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Abstract. In many regions of the world, languages coexist in daily life, but often one
tongue increases its use at the expense of another. In the present paper, we build a large
compartmental system of differential equations that meets the situation of two “pres-
tigious” tongues and many local languages, whose use is reduced by social interac-
tion. The focus is on the preferred language in social relationships for communicating,
rather than mere knowledge. We aim at stating and proving theorems on the qualita-
tive behavior of the system. Numerical simulations illustrate the results, giving rise to
distinct dynamics.
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1 Introduction

There is no unique theory on the origin of languages, neither spoken nor signed. Two
examples are the “continuity theories” and “discontinuity theories”. In the first case,
the main idea is that language is so complex that it cannot appear from nothing, and
therefore it is supposed that language evolves from some prelinguistic systems used by
primate ancestors. This position is defended by Ulbaek [31], who argues that language
evolves from primate cognition. In the second case, language is supposed to appear as
a single chance mutation, as suggested by Chomsky [6], dated about 100,000 years ago.
On the other hand, the “usage-based theory of language acquisition” was introduced by
Tomasello [30], who states that language structure appears from language use, because
tongue acquisition is done with general cognitive processes.
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It was only quite recently that UNESCO started to consider preserving Intangible
Cultural Heritage. The text of the convention [32] was approved during the General
Conference held in Paris in 2003. This convention divides the Intangible Cultural Her-
itage into five domains, being the first one “Oral traditions and expressions, including
language as a vehicle of the Intangible Cultural Heritage”. The key point of this domain
refers to language being a vehicle of transmission of culture. Following [33], language as
culture also has three important aspects, namely: a) culture is a product of history which
it in turn reflects; b) the second aspect of language as culture is as an image-forming agent
in the mind of a child; and c) culture transmits or imparts those images of the world and
reality through the spoken and written language, that is, through a specific language.

The implementation of foreign languages has occurred all over the world and can be
studied from many points of view. The main aim of our work is to mathematically ana-
lyze the influence of two major languages (understood as “prestigious” by high society)
into a community using a number J of their own local languages, by employing abstract
compartmental models of ordinary differential equations and dynamical-systems theory.

A compartmental system of ordinary differential equations models a continuous-time
phenomenon, such as that of language shift within a community, by analyzing rates of
change and fluxes of individuals between groups. It is built on a macroscopic frame-
work, where processes are studied from an aggregate and averaged point of view. The
prototypical compartmental model is the SIR formulation, first developed in 1927 [14].
In the simplest case, it divides a population suffering a contagious disease into suscep-
tible (S), infected (I), and recovered (R) persons, and fluxes represent contagions and
recoveries [4, 34]. The output is not at individual level, but a mean value for the region
(for which a probabilistic interval could be incorporated if stochastic ordinary differen-
tial equations were used). Extensions of the SIR equations have been utilized for different
diseases, such as HIV/AIDS, COVID-19, etc. [23,27,28]. However, some of these types of
models are not restricted to epidemics. Social interactions do not only transmit viruses
and bacteria, but serve for spreading opinions, habits, ideologies, etc. [3, 11, 15, 29]. Since
tongues and attitudes on them can be “transmitted” by contacts, some compartmental
models should be useful tools to capture the mechanisms of language acquisition. These
ideas have been used for various social phenomena, such as drug consumption [35], crim-
inality [10, 18], and telecommunications [5].

The seminal one-page paper [1] initiated the work on the mathematical modeling
of language interaction through ordinary differential equations and dynamical systems.
The authors proposed a planar system to study the coexistence of two monolingual
groups in a region, with contacts represented by probabilities of shift and with a pa-
rameter of language’s status. Some data were fitted for Scottish Gaelic, Quechua, and
Welsh. Later, reference [19] extended the theory to three equations, giving the possibility
of stable bilingualism. Data on Castilian and Galician in Spain were fitted. Other alter-
native developments were given in [25], where spatial diffusion was added to the model
of [1] to situate the tongues in different geographical areas, and in [26], where a logistic
natural growth of languages was suggested. In Spain, the Galician language was further
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discussed in [20, 22], and the situation of the Catalan language was also analyzed [21],
with these mathematical tools. Other countries were also addressed, such as India with
“Hinglish” speakers [24] and Mexico with Yucatec Maya and Spanish [2]. A recent contri-
bution conducted a theoretical study of a dynamical compartmental model of languages,
with three groups defined by the dominant language, bilingualism, and the underrep-
resented tongue; equilibrium points and stability were investigated [7]. There are parts
of the world with more complex realities due to a huge variety of languages that have
not been studied mathematically, such as Africa. In regions of this continent, there may
be many local languages, that are being removed by major tongues. For example, in
Cameroon, both French and English are the official languages, but there are at least 250
local languages in the country [8,13,16]. Thus, there should be more than three compart-
ments in the model’s formulation, with many parameters capturing language abandon-
ment or adoption, on an aggregate fashion. The use of multiple competing languages
in models has been proposed in some articles of statistical physics, such as [9, 17, 36].
In [17], languages had attractiveness and the number of speakers was modeled in a com-
partmental system. In [36], an extended Abrams-Strogatz model was utilized to fit the
data in Singapore and Hong Kong, by means of a Bayesian computation method. In [9],
a theoretical study of an extended Abrams-Strogatz model was conducted among a gen-
eral number of languages, based on adequate simulations. Our contribution is focused
on the mathematical analysis for a model of multiple languages.

