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Abstract. In this paper, we develop a new class of conservative characteristic finite
difference methods for solving convection-dominated diffusion problems with fourth-
order accuracy in both time and space. Specifically, the method of characteristics is uti-
lized to handle the convection term, which allows for greater flexibility in the choice of
time step sizes. To achieve high-order temporal accuracy, we propose characteristics-
based optimal implicit strong stability preserving (SSP) Runge-Kutta methods imple-
mented along the streamline. Furthermore, a conservative interpolation is employed
to calculate values at the tracking points. By introducing diverse fourth-order approx-
imation operators on the uniform Eulerian and irregular Lagrangian meshes, we can
deal with the diffusion term with high accuracy while preserving the conservation
property. The mass conservation for our proposed method is theoretically proved, and
is verified through numerical experiments. Moreover, the numerical tests demonstrate
that our scheme achieves temporal and spatial fourth-order accuracy and generates
non-oscillatory solutions, even with large time step sizes.
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1 Introduction

Many physical phenomena can be modeled by partial differential equations, among which
the convection-diffusion equation holds significant importance with a wide range of
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applications, such as fluid flowing, atmospheric environment simulation, groundwa-
ter modeling and financial computation [3, 12, 28]. In the realm of fluid dynamics, the
intricate interplay between convection and diffusion plays a pivotal role in ascertain-
ing the stability and dynamics of fluid systems [31, 32], thus convection-diffusion prob-
lems have been extensively studied over the years. Unfortunately, finding the exact so-
lution to convection-diffusion equations is often impractical or impossible, leading to
the development of reliable numerical schemes with high precision to solve the prob-
lem [12, 14, 16, 22, 23, 36, 38]. This research is crucial as it enables further exploration of
physical phenomena and properties of systems governed by convection-diffusion equa-
tions.

In consideration of large computational regions and long period prediction, one of the
key indicators of numerical methods is computational efficiency. When numerically solv-
ing convection-diffusion equations, particularly in cases where convection dominates
diffusion, traditional schemes suffer from severe CFL restrictions and require fine time
discretization with high computational costs [2, 5]. To address these issues, specific tech-
niques have been developed to treat the convection term with care [9, 13, 16, 19, 27, 34].
The characteristics method is particularly attractive in that problems can be solved ef-
fectively along the streamline with high-order accuracy, resulting in significant compu-
tational savings. Over the years, many numerical schemes based on characteristics tech-
nique have been proposed to solve convection-diffusion equation [1, 4, 8–12, 14, 18, 23–
26, 29, 35, 37, 39], which avoid the issues of non-physical oscillations and excessive nu-
merical dissipation at steep fronts even with the coarse time step sizes [10]. In the realm
of one-dimensional convection-diffusion problems, a modified method of characteristics
was first proposed by Douglas and Russell in [9], which possesses first-order accuracy
in time. Since then, temporal first-order characteristic methods have been further devel-
oped and applied to problems in high dimensions including aerosol transport and mis-
cible displacement in porous media [4, 8, 18, 25, 26, 35]. However, these techniques can’t
guarantee mass conservation, which is a critical requirement for various mathematical
modeling applications [15]. To overcome this limitation, Arbogast and Wheeler devel-
oped a characteristics-mixed finite element method conserving mass based on a space-
time variational form of the convection-diffusion equation in [1]. Furthermore, temporal
second-order conservative characteristic schemes have been proposed [29, 39] and fur-
ther developed. [10] introduced a temporal second-order and spatial high-order scheme
to deal with the aerosol convection-diffusion process. In the context of two-dimensional
convection-diffusion problems, a spatial second-order conservative characteristic scheme
was developed in [11], and later [12] achieved fourth-order spatial accuracy.

To enhance the accuracy of time discretization in computational simulations, numer-
ous temporal high-order schemes have been devised. A notable category among these
schemes is the strong stability preserving (SSP) temporal discretizations, which are first
tailored to ensure the stability properties of the numerical solutions to hyperbolic prob-
lems [17]. These methods are known for their ability to preserve the strong stability prop-
erties of the spatial discretization coupled with the first-order Euler temporal discretiza-
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tion. The SSP Runge-Kutta methods, which can be viewed as convex combinations of
several forward Euler steps, have been employed with various spatial discretizations and
proven useful in numerous applications, such as atmospheric transport [33], Maxwell’s
equations [30] and compressible flow [6]. Despite their usefulness, the application of SSP
Runge-Kutta methods in combination with the characteristic technique poses challenges
due to the involvement of tracing the Eulerian mesh.

We develop in this work spatial-temporal fourth-order conservative finite difference
schemes for solving the convection-dominated diffusion problem. By combining the
characteristics technique with high-order conservative interpolation [7, 12], it allows the
use of large time step sizes without sacrificing the conservation property. In order to deal
with the diffusion term with variable coefficients, we introduce different fourth-order ap-
proximation operators based on uniform Eulerian mesh and irregular Lagrangian mesh,
which have fourth order accuracy in space and preserve the mass conservation. More-
over, the characteristics-based optimal implicit strong stability preserving Runge-Kutta
methods are introduced and applied along the streamline to achieve temporal high-order
accuracy. The mass conservation property for the proposed scheme has been rigorously
proved. Numerical experiments demonstrate the temporal and spatial convergence or-
ders of our proposed scheme. Furthermore, it is observed that our numerical method
maintains mass conservation and effectively avoids numerical oscillations, even when
using large time step sizes. This method offers significant practical applications in vari-
ous fields where convection-dominated diffusion equations arise, such as in environmen-
tal modeling, fluid mechanics, and financial simulations.

The paper is organized as follows. In Section 2, we present the conservative charac-
teristic spatial-temporal fourth-order finite difference method (CC-S4T4-FDM) for one-
dimensional convection-dominated diffusion equations and prove its mass conservation
property. In Section 3, we extend the constructed scheme and theoretical proof to the two-
dimensional case. Numerical experiments for validating the effectiveness and accuracy
of proposed scheme are presented in Section 4. Conclusion is given in Section 5.

