Advances in Applied Mathematics and Mechanics DOI: 10.4208/aamm.OA-2022-0207
Adv. Appl. Math. Mech., Vol. xx, No. x, pp. 1-26 xxx 2025

An Upwind-Block-Centered Multistep Difference Method
for a Semiconductor Device and Numerical Analysis

Yirang Yuan!*, Changfeng Lil2 and Huailing Song3

1 Institute of Mathematics, Shandong University, Jinan, Shandong 250100, China

2 School of Economics, Shandong University, Jinan, Shandong 250100, China

8 College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082,
China

Received 31 July 2022; Accepted (in revised version) 30 March 2024

Abstract. Numerical simulation of a three-dimensional semiconductor device is a fun-
damental problem in information science. The mathematical model is defined by a
nonlinear system of initial-boundary problem including four partial differential equa-
tions: an elliptic equation for electrostatic potential, two convection-diffusion equa-
tions for electron concentration and hole concentration, a heat conduction equation
for temperature. The electrostatic potential appears within the concentration equa-
tions and heat conduction equation, and the electric field strength controls the concen-
trations and the temperature. The electric field potential is solved by the conserva-
tive block-centered method, and the order of the accuracy is improved by the electric
potential. The concentrations and temperature are computed by the upwind block-
centered multistep method, where three different numerical methods are involved.
The multistep method is adopted to approximate the time derivative. The block-
centered method is used to discretize the diffusion. The upwind scheme is applied
to approximate the convection to avoid numerical dispersion and nonphysical oscilla-
tion. The block-centered difference simulates diffusion, concentrations, temperature,
and the adjoint vector functions simultaneously. It has the local conservation of mass,
which is an important nature in numerical simulation of a semiconductor device. By
using the variation, energy estimates, induction hypothesis, embedding theorem and
the technique of a priori estimates of differential equations, convergence of the optimal
order is obtained. Numerical examples are provided to show the effectiveness and vi-
ability. This method provides a powerful tool for solving the challenging benchmark
problem.
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1 Introduction

Numerical simulation of a three-dimensional semiconductor device of heat conduction
is a fundamental problem in information science. The mathematical model is defined
by four nonlinear partial differential equations with initial-boundary conditions: 1) an
elliptic equation for electric potential, 2) two convection-diffusion equations for electron
concentration and hole concentration, 3) a heat equation for temperature. The electric
potential appears within the concentration equations and heat equation, and the electric
field strength controls the concentrations and the temperature. The mathematical model
is formulated by a nonlinear partial differential system with initial-boundary conditions
on a three-dimensional domain () [1-4],

—Ap=a(p—e+N(X)), X=(xy2)7€q, te]=(0T], (11a)
§§= V- [De(X)Ve—pe(X)eVy]=Ri(e,p,T),  (X,1)eQx], (1.1b)
%f:v- [Dy(X)Vp+pp(X)pVip] —Ra(e,p,T), (X,t)eQx], (1.10)

o5t ~5T={ )V (X)p V)

— (De(X)Ve— e (X)eVep) }-w, (X,t)€Qx]. (1.1d)

The electric potential, electron concentration, hole concentration and temperature are the
objective functions, denoted by ¢, e, p and T, respectively. All the coefficients of (1.1a)-
(1.1d) are bounded by two positive constants. a=g /¢, where q and ¢ are positive constants
and they denote the electronic load and the permittivity, respectively. Ur is the thermal
voltage. The diffusion Ds(X) is related to the mobility us(X), i.e., Ds(X) = Urps(X),
(s = e for the electron and s = p for the hole). Np(X) and N4(X) are the donor im-
purity concentration and acceptor impurity concentration, respectively. N(X), defined
by N(X)= Np(X)—Nyx(X), changes rapidly as X approaches nearby the P-N junction.
Ri(e,p,T) and Ry (e,p,T) are the recombination rates of the electron, hole and temper-
ature. p(X) is the heat transfer coefficient. It is important to consider a nonuniform
partition in numerical simulation [5, 6].
Initial conditions:

e(X,0)=eo(X), p(X,0)=po(X), T(X,0)=To(X), XeQ, (12)

where e (X), po(X) and Ty(X) are given positive functions.
In this paper, we concentrate on the Neumann boundary conditions:

oY de op oT
oylaa dvylaa dylaa  dvlan 0, tel, (13)

where 0} is the boundary of (), and 7 is the unit outer normal vector of 0Q).
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A compatibility condition is defined by
/[p—e+N]dX:O, (1.4)
0

and the following condition is given to avoid the ambiguous solution

/Q $dX =0. (1.5)

Numerical simulation of a semiconductor device can give important values and sugges-
tions to manufacture modern semiconductor [5-8]. The sequence iteration was adopted
to compute semiconductor problems by Gummel in 1964 and the new problem of nu-
merical simulation in semiconductor device was proposed [9]. Douglas and Yuan put
forward a simple and useful finite difference method for the one-dimensional and two-
dimensional preliminary problems (constant coefficients and without temperature effect)
and gave the application and rigorous theoretical results first [10,11]. Yuan discussed
the characteristic finite element method for variable coefficient problem in [12]. Since
the diffusion only includes the electric-field strength —V, Yuan presented the mixed
finite element of characteristics and gave the optimal-order errors in H!-norm and L2-
norm [13,14]. Considering actual conditions and the effect of the heat, Yuan discussed
a characteristic finite difference method for three-dimensional semiconductor device of
heat conduction on uniform partition [4].