The plan of the paper is the following. In Section 2, we propose a compartmental
model of ordinary differential equations where J local tongues compete with two domi-
nant languages, which is related to previous formulations in the literature. We consider
the possibility that an individual knows and uses more than one language, being one
of the tongues the preferred one, and the resulting system is of size 3J+2. In Section 3,
which represents the main part of the work, we state and prove theoretical results on
well-posedness and dynamics, giving rise to global existence and positivity of solutions
and, under certain parameters’ inequalities, extinction of the local languages. Many of
our arguments for the study of dynamics are new in the mathematics literature, as far as
we know. In Section 4, some numerical simulations are performed to illustrate the theo-
retical results on language dynamics. Finally, in Section 5, conclusions of this work are
presented.

2 Proposed model

Let us assume that in a community we have two “prestigious” languages, denoted by P1

and P2, as well as J local tongues, Lj, with j=1,.. . , J. We shall denote by pi(t) the number
of persons who speak Pi more in social relations, with i∈{1,2}. Similarly, lj(t) stands for
the number of individuals that speak Lj more in social relations, with j∈{1,.. . , J}. The
time is t ≥ 0 (years, months, etc.). For the proposed model, we shall need some extra
notation: bj(t) represents the number of individuals that, in social interactions and at
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time t, communicate equally via Lj and P1, and finally, b̃j(t) represents the number of
individuals who communicate both with Lj and P2, equally in social interactions. The
scheme of language adoption is

lj → bj → p1 or lj → b̃j → p2.

Notice that we are not dealing with “knowledge” of a language, but with “preferred lan-
guage in social relations for communicating”, which best reflects the strength of a tongue.
Hence, the used compartments do not intersect: although there could be bilingual per-
sons, one of the languages is more used in social relations, and this is the tongue kept by
the model.

We used the term “prestigious” instead of dominant because, at the beginning of
the implementation in the region, it might not still be dominant. The quotation marks
indicate that the adjective prestigious is actually subjective, the way the population views
the tongues.

With the aforementioned notations and interpretations, the proposed model is ex-
pressed in terms of a system of 3J+2 differential equations

l′j =−β jlj(bj+p1)− β̃ jlj(b̃j+p2)+δjlj, j=1,.. . , J, (2.1a)

b′j =β jlj(bj+p1)−αjbj p1+ǫjbj, j=1,.. . , J, (2.1b)

b̃′j = β̃ jlj(b̃j+p2)− α̃j b̃j p2+ ǫ̃j b̃j, j=1,.. . , J, (2.1c)

p′1 =γ+δp1+
J

∑
j=1

αjbj p1, (2.1d)

p′2 = γ̃+ δ̃p2+
J

∑
j=1

α̃jb̃j p2. (2.1e)

We assume that the parameters β j, β̃ j,αj, α̃j,γ and γ̃ are positive. The remaining coeffi-

cients δj,ǫj, ǫ̃j,δ and δ̃ are real numbers. The interpretation of the parameters is the fol-

lowing: β j is the force of transition from lj to bj; β̃ j is the force of transition from lj to b̃j;
αj is the force of transition from bj to p1; α̃j is the force of transition from bj to p2; γ is the
immigration rate, that adopts the “prestigious” language P1; γ̃ is the immigration rate,
that adopts the “prestigious” language P2; and, respectively, δj,ǫj, ǫ̃j,δ and δ̃ represent
the birth rate minus the death rate and the emigration rate in the corresponding group.
There are initial conditions

lj(0)= lj,0>0, bj(0)=bj,0>0, b̃j(0)= b̃j,0>0,

p1(0)= p1,0 >0, p2(0)= p2,0 >0.
(2.2)