2 One-dimensional case

We first consider the one-dimensional convection-diffusion problem in the domain Ω=
[a,b],

∂c
∂t

+u
∂c
∂x
− ∂

∂x

(
K(x)

∂c
∂x

)
=0, (x,t)∈Ω×(0,T], (2.1a)

c(x,0)= c0(x), x∈Ω, (2.1b)

where (0,T] is the time period, u=u(t) is the velocity of the field and K(x)∈C1(Ω) with
0<Kmin≤K(x)≤Kmax is the diffusion coefficient. c0(x) is the initial condition and we
apply the periodic boundary condition here.
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Let L≡b−a and divide Ω=[a,b] by the uniform partition

a= x 1
2
< x 3

2
< ···< xI+ 1

2
=b,

which satisfies xi+ 1
2
= a+ih for i= 0,1,··· , I with h≡ L/I. Then cells and cell centers are

defined by

Ωi =[xi− 1
2
,xi+ 1

2
], xi =

1
2
(xi− 1

2
+xi+ 1

2
), i=1,2,··· , I.

Consider Nt as the time steps with ∆t=T/Nt, then define tn =n∆t.
For proposing the characteristic method, consider the variable x as a function of the

variable t, i.e., x=X(t). Then the characteristic line associated with a location x∗ at t∗ in
the time interval [tn,tn+1] satisfies the ordinary differential equation

dX(t;t∗,x∗)
dt

=u(X(t;t∗,x∗),t), t∈ [tn,tn+1],

X(t∗;t∗,x∗)= x∗.
(2.2)

Introducing the representation of the Lagrangian derivative of the unknown quantity c
following the fluid, i.e., d/dt = ∂/∂t+u∂/∂x, it follows that the problem (2.1a) can be
rewritten in the form

dc
dt

=
∂

∂x

(
K

∂c
∂x

)
. (2.3)

2.1 Spatial semi-discretization

In order to handle the diffusion term of (2.3) on the uniform Eulerian mesh with high-
order accuracy, we introduce the finite difference approximation operator P as in [12,
21], which has fourth-order spatial accuracy for the differential operator ∂

∂x (K
∂·
∂x ) under

the variable coefficient case. Let Ki and Ci = Ci(t) represent K(xi) and the numerical
approximation for c(xi,t), respectively, then the operator P can be defined as

P(C)i =
Hi+ 1

2
(C)−Hi− 1

2
(C)

h
(2.4)

with H(·) being the high-order discretized flux defined by

Hi+ 1
2
(C)=

1
h

2

∑
l=−1

2

∑
m=−1

Ml,mKi+lCi+m, (2.5)
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where M={Ml,m} is given by

M=



1
8

−1
6

1
24

0

−1
6
−3

8
2
3
−1

8
1
8

−2
3

3
8

1
6

0 − 1
24

1
6
−1

8


. (2.6)

The size of tracking cell remains unchanged with the velocity being independent of spa-
tial variable, thus the operator P for the diffusion term defined on the uniform Eulerian
mesh can also be applied on the tracking mesh. Then we can achieve the spatial fourth-
order semi-discretization scheme of (2.3) with the above operator P , which is written
as

dCi

dt
=P(C)i. (2.7)

2.2 Characteristic SSP scheme

Now we construct the full-discretization scheme in the time interval [tn,tn+1] to calculate
the numerical solution of the one-dimensional convection-diffusion problem (2.1a). In
order to calculate Cn+1

i as an approximation of c(xi,tn+1) using the characteristic method,
we need to know the value at the tracking point of the previous time level.

For the need of mass conservation, we now regard the numerical solution Ci as the
average value of the corresponding interval Ωi for every time level. Trace the interval Ωi
along characteristics from tn+1 to tn and denote the tracking interval by

Ω̄(0)
i =

[
X(tn;tn+1,xi− 1

2
), X(tn;tn+1,xi+ 1

2
)
]
≡ [x̄i− 1

2
, x̄i+ 1

2
],

which can be identified by solving the problem (2.2) under the conditions of X(tn+1)=
xi− 1

2
and X(tn+1)= xi+ 1

2
with the fourth-order Runge-Kutta method. Next we calculate

the approximation for the integral of c(x,tn) over the tracking interval Ω̄(0)
i .

As in [10], we apply the conservative piecewise parabolic method [7, 12] to construct
a particular parabolic interpolation polynomial [RCn](x) at t= tn. Define

[RCn]p (x)=〈Cn〉p− 1
2
+

x−xp− 1
2

h

(
〈Cn〉p+ 1

2
−〈Cn〉p− 1

2

+6
(

Cn
p−

1
2
(〈Cn〉p+ 1

2
+〈Cn〉p− 1

2
)

) xp+ 1
2
−x

h

)
(2.8)



6 D. Qin, K. Fu and D. Liang / Adv. Appl. Math. Mech., xx (2025), pp. 1-26

on every interval Ωp, where 〈Cn〉p+ 1
2

is calculated for the fourth-order accuracy in space
as below:

〈Cn〉p+ 1
2
=

7
12

(Cn
p+Cn

p+1)−
1

12
(Cn

p+2+Cn
p−1). (2.9)

Note that the size of tracking interval Ω̄(0)
i is still h, which may coincide with some

Eulerian cell or take up two subdivision intervals for the one-dimensional case. Thus∫
Ω̄(0)

i
c(x,tn)dx can be evaluated as

∫
Ω̄(0)

i

c(x,tn)dx≈
∫ x̄

i+ 1
2

x̄
i− 1

2

[RCn](x)dx

=
∫ x

l+ 1
2

x̄
i− 1

2

[RCn]l(x)dx+
∫ x̄

i+ 1
2

x
l+ 1

2

[RCn]l+1(x)dx

≡R
Ω̄(0)

i
(Cn), (2.10)

where l is the cell index associated with the segment in which x̄i− 1
2

lies, i.e., x̄i− 1
2
∈Ωl .

Then we let the mean value
1
h
R

Ω̄(0)
i
(Cn)≡ C̄(0)

i

represent the approximation for c(x,t) at the tracking point X(tn;tn+1,xi)≡ x̄i without
breaking the property of mass conservation.

