, Eq. (3.2) can be written as

(a(u)r—a(up)e, 1T 0n)+B(up;e 1T 0,)
=—B(w;u, I vp)+B(up; Ryu, I vy), Vo, €Uy,
According to Lemma 2.1 and Eq. (2.19), we have
—B(u;u,IT;05) + B(uy; Ryu, 1T vp)
=(a(u)i— f,ITvy) +B(up; Ryu, I 0p)
=(a(u)t— f,110n) + B (up; Ryw, 1oy ) — By (up; Ryu, oy ) + By (up; Ry, op)
— By (u;Ryu,vp) — (a(u)e— f,op)
=[(a(u)— f ITon) — (a(u)e— f,on) |4 [B(un; Ryu, 1T;04) — By (up; Ryu,vp)]
+ [By (up; Ryu,vp) — By (u; Ryu, vy |
=ep(f—a(u),vp) —eq(up; Ry, o) + By (up; Ry, vy ) — By (1 Ryu, vy) ).

Substituting (3.5) into (3.4) and setting v, =e in (3.4) yields

(a(u)r—a(up)e IT;e)+B(uy;e,Ije)
=ep(f—a(u),e) —eq(up; Ryu,e)+ By (uy; Ryu,e) — By (u;Ryu,e)].

For the first term on the left hand side of Eq. (3.6), we have
(a(u)r—a(up) Ize)
=(a(u)r—a(uy)e, I e—e)+(a(u)i—a(uy)e).

Using the Leibniz formula, we get

(a(u)e—a(up)e,e) =(a(u)e—a(up),u—uy) = (a(u)r—alun)p)
=(a(u)i—a(up)eu—uy)—(a(u) —a(uy),e)i+(a(u) —a(un),pt),

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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and
(a(u)i—a(up)o T —e) = (a(u) —a(uy) TTje—e); — (a(u) —a(uy), (TGje—e)).  (39)
Substituting (3.7)-(3.9) into (3.6), we obtain

(a(u)e—a(up)e,u—uy)+B(uyeIlje)
=¢p,(f—a(u),e) —eq(up; Ryu,e) + By (up; Ryu,e) — By (u;Ryu,e)) 4+ (a(u) —a(uy),0):
—(a(u)—a(up),pr) — (a(u) —a(uy) Iye—e)r+(a(u) —a(uy), (e —e)e).  (3.10)

For the first term on the left hand side of Eq. (3.10), we know
(a(u) —a(up))e(u—uy)
=( [ @@ ~atu))ac ) ~(at) -t +athlu—). @1

According to the mean value theorem, we get
/(a(u)—a(uh))ut—a(u) (u—uyp)dxdy
_/ (71) (u—up)ur—a’ (u)ur(u—uy,)dxdy
:/Qa” 172) (m —u) (u—up, ) udxdy
<Cllu—un3, (3.12)

where 71 is a value between (u,u;,) and 7, is a value between (u,71). Substitute (3.11) and
(3.12) into (3.10) to have

L/ :(a(g)—a(uh))dz;) dxdy+B(uye ITke)
<ep(f—a(u)e)—eq(up;Ryu,e)+ By (up; Ryu,e) — By (u;Ryu,e)]
+Cllu—up |5+ ((a(u) —a(up)),p)e— ((a(u) —a(uy)),p:)
—((a(u) —a(uy)),Mze—e)i+((a(u) —a(up)), (e —e);). (3.13)

Since a’(u) is bounded, there exists a positive constant A such that

u

Mu=u)?< [ (a(€)=a())dE. (614

uy

Substituting (3.14) into (3.13) and integrating (3.13) from 0 to ¢ gives
t
Ay|u—uh||g+/0 B(use, I Tie)dE

< /Oteh(f—a(u)t,e) —é&q(up; Ryu,e) + By (up; Ryu,e) — B, (u; Ryu,e)]dé
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t ’ t
+C [ u—unl3dg+((a(w) =a(w))p) = [ (a(w)=a)) p1)d
t
~((a(w) = () Thie—e)+ [ ((a(u) =a(m,)), (Tlie—e))dz.
According to Lemma 2.2 and Cauchy-Schwarz inequality, one can obtain
t t
| eutf=atwrerz<ci® [ 1 f=awylheld,
t t
| eatmiRune)dz<cn [ fullallelsde,
0 0
t
/0 [Bi (1 Ryte,e) — By (u; Ry, e)]dg
t
<C [ 16(0) =b(w) ||V (Rys0) o] Vel dg
t
<C [ = ollelldz.
Using the Cauchy-Schwarz inequality, we have
(a(u)=a(w,)),p) <Cllu=uslollelo
t t
| (@) =), 2w)de < [ CQlu—w 3+ oB)de,
(a(u)=a(3)), Tje—e) < Chllu—uy ollell,
t t
| (@) (), (TTie—e))dz < Ch [ lu—uoler 1.

