
Ann. Appl. Math.
doi: 10.4208/aam.OA-2021-0005

Vol. 37, No. 3, pp. 1-31
August 2021

On a Rayleigh-Faber-Krahn Inequality for

the Regional Fractional Laplacian

Tianling Jin1,∗, Dennis Kriventsov2 and Jingang Xiong3

1 Department of Mathematics, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong
2 Department of Mathematics, Rutgers University, 110 Frelinghuysen Road,
Piscataway, NJ 08854, USA
3 School of Mathematical Sciences, Laboratory of Mathematics and
Complex Systems, MOE, Beijing Normal University, Beijing 100875, China

Received 19 August 2021; Accepted (in revised version) 24 August 2021

Abstract. We study a Rayleigh-Faber-Krahn inequality for regional fractional
Laplacian operators. In particular, we show that there exists a compactly sup-
ported nonnegative Sobolev function u0 that attains the infimum (which will be
a positive real number) of the set{∫∫

{u>0}×{u>0}

|u(x)−u(y)|2

|x−y|n+2σ
dxdy :u∈H̊σ(Rn),

∫
Rn
u2 =1, |{u>0}|≤1

}
.

Unlike the corresponding problem for the usual fractional Laplacian, where the
domain of the integration is Rn×Rn, symmetrization techniques may not apply
here. Our approach is instead based on the direct method and new a priori di-
ameter estimates. We also present several remaining open questions concerning
the regularity and shape of the minimizers, and the form of the Euler-Lagrange
equations.
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1 Introduction

Let n≥ 1, σ ∈ (0,1) (with the additional assumption that σ < 1/2 if n= 1), and
Ω⊂Rn be an open set. There are two natural fractional Sobolev norms which may
be defined for u∈C∞c (Ω):

In,σ,Rn [u] :=

∫∫
Rn×Rn

(u(x)−u(y))2

|x−y|n+2σ
dxdy

and

In,σ,Ω[u] :=

∫∫
Ω×Ω

(u(x)−u(y))2

|x−y|n+2σ
dxdy.

Depending on the choices of n, σ and Ω, these two norms may or may not be
equivalent. Even when they are equivalent (see Lemma 2.1), there are still subtle
differences in how they depend on the domain Ω.

One significant difference is the behavior of their corresponding best Sobolev
constants:

Sn,σ(Ω) :=inf

{
In,σ,Ω[u] :u∈C∞c (Ω),

∫
Ω

|u|
2n

n−2σdx=1

}
and

S̃n,σ(Ω) :=inf

{
In,σ,Rn [u] :u∈C∞c (Ω),

∫
Ω

|u|
2n

n−2σdx=1

}
.

Clearly, S̃n,σ(Ω)≥ S̃n,σ(Rn) and, in fact, using the dilation or translation invariance

of S̃n,σ(Rn), it is not difficult to see that

S̃n,σ(Ω)= S̃n,σ(Rn)=Sn,σ(Rn).

Moreover, a result of Lieb [15], classifies all minimizers for S̃n,σ(Rn) and shows that

they do not vanish anywhere on Rn. Therefore, the infimum S̃n,σ(Ω) is not attained
unless Ω=Rn.

However, in [10], two of the authors with R. Frank discovered that the minimiza-

tion problem for Sn,σ(Ω) behaves differently from S̃n,σ(Ω). Let us first recall some
qualitative results about whether the constant Sn,σ(Ω) is positive or zero:

• For n≥ 2 and σ> 1/2, one has Sn,σ(Ω)> 0 for any open set Ω. This follows
from Dyda-Frank [8], which even shows that Sn,σ :=infΩSn,σ(Ω)>0.

• When n≥1 and σ<1/2, one has Sn,σ(Ω)=0 for any open set Ω of finite measure
with sufficiently regular boundary; see Lemma 16 in [10].
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• However, one has Sn,σ(Ω)>0 for n≥1 and σ<1/2 if Ω is the complement of
the closure of a bounded Lipschitz domain or a domain above the graph of a
Lipschitz function. This follows from the Sobolev inequality on Rn and the
Hardy inequality from Dyda [7].

More quantitatively speaking, it was shown in [10] that the best constant Sn,σ(Ω)
depends on the domain Ω, and it can be achieved in many cases assuming that n≥4σ:

• If the complement Ωc has an interior point, then Sn,σ(Ω)<Sn,σ(Rn).

• If σ 6=1/2, then Sn,σ(Rn
+) is achieved (see also Musina-Nazarov [19]).

• If σ > 1/2, Ω is a bounded domain such that B+
1 ⊂Ω⊂Rn

+, then Sn,σ(Ω)<
Sn,σ(Rn

+). Moreover, if ∂Ω is smooth then Sn,σ(Ω) is achieved.

The discrepancy between the Sn,σ(Ω) problem and the S̃n,σ(Ω) problem can be
explained as a Brézis-Nirenberg [4] effect:

In,σ,Ω[u]=In,σ,Rn [u]−2

∫
Ω

u2(x)dx

∫
Rn\Ω

1

|x−y|n+2σ
dy

≈In,σ,Rn [u]−cn,σ
∫

Ω

u2(x)

dist(x,∂Ω)2σ
dx, ∀u∈C∞c (Ω).

Therefore, the Sn,σ(Ω) problem is the S̃n,σ(Ω) problem with an additional negative
term, and it is this term that for n≥4σ lowers the value of the infimum and produces
a minimizer. This fact was first observed by Brézis-Nirenberg [4] in the Laplacian
setting.

In probability, In,σ,Ω is called the Dirichlet form of the censored 2σ-stable pro-
cess [3] in Ω. Its generator

(−∆)σΩu :=2lim
ε→0

∫
{y∈Ω: |y−x|≥ε}

u(x)−u(y)

|x−y|n+2σ
dy (1.1)

is usually called the regional fractional Laplacian operator [11, 12]. Therefore, the

difference between Sn,σ(Ω) and S̃n,σ(Ω) is also related to the difference between this
regional fractional Laplacian and the “full” fractional Laplacian on Rn, and in turn
by the nonlocal Hardy-type term’s dependence on Ω.

The nontrivial dependence of Sn,σ(Ω) on Ω leads to interesting and natural ques-
tions of a shape-optimization nature. For example: it was asked in [10] that

Open Question 1.1. Assume n≥2 and σ> 1
2
. What are all the open sets Ω⊂Rn

with Sn,σ(Ω)=Sn,σ, where, as mentioned before,

Sn,σ=inf{Sn,σ(V ) :V ⊂Rn is an open set}>0?
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As far as we are aware, it is unknown whether there are any such sets. A tempting
conjecture would be that all such sets are balls, but the nature of the underlying
equations does not support the arguments usually used to prove such symmetry
results (symmetrization, moving planes; see the discussion below).

We do not attack this question here: there are several difficulties in applying
calculus of variations, shape optimization, and free boundary techniques to it, and
we wish to first focus on the challenges related to the nonlocality of the equation
and the subtle dependence of In,σ,Ω on Ω in isolation. To do so, we formulate an
optimization problem with similar characteristics but which avoids the criticality
and extra scale invariance associated with the optimal Sobolev exponent 2n

n−2σ
.

Let n≥2, Ω⊂Rn be a bounded open set, σ∈(1
2
,1) and H̊σ(Ω) be the completion

of C1
c (Ω) with respect to the quadratic form In,σ,Ω. Then we have the compact

fractional Sobolev embedding H̊σ(Ω) ↪→L2(Ω). Therefore, the eigenvalues defined
as {

(−∆)σΩu=λu in Ω,

u=0 on ∂Ω,
(1.2)

consist a sequence that can be ordered (counting the multiplicities) as

0<λ1,σ(Ω)≤λ2,σ(Ω)≤···≤λk,σ(Ω)≤···→∞.