Now we propose the conservative characteristic spatial-temporal fourth-order finite
difference method (CC-S4T4-FDM) combined with the optimal three-stage fourth-order
implicit SSP Runge-Kutta method for solving the one-dimensional convection-diffusion
problem (2.1a)-(2.1b)

C̄(0)
i =

1
h
R

Ω̄(0)
i
(Cn), (2.11a)

C̄(1)
i =v1C̄(0)

i +∆tβ11P(C̄(1))i, (2.11b)

C̄(2)
i =v2C̄(0)

i +α21C̄(1)
i +∆tβ21P(C̄(1))i+∆tβ22P(C̄(2))i, (2.11c)

C̄(3)
i =v3C̄(0)

i +α32C̄(2)
i +∆tβ32P(C̄(2))i+∆tβ33P(C̄(3))i, (2.11d)

Cn+1
i =v4C̄(0)

i +α41C̄(1)
i +α42C̄(2)

i +α43C̄(3)
i +∆tβ41P(C̄(1))i

+∆tβ42P(C̄(2))i+∆tβ43P(C̄(3))i. (2.11e)

The coefficients vp, αp,q and βp,q above are consistent with the coefficients of the opti-
mal three-stage fourth-order implicit SSP Runge-Kutta method in [17], which satisfy the
consistency requirements

vp+∑
q

αp,q =1, p=1,2,3,4. (2.12)
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For a clear description, we define

t(0)=0, t(1)=β11∆t, t(2)=(α21β11+β21+β22)∆t, (2.13a)

t(3)=[α32(α21β11+β21+β22)+β32+β33]∆t, t(4)=∆t, (2.13b)

and represent the tracking interval Ω̄(k)
i as

Ω̄(k)
i =

[
X(tn+t(k);tn+1,xi− 1

2
), X(tn+t(k);tn+1,xi+ 1

2
)
]

, k=0,1,2,3, (2.14)

which are specifically shown in Fig. 1. Then C̄(0)
i , C̄(1)

i , C̄(2)
i and C̄(3)

i in the intermediate
process of the proposed method (2.11a)-(2.11e) are obtained by computing the approxi-
mation for the average of solution on Ω̄(0)

i , Ω̄(1)
i , Ω̄(2)

i and Ω̄(3)
i , respectively.

xi+1/2xi−1/2xi−3/2

tn

tn+1

tn+t(3)

tn+t(2)

tn+t(1)

Ωi

Ω(1)
i

Ω(0)
i

Ω(2)
i

Ω(3)
i

Figure 1: The schematic diagram for the characteristic tracking of Ωi.

Remark 2.1. There are many other strong stability preserving Runge–Kutta methods
which are different convex combinations of several formal forward Euler steps [17]. These
methods can be similarly applied to construct other temporal high-order conservative nu-
merical schemes without breaking the mass conservation property of the solution. The
above results can be easily extended to multiple-dimensional cases.

2.3 Mass conservation

Theorem 2.1. The proposed scheme (2.11a)-(2.11e) for solving the one-dimensional convection-
diffusion problem (2.1a) with the periodic boundary condition is globally mass conservative.

Proof. Multiplying (2.11b) by h and summing for i from 1 to I, it follows that

I

∑
i=1

hC̄(1)
i =v1

I

∑
i=1

hC̄(0)
i +∆tβ11

I

∑
i=1

hP(C̄(1))i. (2.15)
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According to the definition of C̄(0)
i and (2.10), it can be known that

I

∑
i=1

hC̄(0)
i =

I

∑
i=1
R

Ω̄(0)
i
(Cn)=

I

∑
i=1

hCn
i (2.16)

under the periodic boundary condition. It also yields

I

∑
i=1

hP(C̄(1))i =
I

∑
i=1

(
Hi+ 1

2
(C̄(1))−Hi− 1

2
(C̄(1))

)
=HI+ 1

2
(C̄(1))−H 1

2
(C̄(1))=0. (2.17)

Note that v1=1 according to (2.12), then we know

I

∑
i=1

hC̄(1)
i =

I

∑
i=1

hCn
i . (2.18)

Similarly, we multiply (2.11c) by h and sum for i from 1 to I. According to (2.16) and
(2.18), we have

I

∑
i=1

hC̄(2)
i =(v2+α21)

I

∑
i=1

hCn
i +∆tβ21

I

∑
i=1

hP(C̄(1))i+∆tβ22

I

∑
i=1

hP(C̄(2))i.

Considering the periodic boundary condition and (2.12), we can know that

I

∑
i=1

hP(C̄(2))i =
I

∑
i=1

(
Hi+ 1

2
(C̄(2))−Hi− 1

2
(C̄(2))

)
=HI+ 1

2
(C̄(2))−H 1

2
(C̄(2))=0,

v2+α21=1,

then it yields

I

∑
i=1

hC̄(2)
i =

I

∑
i=1

hCn
i . (2.19)

Based on the similar analysis, we have

I

∑
i=1

hCn+1
i =

I

∑
i=1

hCn
i . (2.20)

Thus, we complete the proof.
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3 Two-dimensional case

Now we introduce the spatial-temporal fourth-order conservative characteristic scheme
for the two-dimensional convection-diffusion problem in the domain Ω=[ax,bx]×[ay,by],

∂c
∂t

+u·∇c(x,y,t)−∇·(K∇c(x,y,t))=0, (x,y,t)∈Ω×(0,T], (3.1a)

(K∇c)·n=0, (x,y,t)∈∂Ω×(0,T], (3.1b)
c(x,y,0)= c0(x,y), (x,y)∈Ω, (3.1c)

where c is the quantity to be calculated at spatial location x = (x,y) and time t. u =
(ux, uy) is the convection coefficient, which satisfies ∇·u=0. K=diag(Kx(x,y),Ky(x,y))
is a diagonal diffusion coefficient matrix with Kx,Ky∈C1(Ω), and there are two positive
constants Kmin and Kmax, such that 0<Kmin≤Kx, Ky≤Kmax. ∂Ω denotes the boundary
of Ω and n is the unit outer normal to the boundary ∂Ω. T represents the final time. We
assume sufficient smoothness of all the variables along spatial direction.