Substituting (3.16) and (3.17) into (3.15) and using Lemma 2.4, one can obtain

t
Mu=w 3+ [ llelfde

t t
<C [ 021 —a(u)il+2ula+ = o) el d +C [ lu—uy 3

t t
+CHu—uhHo(HPHoJrhlleHl)JrC/O \\Ptll%d€+Ch/() [[14—=wunlloflet[|14E.

Using the Young inequality, we have
t
Mu=w, 3+ [ llelfde
t t
<C [ (W +u—uB)a+CliolF+C [ llodl3d

t t
I el3+C [ fler g +erJu—w, F-+ea [ el

(3.15)

(3.16a)

(3.16b)

(3.16¢)

(3.17a)

(3.17b)
(3.17¢)

(3.17d)

(3.18)

(3.19)
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The equation above can be written as

t
(o) llu—unl3+ (v —e2) [ lle(€) g
t t
<C [ (=l 3+ lpelR)az+Cllol3+Cellelff+ o [ etz 320

Since ||e||1 and ||e;||; are bounded, we have

t
(A=e)lu—upll3+(r—e2) [ l1e(@) e
! 4 2 2 2 2
<C [+ u=w, |+ loe| )z +Clpl3+CI ©21)

Then, the inequality (3.21) can be written as

t t
||M—MhH%+C/O He(C)H%dCSC/O (W || —up |[§)dE +Ch?. (3.22)

Using the Gronwall inequality and Lemma 2.1, we get the conclusion
t
= 34+C [ l10(€) (&) g

<=+ [ @I+ ol 1) <, 6.2

This completes the proof. O

4 Error estimates for fully discrete scheme

Theorem 4.1. Let u" € H*NH' and uj € U,N B be the solutions of Eq. (2.9) and Eq. (2.11),
respectively. There exists a constant C such that

[ —ul |3 < C(h*+AP) (4.1)
and
Rt —1dh ||y < C(At+AE2R2). (4.2)
Proof. Taking u=u" in (2.9) and subtracting (2.11) from (2.9), we have
(a(u™)p—awa(uy),I;v,) +B(u";u" I1,0,) — B(up;up I;0,) =0, Vo, e U,,. (4.3)
The equation above can be rewritten as

(0ra(u™) —awa(ujy), I, 0,) +B(u";u" 11 05) — B(uy;up 11 0p)
:(Elfnzvh)/ vvh € uhl (44)
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where
Ei=0wa(u")—a(u"),, 4.5)
and we can get E; = O(At) according to Taylor’s expansion. Define two variables
e"=Ryu" —uy, p"=u"—-Ruu". (4.6)
Then, Eq. (4.3) can be rewritten as
(0ra(u™) —awa(uy),I1;v,) +B(uj);e" I vp)
=—B(u";u" IT;vy)+B(uy; Ryu" 1L o)+ (E1 1L 0p), Vo, € U,,. 4.7)
Similar to Eq. (3.5), we obtain
—B(u";u" IT;vp)+ B(uy; Ryu" IT;vp)
=¢;, (" —a(u"),vp) —ea(up; Ry o) + By (u; Rpu” o) — By (u™; Ryu™ vy ) . (4.8)
Substituting (4.8) into (4.7) and setting vj, =d;e" in (4.7) yields
(0ra(u™) —oa(uy),I1;,0¢e" )+ B(uy;e" I1;0:e™)
=e,(f"—a(u");,0e") —eq(upy; Ryu",0pe™)
+ By, (uj; Ryu”,0re™ ) — By, (u”; Ry ,01e™ )| + (E1, IT;,0¢€™). (4.9)
The equation above can be written into
(0ra(u™)—aa(u}}),I1;0e" )+ By, (uy;e",0re™)
=ep(f"—a(u")y,0re") —eq(uj; Ryu”, 0™ ) +e4(uje",0ce™)
+ By, (uy; Ryu”,0re™) — By, (u”; Ry ,01e™) |+ (E1, 11, 0s€™). (4.10)
For the first term on the left hand side of Eq. (4.10), we have
ora(u")—oa(uy),I1}0.e")
a' (Vi)™ —a' (vy)ouj,, 11 0:e™)
a' (v —a' (vy)owu" +a’ (vh)owu" —a' (v5)owu)l 1T} 0re™)
(@ () —a'(v))3uu" ' (v§) (21" +0ye™) LTj ™). @1n)