The finite volume method [15,16] has some advantages, such as the simplicity of the
difference method, the high order of accuracy of the finite element method and the local
conservation of mass, so it is an effective method to solve partial differential equations.
The mixed finite element method [17-19] can solve the pressure and Darcy velocity si-
multaneously and can improve the accuracy by one order. The mixed element method
can obtain the potential and the strength simultaneously, and the accuracy is improved by
one-order [17-19]. A block-centered method that combines the above two methods was
discussed in [20,21], and numerical experiments were presented in [22,23] to demonstrate
the efficiency. Theoretical analysis was given for an elliptic problem in [24-26], along with
a general discussion of the form of the block-centered difference method. Rui and Pan
used this method to discuss numerical computation for hypotonic oil-gas flow problems
in [27,28]. Yuan used the block-centered method to simulate semiconductor device prob-
lem and obtained good numerical results, while the physical conservation of mass did
not hold [29,30]. Based on the previous studies, an upwind-block-centered multistep
method (UBCMM) is proposed for a three-dimensional semiconductor device of heat
conduction in this paper. The potential is computed using a conservative block-centered
scheme, and the accuracy is improved by one order for electric-field strength. UBCMM
is applied to compute the concentrations and the temperature. The time derivatives are
discretized by multiple steps. The diffusion is approximated by the block-centered differ-
ences and the convection is computed by the upwind scheme. The upwind method elim-
inates numerical dispersion and solves the convection-diffusion equations well. The con-
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centrations, the temperature and the adjoint vector functions are computed simultane-
ously. The scheme is conservative locally because piece-wise-defined constant functions
are taken as test functions. The conservative nature is important in numerical simulation
of semiconductor device problems. By using the variation, energy estimates, induction
hypothesis, embedding theorem and a priori estimates theory and special techniques of
differential equations, we obtain optimal-order estimates. In this paper, numerical exper-
iments are given for the general three-dimensional convection-diffusion equations, and
the numerical results show the high computational efficiency and support the theoretical
results. This method provides an efficient tool for solving challenging benchmark prob-
lems [2,5-8] and gives an important suggestion in computing semiconductor problem
such as numerical method, software design and actual applications.
Suppose that the problem of (1.1a)-(1.5) is regular,

R) $eL (;H (Q)NH (EWY(Q), ep,TeL (FH (Q)NHA(W'(Q). (16)
The coefficients are supposed to be positive definite
(©) 0<D<Ds(X)<D*, 0<p.<ps(X)<p*, (6=ep), 0<p.<p(X)<p*, (17)

where D, D*, u., pu*, p» and p* are positive constants. Rj(e,p,T) and Ry(e,p,T) are
Lipschitz continuous on a gg-neighborhood of X, i.e., there exists K > 0 such that for
’€i|§30 (1§i§6)

‘Ri(E(X,t)—|—81,p(X,t)+82,T(X,t)—|—£3) —Ri(E(X,t)—|—€4,}9(X,t)—|—€5,T(X,t)—|—€6)‘
<K{|e1—es|+|e2—e5|+|es—eq|}, i=1,2. (1.8)

In the following discussions, the symbols K and & denote a generic positive constant and
a generic small positive number, respectively. They can take different values at different
places.

2 Notations and preliminaries

Two different partitions are given to define upwind block-centered multistep method.
The potential and electric-field strength change slow during the physical process, thus
their approximations are carried out on the nonuniform coarse partition with large steps.
Other objection functions are computed on the refined nonuniform partition. The coarse
partition is considered first.

For simplicity, to discuss three-dimensional problems, take Q= {[0,1]}3, and let 9Q)
denote the boundary. Define

Oy 0=2x; <x3 <---<xy 1 <xy 1=1
§y: 0:]/% <y% <--'<yNy7% <yNy+%:1’

6;: OZZ%<Z%<“'<ZNZ7%<ZNZ+%:1'
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() is partitioned by 6y X, x ;. Fori=1,2,---,Ny, j=1,2,---,N,, and k=1,2,---,N;, let

Qjjx= {(X,y,z) X;_

<X <X 1 Yoy <Y<Uji1 Zg <z<zk+é},

1
2
x-—l(x +x;,1) ~—1( Y1) Z_l(z +201)
=5yt Y= ) =5 (e ey,
hxi:xiJr%—xi_%, hy]':]/]q-l y]_7 hzk:zk+%—zk_%,
hx,iJr% =Xit+1—Xj, hy,jJr% _yj+1_yj/ hz,k+% =Zky1—Zks

— — — — (12 12112\
hx—lggﬁx{hxi}, hy—lrgr}gi]y{hyj}, hz—lgg\&{hzk}, hy = (hy+hy+hz)2.

The partition supposed to be regular.

1=z,

25

5/2

2

/ / / /
/ / / /
z, i / / / v
7 / 7 7
/ /

/ / / /
_ / / / /
0=z, | / / yi

0=x,, x X X X512 X3 Xop Xy Xgp =1
Figure 1: Nonuniform partition.

A simplified partition of Ny =4, N, =3, and N, =3 is illustrated in Fig. 1. Define
an experimental space by M{(6x) = {f € C'[0,1]: fl|q, € pa(Q%), i=1,2,---,Ny}, where
Q;=[x;_1,x +1] and p,(Q);) denotes a space consisting of all the polynomial functions of

degree at most d constricted on Q);. The function f(x) is possibly discontinuous on [0,1]
if [=—1. Mfl (6,) and MY (6;) are defined similarly. Let

Sp=M"1(6:) QM 1 (6,) QM (6.)
Vh:{w)w w*, WY, w?),w* € M} (6 ®MO 5) QM (52)
w?’ € M2, (3:) @M (6,) QM (8.), w* € M° (6x) R M (8,) R M} (62

W"Y|aQ=0}-
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For a grid function v(x,y,z), let vy, Vil Vi and Vjj 2 denote the values of v(x;,y;,z),

v(xi+%,yj,zk), v(xi,yH%,zk) and v(x;,y, zk+%), respectively.
Define the inner products and norms by

x y Nz Nx Ny NZ
ZZ th,hy]hzkvl]kwl]kl ZZ th 1h hzkvl jkwi—%,jk'
i=1j=1k= i=1j=1k=
N, Ny N, Ny Ny N,
Ezzhxzhy } Zk ij— 1kw] ks Zzzh%h%h -1 1]k 1wz]k—l’
i=1j=1k=1 i=1j=1k=1
Jo]]3 = (0,0)s, s=mxy,z, HvHoo—lm<aI>\<[ ik,
l<]<Ny
1<k<N,
ol ogs) = max 19115 ol o=, max [0y, 14l
1<j<N,, 1<j<N,,
1<k<N, 1<k<N,
||v|‘oo(z)_ glf;f] ‘vij,k7%|'
1<]<Ny
1<k<N,
For a vector w= (w*,w¥,w?)T, define its norms by
1
2
w1l = (e B+ 1B+ 071E) vl = gy 0¥ sy + 10 o