Let Lx≡bx−ax, Ly≡by−ay. Consider the uniform partition of the domain Ω=[ax,bx]×
[ay,by] as follows:

ax = x 1
2
< x 3

2
< ···< xI+ 1

2
=bx,

ay =y 1
2
<y 3

2
< ···<yJ+ 1

2
=by,

which satisfies xi+ 1
2
= ax+ihx and yj+ 1

2
= ay+ jhy with hx≡ Lx/I and hy≡ Ly/J. Then, for

i=1,2,··· , I and j=1,2,··· , J, cells and cell centers are defined by

Ωi,j =[xi− 1
2
,xi+ 1

2
]×[yj− 1

2
,yj+ 1

2
],

xi =
1
2
(xi− 1

2
+xi+ 1

2
), yj =

1
2
(yj− 1

2
+yj+ 1

2
).

Let Nt represent the time steps with ∆t=T/Nt, and set tn =n∆t. Consider the variable x
as a function of the variable t, i.e., x=X(t), then the characteristic line associated with a
location x∗ at t∗ in the time interval [tn,tn+1] satisfies the ordinary differential equation

dX(t ;t∗,x∗)
dt

=u(X(t ;t∗,x∗),t), t∈ [tn,tn+1],

X(t∗;t∗,x∗)= x∗.
(3.2)

Now we use the representation of the Lagrangian derivative of the unknown quantity c
following the fluid, i.e., d/dt=∂/∂t+u·∇, then Eq. (3.1a) can be rewritten in the form

dc
dt

=
∂

∂x

(
Kx ∂c

∂x

)
+

∂

∂y

(
Ky ∂c

∂y

)
. (3.3)
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3.1 Spatial semi-discretization

Now we introduce the finite difference approximation operator Q for the diffusion term
∂

∂x (K
x ∂·

∂x )+
∂

∂y (K
y ∂·

∂y ) of (3.3) on the uniform Eulerian mesh, which is spatial fourth-order
accuracy [12]. Let xi,j=(xi,yj) and denote Kx(xi,j), Ky(xi,j) and the numerical approxima-
tion for c(xi,j,t) as Kx

i,j, Ky
i,j and Ci,j =Ci,j(t), respectively. Next we define the approxima-

tion operator Q as

Q(C)i,j =
Ĥi+ 1

2 ,j(C)− Ĥi− 1
2 ,j(C)

hx
+

Ĥi,j+ 1
2
(C)− Ĥi,j− 1

2
(C)

hy
, (3.4)

with Ĥ(·) being the continuous flux defined by

Ĥi+ 1
2 ,j(C)=

1
hx

2

∑
l=−1

2

∑
m=−1

Ml,mKx
i+l,jCi+m,j, (3.5)

Ĥi,j+ 1
2
(C)=

1
hy

2

∑
l=−1

2

∑
m=−1

Ml,mKy
i,j+lCi,j+m, (3.6)

where M={Ml,m} is given by (2.6) as the one-dimensional case. Noting that “ghost cells”
are needed for implementing calculation at the boundary, thus we define C0,j, C−1,j, CI+1,j
and CI+2,j as in [12], meanwhile Ci,0, Ci,−1, Ci,J+1 and Ci,J+2 are computed similarly.

For keeping the mass conservation, we regard the numerical solution Ci,j as the av-
erage value on the corresponding cell Ωi,j for every time level. Because of using the
characteristic technique, it is essential to know the value at the tracking point along the
characteristics first.

For the Eulerian cell Ωi,j at t= tn+1, denote its tracking cell at t= tn by Ω̄i,j (Fig. 2),
which is usually irregular and is identified by solving the problem (3.2). Then the integral
of the solution over Ω̄i,j can be approximated with the one-dimensional conservative
interpolation reconstruction technique define in (2.8)-(2.9) in two stages [10, 12].
Stage 1. Conservative interpolation along the Eulerian x-direction for the areas between
the Eulerian lines yj− 1

2
and yj+ 1

2
. Construct fourth-order accuracy conservative interpo-

lation along the Eulerian x-direction based on Cn
p,j, p= 1,2,··· , I. Then the mass, i.e., the

integral of the constructed interpolation can be calculated over each intermediate cell Ω̂i,j
(Fig. 2), the area bounded by yj− 1

2
, yj+ 1

2
, Lxi− 1

2
and Lxi+ 1

2
.

Stage 2. Conservative interpolation along the Lagrangian y-direction for the area be-
tween the Lagrangian lines Lxi− 1

2
and Lxi+ 1

2
. Using the calculated masses over the in-

termediate cells, we perform a similar operation as in Stage 1. Denote the integral of the
constructed piecewise parabolic interpolation polynomial over Ω̄i,j by IΩ̄i,j

(Cn).
Then the value at the tracking point is approximated by

1
hxhy
IΩ̄i,j

(Cn)≡ C̄n
i,j
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yj+1/2

yj

yj−1/2

yj−3/2

xi−3/2 xi−1/2 xi+1/2xi−5/2

yj−5/2

Lxi−1/2 Lxi+1/2 Lxi+3/2

Lyj−1/2

Lyj+1/2

Lyj+3/2

Ωi,j

Ω̂i,j

Figure 2: The Eulerian mesh grids (continuous thin black lines), the Eulerian mesh centerlines (dashed thin
black lines) and the Lagrangian tracking mesh grids (dashed thick gray lines). Ω̄i,j is the tracking cell of Ωi,j.

Ω̂i,j is the intermediate cell.

with mass conservation. It is worth noting that the size of the tracking cell Ω̄i,j remains
hxhy under the condition of ∇·u=0 [20].

Note that the operator Q for the diffusion term defined in (3.4) cannot be imple-
mented on the tracking mesh as in the one-dimensional case for that the condition∇·u=0
only keeps the size of the tracking cell unchanged [20], but not the relative position.
Given the misalignment between the tracking mesh and the standard Eulerian mesh,
calculating a high-order accuracy approximation of the diffusion term on the irregular
tracking mesh with the property of mass conservation while solving the two-dimensional
problem (3.1a)-(3.1c) becomes a challenging task.