(
=(
(

For the second term on the left hand side of Eq. (4.10), we have
2AtBy, (uf;e",01e™) = By (ull;e" ") — By, (uf;e"1,e" 1)+ At By, (ul ;9" ,0ie"). (4.12)
Multiplying (4.10) by 2At and using (4.11) and (4.12), we get
2At(a' (v5)dre" TT;0se™) + By (ull;e" ™) + At* By, (ull;0:e",0se™)
=—2At((a' (V) —a' (V§))osu" 4-a' (v5)0y0" T} dse™) + By (ull;e" 1 e" 1)
+2Ate (f" —a(u");, 0" ) —2Ate, (uj; Ryu”, 0™ ) +2Ate, (1)) ;e",05e™)
+2At[By, (uy; Ryu™,0re™) — By, (u”; Ry 0™ ) | +2A1(Eq, 1T} 0se™). (4.13)
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n—1

Subtracting Bh(uZ_l ;e 1e" 1) from both sides of (4.13) and summing on 7 from 1 to /,

we have

I
ZZAt (v3)oe" 1T, 0se" )-I-Bh(uiz;el,el)—Bh(u2;60,60)+ZAtZBh(uZ;ate”,ate”)

n=1

:—ZZAt((a’(v{‘)—a’(vg))atu”,ﬂflate ZZAt (V)" IT};0se™)

!
Z By, (uf;e" e 1) — Bh(uZ’l;e”’l,e”’l)]jLZZAt(El,HZE)te”)

n=1 n=1

I I
+ Y 2Atey (f"—a(u")y,0re") — Y 2Ate, (ul; Ryu",0¢e")

n=1 n=1
1 1
+ Z 2Ateq(uy;e", 0" )+ Z 2At[By, (uy; Ryu™ 0™ ) — By, (u"; R, 0¢e™)]. (4.14)
n=1 n=1

For the first two terms on the right-hand side of Eq. (4.14), we have
((a'(v]') —a' (v3))0ru" IT;0se") + (a' (v3 ) 0rp" T} 0se")
<C([lvy =v3llo+19:0™[l0) [0 [|o
<C(fluy—u" o+l ™" —u"Hlo+ " —u" o+ 190" [lo) |9ee" [lo
<C(lle"lo+ " llo+le" llo+[le" " lo+A2+[19:0" [lo) |9ze" [fo- (4.15)
For the third and fourth terms on the right-hand side of Eq. (4.14), we get
1By (150" Len=1y By (ul'~ Len=1 on=1y|
<ttt o9 ol
<t([[are" 17" o+ [ [Ridyae” [ 7" o) "~
<Car(aie o+ lle" ) e . (4.16)
For the fifth to eighth terms, using Cauchy-Schwarz inequality and Lemma 2.2, we obtain

(E1,IT;0te") <||Ex[ol[9se"[[o, (4.17a)
en(f" —a(u")y,0e") <Ch| f* —a(u")¢[|1]|0re"[|o, (4.17b)
eq(up; Ryu”,0re™) < Chllu"||2||9:e" [0, (4.17¢)
ea(up;e",0e") <Clle"[|1]|0ce" |o- (4.17d)

For the last two terms on the right-hand side of Eq. (4.14), we know that
[By, (uy; Ryu™,0re™) — By, (u"; Rju”,0¢e™)|
=((b(up)=b(u"))VRyu",Voe")
=(=V-[(b(up) =b(u")) VRyu"],0pe") (4.18)
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<C|[b' (up) V= b’ (") V" ||o]|0re" o

<CI" (up) (Vi = V") [lo+ | (b () =" (u")) V" o) || 0e" [lo

<C(llp"[[x+le" 1) 9ee" [o- (4.19)
Substituting (4.15)-(4.18) into Eq. (4.14) and using the coercive ellipticity of By, we have

1 1
Y 20ta 0" |[5+xlle[[+x ) A [ore” |

n=1 n=1

l
<C Y At(lle"lo+llo"lo+lle" o+ llo" o+ A+ (190" lo+lle" [+ [le" |2

n=1
!
+ "l +h+[Eillo) 3" [[o+C Y Atlle" 3, (4.20)
n=1

where ¢ is a positive constant related to as.
According to the Young inequality, we have

