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Abstract. Image segmentation is a significant problem in image processing. In this
paper, we propose a new two-stage scheme for segmentation based on the Fischer-
Burmeister total variation (FBTV). The first stage of our method is to calculate a smooth
solution from the FBTV Mumford-Shah model. Furthermore, we design a new differ-
ence of convex algorithm (DCA) with the semi-proximal alternating direction method
of multipliers (sPADMM) iteration. In the second stage, we make use of the smooth so-
lution and the K-means method to obtain the segmentation result. To simulate images
more accurately, a useful operator is introduced, which enables the proposed model
to segment not only the noisy or blurry images but the images with missing pixels
well. Experiments demonstrate the proposed method produces more preferable re-
sults comparing with some state-of-the-art methods, especially on the images with
missing pixels.
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Key words: Image segmentation, Fischer-Burmeister total variation, difference of convex algo-
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1 Introduction

Image segmentation is to divide an image into distinct objects in reality. In recent years,
many great approaches have been proposed to handle this problem [1–7]. In [8], an en-
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ergy minimization approach was proposed by Mumford and Shah named Mumford-
Shah model, and their idea is to find a suitable piecewise continuous or constant solu-
tion u for a given image f . The Mumford-Shah model has been widely used in various
aspects [9–13]. Moreover, its variants have been extensively used in image processing
owing to their flexibility and adaptation in numerical implementation. Denote Ω⊂R2 as
a bounded and continuous open set, f :Ω→R as a given grayscale image. In general, we
set f ∈ [0,1], therefore f ∈L∞(Ω). Especially, the energy minimization problem for image
segmentation is as follows

E(u,Γ)=H1(Γ)+
µ

2

∫
Ω\Γ
|∇u|2dx+

η

2

∫
Ω
( f−u)2dx, (1.1)

where µ, η are two positive constants, H1(·) denotes the one-dimensional Hausdorff
measure in R2, Γ is a compact curve in Ω, ∇ represents gradient operator, and u : Ω→R

is an underlying piecewise smooth approximation of f . The latent image u is continu-
ous or even derivable in Ω\Γ, whereas it is discontinuous across Γ. As aforementioned,
Eq. (1.1) is nonsmooth and nonconvex, it is difficult to be solved efficiently. To over-
come this shortcoming, some researchers proposed to utilize the discrete functionalities
to approximate Eq. (1.1) [8, 14, 17] and achieve good segmentation results.

Furthermore, a simplified approach [15,16] of Eq. (1.1) has been proposed to improve
the Mumford-Shah model. While ∇u is set to be zero identically on the domain Ω\Γ, it
becomes the Mumford-Shah model with the piecewise constant. In [18], Chan and Vese
proposed an active contours strategy without edges, which fixes the solution to be two
piecewise constants (Chan-Vese model). However, Chan-Vese model cannot segment the
images with intensity inhomogeneity or elongated structures well. Many models related
to the Chan-Vese model were presented to solve this problem, we refer to see [19, 20].

Recently, Cai, Chan and Zeng [21] proposed an image segmentation method based on
the convex variant of the Mumford-Shah model and the thresholding strategy, which can
be divided into two stages (TSMS). In the first stage, the authors found a smooth image
u from the given image f . The smooth u can be obtained by solving the following total
variation (TV) based model

min
u∈W1,2(Ω)

∫
Ω
|∇u|dx+

η

2

∫
Ω
( f−Au)2dx+

µ

2

∫
Ω
|∇u|2dx, (1.2)

where W1,2(Ω) is the Sobolev space [22]. u∈W1,2(Ω) is the clean image and A is a blur-
ring or identity operator. In the second stage, a K-means method is applied to threshold
the smoothed image obtained in the first stage. The two-stage strategy has been widely
used for image segmentation. For example, Chan, Yang and Zeng [23] proposed a two-
stage approach to segment the blurry images with Poisson or multiplicative Gamma
noise. Duan et al. [24] extended the two-stage segmentation method by applying the
Euler’s Elastica regularization. Zhi, Sun and Pang [25] presented a two-stage image seg-
mentation scheme based on the Inexact Alternating Direction Method. Ma, Peng and
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Kong [26] introduced a mean curvature regularized Mumford-Shah model using a two-
stage strategy. Chan, Yang and Zeng [27] proposed a two-stage segmentation method for
variational Retinex. Li and Zeng [28] introduced a two-stage approach for multi-channel
image segmentation. Wu et al. [29] proposed a two-stage image segmentation strategy
based on the nonconvex L2−Lp approximation of the Mumford–Shah model.

The variation-based models are an important kind of method developed in recent
years [30–32]. Inspired by [21], we propose a two-stage image segmentation strategy
based on the FBTV model [33]. The FBTV is a coupling of anisotropic and isotropic TV,
which can be defined as L1−αL2. It is a popular nonconvex relaxation method in image
processing [33, 37–39]. Unlike the L1−L2 model in [40], the FBTV introduces a parame-
ter α, which can maintain sharp edges and reduce the blocky artifacts. Furthermore, the
FBTV considers the occurrence of non-sparse gradient vectors along the edges in the im-
age [40], which is greatly significant in image processing. And we propose a DCA-based
framework with sPADMM algorithm to solve the corresponding optimization problem,
which is widely used to solve the nonconvex problem with several advantages: simplic-
ity, inexpensiveness and efficiency [41]. The task of filling in missing or damaged regions
of an image is known as image inpainting which has many important applications in the
area of digital image processing, visual analysis and film industry [36]. Especially, unlike
the models in [21, 23, 25–27], our model also considers the segmentation for the images
with missing pixels. The main contributions of our work are as follows.

• Horizontal or vertical edges are more preferable in the FBTV model comparing with
other TV models. Therefore, we present a segmentation model based on the FBTV.
We use the FBTV as the regularization to detect the cartoon part of the given image.

• Since our model is nonconvex and nonsmooth, it is very challenging to solve this
problem. Therefore, we design a strategy based on sPADMM algorithm to solve
the TV-type subproblem in the DCA framework. To the best of our knowledge,
sPADMM has not been considered to solve the subproblem in the DCA framework.