Moreover, we have for the first eigenvalue that

λ1,σ(Ω)=min{In,σ,Ω[u] :u∈H̊σ(Ω), ‖u‖L2(Ω) =1}.

Let u ∈ H̊σ(Ω) be an eigenfunction for λ1,σ(Ω). Then by the fractional Sobolev
inequality and Hölder inequality, we have

λ1,σ(Ω)‖u‖2
L2(Ω) =In,σ,Ω[u]≥Sn,σ(Ω)‖u‖2

L
2n

n−2σ (Ω)
≥Sn,σ(Ω)|Ω|−

2σ
n ‖u‖2

L2(Ω).

Therefore,

λ1,σ(Ω)≥Sn,σ(Ω)|Ω|−
2σ
n ≥Sn,σ ·|Ω|−

2σ
n .

Inspired by the classical Rayleigh-Faber-Krahn inequality [9, 13, 21], we would like
to study the variational problem

inf{λ1,σ(Ω) : Ω⊂Rn a bounded open set such that |Ω|= |B1|}, (1.3)

where |Ω| is the Lebesgue measure of Ω.
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One notable difficulty of this variational problem is that radial symmetrization
rearrangement may not work. Recall that for u∈C1

c (Ω), the Pólya-Szegö inequal-
ity [20] states that ∫

Ω

|∇u|p≥
∫

Ω∗
|∇u∗|p (1.4)

for 1≤ p <∞, where Ω∗ is the symmetric rearrangement of the set Ω and u∗ is
the symmetric decreasing rearrangement of the function u (for the definitions of
rearrangements we refer to the book of Lieb-Loss [16]). Meanwhile, Pólya-Szegö
type inequality also holds for In,σ,Rn [u]. Namely, for 0<σ<1 and 1≤p<∞, it was
shown in Theorem 9.2 in Almgren-Lieb [2] that for every u∈C1

c (Rn)∫∫
Rn×Rn

|u(x)−u(y)|p

|x−y|n+σp
dxdy≥

∫∫
Rn×Rn

|u∗(x)−u∗(y)|p

|x−y|n+σp
dxdy. (1.5)

However, in the interesting paper [14], it was showed that there exists a nonnegative
u∈C∞c (B1) such that∫∫

B1×B1

|u(x)−u(y)|p

|x−y|n+σp
dxdy<

∫∫
B1×B1

|u∗(x)−u∗(y)|p

|x−y|n+σp
dxdy. (1.6)

This failure of Pólya-Szegö type inequality for In,σ,Ω[u] is another notable difference
between the two norms In,σ,Rn [u] and In,σ,Ω[u] on the set C∞c (Ω).

If one considers the first eigenvalue of the classical fractional Laplacian{
(−∆)σu= λ̃1,σ(Ω)u in Ω,

u=0 on Rn\Ω,
(1.7)

then, using the Pólya-Szegö type inequality (1.5) for In,σ,Rn [u], we know that λ̃1,σ(Ω)≥
λ̃1,σ(B1) for all open set Ω of the same measure as B1, see Sire-Vázquez-Volzone [22].

To remove the measure constraint in (1.3), one can consider the following equiv-
alent problem (up to scaling):

inf{λ1,σ(Ω)+|Ω| : Ω⊂Rn is a bounded open set}. (1.8)

As we will show later in Proposition 4.1,

inf{λ1,σ(Ω)+|Ω| : Ω⊂Rn is a bounded open set}

=inf

{
In,σ,{u>0}[u]

‖u‖2
L2(Rn)

+|{u>0}| :u∈H̊σ(Rn), u 6≡0, u≥0 in Rn

}
.

In this paper, we prove the following existence result:
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Theorem 1.1. Let n≥2 and σ∈(1
2
,1). There exists u0∈H̊σ(Rn), u0 6≡0, u0≥0 in Rn

such that {u0>0} is bounded, and

inf

{
In,σ,{u>0}[u]

‖u‖2
L2(Rn)

+|{u>0}| :u∈H̊σ(Rn), u 6≡0, u≥0 in Rn

}
(1.9)

is achieved by u0.

The key difficulty in proving this is to obtain an a priori bound on the diameter
of {u0> 0}. In the shape optimization and free boundary literature, such bounds
are common and are closely tied with lower bounds on the growth of u0 from the
boundary of ∂{u0>0}, or perhaps of auxiliary functions related to u0: the idea is
that if u0 grows at a prescribed rate from ∂{u0>0}, its support cannot have long,
thin necks or many small connected components. Such growth estimates are usually
obtained by using sets like {u0>0}\BR(x) as competitors (with appropriately chosen
functions). We proceed along these lines here as well, but carrying out the argument
requires various non-standard modifications, some decidedly nonlocal multi-scale
iteration procedures, and in the end does not result in “uniform” growth estimates
on u0.

For related reasons, we are unable to show much more than stated in Theorem
1.1 concerning the nature of the minimizing u0 (though see Lemma 5.3, which shows
u0 is bounded). Of particular interest is this question:

Open Question 1.2. Is (1.9) achieved by a continuous function u0∈H̊σ(Rn)?

An affirmative answer would imply that problems (1.9) and (1.8) have identical
minimizers (in the sense that the support of a minimizer of (1.9) is a minimizer of
(1.8), and vice versa). The difficulty of proving this continuity is in estimating the
energy difference between u0 and its competitor whose support is slightly enlarged.
See Section 7 for further discussion and additional open problems.

If one restricts the problem (1.3) to the class of convex sets, then we have

Theorem 1.2. Let n≥2 and σ∈(1
2
,1). There exists a convex open set that achieves

inf{λ1,σ(Ω) :Ω⊂Rn is a convex open set and |Ω|=1}.

This paper is organized as follows. In Section 2, we recall some inequalities that
are needed here. In Section 3, we prove the existence of minimizers for the convex
case: this is much simpler, but illustrates the concepts in play. In Section 4, we
reformulate the variational problem (1.8) as (1.9). In Section 5, we show a local
pointwise upper bound on the minimizer. In Section 6, we show a lower bound of
the minimizer, use it to estimate the diameter of the support of u0, and conclude
the proof of Theorem 1.1. In the last section, we discuss Open Question 1.2 and
related topics.
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2 Some inequalities

Let us first recall a sharp Hardy inequality for fractional integrals on general do-
mains. Let Ω(Rn be an open set. For a direction ω∈Sn−1, we define

dω,Ω(x)=inf{|t| :x+tω 6∈Ω}

and for α>1 that

mα(x)=

(
2π

n−1
2 Γ(1+α

2
)

Γ(N+α
2

)

) 1
α(∫

Sn−1

1

dω,Ω(x)α
dω

)− 1
α

.

Theorem 2.1 (Theorem 1.2 in Loss-Sloane [18]). Let 1
2
<σ< p

2
<∞ and n≥1. Then

for any u∈C∞c (Ω),∫∫
Ω×Ω

(u(x)−u(y))p

|x−y|n+2σ
dxdy≥Cn,p,σ

∫
Ω

|u(x)|p

m2σ(x)2σ
dx,

where

Cn,p,σ=2π
n−1

2
Γ(1+2σ

2
)

Γ(N+2σ
2

)

∫ 1

0

|1−r
2σ−1
p |p

(1−r)1+2σ
dr

is sharp.

Consequently, we can show that In,σ,Rn [u] can be controlled by In,σ,Ω[u].