Observe that, if the total population is

N=
J

∑
j=1

(

lj+bj+ b̃j

)

+p1+p2,
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then

N′(t)=γ+γ̃+
J

∑
j=1

δjlj(t)+
J

∑
j=1

ǫjbj(t)+
J

∑
j=1

ǫ̃j b̃j(t)+δp1(t)+ δ̃p2(t), (2.3)

after adding the equations in (2.1). Thus, considering the interpretation of the parameters,
N changes depending on immigration, emigration, births and deaths. When δj=ǫj= ǫ̃j=

δ=δ̃=Λ for all j, we can derive an ordinary differential equation for N of Malthusian type,
given by N′=γ+γ̃+ΛN; otherwise N is not described by a linear differential equation.

Finally, we notice that (2.1) would be of application when comparing different di-
alects, instead of different languages. In a tongue, there may be variants that could be
considered more “prestigious” than others, for example, the standard language by con-
vention. Speakers’ interactions shape language evolution and the acquirement of certain
linguistic characteristics, hence changing language dynamics and dialectal stability [12].

3 Results on well-posedness and dynamics

We state and prove results on (2.1)-(2.2). Compactly, we can write the system (2.1) as
x′= f (x), where

x=(l1,. . .,lJ ,b1,. . .,bJ ,b̃1,. . .,b̃J ,p1,p2)

is the state variable,
x(0)=(x1,0,. . .,x3J+2,0)

is the initial condition, and

f =( f1,. . ., f3J+2) :R3J+2 → R
3J+2

is the vector field. Theorem 3.1 demonstrates that (2.1)-(2.2) is well-posed and consistent.
Theorem 3.2 shows that, if δ and δ̃ are non-negative, then the local languages disappear
and the “prestigious” languages grow towards infinity (of course, this is an idealization
that simply represents the increase of the new tongues). A simple consequence of the
proof, Corollary 3.1, is given, for the cases δ≥ 0 and δ̃≥ 0 separately (i.e., for the “pres-
tigious” tongues separately). Theorem 3.3 is concerned with the situation δ ≥ 0, δ̃ < 0,
with an additional inequality for the parameters, which renders extinction of the local
languages, convergence to infinity for P1, and convergence to a finite equilibrium point
for P2. The assumptions of Corollary 3.1 and Theorem 3.3 are tight. Theorem 3.4 illus-
trates that, when δ and δ̃ are both negative, then the local languages die out too under cer-
tain parameters’ inequalities, with the two “prestigious” languages approaching positive
and finite equilibrium points. This last Theorem 3.4 only demonstrates local asymptotic
stability, based on eigenvalues of the Jacobian matrix, rather than global. The symbol
0J =(0,.. .,0) denotes a vector of zeros of length J.

Theorem 3.1. The solution of (2.1)-(2.2) is given by unique functions

lj,bj, b̃j, p1, p2 : [0,∞) → (0,∞).
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Proof. Note that f is smooth. By the Picard-Lindelöf theorem, there exists a unique solu-
tion x : [0,T)→R

3J+2 of (2.1), where T≤∞ is the maximum possible value. The goal is to
prove positivity on [0,T) and T=∞.

1) Positivity on [0,T). In (2.1), the equation for lj has the structure

l′j = aj(t)lj(t), (3.1)

where aj : [0,T)→R is continuous. Then,

lj(t)= lj,0exp

(

∫ t

0
aj(τ)dτ

)

>0, ∀t∈ [0,T). (3.2)

Suppose that p1(t
∗)= 0 for some t∗ ∈ (0,T). Then, p′1(t

∗)=γ> 0, which is a contra-
diction. Hence, t∗ does not exist and p1(t)>0 for all t∈ [0,T). Another proof of this fact
consists in noticing that

p′1(t)=γ+h1(t)p1(t),

where h1 : [0,T)→R is continuous, so the solution possesses the form

p1(t)= p1,0 exp

(

∫ t

0
h1(τ)dτ

)

+γ

∫ t

0
exp

(

∫ t

r
h1(τ)dτ

)

dr>0.

An analogous results follows for p2: We have p2(t)>0 for every t∈ [0,T).
The same technique works for bj and b̃j. Suppose that bj(t

∗)= 0 for some t∗ ∈ (0,T).
Then, b′j(t

∗)=β jlj(t
∗)p1(t

∗)>0, which is a contradiction. Hence, bj(t)>0 for every t∈[0,T).