• To display the effectiveness of our segmentation method, we test the operator A
in the TSMS model, which considers the segmentation of a variety of degradation
cases (including noise, blur and missing pixels). Experiments show our proposed
model and algorithm can have better performance.

The rest of this paper is organized as follows. In Section 2, we review the works of the
FBTV. In Section 3, we propose our new two-stage strategy based on the FBTV. The DCA
and sPADMM algorithms were employed to solve our model in Section 4. In Section 5,
we discuss the implementation details and evaluation criteria, then devote ourselves to
numerical experiments. Finally, the conclusions are given in Section 6.
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2 Preliminaries and related works

2.1 Discrete gradient operator

The discrete gradient operator can be defined as ∇= (∇x,∇y)T, where ∇x, ∇y are the
horizontal and vertical finite difference of the discrete image. For instance, we define

(∇xu)i =

{
u(1,1)−u(1,n), i=1,
u(1,i)−u(1,i−1), i=2,··· ,n,

(2.1)

where n is the number of pixels of the first row of u and u(1,i) is the i-th pixel of the first
row of u. Similarly, we can define ∇y.

2.2 Fischer-Burmeister total variation

The TV was widely used in the fields of image restoration, segmentation and related
computer vision. Generally, the TV can be divided into two types: the isotropic and
anisotropic TV. In [42], the isotropic TV was firstly proposed to protect the sharp edges
of the image by Rudin et al., which was called ROF model. Then an anisotropic style was
addressed in [43]. Let u be a column vector reshaped from a two-dimensional image,
J1(u) and J2(u) denote the isotropic and anisotropic TV, respectively. J1(u) and J2(u) can
be defined as

J1(u) :=‖∇u‖2,1=

∥∥∥∥√|∇xu|2+
∣∣∇yu

∣∣2∥∥∥∥
1
, (2.2a)

J2(u) :=‖∇u‖1=‖∇xu‖1+
∥∥∇yu

∥∥
1 , (2.2b)

where ‖·‖1 represents the L1 norm which is the sum of absolute values for a vector. It is
noteworthy that Eq. (2.2) exploits the L1-norm of the gradient of u instead of the H1(Γ)
term used in the Mumford-Shah model. Meanwhile, the regularity term is integrated
into Ω in the Eq. (2.2) which takes the place of Ω\Γ. Hence, Eq. (2.2) has a unique smooth
minimizer due to the convex property.

Let us introduce the Fischer-Burmeister (FB) function in scalar form. Denote ν1 and
ν2 as real constants. Hence, scalar-valued FB function φ :R×R→R is

φ(ν1,ν2) :=ν1+ν2−
√

ν2
1+ν2

2 , (2.3)

which is proposed by Fischer [44]. As FB function has some outstanding properties in-
cluding strong semi-smoothness, it has been further studied in the nonlinear comple-
mentarity problem (NCP). The NCP is to obtain a vector x∈Rn so that

ψ(x)≥0, x≥0, ψ(x)Tx=0, (2.4)



T. Wu, Y. Zhao, Z. Mao, L. Shi, Z. Li and Y. Zeng / Adv. Appl. Math. Mech., 14 (2022), pp. 1-29 5

where ψ : Rn→Rn is the given vector-valued function. In this paper, a variant of FB
function is defined as

φ(ν1,ν2) :=ν1+ν2−θ
√

ν2
1+ν2

2 , (2.5)

where θ is a real constant.
The L0 norm of the gradient ‖∇u‖0 can be regarded as the length of partition bound-

aries [45, 46]. However, the problem based on solving L0 norm is NP-hard. To handle
the L0 norm, kinds of research adopted a convex method by using L1 norm instead of L0
norm on the gradient [47]. L1 norm on the gradient is often called TV norm. In order to
ensure the sparsity of L1 norm, the restricted isometry property (RIP) is usually needed to
be fulfilled [48]. Some nonconvex penalties methods to keep sparse solutions were pro-
posed as alternatives to L1 norm when violating the RIP condition, such as L1−L2 [40],
Lp (0< p<1) [49], transformed-L1 [50] and capped-L1 [51]. Thereinto, L1−L2 penalty is
proved to be the good method, which forces the gradient∇u to be horizontal or vertical.
In [40], Lou et al. proved that L1−L2 is closer to L0 than those of L1. Illuminated by L1−L2
minimization [40,52], Lou et al. proposed L1−αL2 model as a coupling of anisotropic and
isotropic TV [33]

J(u)= J1(u)−αJ2(u)=‖∇xu‖1+
∥∥∇yu

∥∥
1−α

∥∥∥∥√|∇xu|2+
∣∣∇yu

∣∣2∥∥∥∥
1
, (2.6)

where α is an element of the interval (0,1] and is selected according to gradient distribu-
tions. When

ν1=‖∇xu‖1 , ν2=
∥∥∇yu

∥∥
1 ,

Eq. (2.6) can be viewed as the application of FB function to the gradient of TV, so we
call it FBTV. It was proved to be better than anisotropic or isotropic TV individually [33].
As the FBTV takes into account the non-sparse gradient vectors along the boundaries
in the target image, it works particularly well for piecewise constant images comparing
with other TV regularizations. Furthermore, unlike L1−L2 norm, FBTV considers other
gradient directions, not just horizontal and vertical. It can control the influence of the
anisotropic TV to detect sharp edges and reduce the blocky artifacts. Therefore, in this
paper, we use the FBTV to replace the TV term in Eq. (1.2).

When using convex L1 norm on the gradient, many algorithms have been devel-
oped, including the alternating minimization algorithm (AMA) [53], the augmented La-
grange multiplier (ALM) algorithm [54] and the alternating direction method of multipli-
ers (ADMM) [55]. Since the L1−αL2 is nonconvex and has two nonsmooth components,
those popular optimization algorithms cannot generate a better result [56]. As a result,
we need to seek help from other more general optimization algorithms. Since L1−αL2 can
be viewed as the difference between two convex functions, we naturally use the DCA to
handle this problem. We will give more details about the DCA in Section 4.
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3 FBTV-based segmentation method (FBTVS)

In this paper, we propose a two-stage image segmentation method based on the FBTV
regularization, which is a variant of the related TSMS model proposed by Cai et al. [21].