1
(1wl = (1] 17+ eV 1+ 1] [7) % W] o =00 Joo +[[00¥ oo 207 |eo-

Define
W (Q)=<vell(Q) an—veL”(Q) n—l-r>0,1=0,1,---,n
p B ox"—1=r9yl9z" ’ =TTy
r=0,1,---,n,n=0,1,---,m; 0<p<00}
and let H" (Q)) =W}*(Q)). Inner product and norm in L2(Q)) are denoted by (-,-) and ||||.
For a function v € 5, it clearly holds that
o]l = lo]]- 1)
Introduce the difference operators and other notations as follows,
Uit1,jk — Vijk Ui j+1,k — Vijk Uijk+1— Vijk
[dxv]- lyp=—""", [dyv].. =", [dzv]..k =
i+5,j hx,i—i—% ij+3k hy,j-l—% ijk+3 hz,k—}—%
Wis 1k~ Win 1 ik Wijt Lk~ Wij—Lk @ije+] ~ Pij—1
[wa]ijk = : Iy, *=, [Dyw] ijk = : y, =, [Dzw]ijk = Zth 2,
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J
D~ +wz——]k Z(A)y . 1]+1k+ 1,k D% — 11k+1+ z]k——

1]k = 2 ’ ijk — 2 ’ 1]k ) ’

and W;j = (wl]k,wly]k,wzjk) . Let N denote a positive integer, At;=T/N, t" =nAt,, and let

v" denote the value at #", d;o" = (v" — 0"~ 1) / Ats.
Based on the above notation, several preliminary statements can be given.

Lemma 2.1. Forve S, weV,,

m

(v,Dyw"),, =— (dyo,w"),, (U,Dywy)m:—(dyv,wy)y, (v, D7), = — (dv,w%),. (2.2)

Lemma 2.2. ForweV,,
[ < [|[wl|]- (2.3)

Lemma 2.3. ForweV,
llw* || <[IDxw*|[m, |||y <|[Dyw||, [|[w*||z <|[Dzw*| |- (2.4)

Another partition is obtained by refining the coarse partition of Q= [0,1]* uniformly,
where the step is usually taken as 1/] times the coarse step, that is, hs=hy, /I for a positive
integer [ such as I =4. The other notation is defined as above.

3 The upwind block-centered multistep difference procedure

To apply the method of block-centered difference, the problem of (1.1a)-(1.1d) is reformu-
lated as follows
V-u=a(p—e+N), XeQ, te], (3.1a)
u=-Vy, XeQ), te]. (3.1b)

The upwind block-centered multistep procedure is constructed to solve the concentration
equations (1.1b), (1.1c) and the temperature equation (1.1d). The three equations should

be written in the divergence forms. Let g, =y, (X)ru, z, = —Vr, z, = D,z,, r =e¢,p and
z7=—VT. Then,
gj Vgt V-ze=—Ry(e,p,T), Xeq, teJ, (3.2a)
%’Z+v 8y +V 2z, =—Ry(e,p,T), Xen, tej, (3.2b)
p(X )?)t +Vezr={(zp+8p) —(ze—8c) } ‘1, XeQ, te]. (3.2¢)

The expanded block-centered difference is discussed in [31,32], which can approximate
the diffusion flux functions z,, z,, zr and the gradient functions z., z,, simultaneously.
The time-dependent partitions are defined.
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or the electrostatic potential, At is the time step an ty 1 1s the first time step.

(1) For the el ic potential, Aty is the ti p and Aty is the first i p
J=10,T] is partitioned by 0=ty <t; <--- <tp =T, and the i-th time level is denoted
by t,':AflpJ—i-(i—l)Atlp, i>1.

(2) For the concentrations and the temperature, it is partitioned by 0= <t! <... <tN=
T, At is the time step and " = nAt;.
(3) Suppose that there exists a positive integer n such that t,, =t" for any m, and i—tt‘f is
a positive integer. Let j%=Aty1/Ats, j=Aty/ Ats.
The backward difference operators are defined,
fP= X =F(X1), Sft=fr—f"
(52fn :fn _2fn—1 +fn—2 53fn :fn _3fn—1 +3fn—2 _fn—3.
Let

5 fn . S fn
dif'="-, df'= -
tf At tf (At,)]

LetY,U,E, Z, Z., P,Z,,Z,, H and Z denote numerical solutions of ¢, u, ¢, z, Z, p, z,

z,, T and z7 in S;, X V}, X S, X Vi, XV}, X 53, x V}, X V), X S, X V), respectively. Using the notation

and Lemmas 2.1-2.3 in Section 2, we state the block-centered scheme for the potential and
electric-field strength as

(D:Uyy, 4Dy Ui+ D.Uj,0) - =a(Ej,—Py+N,o)

(U5 w*) A+ (Uinw”), + (U5, w7) = (¥, Dxw* + Dy + Dxw?)

YoeS,, (3.3a)
0, weV, (3.3b)

m_

The discrete variational form of (3.2a) is

(57) ~(Vgur)yt (Voz),

=—(Ri(e,p,T),0) . YoeSy, (3.4a)

(250%) + (2L t), + (Z207).

= (e,Dyw*+D,wY+D,w*) _ =0, wev, (3.4b)
m

(220%) + (20" + (Z0),

= (DeZf,w") + (DeZdw) + (Do Zi,w7) wevV,. (3.40)

ZI
The upwind block-centered multistep procedure is given for the electron concentration
equation (3.4). Given initial approximation {E' €Sy, i=0,1,---,y—1}, numerical solutions
of E" €Sy, Z!' €V, and Z! € V), are defined by
[ Atj_l .
ZTSId]tE” ~-V-G!'+V-Z!'=—R.(E",P",H"), (n=wu,u+1,---,N). (3.5)
j=1
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Table 1: The values of the parameters (1 =1,2,3).

w1 BG) Tan(p) [ o) [ E(u)f”
1 1 0 0 fn_(sfn
2| 2/3 1/3 0 e
316/11 | 7/11 | =2/11 fn_53fn