The other proof of this result consists in rewriting

b′j(t)=yj(t)+zj(t)bj(t),

where yj : [0,T)→ (0,∞) and zj : [0,T)→R are continuous; the solution has the form

bj(t)=bj,0exp

(

∫ t

0
zj(τ)dτ

)

+
∫ t

0
exp

(

∫ t

r
zj(τ)dτ

)

yj(r)dr>0.

An analogous result holds for b̃j.

2) The horizon is T=∞. Suppose that T<∞. Notice that, with (2.3),

3J+2

∑
j=1

x′j(t)=
J

∑
j=1

l′j(t)+
J

∑
j=1

b′j(t)+
J

∑
j=1

b̃′j(t)+p′1(t)+p′2(t)

=γ+γ̃+
J

∑
j=1

δjlj(t)+
J

∑
j=1

ǫjbj(t)+
J

∑
j=1

ǫ̃j b̃j(t)+δp1(t)+ δ̃p2(t)

≤γ∗+δ∗
3J+2

∑
j=1

xj(t),



I. Area and M. Jornet / CSIAM Trans. Appl. Math., x (2025), pp. 1-20 7

where

γ∗=max{γ,γ̃}>0,

δ∗=max{|δ1|,. . .,|δJ |,|ǫ1|,. . . ,|ǫJ |,|ǫ̃1|,. . . ,|ǫ̃J |,|δ|,|δ̃|}≥0.

By Grönwall’s inequality,

3J+2

∑
j=1

xj(t)≤
3J+2

∑
j=1

xj,0+γ∗ t2

2
+
∫ t

0

(

3J+2

∑
j=1

xj,0+γ∗ τ2

2

)

δ∗exp
(

δ∗(t−τ)
)

dτ=h(t),

where h : [0,∞)→R is a continuous function. Consider any T< ξ<∞. Let

H=

{

(t,y) : t∈ [0,ξ], y∈R
3J+2 , yj ≥0,∀j,

3J+2

∑
j=1

yj ≤h(t)

}

.

We know that the solution satisfies

(

t,x(t)
)

=
(

t,
(

lj(t)
)J

j=1
,
(

bj(t)
)J

j=1
,
(

b̃j(t)
)J

j=1
,p1(t),p2(t)

)

∈H, ∀t∈ [0,T).

The set H is compact, so (t,x) 7→ f (x) is bounded on H with respect to any norm |·|.
Let fmax be the bound for | f | on H. Since

x(t)= x(0)+
∫ t

0
f
(

x(s)
)

ds,

we derive
|x(t)−x(t′)|≤ fmax|t−t′|

for t,t′ ∈H. Hence, with Cauchy sequences, the limit limt→T− x(t) exists. This implies
that x has a prolongation to T.

Theorem 3.2. Given (2.1), if δ≥0 and δ̃≥0, then

lim
t→∞

p1(t)= lim
t→∞

p2(t)=∞,

lim
t→∞

lj(t)= lim
t→∞

bj(t)= lim
t→∞

b̃j(t)=0

for all j=1,.. . , J, irrespective of the positive initial conditions (2.2).

Proof. Since p′1≥γ and p′2≥ γ̃ (because δ≥0 and δ̃≥0), we deduce

p1(t)≥γt+p1,0
t→∞
−→ ∞, (3.3)

p2(t)≥γt+p2,0
t→∞
−→ ∞. (3.4)

Such growths are of increasing form.
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On the other hand, we have the differential equation (3.1), where

lim
t→∞

aj(t)=−∞ (3.5)

by (3.3) or (3.4). Then, fixed any M<0, we can ensure that aj(t)≤−M for all t≥ tM >0.
As a result, from (3.2),

lj(t)= lj,0exp

(

∫ tM

0
aj(τ)dτ+

∫ t

tM

aj(τ)dτ

)

≤ lj,0exp

(

∫ tM

0
aj(τ)dτ−M(t−tM)

)

t→∞
−→ 0, (3.6)

exponentially fast.
In fact, let us see the stronger limits

lim
t→∞

p1(t)lj(t)=0, (3.7)

lim
t→∞

p2(t)lj(t)=0. (3.8)

By (3.1) and (3.5), we derive that l′j(t)< 0 for all sufficiently large t. With (3.6), we then

obtain
lim
t→∞

l′j(t)=0. (3.9)

From the Eq. (2.1a), properties (3.6) and (3.9) imply in consequence that

lim
t→∞

lj(t)
(

bj(t)+p1(t)
)

= lim
t→∞

lj(t)
(

b̃j(t)+p2(t)
)

=0.