Lemma 2.1. Let n≥2 and σ∈(1/2,1). There exists a constant C=C(n,σ)>0 such
that for all open sets Ω⊂Rn and all u∈H̊σ(Ω),∫∫

Rn×Rn

(u(x)−u(y))2

|x−y|n+2σ
dxdy≤C

∫∫
Ω×Ω

(u(x)−u(y))2

|x−y|n+2σ
dxdy. (2.1)

Proof. By a density argument, we only need to show this for u∈C1
c (Ω). Suppose

Ω(Rn. We have∫∫
Rn×Rn

|u(x)−u(y)|2

|x−y|n+2σ
dxdy

=

∫∫
Ω×Ω

|u(x)−u(y)|2

|x−y|n+2σ
dxdy+2

∫
Ω

u2(x)

(∫
Rn\Ω

1

|x−y|n+2σ
dy

)
dx. (2.2)

Also, for x∈Ω, we have∫
Rn\Ω

1

|x−y|n+2σ
dy≤

∫
Sn−1

dω

∫ ∞
dω,Ω(x)

1

r1+2σ
dr=

∫
Sn−1

1

2σdω,Ω(x)2σ
dω=

C(n,σ)

(m2σ(x))2σ
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for some constant C(n,σ) depending only on n, σ, but not on Ω. Thus, we have∫
Ω

u2(x)

(∫
Rn\Ω

1

|x−y|n+2σ
dy

)
dx

≤C(n,σ)

∫
Ω

u2(x)

(m2σ(x))2σ
dx

≤C(n,σ)

∫∫
Ω×Ω

|u(x)−u(y)|2

|x−y|n+2σ
dxdy, (2.3)

where we used Theorem 2.1 in the last inequality.

We rewrite Lemma 2.1 into another form for convenience.

Lemma 2.2. There exists C=C(n,σ) such that∫∫
Rn×Rn

(u(x)−u(y))2

|x−y|n+2σ
dxdy≤C

∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy

for every nonnegative function u∈H̊σ(Rn).

Proof. Without loss of generality, we assume that |Rn\{u>0}|>0. We also assume
that ∫∫

{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy=1.

Using only the outer regularity of Lebesgue measure, we can find a sequence of open
sets Ωk

u⊂Rn such that

{u>0}⊂Ωk
u⊂Ωk−1

u and |Ωk
u\{u>0}|→0.

Since u∈H̊σ(Rn), the monotone convergence theorem gives that

lim
k→∞

∫∫
Ωku×Ωku

(u(x)−u(y))2

|x−y|n+2σ
dxdy=

∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy=1.

By (2.1) applied to each Ωk
u,∫∫

Rn×Rn

(u(x)−u(y))2

|x−y|n+2σ
dxdy≤C(n,σ)inf

k

∫∫
Ωku×Ωku

(u(x)−u(y))2

|x−y|n+2σ
dxdy=C(n,σ),

giving the conclusion.
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3 Convex domains

We first consider the special case of the minimizing problem among all convex sets.

Proof of Theorem 1.2. We will adapt the proof in Lin [17] for the Laplacian case.
First, because of (2.1), we have

λ̃1,σ(Ω)≤Cλ1,σ(Ω), (3.1)

where λ̃1,σ is defined in (1.7).
Let {Ωk} be a minimizing sequence. By John’s Lemma, we have that either (A)

Ωk converges in the Hausdorff distance to a bounded convex set Ω∞ with |Ω∞|=1 (we
may assume that Ω∞ is open since the boundary of Ω∞ is of measure zero), or (B)
there is a subsequence, still denoted Ωk, such that Ωk are contained in strips (after
suitable rotations and translations, noting that λ1,σ(Ω) is invariant under them) of
form [−δk,δk]×[−Lk,Lk]n−1 such that δk→0+ and Lk→∞.

We will show that in case (B), λ̃1,σ(Ωk)→∞, which contradicts (3.1) and the
fact that Ωk is a minimizing sequence. Denote Qk = [−δk,δk]×[−Lk,Lk]n−1. Since
C∞c (Ωk)⊂C∞c (Qk), it is clear that

λ̃1,σ(Qk)≤ λ̃1,σ(Ωk).

Therefore, we only need to show that λ̃1,σ(Qk)→∞.
Let Q0 =[−1,1]×Rn−1. We claim that there exists C>0 such that

‖ϕ‖L2(Rn)≤C‖ϕ‖H̊σ(Rn) for all ϕ∈C∞c (Q0). (3.2)

Indeed, for every x′∈Rn−1, we have∫ 1

−1

ϕ(x1,x
′)2dx1≤C‖ϕ(·,x′)‖2

H̊σ(R1)
=C

∫
R
|ξ1|2σφ(ξ1,x

′)2dξ1,

where φ(ξ1,x
′) is the (full) Fourier transform of ϕ(x1,x

′) in the x1 variable. Inte-
grating the above inequality, we have∫

Rn
ϕ(x)2dx≤C

∫
R
|ξ1|2σdξ1

∫
Rn−1

φ(ξ1,x
′)2dx′

=C

∫
R
|ξ1|2σdξ1

∫
Rn−1

ϕ̂(ξ1,ξ
′)2dξ′

=C

∫
Rn
|ξ1|2σϕ̂(ξ)2dξ

≤C
∫
Rn
|ξ|2σϕ̂(ξ)2dξ=C‖ϕ‖H̊σ(Rn),
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where ϕ̂ is the Fourier transform of ϕ, and we used the Plancherel theorem in the
first equality. This proves (3.2).

Then we have

λ̃1,σ(Qk)≥ inf
ϕ∈C∞c ([−δk,δk]×Rn−1)

‖ϕ‖2
H̊σ(Rn)

‖ϕ‖2
L2(Rn)

=
1

δ2σ
k

inf
ϕ∈C∞c ([−1,1]×Rn−1)

‖ϕ‖2
H̊σ(Rn)

‖ϕ‖2
L2(Rn)

≥ 1

Cδ2σ
k

→∞ as k→∞.

We reached a contradiction, and thus case (A) holds: Ωk converges in the Hausdorff
distance to a bounded convex open set Ω∞ with |Ω∞|=1.

Suppose that
λ1,σ(Ωk)=In,σ,Ωk [uk]

for some uk∈H̊σ(Ωk) such that ‖uk‖L2(Ωk) =1. We extend uk to be zero in Rn\Ωk.

By (2.1), we know that uk is bounded in H̊σ(Rn). Then subject to a subsequence,
there exists u∈ H̊σ(Rn) such that uk⇀u weakly in H̊σ(Rn) and uk→u in L2(Rn).
Hence, u≡0 in Rn\Ω∞ and ‖u‖L2(Ω∞) =1. Morevoer, by Fatou’s Lemma, we have

liminf
k→∞

∫∫
Ωk×Ωk

(uk(x)−uk(y))2

|x−y|n+2σ
dxdy≥

∫∫
Ω∞×Ω∞

(u(x)−u(y))2

|x−y|n+2σ
dxdy.

Hence,

λ1,σ(Ω∞)=inf{λ1,σ(Ω) :Ω⊂Rn is a convex open set and |Ω|=1}.

This finishes the proof of this theorem.

4 A formulation for functions

In this section, we would like reformulate the variational problem (1.8) for domains
to a variational problem for functions. Since ||u(x)|−|u(y)||≤|u(x)−u(y)|, we know
that the first eigenfunction, that are the solutions of (1.2), do not change signs in
Ω. The next lemma states that they do not vanish in Ω.