To approximate the integral of the diffusion term on the tracking cell Ω̄i,j at time
level tn, we transform it into a line integral along the boundary of the tracking cell, i.e.,∫

∂Ω̄i,j
(K∇c(x,tn))·nds with n being the unit outer normal to the boundary of Ω̄i,j, using

Green’s formula. We employ a piecewise biquartic function to approximate the scalar
field of c(x,tn), which enables us to obtain a high-precision diffusion flux that maintains
continuity at the boundary of the tracking cell Ω̄i,j at time level tn [12]. Based on the
numerical solutions on the uniform Eulerian mesh, we establish the piecewise biquartic
polynomial on Ωi,j as

C̃n
i,j(x,y)=

2

∑
l,m=−2

ωl(ξ)ωm(η)Cn
i+l,j+m, i=1,2,··· , I; j=1,2,··· , J, (3.7)
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with

ξ=(x−xi)/hx, η=
(
y−yj

)
/hy, (3.8a)

ω−2(ξ)=(ξ+1)ξ(ξ−1)(ξ−2)/24,
ω−1(ξ)=−(ξ+2)ξ(ξ−1)(ξ−2)/6,
ω0(ξ)=(ξ+2)(ξ+1)(ξ−1)(ξ−2)/4,
ω1(ξ)=−(ξ+2)(ξ+1)ξ(ξ−2)/6,
ω2(ξ)=(ξ+2)(ξ+1)ξ(ξ−1)/24.

(3.8b)

Utilizing the piecewise function constructed above, the diffusion term approximation at
x̄i,j can be solved as

Q̄(Cn)Ω̄i,j
=

1
hxhy

(
[DI]∂Ω̄i,j,E

(Cn)+[DI]∂Ω̄i,j,W
(Cn)+[DI]∂Ω̄i,j,N

(Cn)+[DI]∂Ω̄i,j,S
(Cn)

)
, (3.9)

where [DI]∂Ω̄i,j,S
(Cn), [DI]∂Ω̄i,j,E

(Cn), [DI]∂Ω̄i,j,N
(Cn) and [DI]∂Ω̄i,j,W

(Cn) are high accurate
approximations for the integral of (K∇c(x,tn))·n along “south”, “east”, “north” and
“west” boundaries of Ω̄i,j, respectively.

3.2 Characteristic SSP scheme

Combine the optimal three-stage fourth-order implicit SSP Runge-Kutta method [17]
with the characteristic technique to achieve a full-discretization scheme just as in the
one-dimensional case. However, solving directly for the values on the irregular track-
ing mesh with the implicit method is difficult. Noting the definition (2.13), we choose to
solve for values on the uniform Eulerian mesh Ωi,j at t= tn+t(s) for s=1,2,3,4, and apply
the conservative interpolation reconstruction technique mentioned above to obtain the
values on the tracking cell.

To describe more clearly, we define the space-time domain Θs
i,j as

Θs
i,j ={(x,t)∈Ω×[0,T] : x=X(t;tn+t(s),x∗), x∗∈Ωi,j, t∈ [tn,tn+t(s)]}, s=1,2,3,4,

And the following are the unified definitions for the tracking cells:

Ω̄(k),1
i,j ={x∈Ω : x=X(tn+t(k);tn+t(1),x∗), x∗∈Ωi,j}, k=0, (3.10a)

Ω̄(k),2
i,j ={x∈Ω : x=X(tn+t(k);tn+t(2),x∗), x∗∈Ωi,j}, k=0,1, (3.10b)

Ω̄(k),3
i,j ={x∈Ω : x=X(tn+t(k);tn+t(3),x∗), x∗∈Ωi,j}, k=0,1,2, (3.10c)

Ω̄(k),4
i,j ={x∈Ω : x=X(tn+t(k);tn+t(4),x∗), x∗∈Ωi,j}, k=0,1,2,3, (3.10d)

which all can be identified by solving problem (3.2) with the fourth-order Runge-Kutta
method. That is to say, Ω̄(k),s

i,j represents the tracking cell of Ωi,j from tn+t(s) to tn+t(k)

based on Θs
i,j.
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Figure 3: The schematic diagrams for the space-time domains and the corresponding characteristic tracking of
Ωi,j.

Figs. 3(a)-(d) present the space-time domains Θ1
i,j, Θ2

i,j, Θ3
i,j and Θ4

i,j, respectively, and
the tracking cells based on the different space-time domains are all marked in the figure.

For the Eulerian cell, let C(k)
i,j be the approximation for the average of the solution on

Ωi,j at t= tn+t(k). Then we denote the approximation for the average of the solution on

the irregular cell Ω̄(k),s
i,j by C̄(k),s

i,j , whose definition can be expressed as

C̄(k),s
i,j =

1
hxhy
I

Ω̄(k),s
i,j

(C(k)). (3.11)



14 D. Qin, K. Fu and D. Liang / Adv. Appl. Math. Mech., xx (2025), pp. 1-26

Particularly it can be known that Ω̄(0),4
i,j and Ω̄i,j defined earlier represent the same

tracking cell, meanwhile C(4)
i,j , C(0)

i,j and C̄(0),4
i,j are actually Cn+1

i,j , Cn
i,j and C̄n

i,j, respectively.
For solving the two-dimensional convection-diffusion problem (3.1a)-(3.1c), we propose
the conservative characteristic spatial-temporal fourth-order method (CC-S4T4-FDM) by
modifying the optimal three-stage fourth-order implicit SSP Runge-Kutta method [17],
which can be implemented in every time interval [tn,tn+1] as follows:

Step 1. Calculate the numerical approximation solution C(1)
i,j on the Eulerian cell Ωi,j at

t= tn+t(1) based on the space-time domain Θ1
i,j:

C̄(0),1
i,j =

1
hxhy
I

Ω̄(0),1
i,j

(C(0)), (3.12a)

C(1)
i,j =v1C̄(0),1

i,j +∆tβ11Q(C(1))i,j, (3.12b)

Step 2. Calculate the numerical approximation solution C(2)
i,j on the Eulerian cell Ωi,j at

t= tn+t(2) based on the space-time domain Θ2
i,j:

C̄(k),2
i,j =

1
hxhy
I

Ω̄(k),2
i,j

(C(k)), k=0,1, (3.13a)