1 /
llellfF -+ ) AR (0" 17 <C Y At(llp"HIG+ A+ 00" [F+ 0" 17 + 12 +[| ExlIF)

n=1 n=1
!
+C Y At([le" T+ le"|17)- (4.21)
n=1

Using the Gronwall inequality and dropping the nonnegative terms, we get
!
clle 13 <C Y At(llo" HIG+ A + 19" I3+ [l IF + 12+ ]| E1 5)- (4.22)
n=1

According to Lemma 2.1, we have the conclusion (4.1)
' =i 13 <l 13+ 10"} < C(H*+A2). (4.23)

In order to get (4.2), we have a proof different from (4.17)-(4.23). using Cauchy-Schwarz
inequality and Lemma 2.2, we obtain

en(f" —a(u"),de") <CH?||f" —a(u")i|1]19ee" |11, (4.24a)
eq(ul; Ry u",0e™) < Ch2||u™||2]|0se" |1, (4.24b)

and

[By (uj;; Ryu”,0re™) — By (u"; Ry, 0pe")
=((b(u) = b(Ryu") +b(Ryu") = b(u")) VRyu",Vore")

(=V-[(b(uy) =b(Ryu"))VRyu"],0ie")+ ((b(Ryu™) —b(u")) VRyu",Vore")

<V (1) Vi — ' (Ryaa”) 7 Ryt are” o+ CIP | 9se” -

<CIb (up) (V= VRyu") [lo+ || (0" () =" (Ryu™) ) VR [|0) || 0" [lo

<Clle"[l1[|ore" [lo-+Ch?||Dee" - (4.25)
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Substituting (4.15)-(4.16) and (4.24)-(4.25) into Eq. (4.14) and using the coercive ellipticity
of B, we have

1 1
Y 2Ato||ace™|[G+xlle' I +1 Y AL (|9re” (I3
n=1 n=1

!
<CY_At(lle"llo+le"llo+lle"Hlo+ 110" llo+At2+[[9ep" o+ 1" [l
n=1
l /
+lle" 1+ [1Ello) [0se™ [lo+C ) Ath|[9e” |1 +C ) Atlle" 7. (4.26)
n=1 n=1
According to the Young inequality, we have

l
kllellF<C Y At(lo" H[G+ At +[l0w" 5 +At " hE + ]| Evl)

n=1

1
+C ) At(lle" M+ et 7). (4.27)

n=1
Using the Gronwall inequality, we get
le'|2 < C(atH+ArR), (4.28)
which implies the conclusion (4.2). O

Theorem 4.2. Let u" € H*NH' and ul! € U, "By be the solutions of Eq. (2.9) and Eq. (2.11),
respectively. Supposing that uy; € By, there exists a constant C such that

l
[l =y |[§+ Y Atllu" —ujp|F < C(H+A8). (4.29)
n=1

Proof. Setting v;, =e" in Eq. (4.7) yields

(Ora(u")—awa(uy ), I15e")+B(uy;e" 1T} e")
=ep(f"—a(u")ye") —eq(up; Ryu",e")
+ By, (up; Ryu™ e") — By, (u";Ryu” €™ )|+ (Eq1, ITje"). (4.30)

For the first term on the left hand side of Eq. (4.30), we have
(0ra(u™)—owa(uy),I1e") = (dra(u") —oa(uy ) 1T e" —e" +e"), (4.31)
and

(Bua (") —dua () ") = (Bra (")~ (uf)u” — 1) — (Bpa (") ~dua(uf) o). (432)



Y. Duand Y. Li / Adv. Appl. Math. Mech., xx (2025), pp. 1-25 15

Inserting (4.31) and (4.32) into (4.30), we get
(0ra(u™)—ora(uy),u" —uj})+B(uy;e" I e")
=ep(f"—a(u"),e")—eq(uj;Rpu’,e")
+ By (uj; Rpu" e™) — B, (u";Ryu” e )]+ (E1,1Tje")

+(0ra(u") —0a(uy),p") — (0ra(u™) —ora(uy), IT,e" —e"). (4.33)
For the first term on the left hand side of Eq. (4.33), we have
u n
@) —dua(u)w =)= | (3:( [ a(u)=a(w)dy)" ~Ez)ddy, (434)
Uy

where
Ex=(a(u")—a(u}}))osu" —0pa(u)" (u" —ul}) + (a(u)) —a(u)'))ou"
1 u n 1 i n—1
- — e - . 4.
i f (@) a0 5 [ (0l () (435)
The estimate of E, appears in [1]. We reproduce it here for completeness. For the first
two terms of Eq. (4.35), there are v; and 1, such that