In order to compute E" accurately, the values of E/ (j=0,1,--,u—1) are determined by a
single program. They approximate ¢/ with the accuracy of p-th order.
For simplicity, we consider three cases, ;1 =1,2,3, then the variation of (3.5) is defined

by

n__pn—1
<EAi,v> —B(n) (V.G’g,v)erﬁ(y) (V'Z?,v)m

m

:Alts (1 ()OE" ™ +az(u)OE""?0) ;, — B(u) (R (E(p) (E,P,H)"),0) ,, YOES,.  (3.6)

The values of a; (1), (), E(u) f* are computed by (3.5), illustrated in Table 1 for u=1,2,3.
The scheme of y =1 is the upwind block-centered difference method. In this paper,
we consider the case of j =2 to interpret the multistep method. The scheme is

Er—En—1 2 2
(S0 ), 57 et 3 pae)
S m

S=x,Y,z m
1 /1 2 .
= (S0E"Y, ) —Z(Ry(E(2)(E,P,H)"),0) _, YoeSy, 3.7
3 (55570) SRaEQ@ERHY)0), ves,  (7a)
(Zgr”,wX)x+(Z;f'”,wy)er(Zj'”,wZ)Z:(E", ) Dst) , wev, (3.7b)
S=Xx,Y,z m
(ij’”,wx)x—f—(Zgy’n,wy)y—k(Z?'”,wz)Z: Y. (D23 wd),, we V. (3.7¢)
S=X,Y,Z

In (3.7a), E(2)U" is defined by
E(2)U"=EU" - $*EU".
The value EU" at t", t,,_1 <t" <t,, is assigned by an extrapolation

t—tn1 th—t

Uo, bo<t'<t;,  m=1,
EU" = 1 m—1 "< > (3.8)
T h—tm 2 ) T by O It SE St 22
m— m— m— m—

An upwind approximation flux G, is computed by using E. The value of G is defined as
follows. The mean value of integral of G -y is supposed to be zero because of g, =pu.eu=0
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on dQ). Let ¢ denote the shared plane of w; and wy. x; is the barycentre and 7; is the unit
outer normal vector to w,. Define

Gy — { E, (eE@U" ) (x1), (E@)U"m)(x)) 20,
o Egz(yeé(z)UH'r)’l)(xl)/ (E(Z)UH")’Z)(XI)<O,

where Ej, and Ef,, denote the values of E" on wy and wy, respectively. Then, we can
assign the value of G}. '
Similarly, (3.2b) is solved by an upwind-block-centered multistep method. If {P' €
Sy, i=0,1,---,u—1} is given, then P" €Sy, ZZ €V, and Z;’ € V), are defined by
) Atg_ldfpn V-G'+V-Z'=—Ry(E",P",H" = 1,---,N 3.9
LS APV Gl V2= R(E Y, (=gl N)G9)

The procedures are formulated as follows for p =2

pr—pr-t 2 2
(Fai—), 5(vee) +3( 5 o)
s 7 7 _

m m S=X,Y,z m
_i 1 n—1 _% a n
= AL <35P rv>m 5 (R(EQ2)(E,P,H)"),0),,, YoeS,,  (3.10a)
(Z,’.f'”,wx)x+(2%'”,wy)y+(Z,Z;”,wZ)Z:(P”, Y Dsws) ,  weV,  (3.10b)
S=X,Y,2 m
(Z;/”’wx)x—i—(zg'”,wy)y—k(Z;,H’wz)zz Z (Dpzlsg,n’ws)s’ wev, (3.100)

S=X,Y,2

The approximation of G}, is defined by

Gy { EL (pE@U" 1) (), (EQ)U" ) (31) 20,
P EL(mE@UT ) (), (EQ)UT ) () <0

The heat equation (3.2¢) is solved by a similar block-centered multistep scheme. If { H ie
Sp, i=0,1,---,u—1} is given, then H" € S, and Z € V}, are computed by
N _ i _
Z%dﬂH“ +V-2t ={(Z) " +pu,P" 'EU") —(Z} ' —pE"'EU") }-EUT. (3.11)
j=1

For y =2, the procedures are expressed by

H"— H"1 2
(Ats ,U) ) +3< Z DSZ%”,U> )

m S=X,Y,2 m
1 1

2 _
— -1 -1 -1
_E(gsz” ,v)m+§([(z’; +upP" " EU")

—(Z) ' —u E"'EUM)]-EU,v) Yoes,, (3.12a)

'Wl’
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(Z%’”,wx)er(Z%’n,wy)er(Z?”,wz)zz<H”, )3 Dsws> , weV  (312b)
m

S=X,Y,z

The upwind block-centered multistep scheme of (3.3), (3.7), (3.10) and (3.12) runs as fol-
lows to solve the problem of (1.1a)-(1.5). First, (E°,E!), (P°,P!) and (H°,H') are deter-
mined by using initial conditions, then {Uy, ¥y} is obtained from (3.3a) and (3.3b). Sec-
ond, (E?,P?,H?),(E%,P3,H3), -+ ,(El,Pl, H0) are computed by using the procedures of
(3.7), (3.10) and (3.12). Let

potm=0j_p — pitim-j_p — photm-1)ji_p

.
From (3.3), we can obtain {U,,, ¥, }. Third, the computations are repeated for n>2 and
m >1. The values of (Ejo+(mfl)j+1lpjo+(m71)j+1, Hj0+(m71)j+1), (Ejo+(m71)j+2, Pjo+(m71)j+2,

Hio+(m=1)j+2) ... (Ejotmi piotmj Hio+tm) are obtained. Finally, we can get all the numeri-
cal solutions. According to (C), numerical solutions exist and are unique.

Remark 3.1. Multi-step method requires the values of (E°,P°,H?),(E!,P',H'),---,(EF 1,
P’“l,H”*l), and it is expected that these values are computed with a local truncation
error of y-th order. When y is small, we can adopt the following techniques

(1) Using the Crank-Nicolson method;

(2) Using a sufficiently small step compared with At;.