C(2)
i,j =v2C̄(0),2

i,j +α21C̄(1),2
i,j +∆tβ21Q̄(C(1))

Ω̄(1),2
i,j

+∆tβ22Q(C(2))i,j, (3.13b)

Step 3. Calculate the numerical approximation solution C(3)
i,j on the Eulerian cell Ωi,j at

t= tn+t(3) based on the space-time domain Θ3
i,j:

C̄(k),3
i,j =

1
hxhy
I

Ω̄(k),3
i,j

(C(k)), k=0,2, (3.14a)

C(3)
i,j =v3C̄(0),3

i,j +α32C̄(2),3
i,j +∆tβ32Q̄(C(2))

Ω̄(2),3
i,j

+∆tβ33Q(C(3))i,j, (3.14b)

Step 4. Combine all the above results to calculate Cn+1
i,j based on the space-time domain

Θ4
i,j:

C̄(k),4
i,j =

1
hxhy
I

Ω̄(k),4
i,j

(C(k)), k=0,1,2,3, (3.15a)

Cn+1
i,j =v4C̄(0),4

i,j +α41C̄(1),4
i,j +α42C̄(2),4

i,j +α43C̄(3),4
i,j +∆tβ41Q̄(C(1))

Ω̄(1),4
i,j

+∆tβ42Q̄(C(2))
Ω̄(2),4

i,j
+∆tβ43Q̄(C(3))

Ω̄(3),4
i,j

, (3.15b)

where all the SSP coefficients above are identified as in the one-dimensional case.
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3.3 Mass conservation

Hypothesis 3.1. The velocity u∈C0(W1,∞(Ω)) satisfies

u·n=0 on ∂Ω. (3.16)

According to Hypothesis 3.1 and the homogeneous Neumann boundary condition
(3.1b), it can be set that

Ĥ 1
2 ,j(C

(k))= ĤI+ 1
2 ,j(C

(k))= Ĥi, 1
2
(C(k))= Ĥi,J+ 1

2
(C(k))=0, k=1,2,3,4, (3.17)

to implement the numerical scheme (3.12a)-(3.15b).

Theorem 3.1. Under Hypothesis 3.1, the proposed scheme (3.12a)-(3.15b) for solving the two-
dimensional convection-diffusion problems (3.1a) with the homogeneous Neumann boundary con-
dition (3.1b) is globally mass conservative.

Proof. For Step 1, multiplying (3.12b) by hxhy and summing for i from 1 to I; j from 1 to
J, it follows that

I

∑
i=1

J

∑
j=1

hxhyC(1)
i,j =v1

I

∑
i=1

J

∑
j=1

hxhyC̄(0),1
i,j +∆tβ11

I

∑
i=1

J

∑
j=1

hxhyQ(C(1))i,j. (3.18)

Under Hypothesis 3.1, it can be known that there is no flow at the domain boundary.
Applying the definition of C̄(0),1

i,j and the conservative property of the high-order interpo-
lation [7, 12], we have

I

∑
i=1

J

∑
j=1

hxhyC̄(0),1
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j. (3.19)

According to the boundary condition (3.17) for the numerical scheme and the continuity
of Ĥ(·), it holds that

I

∑
i=1

J

∑
j=1

hxhyQ(C(1))i,j

=
I

∑
i=1

J

∑
j=1

hxhy

(
Ĥi+ 1

2 ,j(C
(1))− Ĥi− 1

2 ,j(C
(1))

hx
+

Ĥi,j+ 1
2
(C(1))− Ĥi,j− 1

2
(C(1))

hy

)

=
I

∑
i=1

J

∑
j=1

(
hy(Ĥi+ 1

2 ,j(C
(1))− Ĥi− 1

2 ,j(C
(1)))+hx(Ĥi,j+ 1

2
(C(1))− Ĥi,j− 1

2
(C(1)))

)
=hy

J

∑
j=1

(ĤI+ 1
2 ,j(C

(1))− Ĥ 1
2 ,j(C

(1)))+hx

I

∑
i=1

(Ĥi,J+ 1
2
(C(1))− Ĥi, 1

2
(C(1)))=0. (3.20)
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Note that v1=1 and combine (3.18)-(3.20), then it yields

I

∑
i=1

J

∑
j=1

hxhyC(1)
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j. (3.21)

For Step 2, we have that

I

∑
i=1

J

∑
j=1

hxhyC̄(0),2
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j, (3.22a)

I

∑
i=1

J

∑
j=1

hxhyC̄(1),2
i,j =

I

∑
i=1

J

∑
j=1

hxhyC(1)
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j, (3.22b)

just as the analysis for (3.19). By multiplying (3.13b) with hxhy and summing for i ranging
from 1 to I, and j from 1 to J, while considering v2+α21 =1 and (3.22), it can be deduced
that

I

∑
i=1

J

∑
j=1

hxhyC(2)
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j+∆tβ21

I

∑
i=1

J

∑
j=1

hxhyQ̄(C(1))
Ω̄(1),2

i,j

+∆tβ22

I

∑
i=1

J

∑
j=1

hxhyQ(C(2))i,j. (3.23)

Under the boundary condition (3.17), we can similarly achieve

I

∑
i=1

J

∑
j=1

hxhyQ(C(2))i,j =0. (3.24)

In fact, it can yield that the entire tracking domain is the same as the Eulerian domain
from Hypothesis 3.1. According to the continuity of the discrete fluxes on the boundaries
of the tracking cell Ω̄(1),2

i,j and the corresponding proof in [12], we have

I

∑
i=1

J

∑
j=1

hxhyQ̄(C(1))
Ω̄(1),2

i,j
=0. (3.25)

From (3.23)-(3.25), we obtain that

I

∑
i=1

J

∑
j=1

hxhyC(2)
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j. (3.26)

Then we handle other steps in a similar way as above. Finally, it leads to

I

∑
i=1

J

∑
j=1

hxhyCn+1
i,j =

I

∑
i=1

J

∑
j=1

hxhyCn
i,j. (3.27)

Thus, we complete the proof.
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4 Numerical experiments

4.1 One-dimensional case

Example 4.1. We now consider a one-dimensional convection-dominated diffusion prob-
lem with the periodic boundary condition in Ω=[0,2], the exact solution of which is given
as

c(x,t)=1+exp(−π2Kt)sin(πx−πut), (4.1)

with u and K being the convection velocity and the diffusion coefficient, respectively. The
initial condition can be identified from (4.1) by setting t= 0. We calculate the numerical
solution to the final time T=1 with K=10−5 and different u=1 and 10.