(a(un) —a(uﬁ))atu”—ata(u)”(u” —uZ)
=(a'(v1)—a' (v2)) (" —ujj ) opu”

<Cl(v1—v2)(u" —uy)|

<Cl(u"—ul)2+(At)3]. (4.36)
For the first integral term in (4.35), there are v3 and v4 such that
[ (@) —ato)dn= [ a () )= 2a ) @3)
Similarly, there is v5 such that
/ h” (ap) —alu ™)) =5 (v5) ()2 (4.38)
Then, the last three terms of (4.35) are
o 20 () ) =)~ () (0" " () (Y]

:ZLN[Z(LZ/(V(,) —g’(y5))(uZ—qul)(un —Mnfl)+2ﬂ/(1/5)(uz—uzfl)(u”—unq)

() ("~ V2l () ()
<57 [2(0' (ve) —a'(v5)) (g — ™) (" =" 1)+ (@ (v5) — ' (va)) (" —u"1)?]
<C[|ve—vs||u} —ull " |+|vs —va|At]
<C[(u"—ul)*+ " ' —ul )2+ AP (4.39)
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Combining (4.36) and (4.39), we have
E, <Cl(u"— uﬂ)2+ ("1 —uZ_1)2+At2].

Then, Eq. (4.33) can be rewritten into

u n

/at(/ (y)—a(uh)dy) dxdy—+B(uj;e" I e")

Up

= (f"—a(u"),e") —ea(uy;Ryu,e") + By (uj; Ryu" ™)
—Bh(u”;Rhu”,e”)]+(E1,H26”)+/()E2dxdy

+ (0ra(u")—aa(uy),p") — (0ra(u™) —owa(uy), I e —e).

Multiplying (4.41) by At and summing on n from 1 to [, we have

u 1 !
/ (/ a(y)—a(uh)dy) dxdy+ ) AtB(uj;e" IT;e")
0 u n=1

h

I
= ZAt en(f"—a(u"),e") —eq(uj; Ry ")+ Y At(Eq, ITje")

n=1

!
+ E At[By (uy; Ryu" e ) — By, (u";Ryu” e )]+ Z At/ Exdxdy
n=1 Q

l
+ Y At(da(u")—0sa(uy), ZAt (0ra(u™) —owa(uj), 1" —e").

n=1

For the fifth term on the right hand-side of Eq. (4.42), we get

!
2 (9ra(u™) —da(u)l),p")
—(a(u') —a(u),0) — (a(u®) —a(u), ZAt uj) 34" 1),
Similarly, the last term on the right hand-side of Eq. (4.42) can be written as

Zl:At ora(u")—oa(uy), Il e" —e")
=(ﬂ(u') a(uj,) ITze —e') — (a(u®) —a(u}) ITe' —e')

o ZAt ) at(H* n+1l n+1)).

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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Using the results of [1], we know that

1

Mt =)< [ (@(@)~a(u}))de. (4.45)

h
According to (4.43)-(4.45), the initial condition and the ellipticity of B(uj};e",IT;e"), one
can have
!
M’ =y |5+ ZAtHE”H%
! !
<Y Atlen(f"—a(u)e") —eq(uj;Ryu" e") ]+ Y - At(Eq IT5e")

n=1 n=1

Z t[By (uj; Ryu” ,e") — By, (u"; Ryu” e +2At/ Exdxdy
+(a(ut) —a ZAt )= a(u}), 30" )

—(a(u") —a(ul),ITe! ! +2At a(ul),0;(ITie" ™ —e"t1y), (4.46)

According to Lemma 2.2 and Cauchy-Schwarz inequality, one can obtain

en(f"—a(u")ee") <CR2||f"—a(u")¢[1lle" |11, (4.472)
ea(up;Ryu" ") <CH|[u" 2]l "1, (4.47b)
[Bj, (up; Ryu™ e ) — By, (u"; Ry )]

< Clb(ug) o) [V (Rpu") [l [[ V" |

< Cllu” —ugllolle” |- (4.47¢)

Using the Cauchy-Schwarz inequality, we know that
(a(u)—a(ul),0") < Cllu =t o', (4.482)
(a(u")—a(u), 34" Y) < Cllu" = o]} 910" o, (4.480)
() —a(u), TTje ') < Chllu o' 1, (4480
(a(u") —a(u), 0p([Te™ 1 =™ 1)) < Chllw —ulllolloe™ . (448d)