4 The principle of mass conservation
Suppose that the recombination rates are zero, R;(e,p,T) =0, i=1,2, and suppose that the

Neumann boundary condition is homogeneous. Then the local conservation of mass on
an element w € (),

W= @i = Xy X XYy g X B 2]
is interpreted by
de
[ Sdx+ [ gemiods— [ zemauds=o, (4.12)
" d
/ —de—/ gp-'ygwds—/ ZpYawds =0. (4.1b)
w at Jw dw
Here w denotes an element of the partition of () for the concentration, dw is the boundary

of w, and 7,,, is the unit outer normal vector. The multistep schemes of (3.7a) and (3.10a)
have the following nature.
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Theorem 4.1. If R;(e,p,T) =0, i=1,2, then

En_En 1 En— 1 _ En— 2 2
7@(—7/ X G’ Yaud —7/ 7" yads=0, (42
/w Ats w ts +3 e " Yowhs 3 Jow e " YowhS ( a)

pn_pn 1 pr— 1 _pr— -2 2 2
751)(_7/ X3 | Gl —f/ 7" yuds=0. (42b
/w At w Al 3 Jaw P 10T Tg J, T 0w (420)

Proof. We only prove (4.2a). The proof of (4.2b) can be finished in a similar manner. For
a function v € 5y, its value is assigned by 1 on w = () and 0 on other elements, i.e.,

1, w,
o(Xijk) = {

0, otherwise.

Then (3.7a) is rewritten as

<E"—E"1’1)Qijk_1<5n1_5"2,1 o / Gl Yowds

Ats 3 AtS tjk
2
+3(DxZ"+ D,z{"+D.Zy",1) 0 =0 (4.3)

Using the notation in Section 2,

n—1

gn_ gn-1 Egk Eijk En_gn-1
—,1 = 7 \h,h,h :/ —dX, 4.4
( AL, )Mjk ZJZ,:( ( AL ) altylz = | = xp (442)
1 En—l _En—Z 1 En— 1 En—Z
= —— 1 = 7(1)(, 4.4b
3 ( At )w,]k 3 At ( )

S=X,Y,Z

2 i
g ( 2 D Zs " 1> w 72 e, z+ ]k el )hy/hzk T3 Z e 1]+ k Ze,i,jf%,k)hxihzk
ijk

+§Z Z =2 7k)hx,.hyj:—§/awzg-’yawds. (4.4¢)
ij

Substituting (4.4) into (4.3), we complete the proof. O
Furthermore, we conclude the conservation on the whole domain.

Theorem 4.2. If R;(e,p, T)=0, i=1,2 and the homogeneous Neumann boundary condition holds,
then (3.3a) and (3.7a) have the following nature

En_ En— 1 En— 1 En -2
/ AX— = / iX=0,  n>0, (4.52)
o)

pr— Pn 1 Pn 1 Pn 2
— = , n>0. .
- X =0 0 (4.5b)
Q
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Proof. (4.5a) is proved first. (4.5b) can be discussed similarly. Summing (4.2a) on all the

elements, we have
n En 1 En— 1 En 2
3 / EE ] Z / = —F Tax

+f2/ G?-'yawds——Z/ Z" - Y3ds =0. (4.6)
3w ow 3w ow

w1 intersects w» at 0. x; is the barycentre and +; is the unit outer normal vector to w,. By
the definition of convection flux, if E(2)U"-7y;(X) >0 on wy, then

[ Grmds=EL E@QU" 3 (X) a1, @.72)
i

where |07| is the measure of 0;. On wy, the unit normal vector to 07 is —7y;, and E(2)U"-

(=71(X)) <0. Then,
/0GZ'(_’Yl)dSZ_EZHE(z)UH-'yl(X”o'l" (47b)

The signs of (4.7a) and (4.7b) are contrary, therefore,

2
3o / Ge - Yawds =0. (4.8)
w Jow
Similarly, we have
2 2
_3;/86022'76«:%:—3/8(22?‘730%:0- (4.9)
Substituting (4.8) and (4.9) into (4.6), we complete the proof of (4.5a). O

The conservation nature is important in the numerical simulation of semiconductor
device.

5 Convergence analysis

Elliptic projections are introduced first for convergence analysis. Define U€ V}, and ¥ €S,
by
(DyUy,+ Dy Uy, + D U5,0)  =a(ew—pm+N,0) _, voeS,,  (5.1a)
Uy, w") A+ (l:lryn,wy)y + (Z:Iﬁﬂwz)z = (¥, Dxw* + DywY 4+ D, w?) o YweV,  (5.1b)

where e and p are the exact solutions of (1.1a)-(1.5). Let

de
F,=Ry(e,p,T)— <8t V- ge>
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Define Ze,ie €V,and E€S,, by

(D2Z{+DyZ{+D.Z;,0) . = (F.v) YoeS,, (5.2a)

m’
(Z3w") +(ZE ), +(ZE w?) = (E, Dsw* + Dyw! + Dzw®) ., vYweV,, (5.2b)
(Z2w") A+ (Z )+ (Zw7) = (DeZFw¥)  + (DeZE w¥) 4 (DeZi,07),, YWEV).  (5.20)
Let

d
Fy=Ra(e,p,T)— (af +V- gp)

Define Zp,ip €V, and Pe S, by

(DxZy+DyZ)+D.Z3,0) . = (Fp,0) ., VoeS,, (5.3a)
(Zyw*) +(Zpa¥), + (Z5,0) = (P,Dxw* + Dyw? +Dzw?) ., YwevV,, (53b)
(Zy %) +(Zp), + (Z5,07), = (DyZy,w*) + (DpZh )+ (DpZ50%),, YwEV;.  (5.30)
Let

Fr={(zp+8p) —(ze—8c)} - u— p?;
Define Zr €V}, and H€ S, by
(D:Z5+DyZ4+D:2%,0) . = (Fr,0) ., YoeS,,  (5.4a)
(Ztw*) +(Zpw’), +(Z7w7) = (A Dy + Dyw’+ Daw®) - VWEV,.  (54b)
Let
T=Y-Y, n1=%-y, c=U-0, pr=U-u,
=S-S5, Zs=S—s (s=e,p), Er=H-H, {r=H-T,

“z,s:Zs_zs/ ,Bz,s:zs_zs (SZEIP/T)/ Ecz,s:zs_is/ ,Bz,s:is_zs (SZEIP)~

Suppose that (1.1a)-(1.5) satisfies positive condition (C), and the exact solutions satisfy
regularity (R). From the theory of Weiser and Wheeler [21] and the discussions of Arbo-
gast, Wheeler and Yotov [2,31], it is easy to see that the auxiliary functions {‘T’,ﬁ,g,zs,is,
(s=e,p),H,Zy} of (5.1) and (5.4) exist and are unique.