3.1 The first stage of our method

In the first stage, we solve the smooth image u. Based on the analysis in Section 2.2, the
FBTVS model struggles to minimize the following function

min
u

J(u)+
η

2
‖ f−Au‖2

2+
µ

2
‖∇u‖2

2. (3.1)

The first term in Eq. (3.1) is the FBTV regularization term designed to preserve the fea-
tures along the edges of the objective parts. The second term is the data fidelity term,
which forces f ≈ Au while the last term is also a regularization term which controls the
smoothing of the solution u. In this paper, we consider the more general problems in
segmentation, which are embodied in the generalization of the operator A. For opera-
tor A, the different options of it correspond to the original images degraded by distinct
corruptions:

• The input images with Gaussian noise only, i.e., A= I, I is an identity matrix;

• The input images with different kinds of blur and Gaussian noise, i.e., A=B, B is a
liner blur operator;

• The input images with missing pixels only, i.e., A=M, M is a binary matrix which
symbolizes missing pixels.

Our model uses the FBTV regularization, which can improve detection of sharp
boundaries and avoid too many block artifacts. For numerical optimization, we can solve
the Eq. (3.1) by utilizing the DCA-based method, which is a robust and popular method
for nonconvex programming. The research indicates when properly stopped, the DCA
iterations are usually close to the global minimum and yield great results.

3.2 The second stage of our method

In the second stage, we start with using the K-means method to ascertain the thresholds
of the smooth image u. Once the proper thresholds have been confirmed, the segmenta-
tion can be obtained by segmenting u. Furthermore, we can change the thresholds or the
number of phases of segmentation to given images without recomputing the problem in
the first stage again.
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4 Numerical algorithm

Since the nonconvex and nonsmooth of the minimization problem in Eq. (3.1), DCA-
based methods can be used to solve it easily. In this section, we will apply the DCA
with sPADMM to handle this problem. The proposed algorithm can solve nonconvex
problems effectively.

4.1 Solving the Eq. (3.1) by DCA with sPADMM

The objective function in discrete form is as follows

Z(u)=‖∇xu‖1+
∥∥∇yu

∥∥
1+c‖u‖2

2+
η

2
‖ f−Au‖2

2+
µ

2
‖∇u‖2

2

−α

∥∥∥∥√|∇xu|2+
∣∣∇yu

∣∣2∥∥∥∥
1
−c‖u‖2

2. (4.1)

Here we highlight that as the problem is nonconvex and nonsmooth, several classical
algorithms can not be used to solve it. Hence, we design a DCA-based algorithm with
the sPADMM iteration, which is both fast and stable. Then, we separate Z(u) into DC
constituent in the following form, i.e., Z(u)= z1(u)−z2(u), where

z1(u)=‖∇xu‖1+
∥∥∇yu

∥∥
1+c‖u‖2

2+
η

2
‖ f−Au‖2

2+
µ

2
‖∇u‖2

2,

z2(u)=α

∥∥∥∥√|∇xu|2+
∣∣∇yu

∣∣2∥∥∥∥
1
+c‖u‖2

2,
(4.2)

and c is a positive constant to insure strong convexity between z1(u) and z2(u). After
linearizing the z2(u), the minimization problem goes to the following form

min
u
‖∇xu‖1+

∥∥∇yu
∥∥

1+c‖u‖2
2−α〈∇u,qn〉−2c〈u,un〉+ η

2
‖Au− f ‖2

2+
µ

2
‖∇u‖2

2, (4.3)

where

qn =

(
∇xun,∇yun)√
|∇xun|2+

∣∣∇yun
∣∣2 . (4.4)

To be specific, we take the convention that if the denominator is zero at some points, the
corresponding qn value is intended to be zero.

The DCA subproblem in Eq. (4.3) equal to solving a TV type minimization problem
and there are many methods used to solve the relevant TV problem, such as AMA [53],
ALM [54], ADMM [55] and sPADMM [34]. Therein, AMA and ALM may not converge
for this optimization problem. The ADMM has recently been used in various areas of sci-
entific computing including optimization, image processing and machine learning [35].
However, sPADMM considers the global linear rate of convergence [34], which converges
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at a higher speed than ADMM. Also, it performs well in figuring out potential insol-
ubility issues of the subproblems and has a great capacity for solving the multi-block
problems [34]. Therefore, we apply the sPADMM to find the smooth solution of the min-
imization problem in Eq. (4.3).

In the rest of the subsection, we will give a detailed introduction to the detailed
sPADMM algorithm used in the model. To apply the sPADMM iteration, we introduce
three auxiliary variables

(
dx,dy,z

)
to rewrite the original minimization problem (4.3) into

the constrained form

min
Θ
‖dx‖1+

∥∥dy
∥∥

1+c‖u‖2
2−α

(
dT

x ·qn
x+dT

y ·qn
y

)
−2c〈u,un〉

+
η

2
‖Az− f ‖2

2+
µ

2
‖∇u‖2

2, s.t. dx =∇xu, dy =∇yu, z=u, (4.5)

where Θ={u,z,dx,dy ; v,bx,by}. Then, we apply the sPADMM iteration to enforce the con-
straints strictly. Based on the augmented Lagrangian method, three Lagrange multipliers
are introduced into Eq. (4.5). Hence, we have an iterative scheme below

Θ=argmin
Θ
‖dx‖1+

∥∥dy
∥∥

1+c‖u‖2
2−α

(
dT

x ·qn
x+dT

y ·qn
y

)
−2c〈u,un〉+ µ

2
‖Az− f ‖2

2+
η

2
‖∇u‖2

2+
λ1

2
‖dx−∇xu−bx‖2

2

+
λ1

2

∥∥dy−∇yu−by
∥∥2

2+
λ2

2
‖z−u−v‖2

2, (4.6)

where bx, by, v represent the Lagrange multipliers corresponding to the constraints dx =
∇xu, dy =∇yu and z=u, respectively. For notational convenience, we define