Substituting Eq. (4.47) and Eq. (4.48) into Eq. (4.46), we have

1
Mt =y |3+ Y Atle" |13

n=1

!
<CY AP f" —a(u) e+ 12" 2+ ([ —uj o) le™ 1+ [|u” —ui 1§

n=1

"t =G+ AR+ Cllu = o (1l llo +lle! 1)
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-1 l

-1
+C Y Atu" —upllol|9g" o +Ch ) Atju" —ujllo]|dre™ 1.
n=1

n=1

According to Young inequality, we get

1
M = 3+ Y- At 3
n=1

1
<CY_ Al —up ||+ [l = 3+ AP +Cllo I3
n=1
I-1
+C Y At([|u" —uy[§+]9:0" T I§) +CH ¢! [13

n=1

-1 l
TCRALY. [0 et~ 3 e2 ) At
n=1 n=1

The equation above can be written as

1
(A—en) [l —uj |5+ (v —e2) Y Atlle"|[3
n=1

1
<C Y At{[[u" —up |5+ [[0s" G+ 14+ A +Cllo I3
n=1
-1
+CR[le'[)F+Ch2At Y [|oe" .
n=1

Since ||¢!||; and ||et||; are bounded, we have

l
(A—en) [l —uy I3+ (7 —e2) 3 Atlle"|3

n=1
1
<C Y AH[|u" —up |5+ 00" [§+R*+ AP +Cllo" |5+ Ch.
n=1

Then, the inequality (4.52) can be rewritten as

1 i
[u =l [3+ Y Atl|e"||3 < C Y At]||u" —uf||3+h*+ At +Ch?.

n=1 n=1

Using the Gronwall inequality and Lemma 2.1, we get the conclusion

!
lod! =, 5+ 3 Al — w13

n=1

1
<[l =g 15+ Y At(lle" [T+ [l"[1F) < C(R*+AF).
n=1

Thus, we complete the proof.

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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5 Existence of the fully discrete scheme

In this section, we prove the existence of the solution of the fully discrete scheme. We
refer to the results of [6]. We assume u{) = R,u® and At=0O(h'*¢) with0<e<1.
Let G, : U, — U}, be defined by

(a(Guo) —a(ul 1), IT;0,) + AtB(0; G0, I v) = AH(f" ITivy,), Vo, €U, (5.1)

Obviously, if G, has a fixed point v, then 1]} = v is the solution.
If uZ_l € By, according to Theorem 4.1, we have

[V ()t = Ryu" 1) [|o < C(At+AL2R2). (5.2)
Using the stability property of Rj, we get
IV o™t = Ry o <[V (™" = Ry [lo+ At VRydeua" o
SC(AtH+AY202) 4 A VR, dpu™ |0 < CHITE, (5.3)
where £ =min(e, %) Then, the following lemma holds.
Lemma 5.1. Let uZ‘l,v € B such that (5.3) holds. If
IV (v—Ryu")||o < Ch'™,
then there exists a positive constant C such that
IV (Gpo—Ryu")[lo < Ch'*.
Proof. Taking u=u" in (2.9) and multiplying it by At, we have
At(a(u")y, ITyop) +AtB(u;u” IT5v,) = At(f" IT50,), Vo, € Uy, (5.4)
Subtracting (5.1) from (5.4) and denoting
"=Gu—Ryu" and & l=ul'-Ru",
we get

(a(u™)—a(u" 1) —(a(Guo) —a(u} 1)), IT5v,) + AtB(v;&" IT0y)
:Atsh (fn —a(u")t,vh) —Atea(v;Rhu”,vh) +At(E1,HZUh)
+At[Bh(v;Rhu”,vh) — Bh(u”;Rhu”,vh)], Yo, € Uy,. (5.5)

Setting v, =0:¢" in (5.5), the equation can be written into
(a(u")—a(u" )= (a(Guo) —a(u 1)), I1;0:&") + AtBy (v;¢" IT;0:")
—Aten(f—a(u"), 9E") — Ateq (0 Ryt DiE") + Atey (038" THAE")
—|—At[Bh(v;Rhu”,at§”) — Bh(u”;Rhu”,atQ”)] +At(E1,Hzat(§”). (56)
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We adopt steps similar to (4.11)-(4.13) to get

2AH(a (V5) & TT;0:E™) + By (0;E", &™) + At* By, (0;0:8",0,&™)
=By (v;¢" &) —2At((a' (V) —a' (v3)) 9" 44’ (V5 )0r0" 11,0,
+2Ate;, (f" —a(u");,0:8" ) —2Ate,(v;Ryu", 018" ) +2At e, (0;¢" T1;9,E")
+2At[Bh (U;Rhu”,atﬁn) — Bh (u";Rhu”,th:")] ~|—2At(E1,HZBf§”) . (57)