Lemma 5.1. The coefficients and exact solutions of (1.1a)-(1.5) are supposed to satisfy (C) and
(R), then there exist two positive constants C1,Cp > 0 independent of h and At such that

[t 22 Nasllatlerlli+ 3 1Bzsll]

s=e,p, T s=e,p, T
~ 9 _
FD 3]+ % <cvgem ese
s=ep m 5= epT 1
1O+ X 2ot X I1Z |l =Co (5.5b)

s=e,p, T s=e,p
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We estimate 7t and ¢ first. By subtracting (5.1a) (t=t,,) and (5.1b) (t=t,,), respectively,

from (3.3a) and (3.3b), we have

(Dxoy,+Dyory, +D.0;,0) ,, =&(Ep—en—Pu+pm,0) ., YveSy,

ok, w*) _+ (om,w?) 4 (0Z,w*), — (7T, Dxw* +Dyw’ +D,w?) =0, YweV,.
X y z Y m

Taking v =, in (5.6a) and w =0, in (5.6b), we have the combination equation
(o, 0%) , + (U%,U%)y—k (O3:0). =& (Epi—em— P~ P, ) ..
Applying Lemmas 2.1, 2.2, 2.3 and 5.1, we have

|||am|HZZD‘(Em_em_Pm‘f‘PmﬂTm)m.

(5.6a)
(5.6b)

(5.7)

(5.8)

A duality method is introduced to address 7, €S}, [33,34]. Consider the following elliptic

problem,
V.-w=r,,, X:(x,y,z)TEQ,
w=Vi, XeO,
w-y=0, Xed.

It follows from the regularity of (5.9) that

2 2
<K 2

m

o’
ds

)3

S=X,Y,2

Let @ €V}, be defined by

The solution @ exists and satisfies

2 2

s s
5=X,Y,z ds m  S=XY,z ds m
By Lemma 2.3, (5.9), (6.10) and (5.8), we obtain

= Y (@) <K|l|@|[][[len |

S=X,Y,z

(5.9a)
(5.9b)
(5.9¢)

(5.10)

(5.11a)

(5.11b)

(5.12)
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Similarly, we have

2 o2 a@* ||?
Nalll"< Y, D@m=}, ||=;
5=%Y.z S=XY,2 m
? 2
<X <KI|7tul[5- (5.13)
S=X,Y,z m
Substituting (5.13) into (5.12) and addressing (5.8), we obtain
2 2 2 2
170y o 11> < KS el [+ 18] [ g2 - (5.14)

The electron concentration equation (1.1b) is estimated. At t =1t", error equations are
formulated as follows

et —en—1 2 2
(55 ), 5T el S,
_1 1511—1 2R non n n YoeS 5.15
= (b ) 2@, (), ees. 615
(zé"”,w")er(ZZ’”,wy)er(Z?’”,wz)Z:<€”, L Dst) . YweV,  (515b)
s=x,z m
(Zéc,n’wx)x_i_(Zg,n’wy)y+(zi,n,w2)zz Z (Dez?n/ws)s’ YwevV, (5.15¢)
S=XY,2

where
2 de" 1 4 1
n_=--" & = n__* n=1, - n-2
P =37 Ats<e 3¢ T3¢ )

Subtracting (3.7) from (5.15) and using the Lz—projection (5.2), we have

Cg_ g—l 2 n
(55 —), 5w @ 5( T pazza)

S=X,Y,2
2 .
Ats< seln- )_+(p",v)m—3(Rl(e”,p”,T”)—Rl(E(Z)(E,P,H)”),v)m, Vo€S,, (5.16a)
m
(ﬂi‘:éﬁw")ﬁ(&ijﬁ,wy)y+(5<§j?,wz)z—(C?, Y Dsws> , weV,  (5.16b)
S=X,Y,2 i
(uc;‘;?,wx)x+(oczgl,wy)y—{—(oé:?,wz)zz ) (De@?,w)s, wevV,.  (5.16¢c)
S=X,y,2

Taking v=_¢; in (5.16a), w=a? , in (5.16b), and w =&, in (5.16c), multiplying both sides
of (5.16b) and (5.16¢) by %, then subtracting (5.16c) from the sum of (5.16a) and (5.16b),
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we obtain

n__ xn—1 2
() 3 % (e,
m S=X,Y,Z
2(v.(Gr- m)E), o (L E) (ot ) — g—iflg
3 e ge 3At e e p 7oe ) m Ats roe .

2 .
-3 (Ra(e”p", T") = Ri(E(2)(E,P,H)"),G7)
=T+ T+ T3+ T4+ Ts. (5.17)

The terms on the left-hand side of (5.17) are estimated as follows,

('Jzn_ n—1 o o
(Até) —oar Bl R+ oa e - Gasa)
3 Z (Dezz,azz), >ZD 1121 (5.18b)
S X,Y,2
The terms on the right-hand side are estimated one by one.
2 2
T1=3(V-(Gl—gl),&) =3 (Gl —gl, V&), <ell[al, |||+ K||GY —gl|[}.  (5.19)

With ¢ being the shared plane, <, being the unit normal vector and X; being the barycen-
tre, then,

/ 8 1r= / pee" (0" -y, )ds. (5.19b)

By the regularity (R) and the mean value theorem for integrals,

mes(o /ge Vr— (pe(u"-r)e") (Xp) = O (hs). (5.19¢)

Therefore,

1 n n
/(Ge _ge)"}’r

mes(0) Jo
=Eg (1eEU" - 7,) (Xp) = (pe(u” - 7r)e") (X)) + O (hs)
=(Eg—e"(X1)) (1eEU" 77) (Xi) +€"(X1) (e (EU" —u") -7 ) (X)) + O(hs).  (5.19d)