In particular, both (3.7) and (3.8) are verified.
Conditions (3.7) and (3.8) are very relevant to prove that bj and b̃j, respectively, tend

to 0 as t→∞. Indeed, rewrite

b′j(t)=qj(t)bj(t)+wj(t), (3.10)

where
qj(t)=β jlj(t)−αj p1(t)+ǫj

t→∞
−→ −∞, (3.11)

because of (3.3), and

wj(t)=β jlj(t)p1(t)
t→∞
−→ 0 (3.12)

by (3.7). The three expressions (3.10)-(3.12) imply that

lim
t→∞

bj(t)=0.

Analogously, with (3.4) and (3.8),
lim
t→∞

b̃j(t)=0

is true as well.
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Remark 3.1. Notice that we work with the independent variable t≥ 0. On (−∞,0], the
result presented in Theorem 3.1 could be different. For example, the solution of x′=1 is
negative for small t. In this sense, there could a bounded domain (T̃,0] where the solution
blows-up or tends to zero at T̃<0.

Corollary 3.1. Given (2.1), if δ≥0, then

lim
t→∞

p1(t)=∞,

lim
t→∞

lj(t)= lim
t→∞

bj(t)=0

for all j=1,.. . , J, irrespective of the positive initial conditions (2.2). When δ<0, the result is never
true, irrespective of the positive initial conditions (2.2).

If δ̃≥0, then

lim
t→∞

p2(t)=∞,

lim
t→∞

lj(t)= lim
t→∞

b̃j(t)=0

for all j=1,.. . , J, irrespective of the positive initial conditions (2.2). When δ̃<0, the result is never
true, irrespective of the positive initial conditions (2.2).

Proof. We consider the case δ≥0. The assumption implies p′1 ≥γ and (3.3). The proper-
ties (3.5), (3.6), and (3.9) hold as well. The development to prove (3.7) and (3.8) is satisfied.
We also have (3.10)-(3.12).

Now suppose that δ<0, with p1(t)→∞ as well. The reasoning of the proof of Theo-
rem 3.2 is valid here, so that lj(t) and bj(t) tend to zero with t. However, from (2.1),

p′1(t)=γ−

(

−δ+
J

∑
j=1

αjbj(t)

)

p1(t)
t→∞
−→ −∞,

since bj(t)→0. This is impossible considering that p1(t)→∞.

Remark 3.2. The infinite value of the limit in Theorem 3.2 and Corollary 3.1 is a conse-
quence of immigration and the larger or equal value of births compared to deaths and
emigrations. Since this demography is constant along [0,∞), population increases for-
ever and infinite values emerge. This is an abstract result. In practice, intervals are ac-
tually bounded, and one should then consider these mathematical theorems under the
appropriate sense, simply meaning that the “prestigious” languages grow in reality, at
the expense of the original languages. The model should be taken as a representation for
short-time data, which informs about the possible future from the demography observed
in the past.
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Theorem 3.3. Given (2.1), if δ≥0, δ̃<0, and α̃jγ̃/δ̃+ ǫ̃j <0, then

lim
t→∞

p1(t)=∞, lim
t→∞

p2(t)=
γ̃

−δ̃
,

lim
t→∞

lj(t)= lim
t→∞

bj(t)= lim
t→∞

b̃j(t)=0

for all j = 1,.. ., J, irrespective of the positive initial conditions (2.2). When δ ≥ 0, δ̃ < 0, and
α̃jγ̃/δ̃+ ǫ̃j >0, the result is never true, irrespective of the positive initial conditions (2.2).

If δ̃≥0,δ<0, and αjγ/δ+ǫj <0, then

lim
t→∞

p1(t)=
γ

−δ
, lim

t→∞
p2(t)=∞,

lim
t→∞

lj(t)= lim
t→∞

bj(t)= lim
t→∞

b̃j(t)=0

for all j = 1,.. ., J, irrespective of the positive initial conditions (2.2). When δ̃ ≥ 0,δ < 0, and
αjγ/δ+ǫj >0, the result is never true, irrespective of the positive initial conditions (2.2).

Proof. We suppose the first case, i.e. δ≥0, δ̃<0, and α̃jγ̃/δ̃+ ǫ̃j <0. By Corollary 3.1, we

only need to prove that b̃j(t)→0 and p2(t)→ γ̃/(−δ̃) when t→∞. Observe that, from the
Eq. (2.1e),

p′2(t)≥ γ̃+ δ̃p2(t).