Using methods similar to (4.15) and (4.24)-(4.26), we obtain

2010]|9:E" [+ KIIE" I +xAE [2:2" ]
<Cllg" M +CAt(lig" lo+ 1"l 112" llo+llp" o+ A+ (190" lo
1" 1+ [ Exllo+ 1o — Ry [[1) 18" llo+CAt[|9:" |1 (58)

According to the Young inequality, we have

cllelF<Clie" T +calg™ G+ e 15+ 1E" MG+ e G+
+110e0" [I5+ 1€ 1T+ | Ex[[§+ At h* + [lo— Ry ||7). (5.9)

Using Lemma 2.1, one can get
1" < Clig" M+ CAat(At H + AP +[[o— Ry 7). (5.10)
Combining (5.10) and the condition of this lemma, we get the conclusion
IV (Guo—Ryu") o < 18" |1 < CH' . (5.11)
This completes the proof. O

On the basis of the above lemma, we prove the existence for At and h sufficiently
small.

Theorem 5.1. If 7T, is quasiuniform and inverse inequality holds. Let u]!~',0 € By such that
(5.3) holds. Then for h sufficiently small and At= O (h'*¢) with 0 <e <1, there exists u}' € By
satisfying (2.11).

Proof. We take vy = uZ‘l and v, 1 = G,v;. According to Lemma 5.1,
|V (Guoj— Ryu™) [l < CH'™E,  j>0.
Considering >0 and M > M), for h sufficiently small, we get
IV Guvjlloo <[|VRy1" || oo+ Ch ™[V (Guoj—Ryu™) o <M, j>0, (5.12)

which implies that G,v; € By.
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Now, we prove the existence of uj € By. The key is to prove that G, is a compressed
mapping. By means of (5.1), for v,w € By and vj, € Uj,, we have
(a(Gyv) —a(Guw) IT;v,) +AtB(v;Gyo, 11,0, ) — AtB(w; G, w,IT;v),) =0. (5.13)
Setting v, = x = G,,v— G, w, the equation above can be written into

(a(Gpo) —a(Guw), 1T x) +AtB(w; x, 115 x)
=At(Bp(w;Gyv,X) — By (v;Guv, X)) + At (e (0;Gro, X) —€a(w; Gy, X))
=L +D. (5.14)

We use the Cauchy-Schwarz inequality and the fact that G,v € By to get
|| <CAHVGyoleo[o—wllollx]lr < CAtlo—wllo|[x]l1- (5.15)
Using Lemma 2.3, the inverse inequality and the fact v,G,v € By, we have
|| <CAth|[V (v—w) ol x[[s < CAtlv—wllo]lx]1- (5.16)
According to Lemma 2.4, (1.2) and (5.15)-(5.16), we know that
ollxll+ratlx | < Catllo—wlollx|l < CAtllv—w][§+r At x5 (5.17)

When At is sufficiently small, the equation above means that G, is a compressed mapping
and has a fixed point. This fixed point is the solution of (2.11). O

6 Numerical results

In order to testify the correctness of our theoretical results, we complete two numerical
experiments. Since the equation is a nonlinear, we use the Newton method to accomplish
the numerical experiment. The results of the following two examples show that our
method is correct.

6.1 Examplel

Consider the following two-dimensional equation

a(u;ju)—v-<<;uz+l> Vu> =f, (x,y)eQ, t€(0,T],
u(xy,t)=g, (x,y)€0Q), te€l0,T], 6.1)
u(x,y,0)=0, (x,y)eQ),

where O=(0,1) x (0,1) and T=1. We take the analytical solution

u(x,y) =t*sin(7rx)sin(rry).
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Table 1: The numerical results of FVE method when T=1/1000.
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(h,At) llup—ul ;2 Convergence order ||uy—ul|;p  rate
(1/4,1/1000)  5.7103e-002 - 6.5858e-001 -
(1/8,1/1000)  1.4133e-002 2.0145 3.2669e-001 1.0114

(1/16,1/1000)  3.4459e-003 2.0361 1.6280e-001  1.0048
(1/32,1/1000) 7.7508e-004 2.1525 8.1323e-002 1.0014
Table 2: The numerical results of FVE method when h=1/150.