Θ=argmin
Θ
L(u,z,dx,dy ;v,bx,by). (4.7)

Under the condition that Lagrange multipliers are given, the minimization of Eq. (4.6)
can be solved by minimizing with respect to u and

(
dx,dy,z

)
alternatively. Hence, we

need to solve the following minimization subproblems

un+1=argmin
u
L(u,zn,dn

x ,dn
y ;vn,bn

x ,bn
y )+

1
2
‖u−un‖1

S1
,

zn+1=argmin
z
L(un+1,z,dn

x ,dn
y ;vn,bn

x ,bn
y )+

1
2
‖z−zn‖2

S2
,

dn+1
x =argmin

dx
L(un+1,zn+1,dx,dn

y ;vn,bn
x ,bn

y )+
1
2
‖dx−dn

x‖3
S3

,

dn+1
y =argmin

dy
L(un+1,zn+1,dn

x ,dy ;vn,bn
x ,bn

y )+
1
2
‖dy−dn

y‖4
S4

,

(4.8)

where ‖x‖S =
√
〈x,Sx〉 denotes the matrix norm for any x∈X and self-adjoint positive

semi-definite linear operator S: X→X . In particular, when S1=S2=S3=S4=0, sPADMM
goes to be the ADMM.
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A. u-subproblem.
The u-subproblem can be formulated as

un+1=argmin
u

{
c‖u‖2

2−2c〈u,un〉+ η

2
‖∇u‖2

2+
λ1

2
‖dn

x−∇xu−bn
x‖

2
2

+
λ1

2

∥∥∥dn
y−∇yu−bn

y

∥∥∥2

2
+

λ2

2
‖zn−u−vn‖2

2+
1
2
‖u−un‖2

S1

}
. (4.9)

The Euler-Lagrange equation of which gives a linear equation shown as follows by taking
the derivative

[2cI+(λ1+η)∇T∇+λ2+S1]un+1

=[λ1∇T
x (d

n
x−bn

x)+λ1∇T
y

(
dn

y−bn
y

)
+λ2(zn−vn)+2cun+S1un]. (4.10)

Under the periodic boundary condition for u, we know that ∇T∇, ∇T
x and ∇T

y are block
circulants, the Hessian matrix on the left-hand of Eq. (4.10) can be diagonalized by two-
dimensional discrete Fourier transform. Hence, the u-subproblem can be solved by uti-
lizing the fast Fourier transform (FFT).

B. z-subproblem.
The z-subproblem can be described as

zn+1=argmin
z

{
µ

2
‖Az− f ‖2

2+
λ2

2
‖z−un+1−vn‖2

2+
1
2
‖z−zn‖2

S2

}
, (4.11)

which gives a linear equation(
µAT A+λ2 I+S2

)
zn+1=µAT f +λ2(un+1+vn)+S2zn. (4.12)

The method of solving the above linear equation is depending on the operator A. When
A = I is an identity matrix or A is a blurring matrix, we can solve it by using the FFT
method if operator A fulfills the periodic boundary condition. And if A= M is a binary
matrix, it can be solved directly.

C. (dx,dy)-subproblem.
The (dx,dy)-subproblem is indicated below

dn+1
x =argmin

dx

{
‖dx‖1+

λ1

2

∥∥∥dx−∇xun+1−bn
x

∥∥∥2

2
+

1
2
‖dx−dn

x‖2
S3
−α
(

dT
x ·qn

x

)}
, (4.13a)

dn+1
y =argmin

dy

{∥∥dy
∥∥

1+
λ1

2

∥∥∥dy−∇yun+1−bn
y

∥∥∥2

2
+

1
2
‖dy−dn

y‖2
S4
−α
(

dT
y ·qn

y

)}
. (4.13b)
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Denote sign(·) as the signum function. For the (dx,dy)-subproblem, it is solved by using
the soft shrinkage formula defined as

dn+1
x =sign(sn+1

x )·max
{∣∣∣sn+1

x − 1
λ1+e3

∣∣∣,0}, (4.14a)

dn+1
y =sign(sn+1

y )·max
{∣∣∣sn+1

y − 1
λ1+e4

∣∣∣,0}, (4.14b)

where

sn+1
x =(λ1+e3)

−1[λ1(∇xun+1+bn
x)+αqn

x+S3dn
x ], (4.15a)

sn+1
y =(λ1+e4)

−1[λ1(∇yun+1+bn
y )+αqn

y+S4dn
y ], (4.15b)

e3 and e4 are the largest eigenvalues of the matrix S3 and S4, respectively.
D. Updating Lagrange multipliers.

In the end, the Lagrange multipliers (bx,by,v) are updated as follows
bn+1

x =bn
x+σλ1

(
∇xun+1−dn+1

x
)
,

bn+1
y =bn

y +σλ1

(
∇yun+1−dn+1

y

)
,

vn+1=vn+σλ2
(
un+1−zn+1). (4.16)

The above method leads to the first stage in Algorithm 4.1.

4.2 Mathematical analysis

4.2.1 Convergence analysis of DCA for our model

In this part, we give the proof of the existence and uniqueness of the minimizer of model
(4.1).

We now prove that the sequence un got from (4.1) is convergent to a stationary point
u∗. We reformulate our model as standard primal-dual model

min
x

max
y
〈Lx,y〉−J ∗(q)+k(x), (4.17)

where x=u, y= q, L=∇, J ∗=X ∗, where X ∗ is the characteristic function of the closed
convex set, see [64]. And

k(x)=
1
2
‖x−xn‖2

S1
+L(u,z,dx,dy ;v,bx,by).

Lemma 4.1. The set of saddle points of problem (4.17) is non-empty.