With the integrating factor exp(−δ̃t), we have

(

exp(−δ̃t)p2

)′
≥exp(−δ̃t)γ̃,

which implies the Grönwall-type inequality

p2(t)≥exp(δ̃t)p2,0+
1−exp(δ̃t)

−δ̃
γ̃

and

liminf
t→∞

p2(t)≥
γ̃

−δ̃
. (3.13)

Recall also that (3.8) holds, by (3.6) and (3.9).
Write

b̃′j(t)= q̃j(t)b̃j(t)+w̃j(t), (3.14)

where

q̃j(t)= β̃ jlj(t)− α̃j p2(t)+ ǫ̃j <0 (3.15)

for all sufficiently large t, by (3.13) and the assumption, and

w̃j(t)= β̃ jlj(t)p2(t)
t→∞
−→ 0 (3.16)
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with (3.8). The three expressions (3.14)-(3.16) imply that

lim
t→∞

b̃j(t)=0,

as wanted.
Now, suppose that the function p2 is unbounded on [0,∞). For each natural number k,

choose the first tk such that p2(tk)≥ k. Note that tk →∞ and p2(tk)→∞, as k grows. As
a result,

p′2(tk)= γ̃−

(

−δ̃+
J

∑
j=1

α̃jb̃j(tk)

)

p2(tk)
tk→∞
−→ −∞,

because b̃j(tk)→ 0. In particular, p′2(tk)< 0 from a certain k, but this fact contradicts the
minimality of tk satisfying p(tk)≥ k. In conclusion: p2 is bounded on [0,∞).

Suppose that p2 is not a monotonic function on any interval [t∗,∞), for t∗> 0. Then
there exists a subsequence sm → ∞ such that p′2(sm) = 0 for all m, because the function
exhibits oscillations forever. By (2.1),

p2(sm)=
γ̃

(−δ̃)−∑
J
j=1 α̃j b̃j(sm)

m→∞
−→

γ̃

−δ̃
>0.

This is a contradiction, hence p2 is monotonic from a certain point. As it is also bounded,
there must exist ℓ= limt→∞ p2(t)∈ [0,∞). By taking the limit in the Eq. (2.1e), we obtain
0= γ̃+ δ̃ℓ, and we are done.

Finally, suppose that δ≥ 0, δ̃< 0, and α̃jγ̃/δ̃+ ǫ̃j > 0. Assume also that γ̃/(−δ̃) is the
limit of p2. Expression (3.14) is still true. By Corollary 3.1, lj(t)→ 0. In (3.15), we now
have q̃j(t)> η > 0, for a number η > 0 and all sufficiently large t, t≥ tη . In consequence,
from (3.14),

b̃j(t)≥ b̃j,0exp

(

∫ t

0
q̃j(τ)dτ

)

≥ b̃j,0exp

(

∫ tη

0
q̃j(τ)dτ

)

exp
(

η(t−tη)
) t→∞

−→ ∞.

Hence, b̃j(t) does not tend to 0.

Remark 3.3. When δ≥ 0, δ̃< 0, and α̃jγ̃/δ̃+ ǫ̃j = 0, the proof of Theorem 3.3 is not con-
clusive. If we aimed at proving that the limits hold, then in the first part of the proof,
we would have limsupt→∞ q̃j(t)≤0. As a result, we could not ensure that such a limsup

is negative and b̃j(t)→∞. On the other hand, if we aimed at proving that the limits are

not true, assuming that γ̃/(−δ̃) is the limit of p2, we would have limt→∞ q̃j(t)=0, which

would not be of use for b̃j again.
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Theorem 3.4. Given (2.1), if δ<0 and δ̃<0, then D=(0J ,0J ,0J ,γ/(−δ),γ̃/(−δ̃)) is a locally
asymptotically stable equilibrium point if, for all j∈{1,.. . , J}, the numbers

β j
γ

δ
+ β̃ j

γ̃

δ̃
+δj, (3.17)

αj
γ

δ
+ǫj, (3.18)

α̃j
γ̃

δ̃
+ ǫ̃j (3.19)

are negative. For example, when δj ≤0,ǫj ≤0 and ǫ̃j ≤0 for all j∈{1,.. . , J}.

Those values (3.17)-(3.19), together with δ and δ̃, form the eigenvalues of the Jacobian matrix
J f (D). If (3.17) or (3.18) or (3.19) takes a positive value for some j, then D is unstable.