Lemma 4.1. Let n≥2, Ω⊂Rn be a open set, σ∈ (1
2
,1). Let u∈H̊σ(Ω), u 6≡0, be a

nonnegative weak solution of (1.2), that is,∫∫
Ω×Ω

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy=λ1,Ω

∫
Ω

u(x)ϕ(x)dx
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for every ϕ∈H̊σ(Ω). Then u is smooth and positive in Ω.

Proof. For u,ϕ∈H̊σ(Ω), we extend u and ϕ to be identically zero in Rn\Ω, and by
Lemma 2.1, they are functions in H̊σ(Rn). We can rewrite the integral as∫∫

Rn×Rn

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy−

∫
Ω

c(x)u(x)ϕ(x)dx=λ1,Ω

∫
Ω

u(x)ϕ(x)dx,

where

c(x)=2

∫
Rn\Ω

1

|x−y|n+2σ
dy.

That is, u is a weak solution of

(−∆)σu(x)−c(x)u(x)=λ1,Ωu(x) on Ω,

u=0 in Rn\Ω.

Since c(x) is smooth in Ω, by the standard regularity theory for fractional Laplacian
equations, u is smooth in Ω. Hence, Eq. (1.2) holds pointwise, that is,

2lim
ε→0

∫
{y∈Ω: |y−x|≥ε}

u(x)−u(y)

|x−y|n+2σ
dy=λ1,Ωu(x) for every x∈Ω.

Therefore, if there exists x0∈Ω such that u(x0)=0, then since u is nonnegative in
Ω, u must be identically zero. This is a contradiction.

Let N >0 be a positive real number. Let us consider an alternative variational
problem

m(N) :=inf

{
In,σ,{u>0}[u]

‖u‖2
L2(BN )

+|{u>0}| :u∈H̊σ(BN), u 6≡0, u≥0 in BN

}
. (4.1)

Lemma 4.2. m(N)=inf{λ1,σ(Ω)+|Ω| :Ω⊂BN is an open set}.

Proof. Let Ω⊂BN be an open set, and let u∈H̊σ(Ω) be such that λ1,σ(Ω)=In,σ,Ω[u],
‖u‖L2 =1. Then, by Lemma 4.1, we can choose that u>0 in Ω. Hence,

m(N)≤λ1,σ(Ω)+|Ω|.

Taking the infimum over all open sets, we obtain

m(N)≤ inf{λ1,σ(Ω)+|Ω| :Ω⊂BN is an open set}.
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On the other hand, let u∈ H̊σ(BN) with u≥0 in BN . For every ε>0, there exists
an open set Ωε⊂BN (otherwise just considering Ωε∩BN) such that {u> 0}⊂Ωε,
|Ωε\{u>0}| is small, and∫∫

Ωε×Ωε

(u(x)−u(y))2

|x−y|n+2σ
dxdy≤

∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy+ε.

Moreover, there exists a sequence of functions uj ∈C∞c (Ωε) with uj ≥ 0 such that
uj→u in Hσ(Ωε). Since {uj>0} is open, we have

In,σ,{uj>0}[uj]

‖uj‖2
L2(BN )

+|{uj>0}|≥ inf{λ1,σ(Ω)+|Ω| :Ω⊂BN is an open set}.

Since

In,σ,{uj>0}[uj]

‖uj‖2
L2(BN )

≤ In,σ,Ωε [uj]

‖uj‖2
L2(BN )

≤ In,σ,Ωε [u]+ε

‖uj‖2
L2(BN )

≤
In,σ,{u>0}[u]+2ε

‖uj‖2
L2(BN )

for all large j, we can send j→∞ and then ε→0 to obtain

m(N)≥ inf{λ1,σ(Ω)+|Ω| :Ω⊂BN is an open set}.

Thus, we complete the proof.

Lemma 4.3. The m(N) defined in (4.1) is attained by a function u∈H̊σ(BN).

Proof. Let uk be a minimizing sequence of m in (4.1). Suppose that ‖uk‖L2(BN ) =1.

Since uk∈H̊σ(BN), we know from (2.1) that uk∈H̊σ(Rn), and∫∫
{uk>0}×{uk>0}

(uk(x)−uk(y))2

|x−y|n+2σ
dxdy≤C.

By Lemma 2.2, we know that {uk} is a bounded sequence in H̊σ(Rn). Then passing
to a subsequence, there exists u∈ H̊σ(Rn) such that uk⇀u weakly in H̊σ(Rn) and
uk→u strongly in L2(BN). Hence, u≥0 in BN , u≡0 in Rn\BN and ‖u‖L2(BN ) =1.
Morevoer, by Fatou’s Lemma, we have

liminf
k→∞

∫∫
{uk>0}×{uk>0}

(uk(x)−uk(y))2

|x−y|n+2σ
dxdy≥

∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy

and

liminf
k→∞

|{uk>0}|≥|{u>0}|.

Thus, m(N) is attained by u.
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Now we can show that the variational problem (1.8) is equivalent to (1.9).

Proposition 4.1. We have

inf{λ1,σ(Ω)+|Ω| : Ω⊂Rn a bounded open set}

=inf

{
In,σ,{u>0}[u]

‖u‖2
L2(Rn)

+|{u>0}| :u∈H̊σ(Rn), u 6≡0, u≥0 in Rn

}
.

Proof. First, it is clear from Lemma 4.2 that

inf{λ1,σ(Ω)+|Ω| : Ω⊂Rn a bounded open set}
= inf
N∈N

(
inf{λ1,σ(Ω)+|Ω| :Ω⊂BN is an open set}

)
= inf
N∈N

m(N),

while from the definition of m(N),

inf
N∈N

m(N)≥ inf

{
In,σ,{u>0}[u]

‖u‖2
L2(Rn)

+|{u>0}| :u∈H̊σ(Rn), u 6≡0, u≥0 in Rn

}
.

Second, given u∈H̊σ(Rn), it is elementary to check that ηNu∈H̊σ(Rn) and ηNu→u
in H̊σ(Rn) as N →∞, where ηN(x) = η(x/N) and η is a standard radial cut-off
function supported in B2 and equal to 1 in B1. Hence,

inf
N∈N

m(N)≤ inf

{
In,σ,{u>0}[u]

‖u‖2
L2(Rn)

+|{u>0}| :u∈H̊σ(Rn), u 6≡0, u≥0 in Rn

}
.

This gives

inf
N∈N

m(N)=inf

{
In,σ,{u>0}[u]

‖u‖2
L2(Rn)

+|{u>0}| :u∈H̊σ(Rn), u 6≡0, u≥0 in Rn

}
, (4.2)

which implies the conclusion.

5 An upper bound

Now we turn our attention to the regularity of minimizing functions u for m(N).
At present, we only know that they exist and are nonnegative functions in the space
Hσ(Rn), supported on BN . In this section, we will show they are bounded and
admit a kind of local maximum principle.
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Lemma 5.1. Let u∈H̊σ(Rn) be a nonnegative minimizer of m(N). Then it satisfies

(−∆)σ{u>0}u≤λu in Rn (5.1)

in the weak sense, where

λ=‖u‖−2
L2({u>0})

∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy. (5.2)

More precisely,∫∫
{u>0}×{u>0}

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy≤λ

∫
Rn
u(x)ϕ(x)dx (5.3)

for every nonnegative function ϕ∈H̊σ(Rn).

Proof. Let ϕ∈ H̊σ(Rn) be a nonnegative function and ut = (u−tϕ)+ for any small
t>0. Then we have

In,σ,{u>0}[u]

‖u‖2
L2(BN )

+|{u>0}|≤
In,σ,{ut>0}[ut]

‖ut‖2
L2(BN )

+|{ut>0}|.