(h,7) |lup—ull;2 Convergence order |uy—ul;n  rate
(1/150,1/5)  2.6383e-002 - 1.2170e-001 -
(1/150,1/10) 1.4126e-002 0.9013 6.6909e-002 0.8631
(1/150,1/15) 9.6077e-003 0.9506 4.7325e-002  0.8541
(1/150,1/20) 7.2713e-003 0.9685 3.7620e-002  0.7978

Table 3: The numerical results of FVE method when At =Hh2.

(h,At) |lup—ul|;» Convergence order |[uy—ul|;n  Convergence order
(1/41/16)  5.1465e-002 - 6.6670e-001 -
(1/8,1/64) 1.2511e-002 2.0404 3.2778e-001 1.0243

(1/12,1/144) 5.5404e-003 2.0089 2.1757e-001 1.0107
(1/16,1/256) 3.1133e-003 2.0035 1.6291e-001 1.0057

In Table 1, we present the errors in L?-norm and H'-norm with linear element on uniform
triangular meshes. We take At=1/1000 and h=1/4,1/8,1/16,1/32, respectively. We find
that the convergence order of errors in L?-norm is second-order and the convergence
order of error in H'-norm is first-order. The numerical results are in accordance with
theoretical results. In Table 2, we take h=1/150 and At=1/5,1/10,1/15,1/20. We can
see that the convergence order of errors in L?>-norm and H'-norm are both nearly first-
order. The numerical results are identical with the theoretical results. In Table 3, we take
At=h?>and h=1/4,1/8,1/12,1/16. The convergence orders of errors in L?-norm and
H'-norm are second-order and first-order, which are accord with our theoretical proof.

6.2 Example II

Consider the following parabolic equation

M —V-((sin(u)+1)Vu)=f, (xy)€Q,

ot
u(xyt)=g,

u(x,y,0)=0,

(x,y) €0Q),
(x,y) e,

te (0,T],
tel0,T),
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Table 4: The numerical results of FVE method when At=1/5000.

(h,At) llu—ul ;2 Convergence order |[u;—ul|;n  Convergence order
(1/4,1/5000)  1.8469e-002 - 1.3539e-001 -
(1/8,1/5000)  4.3839e-003 2.0748 6.1491e-002 1.1387
(1/12,1/5000) 1.9534e-003 1.9937 4.0030e-002 1.0587
(1/16,1/5000) 1.1195e-003 1.9351 2.9754e-002 1.0312

Table 5: The numerical results of FVE method when h=1/150.

(h,At) lup—ull;2 Convergence order |u;—ul/;1  Convergence order

(1/150,1/5)  8.6461e-002 - 4.9508e-001 -
(1/150,1/10)  4.5080e-002 0.9396 2.6114e-001 0.9228
(1/150,1/15)  3.0399e-002 0.9718 1.7669e-001 0.9635
(1/150,1/20) 2.2921e-002 0.9815 1.3343e-001 0.9762

Table 6: The numerical results of FVE method when At=h2.

(h,At) |lup—ul|;2 Convergence order |[uy—ul|;n  Convergence order
(1/41/16)  3.8116e-002 - 1.4207e-001 -
(1/8,1/64) 1.0149e-002 1.9091 6.3797e-002 1.1550

(1/12,1/144) 4.5690e-003 1.9683 4.0907e-002 1.0960
(1/16,1/256) 2.5821e-003 1.9838 3.0180e-002 1.0571

where = (0,1) x (0,1) and T =1. The analytical solution is
u(x,y) =t (> +y>+1).

In Table 4, we present the error in L>-norm and H!'-norm. We take At =1/5000 and
h=1/4,1/8,1/16,1/32. Numerical results show that the convergence order in L%-norm is
second order and the convergence order in H'-norm is first order. The numerical results
are in accordance with the theoretical results. In Table 5, we take h =1/150 and At =
1/5,1/10,1/15,1/20. The convergence orders of error in L?-norm and H'-norm are both
first order, which is accordance with the theoretical resutls. In Table 6, we take At = h?
and h=1/4,1/8,1/12,1/16. We find the convergence orders of errors in L%-norm and
H!-norm are second-order and first-order, respectively.

7 Conclusions

In this paper, we propose a finite volume element method for a parabolic equation with
nonlinear time derivative term and nonlinear diffusion term. Firstly, we construct semi-
discrete and fully discrete schemes for this equation. Then, we prove the suboptimal
error estimate in L?-norm scheme and optimal error estimate in H!-norm. Finally, some
numerical examples are presented to testify the effectiveness of our method.
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