Proof. From [65, Theorem 4.3.1], if the conditions (H1)-(H4) in [65] are satisfied, then
the saddle points set is non-empty. It is very straight-forward to prove that our model
satisfies the above conditions. Then the saddle point of problem (4.17) exists.
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Theorem 4.1. Assume that un is the sequence generated from DCA for solving (4.1), then we
have the following inequality

Z(un)−Z(un+1)≥0. (4.18)

Proof. an∈∂z1(un), from the definition of sub-differential, we have

z1(un+1)≥ z1(un)+
〈

un+1−un,an
〉

. (4.19)

If un is the solution of problem (4.1), then an∈∂z2(un+1). Then we also have

z2(un)≥ z2(un+1)+
〈

un−un+1,an
〉

. (4.20)

Adding (4.19) and (4.20), we have

Z(un)−Z(un+1)≥0. (4.21)

Thus, we complete the proof.

According to Lemma 4.1, the saddle point exists. Then we set un to be the solution of
(4.17). For any n, Z(un)≥Z(u∗). Then we prove that Z(un) is bounded below. From The-
orem 4.1, Z(un) is decreasing monotonically and bounded from below, thus convergent.

4.2.2 Convergence analysis of sPADMM for our model

In this part, we give the proof of the existence and uniqueness of the minimizer of model
(4.3).

Lemma 4.2. Suppose f ∈ L2(Ω) and Ker(A)∩Ker(∇) = {0}, where A is a bounded linear
operator from L2(Ω) to itself and Ker(A). Then model (4.3) is strictly convex and there exists a
unique minimizer u(x)∈W1,2(Ω).

Theorem 4.2. Assume that {u∗,z∗,d∗x,d∗y,v∗,b∗x,b∗y} is a Karush-Kuhn-Tucker (KKT) solution
of formula (4.3) and the sequence {un,zn,dn

x ,dn
y ,vn,bn

x ,bn
y} is generated by the sPADMM. If σ∈

(0, 1+
√

5
2 ), then the sequence {un,zn,dn

x ,dn
y ,vn,bn

x ,bn
y} converges to an optimal solution of formula

(4.3).

Proof. For formula (4.3), exactly follow [31] (Theorem 2.1 and Theorem 3.1), which has
the same sPADMM framework used in this paper, and hence we omit the rest of the
proof.

4.3 Ascertaining the thresholds by K-means method

We emphasize that the FBTVS model in Eq. (3.1) can be solved with efficiency by using
the DCA. Each DCA loop requires solving the TV type of minimization as a subproblem,
which can be resolved by using the sPADMM. After smooth u is obtained, we utilize
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the clustering method to confirm the segmented thresholds in the second stage. Without
loss of generality, we normalize the pixels values of u to the interval [0,1]. To do the
normalization, we use the linear-stretch formula defined as follows

ū=
u−umin

umax−umin
, (4.22)

where umax and umin represent the maximum and minimum pixel of image u, respec-
tively.

Recently, many clustering methods are proposed, such as K-means based meth-
ods [57–60], Fuzzy C-means (FCM) based methods [61–63]. In the following, we illustrate
how to cluster a given set into K segments by the K-means method by an example, with
K ascertained aforehand. Herein, we hypothesize K≥2. Denote ρ̂1≤ ρ̂2≤···≤ ρ̂K are the
mean values of K clusters, then we define the K−1 thresholds to be

ρi =
ρ̂i+ ρ̂i+1

2
, i=1,2,··· ,K−1. (4.23)

The i-th phase of f (1≤i≤K), then is given by {x∈Ω : ρi−1< ḡ(x)≤ρi}. To acquire the
boundary of the i-th phase, the pixels in the i-th phase are set to be one while the others
are set to be zero. Then we can use the MATLAB command “contour” to present them.
Furthermore, the value of threshold ρ can be changed manually to get a preferable result.
We need to underline that as u is calculated previously, then K and ρ are confirmed sub-
sequently, we can debug the parameters of phases and thresholds without recomputing
smooth solution u.

To sum up, a practical DCA-based numerical method is proposed to handle the
FBTVS model (3.1) in the first stage, where the DCA-subproblem can be solved by using
sPADMM. And in the second stage, to confirm the thresholds of the solution u, which
is generated in the first stage, a K-means-based method is provided. The optimization
procedure of the proposed is shown in Algorithm 4.1.

5 Numerical experiments

In this section, we present some numerical experiments to demonstrate the effective-
ness of the proposed method and algorithm. We compare the proposed model with
eight existing methods: Chan-Vese method [18], FRC method [66], TSMS method [21],
CMF method [67], DPP method [12], EEMS method [24], ICTM method [68] and T-ROF
method [69].

The Chan-Vese method is an active contour model based on Mumford–Shah seg-
mentation techniques and the level set method [70]. The FRC uses fuzzy membership
functions to approximate the piecewise constant Mumford-Shah model. The TSMS is
a two-stage segmentation method based on the Mumford–Shah model for segmenting
images (smoothing and thresholding), which is a classic TV model. The CMF proposes
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Algorithm 4.1 DCA-sPADMM algorithm for FBTVS (here, Nmax and Kmax denote the
maximum numbers of DCA and sPADMM iterations, respectively. And ε denotes the
relative error of the sPADMM iteration).

Input: Give data f and choose parameters: η, µ, λ1, λ2, S1, S2, S3, S4, Nmax, Kmax.
Stage I:
Initialization: u0=0, d0

x =d0
y = z0=0.

for 1 to Nmax do b0
x =b0

y =v0=0.
for 1 to Kmax do

Compute un+1 by solving Eq. (4.10).
Compute zn+1 by solving Eq. (4.12).
Compute dn+1

x and dn+1
y by solving Eq. (4.14a).