Since {ut>0}⊂{u>0}, we have

In,σ,{u>0}[u]

‖u‖2
L2(BN )

≤
In,σ,{ut>0}[ut]

‖ut‖2
L2(BN )

≤
In,σ,{u>0}[ut]

‖ut‖2
L2(BN )

. (5.4)

Since u=(u−tϕ)+−(u−tϕ)−+tϕ, we obtain

(u(x)−u(y))2

=(ut(x)−ut(y))2+
(

(u(x)−tϕ(x))−−(u(y)−tϕ(y))−
)2

+2(u(y)−tϕ(y))+(u(x)−tϕ(x))−+2(u(x)−tϕ(x))+(u(y)−tϕ(y))−

+2t(ϕ(x)−ϕ(y))(u(x)−u(y))−t2(ϕ(x)−ϕ(y))2

≥(ut(x)−ut(y))2+2t[ϕ(x)−ϕ(y)][u(x)−u(y)]−t2(ϕ(x)−ϕ(y))2

and

u2 =u2
t +[(u−tϕ)−]2+t2ϕ2+2tϕ(u−tϕ)

≤u2
t +t

2ϕ2+t2ϕ2+2tϕ(u−tϕ)

=u2
t +2tϕu.
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Applying these two inequalities in (5.4), we obtain

‖u‖2
L2(BN )

∫∫
{u>0}×{u>0}

2t[ϕ(x)−ϕ(y)][u(x)−u(y)]−t2(ϕ(x)−ϕ(y))2

|x−y|n+2σ
dxdy

≤2t

∫
BN

ϕ(x)u(x)dx

∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy.

By canceling t and sending t→0, we obtain∫∫
{u>0}×{u>0}

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy≤λ

∫
BN

u(x)ϕ(x)dx

with λ as in (5.2).

Next is a Cacciopoli inequality, based on u being a subsolution of this nonlocal
equation. Set

Bu[f,g]=

∫∫
{u>0}×{u>0}

(f(x)−f(y))(g(x)−g(y))

|x−y|n+2σ
dxdy. (5.5)

Lemma 5.2. Let 0<r<`<R, η :Rn→[0,1] be a smooth radial cutoff function which
is 1 on Br, vanishes outside of B`, and satisfies |∇η|≤2/(`−r). Then∫∫

Rn×Rn

|u(x)η(x)−u(y)η(y)|2

|x−y|n+2σ
dxdy

≤C
∫
B`

u(x)dx

∫
Rn\BR

u(y)

|y−x|n+2σ
dy+C

∫
BR

u2+
CR2−2σ

(R−r)2

∫
BR

u2.

Proof. We use η2u as a test function, to get that

Bu[u,η
2u]≤C

∫
Rn
u2η2≤C

∫
B`

u2.

The quantity on the left may be subdivided as

Bu[u,η
2u]

=

(∫
(BR∩{u>0})2

+2

∫
BR∩{u>0}×{u>0}\BR

)
[u(x)−u(y)][η2u(x)−η2u(y)]

|x−y|n+2σ
dxdy.
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The integral over the second region can be estimated using the fact that the support
of η is a distance R−` from the complement of BR:

−
∫∫

BR∩{u>0}×{u>0}\BR

[u(x)−u(y)][η2u(x)−η2u(y)]

|x−y|n+2σ
dxdy

≤C
∫
BR

η2u(x)dx

∫
{u>0}\BR

u(y)

|x−y|n+2σ
dy

≤C
∫
B`

u(x)dx

∫
Rn\BR

u(y)

|y−x|n+2σ
dy.

Let us focus on the much more difficult estimate on the other region. We claim that,

|u(x)−u(y)|2(η2(x)+η2(y))

≤4(u(x)−u(y))(η2u(x)−η2u(y))+4(u2(x)+u2(y))(η(x)−η(y))2.

To see this, start with the more obvious identity

|u(x)−u(y)|2η2(x)

=(u(x)−u(y))(η2(x)u(x)−η2(y)u(y))−u(y)(u(x)−u(y))(η2(x)−η2(y)).

Now reverse the role of x and y, add, factor, and apply Cauchy’s inequality to the
last term:

|u(x)−u(y)|2(η2(x)+η2(y))

=2(u(x)−u(y))(η2(x)u(x)−η2(y)u(y))−(u(y)+u(x))(u(x)−u(y))(η2(x)−η2(y))

≤2(u(x)−u(y))(η2(x)u(x)−η2(y)u(y))

+|u(x)+u(y)|2|η(x)−η(y)|2+
1

4
|u(x)−u(y)|2|η(x)+η(y)|2

≤2(u(x)−u(y))(η2(x)u(x)−η2(y)u(y))

+2|u2(x)+u2(y)||η(x)−η(y)|2+
1

2
|u(x)−u(y)|2|η2(x)+η2(y)|.

Reabsorb the rightmost term and multiply by 2 to recover the claimed inequality.
Also, from Cauchy’s inequality, we have

|u(x)η(x)−u(y)η(y)|2≤2|u(x)−u(y)|2η2(x)+2|η(x)−η(y)|2u2(y).

Switching the role of x and y, we obtain

|u(x)η(x)−u(y)η(y)|2

≤|u(x)−u(y)|2(η2(x)+η2(y))+|η(x)−η(y)|2(u2(x)+u2(y)).
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Therefore, we obtain

|u(x)η(x)−u(y)η(y)|2

≤4(u(x)−u(y))(η2u(x)−η2u(y))+5(u2(x)+u2(y))(η(x)−η(y))2.

Using this, we immediately get that∫∫
({u>0}∩BR)2

|u(x)η(x)−u(y)η(y)|2

|x−y|n+2σ
dxdy

≤4

∫∫
({u>0}∩BR)2

(u(x)−u(y))(η2u(x)−η2u(y))

|x−y|n+2σ
dxdy

+C(R−r)−2

∫
{u>0}∩BR

u2(x)

∫
{u>0}∩BR

|x−y|2−n−2σdydx.

For the second term on the right, we have

C(R−r)−2

∫
{u>0}∩BR

u2(x)

∫
{u>0}∩BR

|x−y|2−n−2σdydx≤ CR
2−2σ

(R−r)2

∫
BR

u2.

Combining with our earlier estimates, we obtain∫∫
({u>0}∩BR)2

|u(x)η(x)−u(y)η(y)|2

|x−y|n+2σ
dxdy

≤C
∫
B`

u(x)dx

∫
Rn\BR

u(y)

|y−x|n+2σ
dy+C

∫
BR

u2+
CR2−2σ

(R−r)2

∫
BR

u2.

Since ηu is supported {u > 0}∩BR, then the conclusion follows from the Hardy
inequality in Lemma 2.1 (and also Lemma 2.2).

We can now obtain a local bound for minimizers, similar to Theorem 1.1 of Di
Castro–Kuusi–Palatucci [5]. Their work concerns (sub)solutions to the full fractional
Laplacian (−∆)σRn . In our setting,

(−∆)σRnu>(−∆)σ{u>0}u,

so these results can not applied directly.

Lemma 5.3. Let 0<R≤1. Then there exists C=C(n,σ) such that

sup
BR/2

u≤εR2σ

∫
Rn

u(y)

(R+|y|)n+2σ
dy+Cε−

n
4σR−

n
2 ‖u‖L2(BR)

for all ε∈(0,1].
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Proof. Let L>0, 0<r<`<R, η :Rn→ [0,1] be a radial cutoff function which is 1 on
Br, vanishes outside of B`, and satisfies |∇η|≤2/(`−r). As in the proof of Lemma
5.2, we use η2(u−L)+ as the test function. Then we have

Bu[u,η
2(u−L)+]≤

∫
Rn
η2u(u−L)+≤

∫
Rn
η2[(u−L)+]2+L

∫
Rn
η2(u−L)+.