From the regularity of ¢, Lemma 5.1 and the discussion in [21,31,32], we have

|Eg—e"(Xp)| <60 [+ O(hs), (5.19)
|EU" —u"| SK{[Zem—1|+[Gem—2]} +O(hs) +O(AH). (5.19f)
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Using (5.19ab)-(5.19af), we obtain
16212 <K{ 2+ Eemar B+ [Gem ol B2+ (A1) ). 520)
Thus, we get the estimate of T,
2
Ti=5(V-(GE—g!)et),,
a2 0|2 2 2 2 4
e[, |||+ K&+ |Gom-1 1[5, + ] Gem—a] 7,12+ (8ty)*}. (5.21a)
The other terms of (5.17) are estimated as follows,
1 _ _ _
T2 3Ats( n—1__ Zére) 3At ( n—1__ gz 2’62_ g 1+€? l)n_1

- n— 1 n— n—
<o {plle a2 g lle -t gl e

—_

1 n— n—2112
5 1g - 12 ZH-]}
n— n—2112
s ULt | PR [+ [ || - [ | - [ S 2315
T3 <K(Ats) HatSH +K||&)~ (5.21c)
Ty <K{| |ge|[;,+ht}, (5.21d)
Ts <K{ |21 [+ 128 1[5+ [+ 11657 15+ (At 02 (5.21e)
Substituting (5 18)-(5.21a) into (5.17), we have
eIl llee 1 [t 1H +5 D*\H“zeH\
2At 2At
012 e
<o (Il 2H-+§H€e [ [ AT
d%e 9%u|?
+Kk{(At)? +(Aty)®| |55
{< ot L2(#=2 7 1) 4 ot? L2(ty—o,tm—1,7)
a1 1 T | W S Y [
+}\@’e,m,z\\;+(Ats)4+hfp+h§}. (5.22)
Furthermore,

2 1112 - 212 1 Y
w{uau e [ R [ [ | e [ B oML
n—1 n—2112 3 aSe 3 82u 2

, K< (At — At —
_6At {ng H ng Hm}+ {( ) at3 iZ(tn—Z,tn’m)—*—( 1,[7) atz Ez(tm—Z/tm—lxm)
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02 ne12 w12 ne1112 2
+K{|\é‘eHm+H§e B e | 1 S | A P
+Hée,m_z}!i+(Ats)4+h$+h§}. (5.23)

Multiplying both sides of (5.23) by At, and making the sum on 7, we obtain
i{uggvui—uc;\|i}+§,{uggv—asf1\\1—\|¢;—asui}+§milmas,eufms
gl{\}ggHH ngH} {At¢1)3+(At¢,) +(Atg)* +h4+h2}
+KZ{H€eH +[1Enl 11245, ot
< 1N =2+ 18N~ 12 ]+ K{ (At )+ (dtg)*+ (8t +hg 412}

+K);1{H€?\|m+H€$Hm+HC?~Hm}Ats- (5.24)

Error estimate of the electron concentration is given by
1 1 . 1o s
SN ey e+ 2D 3l an o
n=1
1 1
< {3l 1160115 b+ 5 {11t =217+ K{ (At )+ (Atg) -+ (At +hg +12 |

N
+KZJ1{H€?}\2m+H<?Z\Ii+Hé"%Hi}Ats~ (5.25)

Similarly, the hole concentration (1.1c) is estimated as follow
SR+ FlIey -y B 50 1 e | P
S%{S\ &1 1E) \fﬁ}ﬂt%{\\éé—ég\ \;ﬁLK{(Af¢,1)3+(At¢)4+(AtS)4+hfb+h§}
PRI+ g+ et Y 520

Finally, the heat conduction equation (1.1d) is argued. Subtracting (5.4a) (t =t") and
(5.4b) (t=1") from (3.12a) and (3.12b), respectively, we obtain

gr—gnt sm
(p At 0 + ) (D&, 0)

s XY,z

_L —san—1 n g n—1 n—1gymy _ (gzn—1 n—1eym -
_Ats<35§T ,v>m+(r ,v)m+3<[(2p +upP" 'EU")—(Z} '+ u.E"'EU")|-EU
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—[(zp+ppp"a") — (27 +pee"u")] -u”,v) , VoeSy, (5.27a)

m

(al,w) +(ocy¥,wy)y+( STt Z(CT, Y. D w> , Ywevy, (5.27b)
m

S=X,Y,2

where

2 JdT" 0 4 1_._
n_ -~ _ n__ *gn-1, ~gn-2
REVUaFT AtS<T 3T 3T >

An induction hypothesis is introduced

max |||owm||| <1, (Ath)—0, (5.28)

0<m<M

and the partition parameters are supposed to satisfy

<At¢1>%+<At¢>2+<Ats>2=o<hi>, (At,H)—0, (5.29)
), (At,h) —0. (5.29b)

= Nlw

=o(h

Taking v =¢% in (5.27a), multiplying both sides of (5.27b) by 2 and taking w= oy, and
summing (5.27a) and (5.27b), we have

(F55 1)+l
:Alts(35§’%_ /(ﬁ) +(r"81) ([(Zn "+ u,P"EUT)
—(Z} '+ u E"EUM)|-EU" - [(Zp+ppp"u") — (2 +pee"u")] -u”,{f?)m. (5.30)

By estimating both sides of (5.30) and using (5.28), we get
11N211NN712N112
sllexerlln+glles @r =& D+ L[zl at
1 11112 1,012

< {3lleeH [~ lo2e8 5 |+ {HP (=D, +821{H|“ze!H 118z, [ ot
+K{(At¢,1)3+(At¢)4+(Ats) +h§§,+h§}

al 1
{11 Br g1+t e 531
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Considering (5.25), (5.26) and (5.31) together, we have
1 2 1 2 1 1112 1 v 2
S L IR0 Va1 g { I =1+ let @ -2 ) I}
+7 D ): Y [[]a]|’ At#ZHI%T\H At

n=1s=e,;p

<t{ X BIIEHE - I +3lloteh - ekebl 2}

s=e,p

b T 118 -+l @D K] (At + (At + (At 412}
s=e,p

N 1
KL {11+ oI s 632)

Applying the discrete Gronwall Lemma and using initial approximations we have

¥ 11EN[ +2{ L R+t e

s=e,p,T s=e,p
<KL+ i+ (ALY + (M) + (Bty) | (5.33)

It follows from (5.33) and (5.14),

2 2 3 4
sup {| |7t [, + o] || } < K{R24hg+ (At )+ (Btga)* + (Aty)* |- (5.34)
0<n<N
It remains to verify the induction hypothesis (5.28). Using (5.34) and (5.29), we can prove
(5.28) easily. The following theorem is derived by using (5.32), (5.33) and Lemma 5.1.