Update bn+1
x , bn+1

y and vn+1 by Eq. (4.16).

if ‖u(n+1)−u(n)‖
‖u(n+1)‖ ≤ε, then break.

end if
end for
Update qn+1 by Eq. (4.4).

end for
Stage II:
Choose K, determine the thresholds ρ by K-means method (or manually), and find the
segmentations.
Output: Phases Ωi, i=1,··· ,K.

a graph cut based global minimization method for image segmentation by representing
the segmentation label function with a series of nested binary super-level set functions.
The DPP uses the dynamic programming and the ADMM algorithm to solve the Potts
model which is non-convex. The EEMS modifies the Mumford-Shah model using Eu-
ler’s Elastica as the regularization. A two-stage segmentation method is applied the Eu-
ler’s Elastica regularized Mumford-Shah model. The ICTM is a new iterative convolution
thresholding method including LIF, LSAC, and geodesic active contour models, which is
suitable for image segmentation of a series of variational models. In this paper, we use
the LIF model of the ICTM model to carry out the comparative experiment. The T-ROF
explores a linkage between piecewise constant Mumford model and the ROF model, and
derives a novel segmentation method, called thresholded-ROF (T-ROF) method, to illus-
trate the virtue of managing image segmentation through image restoration techniques.
Methods in [12, 21, 24, 67–69, 72] are effective segmentation methods in or after 2013 and
the codes used to perform the tests are provided by the authors. Compared with other
models, our model has better stability and universality in different types. The parame-
ters in the codes are selected through repeated works to give the results of each method
as well as possible.
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As analyzed in the previous section, our method can be divided into two stages: the
first stage is to find a smooth solution u of the FBTV Mumford-Shah model by using DCA
and sPADMM. After u is found, we select thresholds ρ to segment u. In our method,
there are two ways to confirm the thresholds: the first is to use the MATLAB command
“kmeans”, which is a self-moving process; the second is to select ρ manually, which can
refer to the thresholds ρ chosen by using the first method. During the rest of this article,
ρK denotes the thresholds selected by MATLAB command “kmeans”, and ρU denotes
the thresholds chosen manually. Here we emphasize that we can get better results by
adjusting the thresholds.

In the tests, we take into account three types of degraded images (i.e., noisy image,
blurry image and the image with missing pixels), which are common in the real world.
How to restore them has been further studied in recent years (see [71,73–75]). In the case
of noise, we consider the Gaussian noise (GN), which is the most common noise in reality.
It is implemented by the MATLAB command “imnoise”. For the blurry cases, we take
into account the four types of blur kernels (i.e., motion blur (MB), Gaussian blur (GB),
average blur (AB) and disk blur (DB)), executing by the MATLAB command “fspecial”.
The specific form is displayed as follows.

• Motion blur (MB): fspecial(‘motion’, LEN, THETA)

• Gaussian blur (GB): fspecial(‘gaussian’, HSIZE, SIGMA)

• Average blur (AB): fspecial(‘average’, HSIZE)

• Disk blur (DB): fspecial(‘disk’, RADIUS)

• Gaussian noise (GN): imnoise(I, ‘gaussian’, MEAN, VARIANCE)

All the results were tested on PC with 2.50GHz CPU, 8GB RAM and MATLAB
R2019b. And the boundaries of all results are shown on the given degraded images with
color.

5.1 Evaluation criteria

In some cases, we utilize the intersection-over-union (IoU) [76, 77] to evaluate the seg-
mentation results in an objective way. This metric is a method to quantify the percentage
of overlap between the target mask and the prediction output. To be specific, the IoU
metric measures the number of pixels common between the target and prediction masks
divided by the total number of pixels present across both masks

IoU=(TP∩PP)/(TP∪PP), (5.1)

where TP and PP represent the number of pixels of the target and prediction masks,
respectively. The value of IoU is between [0,1], and the closer these values are to 1, the
better the segmentation is.
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5.2 Parameters selection

In this subsection, the parameters setting in our algorithm will be discussed. Algo-
rithm 4.1 has a outer DCA loop to update q and an inner loop to update u. The max-
imum numbers of outer and inner iterations are set to be 5 and 200 (i.e., Nmax = 5,
Kmax= 200), and the minimum relative error ε for stopping the inner iteration satisfies
the ‖u(n+1)−u(n)‖/‖u(n+1)‖≤1×10−4.

The parameters in this paper are set manually, which can make our results get a better
IoU value. As shown in Fig. 1, it shows a parameter setting of Example 5.2. Figs. 1(a)-(d)
show the variation curve of IoU value of parameter η, µ, λ1 and λ2 under different values,
respectively.

The parameters η, µ, λ1 and λ2 are selected to obtain the best result. For parameter
α, it can be shown from some researches that a larger value of α is possible to gener-
ate the nonsmooth u and a smaller α may remove much structure information from the
recovered image. In this paper, we choose α = 0.5. We choose the self adjoint positive

(a) Effect of η (b) Effect of µ

(c) Effect of λ1 (d) Effect of λ2

Figure 1: Sensitivity analysis with respect to parameters η, µ, λ1 and λ2 for Example 5.2.
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semi-definite linear operators S1=S2=S3=S4=δI. To be specific, δ∈{0.1,0.1,0.1,0.1} for
the case of noisy and/or blurry images, and δ∈{0.1,0,0.3,0.4} for the case of the images
with missing pixels. Step size σ is selected to be 0.01.

In all experiments, according to the method in the paper, we adjust the parameters to
the optimal value according to the following range [31]

a. Chan-Vese [18]: the regularization parameter λ∈ [0.1,1];

b. FRC [66]: the regularization parameter λ∈ [0.0001,1];

c. TSMS [21]: the regularization parameter λ∈ [0.1,1];

d. CMF [67]: the regularization parameter λ∈ [0.1,1];

e. DPP [12]: the regularization parameter λ∈ [0.1,5];

f. EEMS [24]: the regularization parameter λ∈ [0.1,1];

g. ICTM [68]: the regularization parameter λ∈ [100,500];

h. T-ROF [69]: the regularization parameter λ∈ [0.01,0.5].

5.3 The results of artificial images

Example 5.1 (Blurry and noisy image). To prove our method does well on segmenting
the blurry image, four images are shown in Figs. 2(a)-(d) are used, where each image

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Testing images. (a)-(d) Clean images (256×256 pixels). (e)-(h) Corrupted images for (a)-(d) with
GB, AB, MB and DB, respectively.
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Table 1: IoU for blurry images segmentation (The best results in the simulation are given in bold.)