To demonstrate the superiority of our proposed conservative characteristic spatial-
temporal fourth-order finite difference method (CC-S4T4-FDM), a scheme that use SSP
Runge-Kutta method directly and does not employ the characteristics technique (C-S4T4-
FDM) is introduced for comparison. The sole distinction between this non-characteristic
C-S4T4-FDM and the proposed CC-S4T4-FDM lies in the treatment of the convection
term. Specifically, the non-characteristic scheme is processed with the following central
fourth-order difference operator

P∗(C)i =
Ci−2−8Ci−1+8Ci+1−Ci+2

12h

to handle the first-order derivative of the convection term.
We now check the spatial and temporal convergence orders of the numerical solu-

tions calculated by the CC-S4T4-FDM and the aforementioned non-characteristic C-S4T4-
FDM. Choosing different step sizes of ∆t= h= 1

30 , 1
40 , 1

50 and 1
60 to compute errors mea-

sured by the discrete L2- norm and L∞- norm, the results for the convection velocity u=1
and 10 are illustrated in Table 1 and Table 2, respectively. It is clearly shown in Table 1

Table 1: Errors, convergence ratios and mass errors of the numerical solutions of the CC-S4T4-FDM and the
non-characteristic C-S4T4-FDM with u=1.

I 60 80 100 120
L∞- error 1.3157e-10 4.1675e-11 1.7111e-11 8.2368e-12

Ratio - 3.9962 3.9893 4.0099
CC-S4T4-FDM L2- error 1.3174e-10 4.1706e-11 1.7101e-11 8.2332e-12

Ratio - 3.9982 3.9952 4.0093
mass error 1.9895e-14 4.2633e-15 3.4674e-14 1.8237e-14
L∞- error 1.2286e-05 3.8919e-06 1.5950e-06 7.6939e-07

Ratio - 3.9960 3.9976 3.9984
C-S4T4-FDM L2- error 1.2302e-05 3.8948e-06 1.5957e-06 7.6965e-07

Ratio - 3.9980 3.9988 3.9992
mass error 8.5265e-15 2.8422e-15 2.2737e-15 3.7896e-15
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Table 2: Errors, convergence ratios and mass errors of the numerical solutions of the CC-S4T4-FDM and the
non-characteristic C-S4T4-FDM with u=10.

I 60 80 100 120
L∞- error 1.3169e-10 4.1861e-11 1.7138e-11 8.3691e-12

Ratio - 3.9837 4.0022 3.9313
CC-S4T4-FDM L2- error 1.3174e-10 4.1703e-11 1.7100e-11 8.2336e-12

Ratio - 3.9984 3.9953 4.0085
mass error 1.5395e-14 6.7502e-15 3.2401e-14 1.2316e-14
L∞- error 3.0668e+13 1.0379e+23 3.0681e+32 2.6825e+42

Ratio - -7.6273e+01 -9.7727e+01 -1.2556e+02
C-S4T4-FDM L2- error 2.3408e+13 6.7130e+22 1.9398e+32 1.6139e+42

Ratio - -7.5698e+01 -9.7625e+01 -1.2528e+02
mass error 3.9063e-04 2.0972e+06 5.7646e+15 3.6107e+25

that our proposed CC-S4T4-FDM and the non-characteristic C-S4T4-FDM attain fourth-
order accuracy in both time and space with u = 1, and conserve mass effectively. The
L∞- errors and L2- errors of the CC-S4T4-FDM are noticeably smaller than those of the
non-characteristic C-S4T4-FDM under the identical parameter conditions. That is to say,
our proposed CC-S4T4-FDM can yield satisfactory high-precision numerical results with
relatively larger discretization step sizes.

Table 2 shows the results under the condition of large convection velocity of u= 10.
It can be seen that the CC-S4T4-FDM still maintains spatial-temporal fourth-order ac-
curacy and mass conservation while the numerical solution obtained using the non-
characteristic C-S4T4-FDM exhibits severe oscillations and can not get correct results.
Choosing the time steps of Nt = 30 and the space steps of I = 30, we perform compu-
tations using both the CC-S4T4-FDM and the non-characteristic C-S4T4-FDM to solve
(4.1) with K = 10−5 and u = 10. The numerical solutions at time t = 1 are presented in
Fig. 4, alongside the exact solution. Comparing to non-characteristic C-S4T4-FDM, it is
evident that our proposed CC-S4T4-FDM allows for the use of fairly larger time step sizes
in computations without inducing numerical oscillations, which can significantly reduce
computational costs.

4.2 Two-dimensional case

Example 4.2. In this example, we study the two-dimensional convection-diffusion prob-
lem by considering the rotating Gaussian concentration pulse in the spatial domain Ω=
[−1,1]×[−1,1] with the variable velocity field of (ux,uy)=(−λy,λx), where the different
values of λ determine different velocity fields. The analytical solution to the problem is
given as

c(x,y,t)=
σ2

0

σ2
0 +2Kt

exp
(
− (x(t)−x0)2+(y(t)−y0)2

2σ2
0 +4Kt

)
, (4.2)
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Figure 4: Comparison of the different numerical solutions for Example 4.1 by the propose CC-S4T4-FDM and
Non-Characteristic C-S4T4-FDM at time t=1 with K=10−5 and u=10.

where (x0,y0) = (−0.35,0) represents the initial center of the Gaussian pulse, σ0 = 0.07
denotes the standard deviation, x(t) and y(t) are defined as

x(t)= xcos(λt)+ysin(λt), y(t)=−xsin(λt)+ycos(λt).

The initial condition is given by setting t=0 in the analytical solution (4.2) and the bound-
ary condition is considered as the homogeneous Neumann boundary condition. Then we
calculate to the final time T=1/5 with the diffusion coefficient of Kx=Ky=K=10−5 to ex-
amine the convergence rates and mass conservation property of the proposed numerical
scheme.