Theorem 5.1. Suppose that exact solutions of (1.1a)-(1.5) are regular (R), and the coefficients are
positive definite (C). Numerical solutions are obtained by using the scheme of (3.3), (3.7), (3.10)
and (3.12). The partition is supposed to satisfy (5.29). Then,

||¢_T||E°°(I;m)+“u_U| ’E”(];V)+ Z ||5_S||E°°(];m)

s=e,p
FNT=Hl |z (rmy+ 3 125 =Zs |2y + 21 = Z1 || 1210
s=e,p
SM*{hfp+hs+(Ats)2+(At¢,1)%+(At¢)2}, (5.35)

where 1
8l = sup 18"l 118]]z270 = Sup {Zug HXAtc} ,
nAt<T LAt<

and the constant M* is dependent on 1, u, e, p and T and their derivatives.
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6 Numerical experiment

In this section, a nonstationary convection-dominated diffusion problem is discussed to
support theoretical analysis. The mathematical model is formulated by

g”t‘+v.(_a(x)Vu+bu):f, (x,y,2)eQ), te(0,T],
ulio=x(1-x)y(1-y)z(1-2), (xy2)€Q,

M|aQ:0, tE(O,T].

Problem I (P-I, convection-dominated case).

a(x)=0.01, b;=(1+xcosa)cosa, br=(1l+ysina)sina, bz=1, M=

Problem II (P-1II, strongly convection-dominated case).
a(x)=10"°, b=1, by=1, b3=-2.
Take Q=(0,1) x (0,1) x (0,1), t€[0,3] and At= . f is chosen to obtain the exact solution
u=e"*x(1—x)y(1—y)z(1-z).

U denotes the numerical solution. Numerical data are illustrated in Tables 2-4.

Let ||-|| denote the discrete [2 norm. N denotes the number of elements in a direction.
The upwind-block-centered finite difference method and the finite difference method
are denoted by UBCFDM and FDM, respectively. Numerical data are illustrated for P-I
and P-II in Tables 2 and 3. We conclude that FDM can solve the convection-dominated
problem but becomes invalid for strongly convection-dominated problems. FDM has
oscillation and dispersion when the step is small. UBCFDM can solve both convection-
dominated diffusion equation and strongly convection-dominated case well because it
can avoid numerical oscillation. So UBCFDM is better in solving convection-dominated
problems than the finite element method and FDM.

Table 2: Numerical data of ||u—U|| for P-I.

N 8 16 24
UBCFDM 5.7604¢—7 7.4580e—8 3.9599¢—8
FDM 1.2686e—6 3.4144e—7 1.5720e—7

Table 3: Numerical data ||u—U]|| for P-II.

N 8 16 24
UBCFDM 5.1822¢—7 1.0127¢e—7 6.8874¢—8
FDM 3.3386e—5 3.2242¢+9  overflow




Y. Yuan, C. Li and H. Song / Adv. Appl. Math. Mech., xx (2025), pp. 1-26 23

Table 4: Comparison of two schemes (M,S).

N 8 16 24
M 28160e—7 6.5832¢e—8 7.9215¢—8
S b5.7604e—7 7.4580e—8 3.9599¢—8

Table 5: Numerical data for positive semi-definite problems.

N 8 16 24
P-III 8.0682¢e—7 5.5915¢—8 1.2303e—8
P-IV 1.6367e—5 2.4944¢—6 4.2888¢e—7

The single step method and multistep method are compared. The convection-
dominated diffusion equation (P-I) is solved by the upwind-block-centered multistep
scheme (M) and upwind-block-centered single-step scheme (S), respectively. The former
adopts At = % and the latter adopts At = %. From Table 4, we conclude that the multi-
step method has the advantages of single step scheme and improves the accuracy with
small-scaled computational work.

Furthermore, two positive semi-definite problems are considered to show the effi-

ciency and application.
P-11I:

P-1Vv:

142
a(x): (X—§> ’ b12—3, bzzl, b3:O.

Numerical data are obtained by using the upwind-block-centered scheme in Table 5 for

two positive semi-definite problems, P-III and P-IV. We find that the numerical results

are satisfactory for the problem with positive semi-definite diffusion matrix.

7 Conclusions and discussions

Numerical simulation of the three dimensional semiconductor device transient behav-
ior problem of heat conduction is discussed in this paper. An upwind-block-centered
multistep scheme is constructed and numerical analysis is presented. In Section 1, the
mathematical model is stated, and the physical background and related research are in-
troduced. In Section 2, some partition notations and lemmas are stated, and two different
(coarse and fine) partitions are defined. In Section 3 and Section 4, we propose the proce-
dures of upwind-block-centered multistep method. The electrostatic potential is solved
by a conservative block-centered method, and an approximation of electric field strength
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with one-order accuracy improvement is shown. An upwind-block-centered multistep
scheme is applied to solve the concentration equations and the heat conduction equa-
tion. The time derivative is approximated by a multistep method. The diffusion and
convection are solved by the block-centered scheme and the upwind scheme, respec-
tively. The composite scheme can solve convection-dominated diffusion problems well
because it avoids numerical dispersion and nonphysical oscillation. The concentrations
and the temperature and their adjoint vector functions are computed simultaneously. The
scheme has the nature of conservation, which is important in the numerical simulation
of semiconductor device. In Section 5, we give a theoretical analysis by using the vari-
ation, energy estimates, induction hypothesis, embedding theorem and the theory of a
priori estimates of differential equations to derive the optimal-order error estimates. In
Section 6, numerical experiments are illustrated to show the efficiency and application of
this method, and the challenging problem [2,5-8, 35] can be solved. Several interesting
conclusions are obtained.

(I) The method has the physical nature of conservation, which is important in the nu-
merical simulation of semiconductor device, especially in information science. It
improves and generalizes the research on numerical simulation in information sci-
ence [2,5-10,35].

(IT) The method combines multistep method, block-centered difference and upwind
approximation, so it has strong stability and high accuracy and is especially useful
in large-scale engineering computations of complicated three-dimensional regions.

(III) The method improves the research on multistep method given by Bramble in [35].
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