Fig. 2(e) Fig. 2(f) Fig. 2(g) Fig. 2(h)
Chan-Vese 0.9094 0.9576 0.9394 0.9323

FRC 0.9479 0.9690 0.9505 0.9542
TSMS 0.9572 0.9818 0.9343 0.9626
CMF 0.8626 0.9110 0.9507 0.8914
DPP 0.9437 0.9654 0.9516 0.9486

EEMS 0.9341 0.9676 0.9454 0.9491
ICTM 0.9166 0.9481 0.9380 0.9195
T-ROF 0.9590 0.9799 0.9564 0.9643

FBTVS using ρK 0.9815 0.9881 0.9753 0.9697
FBTVS using ρU 0.9822 0.9884 0.9756 0.9703

contains three geometric shapes. We test our method on four blurry images: Fig. 2(e)
with GB, Fig. 2(f) with AB, Fig. 2(g) with MB and Fig. 2(h) with DB. In particular, we
consider GB with HSIZE= [15,15] and SIGMA= 20, AB with HSIZE= [15,15], MB with
LEN=20 and THETA=0, DB with RADIUS=12. To make images more challenging to be
segmented, we add a GN with MEAN=0 and VARIANCE=0.04 for all images. Herein,
we only show the segmentation results of the case of GB. But for all blur cases, we will
give the IoU of each group of experiments.

For GB, Fig. 3(k) is our solution u by using η=10, µ=10, λ1 =2, λ2 =4. It is obvious
that all the blur and the noise are clearly removed, which promotes the detection of the
objects. Figs. 3(l) and (m) are our segmentation results with thresholds ρK and ρU , re-
spectively. From the results, we can see that all the methods produce the segmentations
similarly to our results with thresholds ρK and ρU , but our boundary depicts the shapes
of the objects more precisely. By comparing the IoU shown in Table 1, it is clear that our
method has higher IoU values than other methods, which indicates our method has bet-
ter segmentation results of blurry and noisy images. And as can be seen from Table 1, we
can manually change the thresholds to get better results of our method.

Example 5.2 (Multi-phase image with Gaussian noise). To show the ability of our method
in segmenting the multi-phase image, we test a four-phase artificial image with Gaussian
noise. Figs. 4(a) and (b) show the clean and the given noisy images (for GN, we set
MEAN=0 and VARIANCE=0.06), respectively. Fig. 4(g) is our smooth solution u when
η=1.5, µ=3, λ1=1, λ2=1. It is clear that our method reduces the noise very well. For the
segmentation results of each method, we show each phase by using the mean value of
the corresponding phase to represent the phase. Fig. 4(h) is our segmentation result with
ρK =(0.2454,0.4923,0.7796). Figs. 4(i)-(l) are the contours of the four phases by using our
method. From Fig. 4, we see that TSMS, T-ROF and our method produce the boundaries
which successfully segment each portion of the multi-phase image. However, FRC can
not separate the third and the fourth phases correctly, and CMF can not separate the first
and the second phases correctly. Fig. 5 is the convergence curve of relative error solved by
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(a) Clean image (b) Blurred image (c) Chan-Vese (d) FRC

(e) TSMS (f) CMF (g) DPP (h) EEMS

(i) ICTM (j) T-ROF (k) Our solution (l) ρK = 0.5099

(m) ρU = 0.5015

Figure 3: The image with Gaussian blur. (a) Clean image (256×256 pixels). (b) Given blurry image with noise.
(c)-(j) The results of Chan-Vese, FRC, TSMS, CMF, DPP, EEMS, ICTM and T-ROF. (k) Our solution u. (l)
Our result using threshold ρK =0.5099. (m) Our result using threshold ρU =0.5015.

ADMM algorithm and sPADMM algorithm in Example 5.2. As can be seen from Fig. 5,
compared with ADMM algorithm, sPADMM algorithm can quickly converge to a certain
value 5×10−4.
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(a) Clean image (b) Noisy image (c) FRC (d) TSMS

(e) CMF (f) T-ROF (g) Our solution (h) Four phases

1

11

1

(i) First phase

2

2

2

(j) Second phase

3

3

3 3

(k) Third phase

4

(l) Fourth phase

Figure 4: Four-phase artificial image. (a) Clean image (256×256 pixels). (b) Given image with Gaussian noise.
(c)-(f) The results of FRC, TSMS, CMF and T-ROF. (g) Our solution u. (h) Our result using thresholds
ρ1 =0.2454, ρ2 =0.4923 and ρ3 =0.7796. (i)-(l) Contours of each phase in (h).

5.4 The results of real images

Example 5.3 (Real brain image). In this test, Fig. 6(a) is a given real brain image. The
boundaries of some brain tissue are blurry and vague, as a result, they are hard to detect.
Fig. 6(j) is our solution u by using η = 30, µ= 110, λ1 = 2, λ2 = 1.5. Figs. 6(k) and (l) are
our segmentation results by using thresholds ρK = 0.3420 and ρU = 0.2300, respectively.
Comparing our results with the results from other state-of-the-art methods in Figs. 6(b)-
(l), we see that other methods all generate similar results to our method by using ρK,
while our method by using ρU obtains the best result, which nearly detects the whole
brain tissue. In particular, it can detect where the arrow marks in Fig. 6(l).

Example 5.4 (Real plane image). In this test, a real plane image shown in Fig. 7(a) is
used. This image is challenging to be segmented for two reasons: the cloud has varying
intensities, and there are some unclear boundaries between the rear wing and the pro-
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Figure 5: Relative error diagram of Example 5.2.