In Table 3 and Table 4, we examine the convergence ratios of the proposed CC-S4T4-
FDM for two-dimensional convection-diffusion problems with different velocity fields,
respectively. Choose different step sizes of ∆t= hx = hy =

1
30 , 1

40 , 1
50 and 1

60 to execute the
scheme and calculate errors using the discrete L2- norm and L∞- norm, where the fourth-
order Runge-Kutta method is applied to identify the tracking points during the charac-
teristics tracking process. It is clear that the proposed scheme has spatial and temporal
fourth-order accuracy. The mass conservative property can also be verified according to
Table 3 and Table 4, which corroborate the theoretical results.

Table 3: Errors, convergence ratios and mass errors of the numerical solutions of the CC-S4T4-FDM with λ=4.

I 60 80 100 120
L∞- error 1.3661e-02 4.5977e-03 1.8559e-03 8.5329e-04

Ratio - 3.7854 4.0654 4.2619
L2- error 1.1445e-03 3.7414e-04 1.5263e-04 7.2677e-05

Ratio - 3.8865 4.0181 4.0698
mass error 2.6923e-15 5.8981e-17 1.0408e-17 6.9389e-18
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Table 4: Errors, convergence ratios and mass errors of the numerical solutions of the CC-S4T4-FDM with λ=20.

I 60 80 100 120
L∞- error 1.6939e-02 5.4727e-03 2.1024e-03 9.1482e-04

Ratio - 3.9275 4.2873 4.5640
L2- error 1.5851e-03 4.9152e-04 2.0152e-04 9.6376e-05

Ratio - 4.0700 3.9957 4.0458
mass error 5.9570e-15 1.5959e-16 6.9389e-18 1.0408e-17

Example 4.3. Consider the convection-diffusion problem for a convected wave over a
two-dimensional spatial domain Ω=[−π,π]×[−π,π]. The divergence free velocity field
is

~u=(ux,uy)=

(
∂ψ

∂y
,−∂ψ

∂x

)
with ψ(x,y) being defined as

ψ(x,y)=
1
4

sin2(x)cos2
(

y−π

2

)
−πy

20
. (4.3)

The initial condition c(x,y,0) is given by

c(x,y,0)=
1
4

{
erf
(

x1−x+10−2

0.3

)
+erf

(
−x0+x−10−2

0.3

)}
×
{

erf
(

y1−y+10−2

0.3

)
+erf

(
−y0+y−10−2

0.3

)}
, (4.4)

where x0=
π
5 , x1=

3π
5 , y0=−π

3 , y1=
2π
3 and erf(x)= 2√

π

∫ x
0 exp(−η2)dη is the error function.

The velocity field and the initial value distribution are shown in Fig. 5. Consider the
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Figure 5: (a) The velocity field of u=(ux,uy)=
(

∂ψ
∂y ,− ∂ψ

∂x

)
. (b) Initial value distribution.
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Reference solution CC-S4T4-FDM C-FDM-QI

(a) (b) (c)

t=4

(d) (e) (f)

t=8

Figure 6: The three-dimensional view of the moving wave.

diffusion coefficient to be Kx =Ky =10−5 and evaluate the reference exact solution at the
final time T=8 with the CC-S4T4-FDM using fine mesh of I= J=500 and Nt =90. Then
the constructed CC-S4T4-FDM and the characteristic finite difference method with bi-
quadratic interpolation (C-FDM-QI) [11] are performed respectively to attain numerical
solutions with I= J=120 and Nt =30.

Figs. 6, 7 and 8 present the three-dimensional view, x-z view and y-z view respectively
of the reference exact solution and the numerical solutions calculated by the CC-S4T4-
FDM and the C-FDM-QI at t= 4 and 8, where we set the same z-axis range [−0.05,1.05]
of drawings to maintain the consistency of the graph. According to the comparison in
Figs. 6-8, we can know that the numerical solutions calculated by the CC-S4T4-FDM with
coarse mesh track the steep front very well and get results almost as same as the refer-
ence exact solution, while the numerical solutions of the C-FDM-QI appear noticeable
oscillations at t=8 as in Fig. 7(f) and Fig. 8(f).

In addition, the above problem is solved by the CC-S4T4-FDM and the C-FDM-QI
to the final time t= 30 in a large domain Ω= [−3π,3π]×[−3π,3π] with I = J = 360 and
Nt=60. The mass percentage and the mass errors of solutions calculated by the CC-S4T4-
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Reference solution CC-S4T4-FDM C-FDM-QI

(a) (b) (c)

t=4

(d) (e) (f)

t=8

Figure 7: The x-z view of the moving wave.

FDM and the C-FDM-QI are shown in Fig. 9, which indicates that the CC-S4T4-FDM
preserves mass perfectly, while the mass errors for the C-FDM-QI increase significantly
as time goes by.

5 Conclusions

We have developed in this paper the conservative characteristic finite difference schemes
for convection-dominated diffusion equations that achieve fourth-order accuracy in both
space and time. By utilizing the characteristics method, our schemes can effectively em-
ploy larger time step sizes. We introduce the modified optimal SSP Runge–Kutta method,
coupled with the characteristics technique, to achieve temporal high-order accuracy. To
handle the diffusion term, diverse fourth-order approximation operators based on the
uniform Eulerian mesh and irregular Lagrangian mesh respectively are constructed. Our
approach is theoretically proven to be mass conservative, making it appropriate for large
scale scientific simulations and areas where mass conservation is of paramount impor-
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Reference solution CC-S4T4-FDM C-FDM-QI

(a) (b) (c)

t=4

(d) (e) (f)

t=8

Figure 8: The y-z view of the moving wave.
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Figure 9: (a) Time series of the mass percentage. (b) Time series of the mass errors.

tance. The temporal and spatial convergence orders of the proposed scheme are prac-
tically verified by numerical experiments. Moreover, we observe that our numerical
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method conserves mass and effectively avoids numerical oscillations even when using
large time step sizes. Overall, our work presents a robust and accurate numerical method
for efficiently solving convection-dominated diffusion equations with mass conservation
property.
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