Using

u(x)−u(y)=(u(x)−L)+−(u(y)−L)−−(u(x)−L)−+(u(y)−L)−,

one has

Bu[(u−L)+,η2(u−L)+]≤Bu[u,η
2(u−L)+].

Following from the proof of Lemma 5.2, one has

‖η(u−L)+‖2
H̊σ(Rn)

≤C
∫
B`

(u(x)−L)+dx

∫
Rn\BR

(u(y)−L)+

|y−x|n+2σ
dy+C

∫
BR

[(u−L)+]2

+
CR2−2σ

(R−r)2

∫
BR

[(u−L)+]2+CL

∫
BR

[(u−L)+].

By the Sobolev inequality, we have

‖(u−L)+‖2

L
2n

n−2σ (Br)

≤C
∫
B`

(u(x)−L)+dx

∫
Rn\BR

(u(y)−L)+

|y−x|n+2σ
dy+C

∫
BR

[(u−L)+]2

+
CR2−2σ

(R−r)2

∫
BR

[(u−L)+]2+CL

∫
BR

[(u−L)+].

For k=0,1,···, let Lk=(1−2−k)M , Rk= 1
2
(1+2−k)R, where M>0 to be fixed in the

end, `k= 1
2
(Rk+Rk+1), and

Uk=‖(u−Lk)+‖L2(BRk ).

We have

Uk+1≤‖(u−Lk+1)+‖
L

2n
n−2σ (BRk+1

)
|{u>Lk+1}∩BRk+1

|
σ
n

≤‖(u−Lk+1)+‖
L

2n
n−2σ (BRk+1

)
(Uk2

k+1/M)
2σ
n .
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Also, ∫
BRk

[(u−Lk+1)+]2≤U2
k ,

Lk+1

∫
BRk

[(u−Lk+1)+]≤ M

Lk+1−Lk

∫
BRk

[(u−Lk)+]2≤2k+1U2
k ,

and ∫
B`k

(u(x)−Lk+1)+dx

∫
Rn\BRk

(u(y)−Lk+1)+

|y−x|n+2σ
dy

≤2k+1

M
U2
k 2(k+3)(n+2σ)

∫
Rn

u(y)

(R+|y|)n+2σ
dy.

Denote

A=R2σ

∫
Rn

u(y)

(R+|y|)n+2σ
dy and Ũk=R−

n
2Uk.

Then we obtain

Ũk+1≤(CkŨk)
1+ 2σ

n

(√
A

M
+1

)
M−2σ/n.

Taking

M≥εA,

then

Ũk+1≤(CkŨk)
1+ 2σ

n ε−1/2M−2σ/n.

Hence Ũk→0 as k→∞ provided that

M≥Cε−
n
4σ Ũ0.

Hence, we can take

M=εA+Cε−
n
4σ Ũ0,

and thus,

sup
BR/2

u≤εR2σ

∫
Rn

u(y)

(R+|y|)n+2σ
dy+Cε−

n
4σR−

n
2 ‖u‖L2(BR).

Thus, we complete the proof.
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Remark 5.1. The ε in Lemma 5.3 interpolates between the local and nonlocal
terms. It plays an essential role when we prove a lower bound for u in Section 6.

Consequently, we have

Theorem 5.1. There exists a positive constant C(n,σ) such that

‖u‖L∞(Rn)≤C(n,σ)‖u‖L2(Rn).

Proof. This follows from Lemma 5.3 and the Hölder inequality.

Lemma 5.4. Let u∈H̊σ(Rn) be a nonnegative minimizer of m(N). Then it satisfies

(−∆)σ{u>0}u≥λu in {u>0} (5.6)

in the weak sense, with λ as in (5.2). In other words,∫∫
{u>0}×{u>0}

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy≥λ

∫
Rn
u(x)ϕ(x)dx (5.7)

for every nonnegative function ϕ∈H̊σ(Rn) such that

|suppϕ\{u>0}|=0.

Proof. Let ϕ∈H̊σ(Rn) such that |suppϕ\{u>0}|=0, and ut=u+tϕ for any small
t>0. Then we have

In,σ,{u>0}[u]

‖u‖2
L2(BN )

+|{u>0}|≤
In,σ,{ut>0}[ut]

‖ut‖2
L2(BN )

+|{ut>0}|.

Since {ut>0}={u>0}, we have

In,σ,{u>0}[u]

‖u‖2
L2(BN )

≤
In,σ,{u>0}[ut]

‖ut‖2
L2(BN )

. (5.8)

Then ∫
{u>0}

(2tuϕ+t2ϕ2)·
∫∫
{u>0}×{u>0}

(u(x)−u(y))2

|x−y|n+2σ
dxdy

≤‖u‖2
L2(BN )

∫∫
{u>0}×{u>0}

2t[ϕ(x)−ϕ(y)][u(x)−u(y)]+t2(ϕ(x)−ϕ(y))2

|x−y|n+2σ
dxdy.

By canceling t and sending t→0, we obtain∫∫
{u>0}×{u>0}

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy≥λ

∫
BN

u(x)ϕ(x)dx

with λ as in (5.2).
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The following corollary follows from Lemma 5.1 and Lemma 5.4, making precise
the fact that a minimizer u solves the eigenvalue equation on its domain of positivity.

Corollary 5.1. Let u∈H̊σ(Rn) be a nonnegative minimizer of m(N). Let ϕ∈H̊σ(Rn)
such that

|{ϕ 6=0}\{u>0}|=0.

Then ∫∫
{u>0}×{u>0}

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy=λ

∫
Rn
u(x)ϕ(x)dx, (5.9)

where λ as in (5.2).

6 A bound from below and existence

We also can derive a lower bound for minimizers. The precise statement of it below
takes on an unusual nonlocal form: it guarantees the existence of some (large) scale
R, possibly depending on the point considered, where supBR(x)u is at least Rσ. We
note that this is not a “uniform” estimate (i.e., true for all R), nor do we expect a
uniform estimate of this form to be valid: we believe that the exponent σ here is
actually not the correct rate of growth for u near ∂{u>0}. Nonetheless, this estimate
will be enough for concentration compactness arguments in proving existence below,
while an optimal, uniform estimate appears to require new ideas.

Lemma 6.1. Let u be a nonnegative minimizer (normalized so that
∫
Rnu

2 = 1) of
m(N) defined in (4.1). Then there are small numbers c∗,R∗ (depending only on n
and σ) such that if x is a Lebesgue point of {u>0}, then for some R∈ [R∗,1],

sup
BR(x)

u≥c∗Rσ.

Proof. After a translation we may assume x= 0. Take η :Rn→ [0,1] to be a radial
cutoff function with η= 1 outside BR/2, η= 0 precisely on BR/10, and |∇η|≤ 4/R.
We will use w=ηu as a competitor for u. Note that {w>0}⊂{u>0}.

First, reducing the domain of positivity decreased the associated Gagliardo norm:

Bw[w,w]≤Bu[w,w],

where B·[·,·] is defined in (5.5). We may rewrite the right as

Bu[w,w]=Bu[u,u]−2Bu[v,u]+Bu[v,v],
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where v=u−w=(1−η)u. Now apply Lemma 5.4 with φ=v to give

Bu[v,u]≥λ
∫
Rn
vu≥0,

and thus,

Bw[w,w]≤Bu[u,u]+Bu[v,v].