(a) Clean image (b) Chan-Vese (c) FRC (d) TSMS

(e) CMF (f) DPP (g) EEMS (h) ICTM

(i) T-ROF (j) Our solution (k) ρK = 0.5166 (l) ρU = 0.3420

Figure 6: Real brain image. (a) Clean image (256×256 pixels). (b)-(i) The results of Chan-Vese, FRC, TSMS,
CMF, DPP, EEMS, ICTM and T-ROF. (j) Our solution u. (k) Our result using threshold ρK =0.3420. (l) Our

result using threshold ρU =0.2300.
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(a) Clean image (b) Chan-Vese (c) FRC (d) TSMS

(e) CMF (f) DPP (g) EEMS (h) ICTM

(i) T-ROF (j) Our solution (k) ρK = 0.4713 (l) ρU = 0.6300

Figure 7: Real plane image. (a) Clean image (256×256 pixels). (b)-(i) The results of Chan-Vese, FRC, TSMS,
CMF, DPP, EEMS, ICTM and T-ROF. (j) Our solution u. (k) Our result using threshold ρK =0.4713. (l) Our

result using threshold ρU =0.6300.

peller. The target of this test is to segment the whole plane as a single target, without
containing pixels of the cloud. Fig. 7(j) shows our solution u when η=1, µ=155, λ1=10,
λ2=10. Figs. 7(k) and (l) are our final results by using thresholds ρK and ρU , respectively.
As shown in Figs. 7(b) and (c), the results of Chan-Vese and FRC include large portions
which are not the plane. Figs. 7(e) and (g) from CMF and EEMS can not segment the rear
wing well. And TSMS, DPP, ICTM and T-ROF produce similar results with our method
using threshold ρK; see Figs. 7(d), (f), (h) and (i). From Fig. 7(l), it is clear that we can
modulate the threshold manually to obtain better results, e.g., see the arrow in Fig. 7(l).

Example 5.5 (Real cell image with high noise). We conduct this test with the purpose of
proving that our method can be applied well to the segmentation of the real image with
high noise. We consider the GN with MEAN 0 and VARIANCE 0.5. Figs. 8(a) and (b)
display the clean and the noisy images, respectively. Fig. 8(k) is our solution u obtained
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(a) Clean image (b) Noisy image (c) Chan-Vese (d) FRC

(e) TSMS (f) CMF (g) DPP (h) EEMS

(i) ICTM (j) T-ROF (k) Our solution (l) ρK = 0.5514

(m) ρU = 0.5530

Figure 8: Real cell image with high noise. (a) Clean image (256×256 pixels). (b) Given image with Gaussian
noise. (c)-(j) The results of Chan-Vese, FRC, TSMS, CMF, DPP, EEMS, ICTM and T-ROF. (k) Our solution
u. (l) Our segmentation result using threshold ρK = 0.5514. (m) Our segmentation result using threshold

ρU =0.5530.

by using η=50, µ=7, λ1=2, λ2=4. Figs. 7(l) and (m) are our results by using thresholds
ρK and ρU , respectively. From Figs. 8(c) and (i), we see that Chan-Vese and ICTM fail to
detect the cells. Fig. 8(d) from FRC includes too many wrong boundaries due to the high
noise. As shown in Fig. 8(g), we see that the cells are not separated well by DPP. From
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Fig. 8, it is clear that TSMS, EEMS and T-ROF produce similar results to our method using
thresholds ρK and ρU .

5.5 The results of images with missing pixels

Example 5.6 (Images with missing pixels). Finally, we consider the image decomposition
on two grayscale images with some missing pixels. Herein, we assume that for a binary
matrix, the element where the value is zero represents the missing pixel. In this case,

(a) Original image (b) Test image

(c) Solution of DPP (d) Solution of EEMS (e) Our solution

(f) DPP (g) EEMS (h) ρK = 0.3751

Figure 9: Human image with missing pixels. (a) Original images (256×256 pixels). (b) Given image with
missing pixels. (c)-(e) Solutions of DPP, EEMS and our method. (f)-(h) The results of DPP, EEMS and our
method.
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(a) Original image (b) Test image

(c) Solution of DPP (d) Solution of EEMS (e) Our solution

(f) DPP (g) EEMS (h) ρK = 0.8464

Figure 10: Hand image with missing pixels. (a) Original images (256×256 pixels). (b) Given image with missing
pixels. (c)-(e) Solutions of DPP, EEMS and our method. (f)-(h) The results of DPP, EEMS and our method.

we first test Fig. 9(b) to illustrate that our method is well-performed in segmenting the
image with missing pixels, where Fig. 9(a) is the original image. For the test, we only
implement DPP, EEMS and our proposed model. In order to obtain our solution u shown
in Fig. 9(e), we set η=2, µ=25, λ1=2, λ2=4. From Figs. 9(c)-(e), we see that our smooth
solutions are close to the original images, while EEMS produces the worst smooth solu-
tions, which seriously impede the segmentation in the second stage. The thresholds used
in the second stage are obtained from the MATLAB command “kmeans” automatically.
As shown in Fig. 9(f), it is clear that DPP segments the object as a whole, but it also in-
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cludes some incorrect parts in the segmentation, where the arrows in Fig. 9(f) indicate the
wrong boundary. Fig. 9(g) from EEMS fails to detect well the boundary of the human,
especially where the arrow marks. In contrast, our method recovers the object almost
exactly; see Fig. 9(h).

Then, Fig. 10(b) is used to conduct the test. In this test, the parameters used in our
method are the same as the previous test. After we obtain the smooth solution, the thresh-
old is selected by MATLAB command “kmeans”. As displayed in Figs. 10(c)-(h), it is clear
that EEMS fails to restore the missing pixels, while DPP and our method not only elimi-
nate the influence of missing pixels but also get successful results. However, our method
generates a better result than DPP (please refer to the arrows in Figs. 10(f) and (h)).

6 Conclusions

In this paper, a two-stage image segmentation method based on the FBTV and threshold-
ing is proposed. In the first stage, we apply the FBTV regularized Mumford-Shah model
to find a smooth solution u. The proposed model has the advantages of maintaining
sharp edges and reducing the blocky artifacts for segmentation. Moreover, our model
can be used to segment the images with noise or/and blur, or even with missing pixels.
To solve our model, we design a new DCA-based algorithm with the sPADMM iteration.
It can solve the nonconvex and nonsmooth problems effectively. In the second stage,
we use the thresholding segmentation strategy with proper thresholds given manually.
It should be emphasized again that there is no need to recompute the smooth solution
when we change the thresholds. The numerical results show that our method performs
well in two-phase and multi-phase segmentation and can be applied to many kinds of
corrupted images.
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