Proof. Simple calculations show that J f (D) is lower triangular, where the diagonal is
formed by (3.17)-(3.19), δ, and δ̃. Then, use the known theory about dynamical systems
and stability.

Remark 3.4. When some of the quantities (3.17) or (3.18) or (3.19) are zero, we cannot
ensure anything about the behavior of D in Theorem 3.4, according to the standard theory
of dynamical systems.

4 Numerical simulations

We simulate (2.1) and (2.2) for several values of the parameters, to illustrate the theory
of the preceding section. We set J=3 local tongues, that compete with the two dominant
languages. The models are complex and contain many parameters. Interesting dynamics
emerge, with divergence, stability, and instability cases. We recall Remark 3.2, observing
that these results and graphics are of mathematical nature to understand the dynam-
ical system, and applications in reality would correspond to short-term data where de-
mography (immigration, emigration, births, deaths) remains approximately constant; the
model informs about the possible future values for the short-term data. We use the soft-
ware Mathematica®, version 12.0, with the standard NDSolveValue routine for solving
differential equations.

Example 4.1. Let

β1=10−9, β2=5×10−9, β3 =10−9,

β̃1=10−10, β̃2=0.7×10−10, β̃3 =10−9,

δ1=10−2, δ2=0.008, δ3=0.009,

α1=10−9, α2=2×10−9, α3=0.5×10−9,

α̃1=3×10−9, α̃2=4×10−9, α̃3=7×10−9,
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ǫ1=0.02, ǫ2 =0.008, ǫ3=0.009,

ǫ̃1=0.03, ǫ̃2 =0.01, ǫ̃3=0.01,

δ=0, δ̃=0.004,

γ=1000, γ̃=500,

l1,0=106, l2,0=3.5×106, l3,0=2×106,

b1,0=4×106, b2,0=2.5×106, b3,0=105,

b̃1,0=106, b̃2,0=106, b̃3,0=105,

p1,0=5×106, p2,0=4×106.

Since δ≥0 and δ̃≥0, Theorem 3.2 applies. Fig. 1 confirms the stated behavior, where p1

and p2 grow and the other compartments become extinct. For the local tongues, there
may be a phase of increase, but they decay from a certain time and die out.

Figure 1: Language evolution in Example 4.1.

Example 4.2. Let

β1=10−9, β2=5×10−9, β3=10−9,

β̃1=10−10, β̃2=0.7×10−10, β̃3=10−9,

δ1=10−2, δ2=0.008, δ3=0.009,

α1=10−9, α2=2×10−9, α3=0.5×10−9,

α̃1=3×10−9, α̃2=4×10−9, α̃3=7×10−9,

ǫ1=0.02, ǫ2 =0.008, ǫ3=0.009,

ǫ̃1=0.03, ǫ̃2 =0.01, ǫ̃3=0.01,
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δ=0, δ̃=−0.5,

γ=1000, γ̃=5000,

l1,0=106, l2,0=3.5×106, l3,0=2×106,

b1,0=4×106, b2,0=2.5×106, b3,0=105,

b̃1,0=106, b̃2,0=106, b̃3,0=105,

p1,0=5×106, p2,0=4×106.

Since δ≥ 0 and δ̃< 0, we use Theorem 3.3. The values of α̃jγ̃/δ̃+ ǫ̃j are positive, hence
the asymptotic behavior is not obvious. Indeed, as Fig. 2 shows, p2(t) oscillates without
a limit value. It is unclear whether this oscillatory behavior appears in empirical stud-
ies or it corresponds to a theoretical artifact of the Lotka-Volterra-type model; it would
represent a situation where language use increases and decreases with time by people’s
elections.

Figure 2: Language evolution in Example 4.2.

Example 4.3. Let

β1=10−9, β2=5×10−9, β3 =10−9,

β̃1=10−10, β̃2=0.7×10−10, β̃3 =10−9,

δ1=10−2, δ2=0.008, δ3=0.009,

α1=10−9, α2=2×10−9, α3=0.5×10−9,

α̃1=3×10−9, α̃2=4×10−9, α̃3=7×10−9,

ǫ1=0.02, ǫ2=0.008, ǫ3 =0.009,

ǫ̃1=0.015, ǫ̃2=0.024, ǫ̃3 =0.07,
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δ=0, δ̃=−0.0005,

γ=1000, γ̃=5000,

l1,0=106, l2,0=3.5×106, l3,0=2×106,

b1,0=4×106, b2,0=2.5×106, b3,0=105,

b̃1,0=106, b̃2,0=106, b̃3,0=105,

p1,0=5×106, p2,0=4×106.