It follows from Lemma 5.2 that

Bu[v,v]≤C
∫
BR

u(x)dx

∫
Rn

u(y)

(R+|y|)n+2σ
dy+CR−2σ

∫
BR

u2.

Now from the minimality of u, we get

Bu[u,u]+|{u>0}|≤Bw[w,w]∫
w2

+|{w>0}|

≤
Bu[u,u]+C

∫
BR
u(x)dx

∫
Rn

u(y)
(R+|y|)n+2σdy+CR−2σ

∫
BR
u2

1−2
∫
Rnuv

+|{u>0}\BR/10|.

Since u is bounded (see Theorem 5.1), and∫
Rn
uv≤

∫
BR/2

u2≤CR2,

which can be small if R≤R0 for some small R0, we obtain

|{u>0}∩BR/10|≤C
∫
BR

u(x)dx

∫
Rn

u(y)

(R+|y|)n+2σ
dy+CR−2σ

∫
BR

u2.

We now argue as follows. Assume that for all S ∈ [R,R′], where R≤ (R′)2≤ 1, we
have that

sup
BS

|u|≤c0S
σ,

where c0≤c∗ is small. We will show that this guarantees that

sup
BR/20

u≤ 1

2
c0

(
R

20

)σ
+

(
R

20

)2σ

(R′)−2σ.
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Indeed, we have that in this case,∫
BR

u2≤c2
0R

n+2σ,

∫
BR

u(x)dx

∫
Rn

u(y)

(R+|y|)n+2σ
dy≤Cc0R

n[c0+Rσ(R′)−2σ], (6.1)

so
|{u>0}∩BR/10|≤Cc0R

n. (6.2)

Applying Lemma 5.3,

sup
BR/20

u≤εR2σ

∫
Rn

u(y)

(R+|y|)n+2σ
dy+Cε−

n
4σR−

n
2 ‖u‖L2(BR/10)

≤CεR2σ(c0R
−σ+(R′)−2σ)+Cε−

n
4σ c

3/2
0 Rσ

=Cεc0R
σ+CεR2σ(R′)−2σ+Cε−

n
4σ c

3/2
0 Rσ. (6.3)

By choosing ε=1/(2C(20)σ), and c∗ sufficiently small, this gives the promised esti-
mate.

Let 4Rσ
0 ≤ c∗<1/20. Now assume that for S∈ [R0,1], supBSu≤ c∗S

σ. We argue
that this is a contradiction. We may apply our claim with c0 = c∗ for every R in
[R0,20R0] (with R′=1) to give that

sup
BS

u≤ 1

2
c∗S

σ+S2σ≤ 1

2
c∗S

σ+Rσ
0S

σ≤ 3

4
c∗S

σ for all S∈ [R0/20,R0]. (6.4)

We may continue applying the claim with c0 = c∗ and R∈ [R0/20k,R0/20k−1] with
R′=1 to get, inductively, that this holds on R∈ [R0/20k+1,R0/20k]. Hence, we have

sup
BS

u≤ 1

2
c∗S

σ+S2σ≤ 3

4
c∗S

σ for all S≤R0. (6.5)

Next, we may slightly improve this estimate. To do so, we set R≤20R1�R0 and
R′=R0, and apply the claim with c0 = 3

4
c∗ instead. This gives

sup
BS

u≤ 3

8
c∗S

σ+S2σR−2σ
0 ≤

[3

8
c∗+(R1/R

2
0)σ
]
Sσ for any S≤R1.

If

(R1/R
2
0)σ=

1

4
· 3
4
c∗,

this gives that

sup
BS

u≤
(3

4

)2

c∗S
σ for all S≤R1.
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We may continue on in this fashion, choosing

(Rk/R
2
k−1)σ=

1

4

(3

4

)k
c∗,

to get that if for

sup
BS

u≤(3/4)kc∗S
σ for all S≤Rk−1,

then

sup
BS

u≤
[1

2
(3/4)kc∗+(Rk/R

2
k−1)σ

]
Sσ≤(3/4)k+1Sσc∗ for all S≤Rk.

Combining with the intermediate estimate (6.2), it gives

|{u>0}∩BRk/10|≤C
(3

4

)k
c∗R

n
k .

This gives that the Lebesgue density of {u> 0} at 0 is 0, which contradicts the
assumptions.

Corollary 6.1. Let u be as in Lemma 6.1. There exists c=c(n,σ) such that∫
B2(x)

u2≥c

for every Lebesgue point x of {u>0}.

Proof. Let R and R∗ be the ones in Lemma 6.1. Assume x= 0. Combining the
results in Lemma 5.3 and Lemma 6.1, we have

Rσ≤εR2σ

∫
Rn

u(y)

(R+|y|)n+2σ
dy+Cε−

n
4σR−

n
2 ‖u‖L2(B2R)

≤Cε+Cε−
n
4σR−

n
2 ‖u‖L2(B2R).

By choosing ε=Rσ/(2C), we have

‖u‖L2(B2R)≥CR
3n
4

+σ≥CR
3n
4

+σ
∗ .

This finishes the proof.

This leads to:
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Lemma 6.2. Let u be as in Lemma 6.1. Then there is a large number K=K(n,σ)
and another nonnegative v∈H̊σ(Rn) with

∫
Rnv

2 =1 such that v is supported on BK

and

Bv[v,v]+|{v>0}|≤Bu[u,u]+|{u>0}|.

Proof. Select a representative of u which vanishes except at Lebesgue points of
{u>0}. By the Besicovitch covering theorem, from the collection of balls {B2(x) :
x∈{u>0}}, we can select a finite-overlapping subcover of {u>0}, U={B2(xi)}i∈I .
Together with Corollary 6.1, we have from above that∫

B2(xi)

u2≥c,

but ∑
i

∫
B2(xi)

u2≤C
∫
{u>0}

u2 =C.

Let M=#(I) be the number of balls in U : this gives that M<∞ and bounded in
terms of n and σ only.

Assume that u has the following property: u=
∑

iui, where ui are nonzero and
|{ui>0}∩{uj>0}|=0 for all i 6=j. Then we see that∑

i

Bui [ui,ui]=
∑
i

Bui [u,u]<Bu[u,u],

as all the cross terms are positive. Also∑
i

∫
Rn
u2
i =1,

∑
i

|{ui>0}|= |{u>0}|.

Set

vi(x)=R
−n/2
i ui(Rix)

(∫
Rn
u2
i

)−1/2

(this has
∫
Rnv

2
i =1) and compute the energy:

Bvi [vi,vi]+|{vi>0}|=R2s
i

Bui [ui,ui]∫
Rnu

2
i

+R−ni |{ui>0}|.

Choose
Ri=(|{ui>0}|/|{u>0}|)1/n,
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noting that R2s
i <1. Then we have that∑

i

∫
Rn
u2
i [Bvi [vi,vi]+|{vi>0}|]

=|{u>0}|+
∑
i

R2s
i Bui [ui,ui]<Bu[u,u]+|{u>0}|.

Since ∑
i

∫
Rn
u2
i =1,

then at least one of the vi has to have

Bvi [vi,vi]+|{vi>0}|<Bu[u,u]+|{u>0}|.

Let {Uj}j∈J be the connected components of the set ∪i∈IB2(xi). If there is only
one connected component, then the function v(x)=u(x−x1) is supported on BM+1

and we may conclude. If not, let uj=u|Uj and apply the above construction to find
one vi with energy less than u. Note that as

|{ui>0}|≥c
∫
U1

u2≥c,

we have that Ri≥c, so a translate of vi will be supported on B(M+1)/c. We use this
vi to conclude.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let K(n,σ) be the one in Lemma 6.2, and N1,N2>K(n,σ).
Let u1 and u2 be minimizers of m(N1) and m(N2). Due to the translation invariance
of m(N), u1 is a valid competitor of u2 for m(N2), and u2 is a valid competitor
of u1 for m(N1). Therefore, m(N1) =m(N2). Because of (4.2), u1 is a desired
minimzier.

7 Discussions and open questions

We know from Theorem 1.1 that the minimizing set is bounded with bounded sup-
port. A natural question is whether the minimizing eigenfunction u0 is continuous
(and in particular, whether {u0>0} admits an open representative); this was stated
as Open Question 1.2. We do not know how to prove this, and in this section, we
would like to discuss the difficulties and present some related open questions.
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Lemma 7.1. Let Ω⊂Rn be a fixed set such that B2r(x0)⊂Ω. Let v∈ H̊σ(Rn) be
weak solution of (−∆)σΩv=0 in Br(x0). Assume that |v|≤1 on Rn. Then for every
α∈(0,1), there exists C>0 depending only on n, α and σ, such that

[v]Cα(Br/2(x0))≤Cr−α.

Proof. We first assume that r=1 and x0 =0. Since B2⊂Ω, we know that∫
Rn\Ω

1

|x−y|n+2σ
dy

is a smooth function in B3/2 and all its derivative are bounded in B3/2 independent
of Ω. Then it follows from standard estimates for the fractional Laplacian in the
whole space that for every α∈(0,1),

[v]Cα(B1/2)≤C,

where C depends only on n, α and σ.
In general, we let w(x)=v(x0+rx). Then

(−∆)σ
Ω̃
w=0 in B1,

where Ω̃=(Ω−x)/r containing B2. Then we have

[w]Cα(B1/2)≤C.

Rescaling back, we have

[v]Cα(Br/2(x0))≤Cr−α.

Thus, we complete the proof.

Let u0 be a minimizer in Theorem 1.1. Let us normalize it so that ‖u0‖L2(Rn)=1,
and hence, u0≤C in Rn. Let x0∈Rn, R>0, and

Ω={u0>0}∪B2R(x0).

Let h∈ H̊(Rn) be the solution of (−∆)σΩh=0 in BR(x0) and h≡u0 in Rn\BR(x0).
Since u0≥0, we have that h≥0 in Ω. Since u0≤C, we have h≤C.

Moreover,

BΩ[u0−h,u0−h]=BΩ[u0−h,u0+h]−2BΩ[u0−h,h]

=BΩ[u0,u0]−BΩ[h,h]

≤BΩ[u0,u0]−B{h>0}[h,h], (7.1)
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where

BΩ[v,ϕ]=

∫∫
Ω×Ω

(v(x)−v(y))(ϕ(x)−ϕ(y))

|x−y|n+2σ
dxdy,

and we used the equation of h in the second inequality so that BΩ[u0−h,h]=0. On
the other hand, using h as a competitor for u0, we know that

B{u0>0}[u0,u0]+|{u0>0}|≤
B{h>0}[h,h]

‖h‖L2(Ω)

+|Ω|. (7.2)

Since ∫
Rn
|h2−u2

0|≤CRn,

we have ∫
Rn
h2≥1−CRn.

From BΩ[u0−h,h]=0, we have

BΩ[h,h]≤BΩ[u0,u0]≤BRn [u0,u0]≤C.

Then, from (7.2), we obtain

B{u0>0}[u0,u0]≤B{h>0}[h,h]+CRn.

Therefore, from (7.1), we obtain

BΩ[u0−h,u0−h]≤BΩ[u0,u0]−B{u0>0}[u0,u0]+CRn.

Using the Poincaré inequality, we have∫
Rn
|u0−h|2 =

∫
BR(x0)

|u0−h|2≤CR2σBBR(x0)[u0−h,u0−h].

Hence,∫
Rn
|u0−h|2≤CR2σ(BΩ[u0,u0]−B{u0>0}[u0,u0])+CRn+2σ

=CR2σ

∫
{u0>0}

u0(x)2

∫
B2R(x0)\{u0>0}

dy

|x−y|n+2σ
dx+CRn+2σ.
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Open Question 7.1. Is it true that∫
{u0>0}

u0(x)2

∫
B2R(x0)\{u0>0}

dy

|x−y|n+2σ
dx≤CRN

for some N>n−2σ?

This is the difficulty of the above attempt of proving the minimizer’s global
continuity. We do not know how to obtain such a sufficient decay estimate. If the
solution to this open question is true, then it will lead to an affirmative answer to
Open Question 1.2.

The boundary behavior of solutions to homogeneous Dirichlet problems for the
regional fractional Laplace equation (on sufficiently regular domains) was studied
by Chen-Kim-Song [6], culminating in two-sided heat kernel estimates (and conse-
quently, the two-sided Green’s function estimates for the regional fractional Lapla-
cian in Proposition 4.2 of [10]). These results show that solutions on Ω grow like
d2s−1(·,∂Ω) from the boundary. It is natural, then, to ask whether such growth
estimates can be established for our minimizers u0 near ∂{u0>0}:
Open Question 7.2. Does there exist C>0 such that

u0(x)≤C[dist(x,∂{u0>0})]2σ−1, ∀x∈{u0>0}?

The point here is that we do not know that ∂{u0>0} is regular, so this is does
not follow directly from [6]. A related question is whether there is a complementary
uniform lower bound on the growth of solutions:

Open Question 7.3. Does there exist c > 0 such that for all R ∈ (0,1) and all
x∈∂{u0>0},

sup
BR(x)

u0≥cR2σ−1?

This form of a lower bound is common in the free boundary literature. Note
that the scaling here, R2s−1, is different from what was used in Lemma 6.1 to obtain
a non-uniform lower bound: indeed, this difference in scaling explains why the
estimate there could not be uniform in R. It also suggests new ideas, and possibly
new competitor sets and functions, are needed to answer Open Questions 7.2 and
7.3, as most of the arguments in this paper do not detect this R2s−1 scaling.

The Euler-Lagrange equation for the minimizer is another interesting open ques-
tion. We have already seen that u0 satisfies

(−∆)σ{u0>0}u0 =λu0 in {u0>0},

but by analogy to the second order case [1] we expect another pointwise equation
to be satisfied by u0 along the boundary ∂{u0>0}, perhaps of the following form:
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Open Question 7.4. Does ∂{u0>0} have some approximate normal vectors νx in
an appropriate sense, and does

lim
t→0

u0(x−tνx)
tα

=const?

Finally, let us suggest the following question about the shape of minimizers.
Unlike the previous sequence of questions, a positive answer cannot be attained by
local regularity or competitor arguments, and requires some new global approach.

Open Question 7.5. Are minimizers u0 radial and unique up to translations?
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Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(5) (2016), pp. 1279–1299.

[6] Z.-Q. Chen, P. Kim, and R. Song, Two-sided heat kernel estimates for censored
stable-like processes, Probab. Theory Related Fields, 146(3-4) (2010), pp. 361–399.

[7] B. Dyda, A fractional order Hardy inequality, Illinois J. Math., 48(2) (2004), pp.
575–588.

[8] B. Dyda and R. L. Frank, Fractional Hardy–Sobolev–Maz’ya inequality for domains,
Studia Math., 208(2) (2012), pp. 151–166.

[9] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und
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