As δ ≥ 0 and δ̃ < 0, we employ Theorem 3.3. The values of α̃jγ̃/δ̃+ ǫ̃j are negative for
j ∈ {1,2} and zero for j = 3, hence the asymptotic behavior is unclear again. As Fig. 3
illustrates, now p2(t) increases and does not approach an equilibrium.

Figure 3: Language evolution in Example 4.3.

Example 4.4. Let

β1=10−9, β2=5×10−9, β3=10−9,

β̃1=10−10, β̃2=0.7×10−10, β̃3=10−9,

δ1=10−2, δ2=0.008, δ3=0.009,

α1=10−9, α2=2×10−9, α3=0.5×10−9,

α̃1=3×10−9, α̃2=4×10−9, α̃3=7×10−9,

ǫ1=0.02, ǫ2 =0.008, ǫ3=0.009,

ǫ̃1=0.015, ǫ̃2 =0.024, ǫ̃3=7×10−7,

δ=0, δ̃=−0.005,

γ=1000, γ̃=5000,
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l1,0=106, l2,0=3.5×106, l3,0=2×106,

b1,0=4×106, b2,0=2.5×106, b3,0=105,

b̃1,0=106, b̃2,0=106, b̃3,0=105,

p1,0=5×106, p2,0=4×106.

As δ≥0 and δ̃<0, we use Theorem 3.3. The values of α̃jγ̃/δ̃+ǫ̃j are all negative, therefore

the limits are clear: p1 grows and p2 goes to a steady-state quantity, equal to γ̃/(−δ̃)=106.
The result is confirmed by Fig. 4.

Figure 4: Language evolution in Example 4.4.

Example 4.5. We consider the same inputs as in Example 4.4, but with δ=−0.005. We
are in the context of Theorem 3.4. Since (3.18) is positive, the equilibrium point D is
unstable. The result agrees with Fig. 5, where b1,b3 and p1 oscillate, while p2 converges
to a non-zero value.

Example 4.6. Let

β1=10−9, β2 =5×10−9, β3=10−9,

β̃1=10−10, β̃2 =0.7×10−10, β̃3=10−9,

δ1=−0.00015, δ2=−0.000535, δ3=−0.0006,

α1=10−9, α2=2×10−9, α3=0.5×10−9,

α̃1=3×10−9, α̃2=4×10−9, α̃3=7×10−9,

ǫ1=0.0006, ǫ2 =0.00096, ǫ3=0.00036,

ǫ̃1=0.015, ǫ̃2 =0.024, ǫ̃3=7×10−7,

δ=−0.005, δ̃=−0.005,
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γ=6000, γ̃=5000,

l1,0=106, l2,0=3.5×106, l3,0=2×106,

b1,0=4×106, b2,0=2.5×106, b3,0=105,

b̃1,0=106, b̃2,0=106, b̃3,0=105,

p1,0=5×106, p2,0=4×106.

In Theorem 3.4, the eigenvalues (3.17)-(3.19) are negative, so the equilibrium point D is
stable. See Fig. 6, where p1 and p2 converge to a non-zero value.

Figure 5: Language evolution in Example 4.5.

Figure 6: Language evolution in Example 4.6.
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5 Conclusions

The compartmental system (2.1)-(2.2) models the competition between two principal lan-
guages and J local languages, in daily social interactions. The local languages tend to be
reduced in communication. Theorems 3.1-3.4 give well-posedness and asymptotic dy-
namics of the model, with a full range of possibilities depending on the inequalities of
the parameters. Examples 4.1-4.6 illustrate the theory for J = 3, with rich dynamics that
show diverging, convergent, and oscillating evolution curves depending on the values
set for the parameters.

We notice that compartmental models like the one presented here neglect spatial or
network-based constraints on agent-agent interactions, which could influence predic-
tions. Stochastic variations, which may play a significant role in language dynamics,
are also being omitted. On the other hand, logistic growths could be included in the for-
mulation to achieve bounded asymptotic values, although the mathematical results and
proofs would be more complex and further analysis would be required. Finally, we re-
mark that, in [1] and follow-up contributions, there was a parameter “a” that appeared
in the exponent for some terms in the differential equations; this parameter adds more
flexibility to the nonlinearity of the interactions. In our paper, “a” is taken to be 1, and
it would be of relevance to extend the theoretical results of the paper to the case a 6= 1,
considering the higher nonlinearity.
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